WorldWideScience

Sample records for cultured epithelial cells

  1. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  2. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu......We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level...

  3. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  4. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  5. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  6. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  7. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  8. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  9. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  10. A method for isolating identifying and culturing of rat trachea-bronchia epithelial cells

    International Nuclear Information System (INIS)

    Cui Fengmei; Su Shibiao; Nie Jihua; Li Bingyan; Tong Jian

    2005-01-01

    Objective: To explore a method for isolating identifying and culturing the rat trachea-bronchia epithelial cells. Methods: The rat trachea-bronchia epithelial cells were isolated by digestion with pronase and brushing with cell brush, identified using confocul and cultured in entire F12 media with no serum. Results: With this method, cells in high purity and high viability could be obtained, and about 10 6 cells per rat. The cells grow well in entire F12 media with no serum. Conclusion: The method is useful for isolating rate trachea-bronchia epithelial cells and the entire F12 media with no serum is effective for culturing. (authors)

  11. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    International Nuclear Information System (INIS)

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G.

    2007-01-01

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells

  12. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow.

    Directory of Open Access Journals (Sweden)

    Han Hu

    Full Text Available BACKGROUND: The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. METHODOLOGY: Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. PRINCIPAL FINDINGS: The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n=60. Furthermore, they were capable of synthesizing beta-casein (CSN2, acetyl-CoA carboxylase-alpha (ACACA and butyrophilin (BTN1A1. An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. CONCLUSIONS: The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs.

  13. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  14. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  15. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  16. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  17. Nacre formation by epithelial cell cultures from mantle of the black-lip pearl oyster, Pinctada margaritifera.

    Science.gov (United States)

    Jayasankar, Vidya; Vasudevan, Srinivasa Raghavan; Poulose, Suja C; Divipala, Indira

    2018-06-12

    Mantle tissue from the black-lip pearl oyster, Pinctada margaritifera, was cultured in vitro using sterilized seawater supplemented with 0.1% yeast extract as the culture medium. Granular and agranular epithelial cells, hyalinocytes, and fibroblast-like cells were observed in the initial stages of culture. Epithelial cells later formed pseudopodial cell networks containing clusters of granulated cells, which upon maturation released their colored granules. These granules induced formation of nacre crystal deposits on the bottom of the culture plate. Cultures comprised of only granulated epithelial cells were established through periodic sub-culturing of mantle cells and maintained for over 18 mo in a viable condition. Reverse transcriptase PCR of cultured cells demonstrated gene expression of the shell matrix protein, nacrein. To further evaluate the functional ability of cultured granulated epithelial cells, nuclear shell beads were incubated in culture medium containing these cells to induce nacre formation on the beads. Observation of the bead surface under a stereomicroscope at periodic intervals showed the gradual formation of blackish yellow colored nacre deposits. Examination of the bead surface by scanning electron microscopy and energy dispersive X-ray analysis at periodic intervals revealed a distinct brick and mortar formation characteristic of nacre, comprised of aragonite platelets and matrix proteins. Calcium, carbon, and oxygen were the major elements in all stages examined. Our study shows that mantle epithelial cells in culture retain the ability to secrete nacre and can therefore form the basis for future studies on the biomineralization process and its application in development of sustainable pearl culture.

  18. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures

    NARCIS (Netherlands)

    Huang, L.; van Loveren, C.; Ling, J.; Wei, X.; Crielaard, W.; Deng, D.M.

    2016-01-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated

  19. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Katano, Takahito; Ootani, Akifumi; Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi; Toda, Shuji; Joh, Takashi

    2013-01-01

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  20. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  1. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  2. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte

    2006-01-01

    The interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...

  3. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  4. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  5. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  7. Dose response of tracheal epithelial cells to ionizing radiation in air-liquid interface cultures

    International Nuclear Information System (INIS)

    Fukutsu, K.; Yamada, Y.; Shimo, M.

    2002-01-01

    The dose-response relationships of tracheal epithelial cells to ionizing radiation was examined in air-liquid interface cultures, which were developed for the purpose of simulating in vivo conditions. The cultures investigated in this study were expected to be advantageous for the performance of irradiation experiments using short-range α rays. The level of dose response of air-liquid interface cultures to ionizing radiation proved to be the same as that for in vivo conditions. This result indicates that air-liquid interface cultures will prove most useful, to facilitate future studies for the investigation of the biological effects induced in tracheal epithelial cells by ionizing radiation, especially by α-rays. (orig.)

  8. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  9. Effect of D-valine and cytosine arabinoside on [3H]thymidine incorporation in rat and rabbit epididymal epithelial cell cultures

    International Nuclear Information System (INIS)

    Orgebin-Crist, M.C.; Jonas-Davies, J.; Storey, P.; Olson, G.E.

    1984-01-01

    Epithelial cell enriched primary cultures were established from the rat and the rabbit epididymis. Epithelial cell aggregates, obtained after pronase digestion of minced epididymis, attached to the culture dish and after 72 h in vitro spread out to form discrete patches of cells. These cells have an epithelioid morphology and form a monolayer of closely apposed polygonal cells where DNA synthesis, as judged by [ 3 H]thymidine uptake, is very low. In L-valine medium the nonepithelial cell contamination was no more than 10% in rat and rabbit epididymal primary cultures. The labeling index of rat epididymal cells cultured in D-valine medium was significantly lower than that of cells cultured in L-valine medium. In contrast, the labeling index of rabbit epididymal cells cultured in D-valine medium was significantly higher than that of cells cultured in L-valine medium. Cytosine arabinoside decreased the number of labeled cells in both L-valine and D-valine cultures. From these results, it appears that D-valine is a selective agent for rat epididymal epithelial cells, but not for rabbit epithelial cells, and that cytosine arabinoside is a simple and effective means to control the proliferation of fibroblast-like cells in both rat and rabbit epididymal cell cultures

  10. Turbulent Dynamics of Epithelial Cell Cultures

    Science.gov (United States)

    Blanch-Mercader, C.; Yashunsky, V.; Garcia, S.; Duclos, G.; Giomi, L.; Silberzan, P.

    2018-05-01

    We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.

  11. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri.

    Science.gov (United States)

    Miessen, Katrin; Einspanier, Ralf; Schoen, Jennifer

    2012-03-19

    Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  12. [Characterization of epithelial primary culture from human conjunctiva].

    Science.gov (United States)

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  13. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture

    International Nuclear Information System (INIS)

    Sadlonova, Andrea; Novak, Zdenek; Johnson, Martin R; Bowe, Damon B; Gault, Sandra R; Page, Grier P; Thottassery, Jaideep V; Welch, Danny R; Frost, Andra R

    2005-01-01

    Stromal fibroblasts associated with in situ and invasive breast carcinoma differ phenotypically from fibroblasts associated with normal breast epithelium, and these alterations in carcinoma-associated fibroblasts (CAF) may promote breast carcinogenesis and cancer progression. A better understanding of the changes that occur in fibroblasts during carcinogenesis and their influence on epithelial cell growth and behavior could lead to novel strategies for the prevention and treatment of breast cancer. To this end, the effect of CAF and normal breast-associated fibroblasts (NAF) on the growth of epithelial cells representative of pre-neoplastic breast disease was assessed. NAF and CAF were grown with the nontumorigenic MCF10A epithelial cells and their more transformed, tumorigenic derivative, MCF10AT cells, in direct three-dimensional co-cultures on basement membrane material. The proliferation and apoptosis of MCF10A cells and MCF10AT cells were assessed by 5-bromo-2'-deoxyuridine labeling and TUNEL assay, respectively. Additionally, NAF and CAF were compared for expression of insulin-like growth factor II as a potential mediator of their effects on epithelial cell growth, by ELISA and by quantitative, real-time PCR. In relatively low numbers, both NAF and CAF suppressed proliferation of MCF10A cells. However, only NAF and not CAF significantly inhibited proliferation of the more transformed MCF10AT cells. The degree of growth inhibition varied among NAF or CAF from different individuals. In greater numbers, NAF and CAF have less inhibitory effect on epithelial cell growth. The rate of epithelial cell apoptosis was not affected by NAF or CAF. Mean insulin-like growth factor II levels were not significantly different in NAF versus CAF and did not correlate with the fibroblast effect on epithelial cell proliferation. Both NAF and CAF have the ability to inhibit the growth of pre-cancerous breast epithelial cells. NAF have greater inhibitory capacity than CAF

  14. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri

    Directory of Open Access Journals (Sweden)

    Miessen Katrin

    2012-03-01

    Full Text Available Abstract Background Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. Results We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. Conclusions We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  15. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19...

  16. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  17. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    A primary culture system for the cells of mouse renal-tubular epithelium was established and used to observe the adhesion of leptospires. Virulent strains of serovars copenhageni and ballum attached themselves to epithelial cells within 3 h of infection whereas an avirulent variant of serovar cop...

  18. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  19. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    Science.gov (United States)

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  20. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  1. Quantum dot labeling and tracking of cultured limbal epithelial cell transplants in-vitro

    Science.gov (United States)

    Genicio, Nuria; Paramo, Juan Gallo; Shortt, Alex J.

    2015-01-01

    PURPOSE Cultured human limbal epithelial cells (HLEC) have shown promise in the treatment of limbal stem cell deficiency but little is known about their survival, behaviour and long-term fate post transplantation. The aim of this research was to evaluate, in-vitro, quantum dot (QDot) technology as a tool for tracking transplanted HLEC. METHODS In-vitro cultured HLEC were labeled with Qdot nanocrystals. Toxicity was assessed using live-dead assays. The effect on HLEC function was assessed using colony forming efficiency assays and expression of CK3, P63alpha and ABCG2. Sheets of cultured HLEC labeled with Qdot nanocrystals were transplanted onto decellularised human corneo-scleral rims in an organ culture model and observed to investigate the behaviour of transplanted cells. RESULTS Qdot labeling had no detrimental effect on HLEC viability or function in-vitro. Proliferation resulted in a gradual reduction in Qdot signal but sufficient signal was present to allow tracking of cells through multiple generations. Cells labeled with Qdots could be reliably detected and observed using confocal microscopy for at least 2 weeks post transplantation in our organ culture model. In addition it was possible to label and observe epithelial cells in intact human corneas using the Rostock corneal module adapted for use with the Heidelberg HRA. CONCLUSIONS This work demonstrates that Qdots combined with existing clinical equipment could be used to track HLEC for up to 2 weeks post transplantation, however, our model does not permit the assessment of cell labeling beyond 2 weeks. Further characterisation in in-vivo models are required. PMID:26024089

  2. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  3. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  4. Changes in responsiveness of rat tracheal epithelial cells to growth factors during preneoplastic transformation in cell culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.

    1988-01-01

    Preneoplastic rat tracheal epithelial (RTE) cell lines require fewer growth factors for clonal proliferation in culture than normal cells. Serum-free media missing various combinations of growth factors (e.g., cholera toxin, serum albumin, epidermal growth factor, hydrocortisone) required for proliferation of normal, but not preneoplastic, RTE cells can be used to select for carcinogen-induced preneoplastic variants having an increased proliferative potential in culture. These results suggest that reductions in growth factor requirements are primary events in the carcinogenic process. (author)

  5. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    International Nuclear Information System (INIS)

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-01-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  6. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  7. Primary culture of cat intestinal epithelial cells in vitro and the cDNA library construction.

    Science.gov (United States)

    Zhao, Gui Hua; Liu, Ye; Cheng, Yun Tang; Zhao, Qing Song; Qiu, Xiao; Xu, Chao; Xiao, Ting; Zhu, Song; Liu, Gong Zhen; Yin, Kun

    2018-06-26

    Felids are the only definitive hosts of Toxoplasma gondii. To lay a foundation for screening the T. gondii-felids interaction factors, we have developed a reproducible primary culture method for cat intestinal epithelial cells (IECs). The primary IECs were isolated from a new born cat's small intestine jejunum region without food ingress, and respectively in vitro cultured by tissue cultivation and combined digestion method with collagenase XI and dispase I, then purified by trypsinization. After identification, the ds cDNA of cat IECs was synthesized for constructing pGADT7 homogenization three-frame plasmid, and transformed into the yeast Y187 for generating the cDNA library. Our results indicated that cultivation of primary cat IECs relays on combined digestion to form polarized and confluent monolayers within 3 days with typical features of normal epithelial cells. The purified cells cultured by digestion method were identified to be nature intestinal epithelial cells using immunohistochemical analysis and were able to maintain viability for at least 15 passages. The homogenizable ds cDNA, which is synthesized from the total RNA extracted from our cultured IECs, distributed among 0.5-2.0 kb, and generated satisfying three-frame cDNA library with the capacity of 1.2 × 106 and the titer of 5.2 × 107 pfu/mL. Our results established an optimal method for the culturing and passage of cat IECs model in vitro, and laid a cDNA library foundation for the subsequent interaction factors screening by yeast two-hybrid.

  8. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  9. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  10. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  11. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    Directory of Open Access Journals (Sweden)

    Lai JY

    2013-10-01

    Full Text Available Jui-Yang Lai,1–3 David Hui-Kang Ma4,5 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; 4Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA cross-linked amniotic membrane (AM on limbal epithelial cell (LEC cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous

  12. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    Science.gov (United States)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  13. Establishment of a Novel Lingual Organoid Culture System: Generation of Organoids Having Mature Keratinized Epithelium from Adult Epithelial Stem Cells

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Kanno, Shohei; Tokuyama, Yoko; Komai, Yoshihiro; Ohe, Shuichi; Yanai, Hirotsugu; Omachi, Taichi; Ueno, Hiroo

    2013-11-01

    Despite the strong need for the establishment of a lingual epithelial cell culture system, a simple and convenient culture method has not yet been established. Here, we report the establishment of a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Histological analyses showed that the generated organoids had both a stratified squamous epithelial cell layer and a stratum corneum. Very recently, we showed via a multicolor lineage tracing method that Bmi1-positive stem cells exist at the base of the epithelial basal layer in the interpapillary pit. Using our new culture system, we found that organoids could be generated by single Bmi1-positive stem cells and that in the established organoids, multiple Bmi1-positive stem cells were generated at the outermost layer. Moreover, we observed that organoids harvested at an early point in culture could be engrafted and maturate in the tongue of recipient mice and that the organoids generated from carcinogen-treated mice had an abnormal morphology. Thus, this culture system presents valuable settings for studying not only the regulatory mechanisms of lingual epithelium but also lingual regeneration and carcinogenesis.

  14. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  15. Correlation of Hypoxia and Pro-senescence Protein Expression in Green Sea Turtle (Chelonia mydas Lung Epithelial and Dermal Fibroblast Cell Culture

    Directory of Open Access Journals (Sweden)

    Anggraini Barlian

    2018-03-01

    Full Text Available Recent studies have shown hypoxia-induced gene expression correlated with cellular senescence. HIF-1α (hypoxia-inducible factor 1-alpha, p53, and pRB were induced under hypoxia and correlated with cellular senescence. The localization and expression of HIF-1α, p53, and pRB in Chelonia mydas lung epithelial and dermal fibroblast cell cultures were analyzed under normoxic and hypoxic conditions (at 4 and 24 hours. Human dermal fibroblast was used for comparison purposes. Protein localization was analyzed with immunocytochemistry, while protein expression was analyzed with the Western blot and enhanced chemiluminescence (ECL method. HIF-1α, p53, and pRB were localized in the nuclei of the C. mydas cell cultures treated with hypoxia. The C. mydas lung epithelial cell cultures had a higher increase of HIF-1α expression than the human dermal fibroblast cell culture. The hypoxic conditions did not affect p53 expression significantly in C. mydas lung epithelial and dermal fibroblast cell cultures. Meanwhile, pRB expression changed significantly under hypoxia in the C. mydas dermal fibroblast cells. Expression of p53 and pRB in the human cell cultures was higher than in the C. mydas cell cultures. This research suggests that C. mydas and human cell cultures have different pro-senescence protein expression responses under hypoxic conditions.

  16. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    Directory of Open Access Journals (Sweden)

    Babak Qasemi-Panahi

    2013-02-01

    Full Text Available Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1 on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 μL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  17. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    2010-06-01

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  18. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    Science.gov (United States)

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  20. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... privilege of the eye, but due to contradictory published results, it is unclear whether RPE cells express this molecule. The purpose of this study was to investigate the expression of FasL in RPE cells in vitro and in vivo. Cultured human fetal and adult RPE cells were examined by flow cytometry, Western...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...

  1. A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong; Tien, Joe; Nelson, Celeste M

    2017-01-01

    Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.

  2. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  3. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  5. Study of the effects of low-dose radiation and rhEGF on growth of cultured human epithelial cells

    International Nuclear Information System (INIS)

    Yang Jicheng; Zhao Xiaoyu; Sheng Weihua; Tang Zhongyi

    1998-01-01

    In authors' study, the method of taking skin sample, mincing and trypsinizing the sample are presented. The cells were inoculated on adherent membrane or, for sublethally injured 3T3 cells, in culture dish fed with Eargles' medium supplemented with fetal calf serum and various growth-stimulating factors. The cultures were incubated at 37 degree C in an atmosphere containing 5% CO 2 . The medium was changed every three days. The cultured cells became confluent in about two weeks. At the same time, low-dose-radiation and rhEGF were used to influence the growth of the epithelial cells and to test the effects of dosage and concentration. The results showed that low-dose-radiation in the conditions like authors' study could enhance the growth of human epithelial cells just like rhEGF, and it has synergetic effects with rhEGF. The mechanism is discussed

  6. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  7. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation - a primary cell culture approach.

    Science.gov (United States)

    Ciesiółka, S; Bryja, A; Budna, J; Kranc, W; Chachuła, A; Bukowska, D; Piotrowska, H; Porowski, L; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The process of oocyte growth and development takes place during long stages of folliculogenesis and oogenesis. This is accompanied by biochemical and morphological changes, occurring from the preantral to antral stages during ovarian follicle differentiation. It is well known that the process of follicle growth is associated with morphological modifications of theca (TCs) and granulosa cells (GCs). However, the relationship between proliferation and/or differentiation of porcine GCs during long-term in vitro culture requires further investigation. Moreover, the expression of cytokeratins and vimentin in porcine GCs, in relation to real-time cell proliferation, has yet to be explored. Utilizing confocal microscopy, we analyzed cytokeratin 18 (CK18), cytokeratin 8 + 18 + 19 (panCK), and vimentin (Vim) expression, as well as their protein distribution, within GCs isolated from slaughtered ovarian follicles. The cells were cultured for 168 h with protein expression and cell proliferation index analyzed at 24-h intervals. We found the highest expression of CK18, panCK, and Vim occurred at 120 h of in vitro culture (IVC) as compared with other experimental time intervals. All of the investigated proteins displayed cytoplasmic distribution. Analysis of real-time cell proliferation revealed an increased cell index after the first 24 h of IVC. Additionally, during each period between 24-168 h of IVC, a significant difference in the proliferation profile, expressed as the cell index, was also observed. We concluded that higher expression of vimentin at 120 h of in vitro proliferation might explain the culmination of the stromalization process associated with growth and domination of stromal cells in GC culture. Cytokeratin expression within GC cytoplasm confirms the presence of epithelial cells as well as epithelial-related GC development during IVC. Moreover, expression of both cytokeratins and vimentin during short-term culture suggests that the process of GC proliferation

  8. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    Science.gov (United States)

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    Directory of Open Access Journals (Sweden)

    Aaron H Fronk

    2016-07-01

    Full Text Available The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

  10. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  11. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  12. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  13. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  14. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  15. Sensitivity to radiation of human normal, hyperthyroid, and neoplastic thyroid epithelial cells in primary culture

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Kopecky, K.J.; Nakamura, Nori; Jones, M.P.; Ito, Toshio; Clifton, K.H.

    1986-09-01

    Samples of thyroid tissue removed surgically from 63 patients were cultured in vitro and X-irradiated to investigate the radiosensitivities of various types of thyroid epithelial cells. A total of 76 samples were obtained, including neoplastic cells from patients with papillary carcinoma (PC) or follicular adenoma (FA), cells from hyperthyroidism (HY) patients, and normal cells from the surgical margins of PC and FA patients. Culturing of the cells was performed in a manner which has been shown to yield a predominance of epithelial cells. Results of colony formation assays indicated that cells from HY and FA patients were the least radiosensitive: when adjusted to the overall geometric mean plating efficiency of 5.5 %, the average mean lethal dose D 0 was 97.6 cGy for HY cells, and 96.7 cGy and 94.3 cGy, respectively, for neoplastic and normal cells from FA patients. Cells from PC patients were more radiosensitive, normal cells having an adjusted average D 0 of 85.0 cGy and PC cells a significantly (p = .001) lower average D 0 of 74.4 cGy. After allowing for this variation by cell type, in vitro radiosensitivity was not significantly related to age at surgery (p = .82) or sex (p = .10). These results suggest that malignant thyroid cells may be especially radiosensitive. (author)

  16. Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases.

    Science.gov (United States)

    Gajewska, Malgorzata; McNally, Sara

    2017-01-01

    Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).

  17. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-01-01

    Human thyroid epithelial tissues from 23 individuals were obtained from surgical tissue, and cultured in vitro. Dose response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X-rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (D q ) values and extrapolation number (n) values greater than 1) at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X-rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  18. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-09-01

    Human thyroid epithelial tissue from 23 individuals was obtained from surgical tissue, and cultured in vitro. Dose-response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (Dsub(q)) values and extrapolation number (n) values greater than 1)* at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  19. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  20. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  1. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  2. Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses

    Science.gov (United States)

    2013-01-01

    Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79–1683 and WSU 79–1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79–1683 still replicated significantly more efficient compared to FCoV WSU 79–1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats. PMID:23964891

  3. Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    PAZ A REYES

    2007-01-01

    Full Text Available Background: Infection of the Fallopian tubes (FT by Neisseria gonorrhoeae (Ngo can lead to acute salpingitis, an inflammatory condition resulting in damage primarily to the ciliated cells, with loss of ciliary activity and sloughing of the cells from the epithelium. Recently, we have shown that Ngo infection induced apoptosis in FT epithelium cells by a TNF-alpha dependent mechanism that could contribute to the cell and tissue damage observed in gonococcal salpingitis. Aim: To investigate the apoptosis-related genes expressed during apoptosis induction in cultured FT epithelial cells infected in vitro by Ngo. Materials and Methods: In the current study, we used cDNA macroarrays and real time PCR to identify and determine the expression levels of apoptosis related genes during the in vitro gonococci infection of FT epithelial cells. Results: Significant apoptosis was induced following infection with Ngo. Macroarray analysis identified the expression of multiple genes of the TNF receptor family (TNFRSF1B, -4, -6, -10A, -10B and -10D and the Bcl-2 family (BAK1, BAX, BLK, HRK and MCL-1 without differences between controls and infected cells. This lack of difference was confirmed by RT-PCR of BAX, Bcl-2, TNFRS1A (TNFR-I and TNFRSF1B (TNFR-II. Conclusion: Several genes related to apoptosis are expressed in primary cultures of epithelial cells of the human Fallopian tube. Infection with Ngo induces apoptosis without changes in the pattern of gene expression of several apoptosis-related genes. Results strongly suggest that Ngo regulates apoptosis in the FT by post-transcriptional mechanisms that need to be further addressed

  4. Culture of Iris Pigment Epithelial Cells on Expanded-Polytetrafluroethylene (ePTFE Substrates for the Treatment of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    S Nian

    2011-05-01

    Full Text Available Introduction: Transplantation of an intact differentiated retinal pigment epithelial (RPE cell layer may provide a means to treat Age-Related Macular Degeneration (AMD. However, harvesting RPE cells can be a technically complicated procedure. Our current work aimed to prepare intact differentiated iris pigment epithelial (IPE cell layers, which are easy to obtain and have the same embryonic origin and similar properties as RPE cells, on ePTFE substrates for transplantation purposes to rescue deteriorated photoreceptors in AMD. Methods: IPE cells isolated from rat eyes were seeded on different substrates, including fibronectin n-heptylamine (HA ePTFE substrates, HA ePTFE substrates, ePTFE substrates and fibronectin tissue culture polystyrene (TCPS as control. Cell number and morphology were assessed at each time interval. The formation of tight junction was examined by immunostaining of junction proteins. Results: An obvious increasing trend of cell number was observed in IPE cells on fibronectin n-heptylamine (HA ePTFE substrate, exhibiting heavy pigmentation and epithelial morphology. At Day 28, tight junction formation was indicated by cell-cell junctional proteins along cell borders. Conclusion: Harvested IPE cells cultured on fibronectin HA-ePTFE substrates can differentiate and form a cell monolayer that may be suitable for transplantation.

  5. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  6. An In Vitro Culture System for Long-Term Expansion of Epithelial and Mesenchymal Salivary Gland Cells: Role of TGF-β1 in Salivary Gland Epithelial and Mesenchymal Differentiation

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    2013-01-01

    Full Text Available Despite a pivotal role in salivary gland development, homeostasis, and disease, the role of salivary gland mesenchyme is not well understood. In this study, we used the Col1a1-GFP mouse model to characterize the salivary gland mesenchyme in vitro and in vivo. The Col1a1-GFP transgene was exclusively expressed in the salivary gland mesenchyme. Ex vivo culture of mixed salivary gland cells in DMEM plus serum medium allowed long-term expansion of salivary gland epithelial and mesenchymal cells. The role of TGF-β1 in salivary gland development and disease is complex. Therefore, we used this in vitro culture system to study the effects of TGF-β1 on salivary gland cell differentiation. TGF-β1 induced the expression of collagen, and inhibited the formation of acini-like structures in close proximity to mesenchymal cells, which adapted a fibroblastic phenotype. In contrast, TGF-βR1 inhibition increased acini genes and fibroblast growth factors (Fgf-7 and Fgf-10, decreased collagen and induced formation of larger, mature acini-like structures. Thus, inhibition of TGF-β signaling may be beneficial for salivary gland differentiation; however, due to differential effects of TGF-β1 in salivary gland epithelial versus mesenchymal cells, selective inhibition is desirable. In conclusion, this mixed salivary gland cell culture system can be used to study epithelial-mesenchymal interactions and the effects of differentiating inducers and inhibitors.

  7. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Mee-Hae Kim

    2017-10-01

    Full Text Available In cell manufacturing, the establishment of a fully automated, microfluidic, cell culture system that can be used for long-term cell cultures, as well as for process optimization is highly desirable. This study reports the development of a novel chip bioreactor system that can be used for automated long-term maturation cultures of retinal pigment epithelial (RPE cells. The system consists of an incubation unit, a medium supply unit, a culture observation unit, and a control unit. In the incubation unit, the chip contains a closed culture vessel (2.5 mm diameter, working volume 9.1 μL, which can be set to 37 °C and 5% CO2, and uses a gas-permeable resin (poly- dimethylsiloxane as the vessel wall. RPE cells were seeded at 5.0 × 104 cells/cm2 and the medium was changed every day by introducing fresh medium using the medium supply unit. Culture solutions were stored either in the refrigerator or the freezer, and fresh medium was prepared before any medium change by warming to 37 °C and mixing. Automated culture was allowed to continue for 30 days to allow maturation of the RPE cells. This chip culture system allows for the long-term, bubble-free, culture of RPE cells, while also being able to observe cells in order to elucidate their cell morphology or show the presence of tight junctions. This culture system, along with an integrated on-line monitoring system, can therefore be applied to long-term cultures of RPE cells, and should contribute to process control in RPE cell manufacturing.

  8. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  9. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system.

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhu

    Full Text Available We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM. The cultured pterygial epithelial cells (PECs were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4, which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(PH dehydrogenase (quinone 1 (NQO1, NF-E2-related factor-2 (NRF2 and superoxide dismutases (SOD2. Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6. We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.

  10. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  11. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers.

    Science.gov (United States)

    Kayes, Timothy D; Braley-Mullen, Helen

    2013-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  13. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  14. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  15. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  17. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  18. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  19. Alpha-particles induce preneoplastic transformation of rat tracheal epithelial cells in culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Seiler, F.A.; Shyr, L.-J.; Griffith, W.C.

    1990-01-01

    To characterize the potential role of high-l.e.t. radiation in respiratory carcinogenesis, the cytotoxic and transforming potency of 5.5 MeV α-particles from electroplated sources of 238 Pu were determined using primary cultures of rat tracheal epithelial cells. RBE for cell killing by α-particles versus X-rays varied with dose, and ranged between 4 and 1.5 for α doses in the range 0.2-4 Gy. At equally toxic doses (relative survival 0.18-0.2), all three agents induced similar frequencies of preneoplastic transformation. For preneoplastic transformation induced by doses of α- and X-radiations giving 80 per cent toxicity, an α RBE of 2.4 was derived. The similar RBEs for cell killing and for preneoplastic transformation suggest an association between the type or degree of radiation-induced damage responsible for both cell killing and cell transformation. (author)

  20. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  1. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  2. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland)

    2017-01-15

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  3. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    International Nuclear Information System (INIS)

    Mytych, Jennifer; Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek

    2017-01-01

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  4. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    Science.gov (United States)

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  5. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  6. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues.

    Science.gov (United States)

    Ye, P; Yu, H; Simonian, M; Hunter, N

    2014-04-01

    Previously we demonstrated uniformly strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies autoreactive with CD24 peptide correlated with reduced severity of periodontal disease. Ligation of CD24 expressed by oral epithelial cells induced formation of tight junctions that limited paracellular diffusion. In this study, we aimed to reveal that the lack of uniform expression of tight junction components in the pocket epithelium of periodontitis lesions is likely to contribute to increased paracellular permeability to bacterial products. This is proposed as a potential driver of the immunopathology of periodontitis. An epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Immunohistochemical staining and confocal laser scanning microscopy were used to analyse patterns of expression of gingival epithelial tight junction components. The minimally inflamed gingival attachment was characterized by uniformly strong staining at cell contacts for the tight junction components zona occludens-1, zona occludens-2, occludin, junction adhesion molecule-A, claudin-4 and claudin-15. In contrast, the pocket epithelium of the periodontal lesion showed scattered, uneven staining for these components. This pattern correlated closely with that of unstimulated oral epithelial cells in culture. Following ligation of CD24 expressed by these cells, the pattern of tight junction component expression of the minimally inflamed gingival attachment developed rapidly. There was evidence for non-uniform and focal expression only of tight junction components in the pocket epithelium. In the cell-culture model, ligation of CD24 induced a tight junction expression profile equivalent to that observed for the minimally inflamed gingival attachment. Ligation of CD24 expressed by gingival epithelial cells by lectin

  7. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells

    International Nuclear Information System (INIS)

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-01-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ∼4-fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.

  8. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin

    International Nuclear Information System (INIS)

    Shimmura, Shigeto; Suematsu, Makoto; Shimoyama, Masaru; Oguchi, Yoshihisa; Ishimura, Yuzuru

    1996-01-01

    Acute exposure to suprathreshold ultraviolet B radiation (UV-B) is known to cause photokeratitis resulting from the necrosis and shedding of corneal epithelial cells. However, the corneal effects of low dose UV-B in the environmental range is less clear. In this study, subthreshold UV-B was demonstrated to cause non-necrotic peroxide formation in cultured corneal epithelial cells, which was attenuated by the major tear protein lactoferrin. Intracellular oxidative insults and cell viability of rabbit corneal epithelial cells (RCEC) were assessed by dual-color digital microfluorography using carboxydichlorofluorescin (CDCFH) diacetate bis (acetoxymethyl) ester, a hydroperoxide-sensitive fluoroprobe, and propidium iodode (PI) respectively. The magnitude of UV-induced oxidative insults was calibrated by concentrations of exogenously applied H 2 O 2 which evoke compatible levels of CDCFH oxidation. Exposure of RCEC to low-dose UV-B (2.0 mJ cm -2 at 313 nm, 10.0 mJ cm -2 total UV-B) caused intracellular oxidative changes which were equivalent to those elicited by 240 μM hydrogen peroxide under the conditions of the study. The changes were dose dependent, non-necrotic, and were partially inhibited by lactoferrin ( 1 mg ml -1 ) but not by iron-saturated lactoferrin. Pretreatment with deferoxamine (2 mΜ) or catalase (100 U ml -1 ) also attenuated the UV-induced oxidative stress. The results indicate that UV-B comparable to solar irradiation levels causes significant intracellular peroxide formation in corneal epithelial cells, and that lactoferrin in tears may have a physiological role in protecting the corneal epithelium from solar UV irradiation. (Author)

  9. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  10. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  11. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  12. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    International Nuclear Information System (INIS)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R.

    2006-01-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, α-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, γ-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects

  13. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  14. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  15. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  16. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages

    DEFF Research Database (Denmark)

    Jantzen, Kim; Roursgaard, Martin; Madsen, Claus Desler

    2012-01-01

    Studies in mono-culture of cells have shown that diesel exhaust particles (DEPs) increase the production of reactive oxygen species (ROS) and oxidative stress-related damage to DNA. However, the level of particle-generated genotoxicity may depend on interplay between different cell types, e.g. lung...... treatment with standard reference DEPs, SRM2975 and SRM1650b. The exposure to DEPs did not affect the colony-forming ability of A549 cells in co-culture with THP-1a cells. The DEPs generated DNA strand breaks and oxidatively damaged DNA, measured using the alkaline comet assay as formamidopyrimidine...... relationship between levels of respiration and ROS production. In conclusion, exposure of mono-cultured cells to DEPs generated oxidative stress to DNA, whereas co-cultures with macrophages had lower levels of oxidatively damaged DNA than A549 epithelial cells....

  17. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  18. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  19. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  20. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  1. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  2. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  3. A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2018-01-01

    Full Text Available Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC-derived intestinal organoids involving four methodological advances. (1 We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2 We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3 Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4 We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.

  4. Ethane dimethanesulfonate (EDS) perturbs epididymal epithelial cell function in vitro

    International Nuclear Information System (INIS)

    Klinefelter, G.

    1990-01-01

    The formation of sperm granulomas in the epididymis following exposure to EDS, a Leydig cell toxicant, was reported by Cooper and Jackson in 1970. Recent work suggests that EDS may effect the epididymis directly. An in vitro system was developed to determine the nature of any direct effect. The caput epididymis from adult rats was dissected free of connective tissue and small pieces of the tissue were enzymatically digested until plaques of epididymal epithelial cells were obtained. Plaques were cultured on an extracellular matrix gelled on top of a semipermeable filter creating dual-compartment environments. The epithelial cells maintained typical morphology and protein secretion in this culture system for several days. Beginning on day 3, EDS (1 mM) was added to the basal compartment, with or without 35 S-methionine. After 24 hours, 35 S-labelled culture medium was taken from the apical compartment and analyzed by SDS-PAGE and fluorography. EDS caused decreased secretion of several proteins, including a 39 Kd molecule. Interestingly, a 39 Kd protein was also shown to disappear from sperm taken from the caput epididymidis following in vivo exposure to EDS. Unlabelled cultures were fixed and processed for light microscopy. No alterations in morphological integrity were observed. Thus, epididymal epithelial cell function is directly altered by EDS exposure

  5. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency.

    Science.gov (United States)

    Brown, Karl David; Low, Suet; Mariappan, Indumathi; Abberton, Keren Maree; Short, Robert; Zhang, Hong; Maddileti, Savitri; Sangwan, Virender; Steele, David; Daniell, Mark

    2014-02-01

    Extensive damage to the limbal region of the cornea leads to a severe form of corneal blindness termed as limbal stem cell deficiency (LSCD). Whereas most cases of corneal opacity can be treated with full thickness corneal transplants, LSCD requires stem cell transplantation for successful ocular surface reconstruction. Current treatments for LSCD using limbal stem cell transplantation involve the use of murine NIH 3T3 cells and human amniotic membranes as culture substrates, which pose the threat of transmission of animal-derived pathogens and donor tissue-derived cryptic infections. In this study, we aimed to produce surface modified therapeutic contact lenses for the culture and delivery of corneal epithelial cells for the treatment of LSCD. This approach avoids the possibility of suture-related complications and is completely synthetic. We used plasma polymerization to deposit acid functional groups onto the lenses at various concentrations. Each surface was tested for its suitability to promote corneal epithelial cell adhesion, proliferation, retention of stem cells, and differentiation and found that acid-based chemistries promoted better cell adhesion and proliferation. We also found that the lenses coated with a higher percentage of acid functional groups resulted in a higher number of cells transferred onto the corneal wound bed in rabbit models of LSCD. Immunohistochemistry of the recipient cornea confirmed the presence of autologous, transplanted 5-bromo-2'-deoxyuridine (BrdU)-labeled cells. Hematoxylin staining has also revealed the presence of a stratified epithelium at 26 days post-transplantation. This study provides the first evidence for in vivo transfer and survival of cells transplanted from a contact lens to the wounded corneal surface. It also proposes the possibility of using plasma polymer-coated contact lenses with high acid functional groups as substrates for the culture and transfer of limbal cells in the treatment of LSCD.

  6. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  7. Hormonal regulation of Na+-K+-ATPase in cultured epithelial cells

    International Nuclear Information System (INIS)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-01-01

    Aldosterone and insulin stimulate Na + transport through mechanisms involving protein synthesis. Na + -K + -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na + -K + -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na + -K + -[ 32 P]ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na + -K + -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na + entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na + -K + -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/

  8. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  9. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  10. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    Full Text Available Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat and Eidolon helvum (Straw-colored fruit bat, were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.

  11. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    Science.gov (United States)

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  12. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  13. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  14. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells.

    Science.gov (United States)

    Beaudette-Zlatanova, Britte C; Knight, Katherine L; Zhang, Shubin; Stiff, Patrick J; Zúñiga-Pflücker, Juan Carlos; Le, Phong T

    2011-05-01

    A human thymic epithelial cell (TEC) line expressing human leukocyte antigen-ABC and human leukocyte antigen-DR was engineered to overexpress murine Delta-like 1 (TEC-Dl1) for the purpose of establishing a human culture system that supports T lymphopoiesis from hematopoietic progenitor cells (HPCs). Cord blood or bone marrow HPCs were co-cultured with either the parental TEC line expressing low levels of the Notch ligands, Delta-like 1 and Delta-like 4, or with TEC-Dl1 to determine if these cell lines support human lymphopoiesis. In co-cultures with cord blood or bone marrow HPCs, TEC-Dl1 cells promote de novo generation of CD7(pos)CD1a(pos) T-lineage committed cells. Most CD7(pos)CD1a(hi) cells are CD4(pos)CD8(pos) double-positive (DP). We found that TEC-Dl1 cells are insufficient to generate mature CD3(hi) CD4(pos) or CD3(hi) CD8(pos) single-positive (SP) T cells from the CD4(pos)CD8(pos) DP T cells; however, we detected CD3(lo) cells within the DP and SP CD4 and CD8 populations. The CD3(lo) SP cells expressed lower levels of interleukin-2Rα and interleukin-7Rα compared to CD3(lo) DP cells. In contrast to the TEC-Dl1 line, the parental TEC-84 line expressing low levels of human Notch ligands permits HPC differentiation to the B-cell lineage. We report for the first time a human TEC line that supports lymphopoiesis from cord blood and bone marrow HPC. The TEC cell lines described herein provide a novel human thymic stroma model to study the contribution of human leukocyte antigen molecules and Notch ligands to T-cell commitment and maturation and could be utilized to promote lymphopoiesis for immune cell therapy. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  15. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  16. Qualitatively Monitoring Binding and Expression of the Transcription Factors Sp1 and NFI as a Useful Tool to Evaluate the Quality of Primary Cultured Epithelial Stem Cells in Tissue Reconstruction.

    Science.gov (United States)

    Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L

    2018-05-27

    Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.

  17. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  18. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  19. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  20. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  1. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  2. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    Directory of Open Access Journals (Sweden)

    Wang YB

    2013-10-01

    Full Text Available Yanbo Wang, Xuxia Yan, Linglin Fu Marine Resources and Nutrition Biology Research Center, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, People's Republic of China Abstract: Nano-selenium (Se, with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. Keywords: selenium nanoparticle, intestinal epithelial cell, crucian carp, primary culture

  3. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  4. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  5. Effect of Interlukin-1β on proliferation of gastric epithelial cells in culture

    Directory of Open Access Journals (Sweden)

    Beales Ian LP

    2002-04-01

    Full Text Available Abstract Background Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1β production is increased in H. pylori infection and IL-1β genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1β on gastric epithelial cell proliferation has been examined in this study. Methods AGS cells were cultured with IL-1β. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. Results IL-1β dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1β-stimulated proliferation by 31 ± 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1β-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1β-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1β stimulated proliferation by 58 ± 5 %. Conclusions IL-1β stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1β. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1β may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.

  6. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Emerman, J.T.; Bartley, J.C.; Bissel, M.J.

    1981-01-01

    In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lacation. By measuring the incorporation of glucose carbon from [U- 14 C]glucose into intermediary metabolitees and metabolic products in mammary epithelia cells from virgin, pregnant, and lacating mice, we domonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counter-parts. When isolated from lacating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state

  7. Mechanisms of asbestos-induced squamous metaplasia in tracheobronchial epithelial cells

    International Nuclear Information System (INIS)

    Cameron, G.; Woodworth, C.D.; Edmondson, S.; Mossman, B.T.

    1989-01-01

    Within 1 to 4 weeks after exposure to asbestos, differentiated rodent and human tracheobronchial epithelial cells in organ culture undergo squamous metaplasia, a putative preneoplastic lesion characterized by conversion of mucociliary cell types to keratinizing cells. The exogenous addition of retinal acetate (RA) to culture medium of hamster tracheal organ cultures reverses preestablished, asbestos-induced squamous metaplasia, although data suggest that the effectiveness of RA decreases as the length of time between exposure to asbestos and initial application of RA increases. Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), inhibits squamous metaplasia caused by asbestos or vitamin A deficiency, whereas addition of methylglyoxal bis(guanyl-hydrazone) (MGBG), a structural analog of spermidine and inhibitor of S-adenosylmethionine decarboxylase, causes an enhancement of metaplasia under both circumstances. Basal cell hyperplasia and increased incorporation of 3 H-thymidine by tracheal epithelial cells also are seen after addition of the polyamines, putrescine or spermidine, to tracheal organ cultures, an observation supporting the importance of polyamines in the development of this lesion. The use of retinoids and inhibitors of ODC could be promising as preventive and/or therapeutic approaches for individuals at high risk for development of asbestos-associated diseases

  8. Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: a case report.

    Science.gov (United States)

    Okuda, Kazuhiro; Momose, Manabu; Murata, Masashi; Saito, Yoshinori; lnoie, Masukazu; Shinohara, Chikara; Wolff, Larry F; Yoshie, Hiromasa

    2004-04-01

    Human cultured gingival epithelial sheets were used as an autologous grafting material for regenerating gingival tissue in the maxillary left and mandibular right quadrants of a patient with chronic desquamative gingivitis. Six months post-surgery in both treated areas, there were gains in keratinized gingiva and no signs of gingival inflammation compared to presurgery. In the maxillary left quadrant, preoperative histopathologic findings revealed the epithelium was separated from the connective tissue and inflammatory cells were extensive. After grafting with the gingival epithelial sheets, inflammatory cells were decreased and separation between epithelium and connective tissue was not observed. The human cultured gingival epithelial sheets fabricated using tissue engineering technology showed significant promise for gingival augmentation in periodontal therapy.

  9. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  10. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  11. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    Science.gov (United States)

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  12. Method for the cultivation of dispersed epithelial cells from mouse palatal mucosa and the effects of X-irradiation

    International Nuclear Information System (INIS)

    Malek, K.W.

    1976-01-01

    Cultivation of adult oral epithelium in vitro has been previously reported for limited periods of time. The present research work describes a method for establishing pure cultures of adult palatal epithelial cells which were viable for extended periods of time. In contrast with most published work, we utilized a cell dispersion technique to obtain suspensions consisting of epithelial cells grown in monolayers. Cultures were maintained by subculturing for continuous periods up to 72 days. The fibroblastic overgrowth which has been previously reported by others in their attempts to culture oral epithelium was prevented in the present culture system as shown by phase microscopy and preliminary electron microscopy studies. The cells in vitro mainly displayed the normal morphologic characteristics of cultured epithelial cells. As demonstrated by labelling with tritiated thymidine, the monolayers of palatal epithelial cells possessed a high rate of DNA synthesis. Karyotypes of the cultured cells showed a high percentage of normal displays of chromosomal morphology. The number of spontaneous aberrations observed in our in vitro system were most likely the result of labilities induced by the conditions of cell culture rather than a reflection of the situation in vivo. Another part of the research dealt with the effects of exposure levels of 1R, 5R, and 10R of X-irradiation (within the clinical range for the dental patient) on the palatal epithelial cells grown in vitro over a short period of time. Our studies reveal that higher percentages of heteroploidy occur in comparison to normal non-irradiated cultures. A significant increase in the number of induced chromosomal aberrations as a result of low level exposure to X-rays was also observed in such cultures in comparison to those seen in non-irradiated control samples

  13. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid.

    Directory of Open Access Journals (Sweden)

    Robert A Hirst

    Full Text Available The diagnosis of primary ciliary dyskinesia (PCD requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns.We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n  111 was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture.Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced.The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia.

  14. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    Science.gov (United States)

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  16. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  17. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  18. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  19. Cooperation between epithelial cells demonstrated by potassium transfer

    International Nuclear Information System (INIS)

    Ledbetter, M.L.; Young, G.J.; Wright, E.R.

    1986-01-01

    Junction-mediated communication can be measured in fibroblast cultures by determining the ability of mixed cultures of cells sensitive and resistant to ouabain to concentrate K+ in the presence of ouabain. We now report the extension of this assay procedure to cultured epithelial cells. Hamster kidney (HaK) cells maintain their ability to concentrate K+ in ouabain at levels inhibitory to dog kidney (MDCK) cells. When HaK and MDCK cells were cultured together in ouabain-containing medium, the K+ (measured as 86Rb+) in the mixed population was greater than expected if the cells were not interacting. The degree of enhancement, expressed as index of cooperation, depended on the numbers of cells in the cultures, their opportunity for cell-to-cell contact, and (above a certain permissive level) the concentration of ouabain. As with other cell types, protein synthesis in MDCK cells depends on maintenance of cell K+. Autoradiography of cells incubated with [3H]leucine demonstrated that MDCK cells in ouabain-treated mixed cultures were able to synthesize proteins only when physically adjacent to HaK cells. The transmission of labeled nucleosides among the cells provides independent evidence of the phenomenon of cooperation, probably mediated by gap junctions. This system offers promise for investigation of stimuli modulating junctional communication

  20. Retinal Pigment Epithelial Cell Culture and Cooperation of L-carnitine in Reducing Stress Induced Cellular Damage

    International Nuclear Information System (INIS)

    Shamsi, Farrukh A.; Al-Rajhi, Ali A.; Athmanathan, S.; Boulton, M.; Chaudhry, Imtiaz A.

    2006-01-01

    Purpose was to show that L-carnitine (LC) is capable of reducing non-oxidative stress in the retinal pigment epithelial cells (RPE) of the human eye. The RPE cells were cultured from donor eyes, obtained immediately after post-mortem. The interaction between bovine serum albumin (BSA) and non-oxidative (sodium hydroxide and methyl methane sulphonate) stress-inducers was observed by recording the change in the absorption profiles of the interacting molecules after incubation in light for 5 hours and after treatment with LC. The isolated and cultured RPE cells from the human eyes were treated with sodium hydroxide or methyl methane sulphonate and/or LC for 5 hours under light, and the qualitative effect on cell morphology after treatment was analyzed by staining cells with Giemsa and visualization by light microscopy. The cell morphology was also qualitatively analyzed by scanning electron microscopy (SEM). L-carnitine and stress-inducers interact with BSA and bring about changes in the spectral profile of the interacted molecules. Light microscopy as well as SEM show that the changes in the cellular morphology, induced by 100 uM concentrations of non-oxidative stress-inducers, are considerably reduced in the presence of 100 uM LC. However, L-carnitine alone does not cause any qualitative damage to the cell morphology during incubation under similar conditions. The results give a preliminary indication that LC has ability to reduce the changes brought about by the non-oxidative stress-inducers in the RPF cells in culture. (author)

  1. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    OpenAIRE

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-01-01

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoprot...

  2. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  3. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  4. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  5. Myo-inositol uptake by cultured calf retinal pigment epithelial cells: regulation by glucose

    International Nuclear Information System (INIS)

    Khatami, M.; Rockey, J.H.

    1986-01-01

    Confluent primary (P-1) or subcultured passage 2 or 3 (P-2, P-3) calf retinal pigment epithelial cells (RPE) were incubated with [ 3 H]-myo-inositol (MI, 100-200 μM) in balanced salt solution (BSS), for 5 to 60 min at 37 0 C. MI uptake into RPE (P-2, 5 days old) was saturable with K/sub m/ of 147 μM and V/sub max/ of 5.5 pmole/min/μg DNA. P-1 or P-2 incubated with 10 μM MI for 40 min accumulated MI against a concentration gradient ([MI]in/[MI]out > 20). Replacement of 150 mM NaCl in BSS by 150 mM choline-Cl reduced the uptake of MI by 87%. MI uptake was inhibited (39%) when cells were incubated in BSS in the absence of Ca Cl 2 . Transport of MI into RPE incubated in the presence of phloridzin, ouabain or 2,4-dinitrophenol (1 mM each) for 10 min was inhibited by 65, 37 and 21%, respectively. α-D-Glucose (20 mM) in the incubation media inhibited MI uptake into primary (or P-2) cultured RPE by 30 or 43% when cells were incubated for 10 or 60 min, respectively. The ability of RPE cells, grown in the presence of 50 mM glucose for 15-25 days, to concentrate MI (40 μM) was reduced up to 41%. Cultured RPE cells accumulated myo-inositol by an active transport system, sensitive to ouabain, DNP and phloridzin. High glucose in the incubation media or in the growth media inhibited the uptake of MI into calf RPE cells

  6. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  7. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  8. Effect of Zebularine loaded MePEG-PCL nanoparticles on viability, attachment of in vitro cultured lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Si-Wei Liu

    2015-01-01

    Full Text Available AIM: To investigate the effect of zebularine(Zebloaded Poly(ethylene glycol-block-poly(ε-caprolactonemethyl ether(MePEG-PCLnanoparticles(NPson the viability, attachment, and apoptosis of in vitro cultured lens epithelial cells(LECs. METHODS: In vitro cultured infant human lens tissue HLE B-3 immortalized cells were distributed randomly divided into six groups. Each group was administered with free Zeb 50μmol/L(ZebF1 group, 100μmol/L(ZebF2 group, Zeb -loaded MePEG-PCL NPs 50μmol/L(ZebNP1 group, Zeb -loaded MePEG-PCL NPs 100μmol/L(ZebNP2 group, MePEG-PCL empty NPs(NPs groupor blank medium(group Crespectively. A tetrazolium dye assay(MTTtest and modified MTT test were performed to determine cell viability and cell attachment. DNA ladder was used to detect the cell apoptosis. RESULTS: Determined by MTT colorimetric method: Cell proliferation rate of LECs were suppressed by all Zeb administration groups in a concentration-time dependent manner(PPP ZebNP1>ZebF2(PCONCLUSION: Zeb loaded MePEG-PCL NPs had better effect on suppressing the viability and attachment of in vitro cultured LECs than the free Zeb groups, as well as enhancing the apoptosis.

  9. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    Science.gov (United States)

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  10. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  11. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    Science.gov (United States)

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  12. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  13. Ciliated cells in vitamin A-deprived cultured hamster tracheal epithelium do divide

    International Nuclear Information System (INIS)

    Rutten, A.A.; Beems, R.B.; Wilmer, J.W.; Feron, V.J.

    1988-01-01

    The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated [methyl-3H]-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 micron, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating [methyl- 3 H]thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration

  14. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  15. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    Science.gov (United States)

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley

  16. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  17. Culture of primary epithelial adenoma cells from familial adenomatous polyposis patients

    Czech Academy of Sciences Publication Activity Database

    Fostira, F.; Apessos, A.; Oikonomou, E.; Kouklis, P.; Baratsis, S.; Manifikos, G.; Anděra, Ladislav; Yannoukakos, D.; Pintzas, A.; Nasioulas, G.

    2008-01-01

    Roč. 28, 2A (2008), s. 843-846 ISSN 0250-7005 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal neoplasia * adenomatous polyposis coli * epithelial cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.390, year: 2008

  18. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  19. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  20. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  1. Membrane associated ion transport enzymes in normal and transformed fibroblasts and epithelial cells

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    In an effort to evaluate membrane changes associated with neoplastic transformation of fibroblasts and epithelial cells by radiation and chemicals, alterations in membrane-associated (Na + + K + )-ATPase and 5'-nucleotidase activities were investigated. Cell cultures consisted of normal and radiation transformed hamster embryo fibroblasts (HE) and mouse C3H 10T 1/2 fibroblasts, normal and chemically transformed adult rat liver epithelial cells (ARL), as well as hepatocarcinoma cells induced by the liver transformants. Transformed fibroblasts demonstrated a 1-2 fold increase in (Na + + K + )-ATPase activity over the normal, while the transformed liver epithelial cells and carcinoma cells showed a 60% and 40% decrease in activity compared to the normal values, respectively. The 5'-nucleotidase activity was 2 to 3 times higher in the transformed fibroblasts

  2. Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Zarcone, Maria C; van Schadewijk, Annemarie; Duistermaat, Evert; Hiemstra, Pieter S; Kooter, Ingeborg M

    2017-01-28

    Exacerbations constitute a major cause of morbidity and mortality in patients suffering from chronic obstructive pulmonary disease (COPD). Both bacterial infections, such as those with non-typeable Haemophilus influenzae (NTHi), and exposures to diesel engine emissions are known to contribute to exacerbations in COPD patients. However, the effect of diesel exhaust (DE) exposure on the epithelial response to microbial stimulation is incompletely understood, and possible differences in the response to DE of epithelial cells from COPD patients and controls have not been studied. Primary bronchial epithelial cells (PBEC) were obtained from age-matched COPD patients (n = 7) and controls (n = 5). PBEC were cultured at the air-liquid interface (ALI) to achieve mucociliary differentiation. ALI-PBECs were apically exposed for 1 h to a stream of freshly generated whole DE or air. Exposure was followed by 3 h incubation in presence or absence of UV-inactivated NTHi before analysis of epithelial gene expression. DE alone induced an increase in markers of oxidative stress (HMOX1, 50-100-fold) and of the integrated stress response (CHOP, 1.5-2-fold and GADD34, 1.5-fold) in cells from both COPD patients and controls. Exposure of COPD cultures to DE followed by NTHi caused an additive increase in GADD34 expression (up to 3-fold). Importantly, DE caused an inhibition of the NTHi-induced expression of the antimicrobial peptide S100A7, and of the chaperone protein HSP5A/BiP. Our findings show that DE exposure of differentiated primary airway epithelial cells causes activation of the gene expression of HMOX1 and markers of integrated stress response to a similar extent in cells from COPD donors and controls. Furthermore, DE further increased the NTHi-induced expression of GADD34, indicating a possible enhancement of the integrated stress response. DE reduced the NTHi-induced expression of S100A7. These data suggest that DE exposure may cause adverse health effects in part by

  3. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  4. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    Science.gov (United States)

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  5. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    Science.gov (United States)

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-02-28

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  6. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    International Nuclear Information System (INIS)

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  7. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells

    OpenAIRE

    Hombauer, H; Minguell, J J

    2000-01-01

    This work is a comparative study on the features displayed by an epithelial metastatic breast cancer cell line (MCF-7) when set in co-culture with human bone marrow mesenchymal stem cells (MSC) or a feeder layer of 3T3 fibroblasts. MSC, a subset of non-haematopoietic cells in the marrow stroma, display a potential for self-renewal, proliferation and differentiation into precursors for bone, cartilage, connective and muscular tissue. Adhesion of MCF-7 cells to monolayers of MSC or 3T3 was high...

  8. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  9. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    Science.gov (United States)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  10. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  11. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  12. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  13. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    Science.gov (United States)

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  14. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  15. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  16. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.; Hirai, Yohei

    2014-01-01

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  17. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  18. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    Science.gov (United States)

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  19. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract.

    Science.gov (United States)

    Li, W C; Spector, A

    1996-01-01

    Epidemiological and experimental studies have revealed that exposure to UV can induce cataractogenesis. To investigate the mechanism of this induction, viability of the lens epithelial cells from UVB-treated rat lenses were examined. Irradiation of the cultured rat lenses with 8 J/s/m2 UVB for 60 min triggers lens epithelial cell apoptosis as determined by terminal deoxyribonucleotide transferase (TdT) labeling and DNA fragmentation assays. The apoptotic lens epithelial cells were initially found in the equatorial region and then quickly appeared in both equatorial and central regions. The percentage of apoptotic cells continuously increased during the postirradiation incubation. After a 5-h post-UVB incubation, more than 50% of the lens epithelial cells were apoptotic. By 24 h, all of the lens epithelial cells in the irradiated lenses were dead through apoptosis. Associated with this apoptotic process is a large upregulation of the proto-oncogene, c-fos. Opacification appears to follow the death of lens epithelial cells occurring first in the equatorial region and then in the central area. This is also true of classical cataract parameters such as non-protein thiol and wet weight, which are significantly modified only after appreciable epithelial cell apoptosis. Together, these results suggest that the rapid apoptotic death of the lens epithelial cells induced by UVB initiates cataract development.

  20. Effects of glaucoma medications and preservatives on cultured human trabecular meshwork and non-pigmented ciliary epithelial cell lines.

    Science.gov (United States)

    Ammar, David A; Kahook, Malik Y

    2011-10-01

    We investigated the potential cytotoxicity of various topical ophthalmic glaucoma formulations containing different preservatives in cultured human trabecular meshwork (TM) and non-pigmented ciliary epithelial (NPCE) cell lines. We tested 0.004% travoprost preserved with either 0.015% benzalkonium chloride (BAK), sofZia or 0.001% Polyquad (PQ); and 0.005% latanoprost preserved with 0.020% BAK. We also tested a range of BAK concentrations in balanced salt solution (BSS). TM cells were treated for 10 min at 37°C with solutions diluted 1:10 to mimic the reduced penetration of topical preparations to the anterior chamber. Viability was determined by the uptake of the fluorescent vital dye calcein-AM (n = 6). BAK solutions (diluted 1:10) demonstrated a dose-dependent reduction in cell viability in both cell types (TM and NPCE). With a 1:10 dilution of 0.020% BAK, there were significantly more living NPCE cells (89 ± 6%) than TM cells (57 ± 6%; p < 0.001). In TM cells, travoprost + BAK had statistically fewer live cells (83 ± 5%) than both travoprost + sofZia (97 ± 5%) and travoprost + PQ (97 ± 6%; p < 0.05). Compared with BSS-treated NPCE cells, travoprost had statistically fewer live cells (p < 0.05) when preserved with BAK (85 ± 16%), sofZia (91 ± 6%) or PQ (94 ± 2%). These results demonstrate that substitution of BAK from topical ophthalmic drugs results in greater viability of cultured TM cells, the cells involved in the conventional outflow pathway. Cultured NPCE, responsible for aqueous inflow, appear more resilient to BAK.

  1. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  2. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures.

    Science.gov (United States)

    Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia

    2017-11-02

    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.

  3. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  4. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC

  5. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  6. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Wnt-10b secreted from lymphocytes promotes differentiation of skin epithelial cells

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    Wnt-10b was originally isolated from lymphoid tissue and is known to be involved in a wide range of biological actions, while recently it was found to be expressed early in the development of hair follicles. However, few studies have been conducted concerning the role of Wnt-10b with the differentiation of skin epithelial cells. To evaluate its role in epithelial differentiation, we purified Wnt-10b from the supernatant of a concanavalin A-stimulated lymphocyte culture using an affinity column and investigated its effects on the differentiation of adult mouse-derived primary skin epithelial cells (MPSEC). MPSEC cultured with Wnt-10b showed morphological changes from cuboidal to spindle-shaped with inhibited proliferation, and also obtained characteristics of the hair shaft and inner root sheath of the hair follicle, represented by red-colored Ayoub Shklar staining, and reactions to AE-13 and AE-15 as seen with immunocytology. Further, RT-PCR analysis demonstrated the expression of mRNA for keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5, in Wnt-10b-treated MPSEC. In addition, involvement of the canonical Wnt signal pathway was demonstrated by a TCF reporter (pTOPFLASH) assay. These results suggest that Wnt-10b promotes the differentiation of MPSEC and may play an important role in hair follicle development by promoting differentiation of epithelial cells

  8. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells.

    Science.gov (United States)

    Kintner, Jennifer; Moore, Cheryl G; Whittimore, Judy D; Butler, Megan; Hall, Jennifer V

    2017-01-01

    Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures ( p Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis .

  9. Oral epithelial cell reaction after exposure to Invisalign plastic material.

    Science.gov (United States)

    Premaraj, Thyagaseely; Simet, Samantha; Beatty, Mark; Premaraj, Sundaralingam

    2014-01-01

    Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Isolation and characterization of a neoplastic epithelial cell line derived from irradiated human submaxillary gland

    International Nuclear Information System (INIS)

    Shirasuna, Kanemitsu; Sato, Mitsunobu; Yura, Yoshiaki; Yanagawa, Tetuo; Kubo, Kazuko

    1979-01-01

    Submaxillary tissues taken from a patient whose oral base was irradiated for squamous cell carcinoma were cultured in order to isolate transformed epithelial cells in vitro. The cells showed a fine structure similar to an intermediate duct cell. When they were transplanted in nude mice, salivary tumors developed. It is epidemiologically known that irradiation induces salivary tumors. In this study, the risk of inducement was revealed and a salivary epithelial cell line was used as a model for the analysis of salivary tumors. (Ichikawa, K.)

  11. α-Crystallin localizes to the leading edges of migrating lens epithelial cells

    International Nuclear Information System (INIS)

    Maddala, Rupalatha; Vasantha Rao, P.

    2005-01-01

    α-crystallin (αA and αB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of αA and αB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of αB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While αB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of αB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. αA-crystallin, which has 60% sequence identity to αB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of αB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of αB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated αB-crystallin in SB202190-treated migrating lens epithelial cells. αB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, αB-crystallin exhibited a clear co-localization with the actin meshwork, β-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE

  12. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  13. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    Science.gov (United States)

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  14. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2 and glutamatergic receptors.

    Directory of Open Access Journals (Sweden)

    Duane J Oswald

    Full Text Available Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2 receptors resulting in mobilization of a Ca(2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  15. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  16. Cytomatrix synthesis in MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mitchell, J.J.; Low, R.B.; Woodcock-Mitchell, J.L.

    1990-01-01

    Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak, was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form

  17. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Eric J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Goldsmith, W. Travis [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shimko, Michael J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A. [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Fedan, Jeffrey S. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States)

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  18. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    International Nuclear Information System (INIS)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2015-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R t ) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na + transport, without affecting Cl − transport or Na + ,K + -pump activity. R t was unaffected. Na + transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione into acetoin and 2-OH-3-pentanone.

  19. In vitro effects of three blood derivatives on human corneal epithelial cells.

    Science.gov (United States)

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Durán, Juan A; Morales, María-Celia

    2012-08-15

    We compared the effects of three blood derivatives, autologous serum (AS), platelet-rich plasma (PRP), and serum derived from plasma rich in growth factors (PRGF), on a human corneal epithelial (HCE) cell line to evaluate their potential as an effective treatment for corneal epithelial disorders. The concentrations of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and fibronectin were quantified by ELISA. The proliferation and viability of HCE cells were measured by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Cell morphology was assessed by phase-contrast microscopy. The patterns of expression of several connexin, involucrin, and integrin α6 genes were analyzed by real-time RT-PCR. We found significantly higher levels of EGF in PRGF compared to AS and PRP. However, AS and PRGF induced robust proliferation of HCE cells. In addition, PRGF cultured cells grew as heterogeneous colonies, exhibiting differentiated and non-differentiated cell phenotypes, whereas AS- and PRP-treated cultures exhibited quite homogeneous colonies. Finally, PRGF upregulated the expression of several genes associated with communication and cell differentiation, in comparison to AS or PRP. PRGF promotes biological processes required for corneal epithelialization, such as proliferation and differentiation. Since PRGF effects are similar to those associated with routinely used blood derivatives, the present findings warrant further research on PRGF as a novel alternative treatment for ocular surface diseases.

  20. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    Science.gov (United States)

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  2. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  3. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  4. Vitreous Humor Changes Expression of Iron-Handling Proteins in Lens Epithelial Cells

    Science.gov (United States)

    Goralska, Malgorzata; Fleisher, Lloyd N.; McGahan, M. Christine

    2017-01-01

    Purpose In humans, vitrectomy is associated with development of nuclear cataracts. Iron catalyzes free radical formation causing oxidative damage, which is implicated in cataract formation. This study was designed to determine if vitreous humor, which can initiate differentiation of lens epithelial cells, would have an effect on iron-handling proteins. Methods Cultured canine lens epithelial cells were treated with collected canine vitreous humor. Lysates of treated and control cells were separated by SDS-PAGE. Ferritin H- and L-chains, transferrin receptor 1, and aquaporin 0 were immunodetected and quantitated with specific antibodies. Morphologic changes in treated cells were assessed. Results Treatment of lens epithelial cells with a 33% (vol/vol) solution of vitreous humor changed the morphology of lens cells and induced expression of aquaporin 0, a marker of fiber cell differentiation that was undetectable in control cells. Treatment did not modify the size of iron-handling proteins but significantly increased content of ferritin from 2.9- to 8.8-fold over control and decreased levels of transferrin receptor by 37% to 59%. Conclusions Vitreous humor may significantly limit iron uptake by transferrin/transferrin receptor pathway, and by increasing ferritin levels could profoundly increase the iron-storage capacity of ferritin in lens cells. Vitreous humor may play a significant protective role against iron-catalyzed oxidative damage of lens epithelial cells and therefore in the formation of cataracts. PMID:28245299

  5. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  6. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  7. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    Science.gov (United States)

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  8. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  9. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  10. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  11. Effects of α-particle radiation on rat tracheal epithelial cells

    International Nuclear Information System (INIS)

    Ford, J.R. Jr.

    1992-08-01

    By a combination of methods, which included flow cytometry and magnetic cell sorting, we have demonstrated that the cells of the rat tracheal epithelium which have the greatest proliferative capacity in culture and in vivo are the basal cells. Because of these findings it seems reasonable to suppose that the basal cells are the most likely target for the action of α-particle radiation in pseudostratified respiratory epithelium. This hypothesis is further supported by the finding that the basal cells are the cells which appear to respond to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. The effects of 210 Po α-particles on the survival and oncogenic transformation of rat tracheal epithelial cells in suspension were investigated. Since these effects were assayed in culture, the results pertain to the reaction of only the basal cells to irradiation. The results indicate that α-particles are extremely cytotoxic in that a track segment of 4 μm, on average, is sufficient to cause the reproductive death of basal cells. This finding is supported by similar results obtained with two cell lines, Mv1Lu and CHO-K1 BH 4 . Production of proliferating epithelial foci by α-particles was not distinguishable from control and sham treatments. These results are in direct conflict with many of the results that have been obtained with C3H 1OT1/2 cells in similar transformation assays. Some possible reasons for these disparities are discussed and supporting evidence is provided

  12. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Science.gov (United States)

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling.

    Directory of Open Access Journals (Sweden)

    Cynthia Van der Hauwaert

    Full Text Available Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.

  14. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Lee, E.Y.H.P.; Lee, W.H.; Parry, G.; Bissell, M.J.

    1985-01-01

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  15. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    International Nuclear Information System (INIS)

    Lee, Gayoung; Kim, Hyun-Man

    2017-01-01

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherin was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.

  16. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    Science.gov (United States)

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG

  17. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue......, steroid metabolism, fatty acid metabolism, apoptosis signalling, transcription regulation, and cell cycle regulation. Based on the results we suggest that mammary epithelial cells in vivo contribute to the immune system by the induced expression of cytokines and other chemotactic agents, activation...

  18. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair

    OpenAIRE

    Shankland, Stuart J.; Anders, Hans-Joachim; Romagnani, Paola

    2013-01-01

    Purpose of review We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. Recent findings Several new paradigms involving PECs have emerged demonstrating thei...

  19. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  20. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells.

    Science.gov (United States)

    Matsusaki, Michiya; Hikimoto, Daichi; Nishiguchi, Akihiro; Kadowaki, Koji; Ohura, Kayoko; Imai, Teruko; Akashi, Mitsuru

    2015-02-13

    Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes. Three-dimensional (3D) sufficient cell microenvironments similar to in vivo natural conditions (proteins and cells), will promote rapid differentiation and higher functional expression of tight junctions. Herein we report for the first time an enhancement in tight-junction formation by 3D-cultures of Caco-2 cells on monolayered (1L) and eight layered (8L) normal human dermal fibroblasts (NHDF). Trans epithelial electric resistance (TEER) of Caco-2 cells was enhanced in the 3D-cultures, especially 8L-NHDF tissues, depending on culture times and only 10 days was enough to reach the same TEER value of Caco-2 monolayers after a 21 day incubation. Relative mRNA expression of tight-junction proteins of Caco-2 cells on 3D-cultures showed higher values than those in monolayer structures. Transporter gene expression patterns of Caco-2 cells on 3D-constructs were almost the same as those of Caco-2 monolayers, suggesting that there was no effect of 3D-cultures on transporter protein expression. The expression correlation between carboxylesterase 1 and 2 in 3D-cultures represented similar trends with human small intestines. The results of this study clearly represent a valuable application of 3D-Caco-2 tissues for pharmaceutical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-01-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  2. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  3. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  4. Inhibitor production by normal rat tracheal epithelial cells influences the frequency of spontaneous and X-ray-induced enhanced growth variants

    International Nuclear Information System (INIS)

    Terzaghi-Howe, M.

    1989-01-01

    A cell culture model was used to assay for the induction of cell populations with enhanced growth capacity in culture in irradiated normal rat tracheal epithelial cells (NTEC). Some growth conditions appear to favor the proliferation of both normal and carcinogen-exposed populations, while others appear to select for populations previously exposed to carcinogen. In the present report we focus on what growth conditions are critical for controlling the emergence of spontaneous and X-ray induced proliferating epithelial foci (PEF) and what factor(s) directly influences the relative frequency of PEF in irradiated and control NTEC cultures. (author)

  5. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Differential effect of TGFβ on the proteome of cancer associated fibroblasts and cancer epithelial cells in a co-culture approach - a short report.

    Science.gov (United States)

    Koczorowska, Maria Magdalena; Friedemann, Charlotte; Geiger, Klaus; Follo, Marie; Biniossek, Martin Lothar; Schilling, Oliver

    2017-12-01

    Solid tumors contain various components that together form the tumor microenvironment. Cancer associated fibroblasts (CAFs) are capable of secreting and responding to signaling molecules and growth factors. Due to their role in tumor development, CAFs are considered as potential therapeutic targets. A prominent tumor-associated signaling molecule is transforming growth factor β (TGFβ), an inducer of epithelial-to-mesenchymal transition (EMT). The differential action of TGFβ on CAFs and ETCs (epithelial tumor cells) has recently gained interest. Here, we aimed to investigate the effects of TGFβ on CAFs and ETCs at the proteomic level. We established a 2D co-culture system of differentially fluorescently labeled CAFs and ETCs and stimulated this co-culture system with TGFβ. The respective cell types were separated using FACS and subjected to quantitative analyses of individual proteomes using mass spectrometry. We found that TGFβ treatment had a strong impact on the proteome composition of CAFs, whereas ETCs responded only marginally to TGFβ. Quantitative proteomic analyses of the different cell types revealed up-regulation of extracellular matrix (ECM) proteins in TGFβ treated CAFs. In addition, we found that the TGFβ treated CAFs exhibited increased N-cadherin levels. From our data we conclude that CAFs respond to TGFβ treatment by changing their proteome composition, while ETCs appear to be rather resilient.

  7. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  8. Dose Optimization of Calcusol™ and Calcium Oxalate Monohydrate (COM on Primary Renal Epithelial Cells Cultures of Mice ( Mus musculus

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-05-01

    Full Text Available Kidney stones are one of the urologic diseases that have plagued mankind for centuries. The main constituents of stones in the kidney are calcium oxalate monohydrate (COM crystals. Nowadays, there are varieties of drugs and treatments that can be made to minimize the grievances due to kidney stone disease. The treatment can be done either by using chemicals or traditional medicine. Calcusol™ is one of the popular herbal products that have been used by Indonesian people in curing the kidney stone disease. The main constituent that was contained in Calcusol™ is an extract of the tempuyung leaves (Sonchus arvensis L., which is expected could cure the kidney stone disease. This study used primary cultured renal epithelial cells of mice to determine the optimal dose of Calcusol™ and the optimal dose of COM. The primary Kidney epithelial cell were treated with Calcusol™ and COM at various doses. The analysis of the cell death either by necrosis or apoptosis pathways was analyzed by flow cytometric analysis. The results that were obtained is the percentage of cell death that is then analyzed by using a complete randomized design (CRD One Way Anova. Based on the results that were obtained, it is known that the optimal dose of Calcusol™ in vitro were ranging from 75 ppm to 100 ppm, whereas the optimal dose of COM suggested for 500 ppm.

  9. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  10. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  11. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  12. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  13. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  14. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    Science.gov (United States)

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  15. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  16. Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells

    Science.gov (United States)

    Xia, Harry Hua-Xiang; Lam, Shiu Kum; Chan, Annie O.O.; Lin, Marie Chia Mi; Kung, Hsiang Fu; Ogura, Keiji; Berg, Douglas E.; Wong, Benjamin C. Y.

    2005-01-01

    AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cag pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro. METHODS: A cytotoxic wild-type H pylori strain (TN2)and its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45, were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of 3H-thymidine, and the levels of incorporation of 3H-thymidine were measured with a liquid scintillation counter. RESULTS: The wild-type strain and the isogenic mutants, TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios. 3H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared. CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H

  17. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  18. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  19. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  20. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  1. The effect of isolation and culture methods on epithelial stem cell populations and their progeny-toward an improved cell expansion protocol for clinical application.

    Science.gov (United States)

    Lenihan, Catherine; Rogers, Caroline; Metcalfe, Anthony D; Martin, Yella H

    2014-12-01

    The use of cultured epithelial keratinocytes in the treatment of burns and skin graft donor sites is well established in clinical practice. The most widely used culture method for clinical use was originally developed by Rheinwald and Green 40 years ago. This system uses irradiated mouse dermal fibroblasts as a feeder cell layer to promote keratinocyte growth, a process that is costly and labor-intensive for health care providers. The medium formulation contains several components of animal origin, which pose further safety risks for patients. Improvements and simplification in the culturing process would lead to clear advantages: improved safety through reduction of xenobiotic components and reduction in cost for health care providers by dispensing with feeder cells. We compared the Rheinwald and Green method to culture in three commercially available, feeder-free media systems with defined/absent components of animal origin. During the isolation process, short incubation times in high-strength trypsin resulted in increased numbers of liberated keratinocyte stem cells compared with longer incubation times. All three commercially available media tested in this study could support the expansion of keratinocytes, with phenotypes comparable to cells expanded using the established Rheinwald and Green method. Growth rates varied, with two of the media displaying comparable growth rates, whereas the third was significantly slower. Our study demonstrates the suitability of such feeder-free media systems in clinical use. It further outlines a range of techniques to evaluate keratinocyte phenotype when assessing the suitability of cells for clinical application. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Chitin stimulates expression of acidic mammalian chitinase and eotaxin-3 by human sinonasal epithelial cells in vitro.

    Science.gov (United States)

    Lalaker, Ashley; Nkrumah, Louis; Lee, Won-Kyung; Ramanathan, Murugappan; Lane, Andrew P

    2009-01-01

    Sinonasal epithelial cells participate in host defense by initiating innate immune mechanisms against potential pathogens. Antimicrobial innate mechanisms have been shown to involve Th1-like inflammatory responses. Although epithelial cells can also be induced by Th2 cytokines to express proeosinophilic mediators, no environmental agents have been identified that promote this effect. Human sinonasal epithelial cells from patients with chronic rhinosinusitis with nasal polyps (CRSwNPs) and controls were harvested and grown in primary culture. Cell cultures were exposed to a range of concentrations of chitin for 24 hours, and mRNA for acidic mammalian chitinase (AMCase), eotaxin-3, and thymic stromal-derived lymphopoietin (TSLP) were assessed. Other cultures were exposed to interleukin 4 (IL- 4) alone and in combination with dust-mite antigen (DMA) for 36 hours. Extracted mRNA and cell culture supernatant were analyzed for expression of AMCase and eotaxin-3. Chitin induced a dose-dependent expression of AMCase and eotaxin-3 mRNA but not TSLP. Patients with recalcitrant CRSwNPs showed lower baseline expression of AMCase when compared with treatment-responsive CRSwNP and less induction of AMCase expression by chitin. DMA did not directly induce expression of AMCase or eotaxin-3. Expression of eotaxin-3 was stimulated by IL-4 and further enhanced with the addition of DMA. Levels of AMCase were not significantly affected by either IL-4 or DMA exposure. In some cases, the combination of IL-4 and DMA was able to induce AMCase expression in cell cultures not producing AMCase at baseline. The abundant biopolymer chitin appears to be recognized by a yet uncharacterized receptor on sinonasal epithelial cells. Chitin stimulates production of AMCase and eotaxin-3, two pro-Th2 effector proteins. This finding suggests the existence of a novel innate immune pathway for local defense against chitin-containing organisms in the sinonasal tract. Dysregulation of this function could

  3. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  4. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  5. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  6. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    Science.gov (United States)

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  8. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils.

    Science.gov (United States)

    Dent, Gordon; Loweth, Sam C; Hasan, Anwar Matar; Leslie, Fiona M

    2014-10-01

    The presence of eosinophils in the lumen and mucosa of the intestine is characteristic of both ulcerative colitis (UC) and Crohn's disease (CD). There is evidence of eosinophil activation in the intestine during acute inflammatory episodes of these diseases; these episodes are also characterized by an influx of neutrophils, which have the potential to cause extensive tissue damage. We undertook a study to determine whether eosinophils in contact with colonic epithelial cells produce factors that may attract neutrophils in response to immunological stimulation. Neutrophil chemotactic activity (NCA) and concentrations of three neutrophil-attracting CXC chemokines - CXCL1 (Groα), CXCL5 (Ena78) and CXCL8 (IL8) - were measured in supernatants of T84 colonic epithelial cells and blood eosinophils or eosinophil-like myeloid leukaemia cells (AML14.3D10), alone or in combination. Cells were stimulated with serum-opsonized zymosan (OZ) particles. NCA (Peosinophil co-cultures were significantly higher than in the supernatants of either cell type alone. Release of CXCL1 (Peosinophils but not higher than from OZ-stimulated epithelial cells. Eosinophils and colonic epithelial cells exhibit synergy in production of neutrophil chemoattractants in response to immunological stimulation. This may represent a mechanism for exaggerated recruitment of neutrophils to the intestine in response to acute infection in conditions that are characterized by the presence of eosinophils in the bowel. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  10. Tetraploidy in monkey kidney epithelial cells exposed to various doses of radiation in vitro and in vivo. Comm.3

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1979-01-01

    The tetraploidy phenomenon in three and five day cultures of monkey kidney epithelial cells exposed to various doses of X-rays at Gsub(0) stage has been revealed. The data are presented on simple and complex tetraploidal enclo-reduplicated cells in monkey kidney epithelium after whole-body irradiaiton of animals by 60 Co γ-rays in dosage of 620-660 R. The frequency decrease of endoreduplicated cells at the second month coincides with the frequency increase of simple tetraploidal cells. In the investigated culture of monkey kidney epithelial cells, irradiated in vitro, a trend is observed towards the increase of the number of tetraploidal cells. An assumption is made on the possibility of using the frequency of tetraploidal cells ( including lymphocytes) for the purposes of biological dosimetry

  11. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  12. Corrosive effects of fluoride on titanium: investigation by X-ray photoelectron spectroscopy, atomic force microscopy, and human epithelial cell culturing.

    Science.gov (United States)

    Stájer, Anette; Ungvári, Krisztina; Pelsoczi, István K; Polyánka, Hilda; Oszkó, Albert; Mihalik, Erzsébet; Rakonczay, Zoltán; Radnai, Márta; Kemény, Lajos; Fazekas, András; Turzó, Kinga

    2008-11-01

    High fluoride (F(-)) concentrations and acidic pH impair the corrosion resistance of titanium (Ti). Effects of F(-)-containing caries-preventive prophylactic rinses, and gels on Ti were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Human epithelial cell attachment and proliferation were investigated by dimethylthiazol-diphenyl tetrazolium bromide (MTT) and protein content assays. Aqueous 1% NaF solution (3800 ppm F(-), pH 4.5) or high (12,500 ppm) F(-) content gel (pH 4.8) strongly corroded the surface and modified its composition. XPS revealed formation of a strongly bound F(-)-containing complex (Na(2)TiF(6)). AFM indicated an increase in roughness (R(a)) of the surfaces: 10-fold for the NaF solution and smaller for the gel or a mouthwash (250 ppm F(-), pH 4.4). MTT revealed that cell attachment was significantly increased by the gel, but was not disturbed by either the mouthwash or the NaF. Cell proliferation determined by MTT decreased significantly only for the NaF-treated samples; protein content assay experiments showed no such effect. This study indicates that epithelial cell culturing results can depend on the method used, and the adverse effects of a high F(-) concentration and low pH should be considered when prophylactic gels are applied by patients with Ti implants or other dental devices.

  13. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  14. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D......492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close...

  15. Normal Human Gingival Epithelial Cells Sense C. parapsilosis by Toll-Like Receptors and Module Its Pathogenesis through Antimicrobial Peptides and Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Raouf Bahri

    2010-01-01

    Full Text Available This study was designed to investigate the interaction between C. parapsilosis and human epithelial cells using monolayer cultures and an engineered human oral mucosa (EHOM. C. parapsilosis was able to adhere to gingival epithelial cells and to adopt the hyphal form in the presence of serum. Interestingly, when cultured onto the engineered human oral mucosa (EHOM, C. parapsilosis formed small biofilm and invaded the connective tissue. Following contact with C. parapsilosis, normal human gingival epithelial cells expressed high levels of Toll-like receptors (TLR-2, -4, and -6, but not TLR-9 mRNA. The upregulation of TLRs was paralleled by an increase of IL-1β, TNFα, and IFNγ mRNA expression, suggesting the involvement of these cytokines in the defense against infection with C. parapsilosis. The active role of epithelial cells in the innate immunity against C. parapsilosis infection was enhanced by their capacity to express high levels of human beta-defensin-1, -2, and -3. The upregulation of proinflammatory cytokines and antimicrobial peptide expression may explain the growth inhibition of C. parapsilosis by the gingival epithelial cells. Overall results provide additional evidence of the involvement of epithelial cells in the innate immunity against C. parapsilosis infections.

  16. The effects of platelet gel on cultured human retinal pigment epithelial (hRPE cells

    Directory of Open Access Journals (Sweden)

    Sahar Balagholi

    2017-11-01

    Full Text Available The positive role of platelet gel (PG in tissue regeneration is well known, however, other characteristics of PG still remain to be determined. We investigated cellular and molecular changes in cultured human retinal pigment epithelial (hRPE cells when treated with different concentrations of PG named PG1, PG2, and PG3. hRPE cells were isolated from donor eyes of two newborn children, within 24 hours after their death. The cells were treated with three concentrations of PG for 7 days: 3 × 104/ml (PG1, 6 × 104/ml (PG2, and 9 × 104/ml (PG3. Fetal bovine serum was used as a control. Immunocytochemistry was performed with anti-RPE65 (H-85, anti-Cytokeratin 8/18 (NCL-5D3, and anti-PAX6 antibody. We used MTT assay to determine cell viability. Gene expressions of PAX6, MMP2, RPE65, ACTA2, MKI67, MMP9, and KDR were analyzed using real-time PCR. A significant increase in viability was observed for PG3-treated cells compared to control (p = 0.044 and compared to PG1 group (p = 0.027, on day 7. Cellular elongation together with dendritiform extensions were observed in PG-treated cells on days 1 and 3, while epithelioid morphology was observed on day 7. All cells were immunoreactive for RPE65, cytokeratin 8/18, and PAX6. No significant change was observed in the expression of MKI67 and PAX6, but the expressions of MMP2, MMP9, ACTA2, and KDR were significantly higher in PG2-treated cells compared to controls (p < 0.05. Our results indicate that increased concentration of PG and extended exposure time have positive effects on viability of hRPE cells. PG may be useful for hRPE cell encapsulation in retinal cell replacement therapy.

  17. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-01-01

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types

  18. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  19. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    Science.gov (United States)

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  1. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  2. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  3. Water permeability of Na+-K+-2Cl- cotransporters in mammalian epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Herrera-Perez, José Jaime; Bundgaard, Magnus

    2005-01-01

    Water transport properties of the Na+-K+-2Cl- cotransporter (NKCC) were studied in cultures of pigmented epithelial cells (PE) from the ciliary body of the eye. Here, the membrane that faces upwards contains NKCCs and can be subjected to rapid changes in bathing solution composition and osmolarity...

  4. Lactobacillus Decelerates Cervical Epithelial Cell Cycle Progression

    Science.gov (United States)

    Vielfort, Katarina; Weyler, Linda; Söderholm, Niklas; Engelbrecht, Mattias; Löfmark, Sonja; Aro, Helena

    2013-01-01

    We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells. PMID:23675492

  5. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  6. Molecular Characterization of Gastric Epithelial Cells Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    2018-04-01

    Full Text Available The ability to analyze individual epithelial cells in the gastric mucosa would provide important insight into gastric disease, including chronic gastritis and progression to gastric cancer. However, the successful isolation of viable gastric epithelial cells (parietal cells, neck cells, chief cells, and foveolar cells from gastric glands has been limited due to difficulties in tissue processing. Furthermore, analysis and interpretation of gastric epithelial cell flow cytometry data has been difficult due to the varying sizes and light scatter properties of the different epithelial cells, high levels of autofluorescence, and poor cell viability. These studies were designed to develop a reliable method for isolating viable single cells from the corpus of stomachs and to optimize analyses examining epithelial cells from healthy and diseased stomach tissue by flow cytometry. We performed a two stage enzymatic digestion in which collagenase released individual gastric glands from the stromal tissue of the corpus, followed by a Dispase II digestion that dispersed these glands into greater than 1 × 106 viable single cells per gastric corpus. Single cell suspensions were comprised of all major cell lineages found in the normal gastric glands. A method describing light scatter, size exclusion, doublet discrimination, viability staining, and fluorescently-conjugated antibodies and lectins was used to analyze individual epithelial cells and immune cells. This technique was capable of identifying parietal cells and revealed that gastric epithelial cells in the chronically inflamed mucosa significantly upregulated major histocompatibility complexes (MHC I and II but not CD80 or CD86, which are costimulatory molecules involved in T cell activation. These studies describe a method for isolating viable single cells and a detailed description of flow cytometric analysis of cells from healthy and diseased stomachs. These studies begin to identify effects of

  7. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    Science.gov (United States)

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492

  8. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  9. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    Directory of Open Access Journals (Sweden)

    Ramona A Hoh

    Full Text Available Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP. The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  10. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds

    International Nuclear Information System (INIS)

    Daoud, Jamal; Tabrizian, Maryam; Asami, Koji; Rosenberg, Lawrence

    2012-01-01

    In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin–Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro. (paper)

  11. Immunocytochemical characterization of explant cultures of human prostatic stromal cells

    NARCIS (Netherlands)

    A. Kooistra (Anko); A.M.J. Elissen (Arianne ); J.J. Konig (Josee); M. Vermey; Th.H. van der Kwast (Theo); J.C. Romijn (Johannes); F.H. Schröder (Fritz)

    1995-01-01

    textabstractThe study of stromal-epithelial interactions greatly depends on the ability to culture both cell types separately, in order to permit analysis of their interactions under defined conditions in reconstitution experiments. Here we report the establishment of explant cultures of human

  12. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    Science.gov (United States)

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  13. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Simzar [School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Soleimani, Masoud [Department of Hematology, Faculty of Medical Sciences, TarbiatModares University, Tehran (Iran, Islamic Republic of); Vossoughi, Manuchehr [Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ranjbarvan, Parviz [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hamedi, Shokoh [Department of Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Zamanlui, Soheila [Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mahmoudifard, Matin, E-mail: mahmodifard@mehr.sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14 days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering. - Highlights: • New way for the generation of novel biomaterials for the development of current skin tissue engineering. • Fabrication of novel composite scaffold containing Beta vulgaris through electrospinning • Synergistic effect was found on epithelial differentiation through co-culture of keratinocyte and MSC on proposed composite NFM.

  14. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    International Nuclear Information System (INIS)

    Hosseinzadeh, Simzar; Soleimani, Masoud; Vossoughi, Manuchehr; Ranjbarvan, Parviz; Hamedi, Shokoh; Zamanlui, Soheila; Mahmoudifard, Matin

    2017-01-01

    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14 days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering. - Highlights: • New way for the generation of novel biomaterials for the development of current skin tissue engineering. • Fabrication of novel composite scaffold containing Beta vulgaris through electrospinning • Synergistic effect was found on epithelial differentiation through co-culture of keratinocyte and MSC on proposed composite NFM

  15. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM 1 81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  16. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  17. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  18. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  19. Specificity in calcium oxalate adherence to papillary epithelial cells in culture

    International Nuclear Information System (INIS)

    Riese, R.J.; Riese, J.W.; Kleinman, J.G.; Wiessner, J.H.; Mandel, G.S.; Mandel, N.S.

    1988-01-01

    Attachment of microcystallites to cellular membranes may be an important component of the pathophysiology of many diseases including urolithiasis. This study attempts to characterize the interaction of calcium oxalate (CaOx) crystals and apatite (AP) crystals with renal papillary collecting tubule (RPCT) cells in primary culture. Primary cultures of RPCT cells showed the characteristic monolayer growth with sporadically interspersed clumped cells. Cultures were incubated with [ 14 C]CaOx crystals, and the crystals that bound were quantified by microscopy and adherent radioactivity. Per unit of cross-sectional area, 32 times more CaOx crystals were bound to the clumps than to the monolayer. CaOx adherence demonstrated concentration-dependent saturation with a β value (fraction of cell culture area binding CaOx crystals) of 0.179 and a 1/α ox value of 287 μg/cm 2 . On incubation with AP crystals, CaOx binding demonstrated concentration-dependent inhibition with a 1/α AP value of 93 μg/cm 2 . Microcystallite adherence to RPCT cells demonstrates selectivity for cellular clumps, saturation, and inhibition. These features suggest specific binding

  20. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  2. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK.

    Directory of Open Access Journals (Sweden)

    Xiao Xiao Tang

    2010-08-01

    Full Text Available The tight junctions (TJs, characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK. AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK.

  3. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  4. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    Science.gov (United States)

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  5. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  6. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized MedicineSummary

    Directory of Open Access Journals (Sweden)

    Kelly A. Whelan

    Full Text Available The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine. Keywords: Organotypic Culture, Organoid, Spheroid Culture, Esophageal Disease

  7. Preserved and unpreserved 12 anti-allergic ophthalmic solutions and ocular surface toxicity: in vitro assessment in four cultured corneal and conjunctival epithelial cell lines.

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Yaguchi, Shigeo; Koide, Ryohei

    2010-12-01

    In the present study, we evaluated the cytotoxicity of anti-allergic ophthalmic solutions in cultured corneal and conjunctival cells, namely SIRC (rabbit corneal epithelium), BCE C/D-1b (bovine corneal epithelial cells), RC-1 (rabbit corneal epithelium), and Chang (human conjunctival cells). The viability of cell cultures was determined following the exposure of cells to 12 commercially available anti-allergic ophthalmic solutions for varying exposure times and at various dilutions using the MTT and neutral red assays. The cell viability score (CVS) was used to compare the toxicity of different drugs. Based on CVS data, the order of cell viability after exposure to the drugs was Zepelin ≥ Tramelas PF ≥ Cumorol PF ≥ Ketotifen PF ≥ Eyevinal = Fumarton ≥ Cumorol > Intal ≥ Rizaben ≥ Tramelas ≥ Patanol Livostin. In conclusion, cell viability was mostly affected by the concentration of benzalkonium chloride rather than the active component and/or the anti-allergic action of the drug. The CVS was useful in comparing the toxicity of different drugs.

  8. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  9. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  10. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  11. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  12. Mycotoxin production by Fusarium avenaceum strains isolated from Norwegian grain and the cytotoxicity of rice culture extracts to porcine kidney epithelial cells.

    Science.gov (United States)

    Morrison, Ellen; Kosiak, Barbara; Ritieni, Alberto; Aastveit, Are H; Uhlig, Silvio; Bernhoft, Aksel

    2002-05-08

    The secondary metabolites of 24 isolates of Fusarium avenaceum from Norwegian cereals and grown on rice have been characterized. Moniliformin (MON), enniatins (ENNs), and beauvericin (BEA) were analyzed by high-performance liquid chromatography. Porcine kidney epithelial cells (PK15, American Type Culture Collection) were used to study the cytotoxicity of MON in the extracts. The following metabolites were produced by all isolates, ranked by concentration in rice cultures: ENN-B, MON, ENN-B1, and ENN-A. BEA was produced by eight isolates. The productions of BEA and ENN-A were significantly correlated, as was the case with ENN-B and ENN-B1. MON production was correlated neither to any of the other toxins nor to toxicity.

  13. Colonic epithelial cell activation and the paradoxical effects of butyrate.

    Science.gov (United States)

    Gibson, P R; Rosella, O; Wilson, A J; Mariadason, J M; Rickard, K; Byron, K; Barkla, D H

    1999-04-01

    Butyrate may have paradoxical effects on epithelial cells of similar origin. This study aimed to examine the hypothesis that one mechanism that dictates a cell's response to butyrate is its state of activation. First, the responses to 24 h exposure to butyrate (1-2 mM) of normal and neoplastic human colonic epithelial cells activated by their isolation and primary culture, and of colon cancer cell lines, LIM1215 and Caco-2, were examined. In primary cultures of normal and cancer cells, butyrate had no effect on alkaline phosphatase activities but significantly suppressed urokinase receptor expression by a mean +/- SEM of 30 +/- 12% and 36 +/- 9%, respectively. Interleukin-8 secretion was suppressed by 44 +/- 7% in normal cells (P 50%, urokinase receptor expression >2-fold and interleukin-8 secretion >3-fold in response to butyrate. Secondly, the effect of butyrate on Caco-2 cells was examined with or without prior exposure to a specific activating stimulus [tumour necrosis factor alpha (TNF alpha)]. Interleukin-8 secretion increased by 145 +/- 23% and 132 +/- 17% on 24 h exposure to 2 mM butyrate or 0.1 microM TNF alpha alone, respectively. However, in cells pre-treated with TNF alpha, butyrate significantly inhibited secretion by 34 +/- 7% below unstimulated levels. The response to butyrate of urokinase receptor, whose expression was not stimulated by TNF alpha, was unchanged. These effects were mimicked by trichostatin A, an inhibitor of histone deacetylase, suggesting that butyrate's paradoxical effects may have been operating by the same mechanism. In conclusion, some of the paradoxical effects of butyrate do not appear to represent inherent differences between normal and transformed cells. Rather, the response may be determined by the state of activation of the cells.

  14. [Primary culture of cat intestinal epithelial cell and construction of its cDNA library].

    Science.gov (United States)

    Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C

    2017-04-12

    Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.

  15. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  16. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  17. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow.

    Science.gov (United States)

    Lin, Ye; Sun, Xiaoxu; Hou, Xiaoming; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-05-26

    Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.

  18. Human glomerular epithelial cell proteoglycans

    International Nuclear Information System (INIS)

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M.

    1990-01-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate

  19. Periovulatory follicular fluid levels of estradiol trigger inflammatory and DNA damage responses in oviduct epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sergio E Palma-Vera

    Full Text Available Ovarian steroid hormones (mainly E2 and P4 regulate oviduct physiology. Serum-E2 acts on the oviduct epithelium from the basolateral cell compartment. Upon ovulation, the apical compartment of the oviduct epithelium is temporarily exposed to follicular fluid, which contains much higher levels of E2 than serum. The aim of this study was to evaluate the effects of human periovulatory follicular fluid levels of E2 on oviduct epithelial cells using two porcine in vitro models.A cell line derived from the porcine oviductal epithelium (CCLV-RIE270 was characterized (lineage markers, proliferation characteristics and transformation status. Primary porcine oviduct epithelial cells (POEC were cultured in air-liquid interface and differentiation was assessed histologically. Both cultures were exposed to E2 (10 ng/ml and 200 ng/ml. Proliferation of CCLV-RIE270 and POEC was determined by real-time impedance monitoring and immunohistochemical detection of Ki67. Furthermore, marker gene expression for DNA damage response (DDR and inflammation was quantified.CCLV-RIE270 was not transformed and exhibited properties of secretory oviduct epithelial cells. Periovulatory follicular fluid levels of E2 (200 ng/ml upregulated the expression of inflammatory genes in CCLV-RIE270 but not in POEC (except for IL8. Expression of DDR genes was elevated in both models. A significant increase in cell proliferation could not be detected in response to E2.CCLV-RIE270 and POEC are complementary models to evaluate the consequences of oviduct exposure to follicular fluid components. Single administration of periovulatory follicular fluid E2 levels trigger inflammatory and DNA damage responses, but not proliferation in oviduct epithelial cells.

  20. Clonal differences in generation times of GPK epithelial cells in monolayer culture.

    Science.gov (United States)

    Riley, P A; Hola, M

    1980-01-01

    Pedigrees of cells in eight clones of guinea pig keratocyte (GPK) cells in monolayer culture were analyzed from a time-lapse film. The generation times and the position in the field of observation were recorded up to the sixth generation when the cultures were still subconfluent. Statistical analysis of the results indicates that the position in the culture has less significance than the clonal origin of the cell in determining the interval between successive mitoses.

  1. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    Directory of Open Access Journals (Sweden)

    Takahiro Matsuki

    Full Text Available In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut.

  2. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  3. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  4. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine

    Directory of Open Access Journals (Sweden)

    Eva Maier

    2017-12-01

    Full Text Available Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2 activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2. The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER, of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  5. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2017-12-12

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  6. Novel aspects of live intestinal epithelial cell function revealed using a custom time-lapse video microscopy apparatus.

    Science.gov (United States)

    Papetti, Michael; Kozlowski, Piotr

    2018-04-01

    Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  7. Engineering stromal-epithelial interactions in vitro for ...

    Science.gov (United States)

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to

  8. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  9. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  10. Diclofenac protects cultured human corneal epithelial cells against hyperosmolarity and ameliorates corneal surface damage in a rat model of dry eye.

    Science.gov (United States)

    Sawazaki, Ryoichi; Ishihara, Tomoaki; Usui, Shinya; Hayashi, Erika; Tahara, Kayoko; Hoshino, Tatsuya; Higuchi, Akihiro; Nakamura, Shigeru; Tsubota, Kazuo; Mizushima, Tohru

    2014-04-21

    Dry eye syndrome (DES) is characterized by an increase in tear osmolarity and induction of the expression and nuclear localization of an osmoprotective transcription factor (nuclear factor of activated T-cells 5 [NFAT5]) that plays an important role in providing protection against hyperosmotic tears. In this study, we screened medicines already in clinical use with a view of finding compounds that protect cultured human corneal epithelial cells against hyperosmolarity-induced cell damage. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and cellular NFAT5 level was measured by immunoblotting. The rat model for DES was developed by removal of the lacrimal glands, with an assessment of corneal surface damage based on levels of fluorescein staining and epithelial apoptosis. Some nonsteroidal anti-inflammatory drugs (NSAIDs), including diclofenac sodium (diclofenac), were identified during the screening procedure. These NSAIDs were able to suppress hyperosmolarity-induced apoptosis and cell growth arrest. In contrast, other NSAIDs, including bromfenac sodium (bromfenac), did not exert such a protective action. Treatment of cells with diclofenac, but not bromfenac, stimulated both the nuclear localization and expression of NFAT5 under hyperosmotic conditions. In the rat model for DES, topical administration of diclofenac (but not bromfenac) to eyes reduced corneal surface damage without affecting the volume of tear fluid. Diclofenac appears to protect cells against hyperosmolarity-induced cell damage and NFAT5 would play an important role in this protective action. The findings reported here may also indicate that the topical administration of diclofenac to eyes may be therapeutically beneficial for DES patients.

  11. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine

    International Nuclear Information System (INIS)

    Lobo, Nazleen C.; Gedye, Craig; Apostoli, Anthony J.; Brown, Kevin R.; Paterson, Joshua; Stickle, Natalie; Robinette, Michael; Fleshner, Neil; Hamilton, Robert J.; Kulkarni, Girish; Zlotta, Alexandre; Evans, Andrew; Finelli, Antonio; Moffat, Jason; Jewett, Michael A. S.; Ailles, Laurie

    2016-01-01

    Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. The ability

  12. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  13. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Herrera-Perez, José J; Zeuthen, Thomas

    2010-01-01

    Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored...

  14. MIG-6 negatively regulates STAT3 phosphorylation in uterine epithelial cells

    Science.gov (United States)

    Yoo, Jung-Yoon; Yang, Woo Sub; Lee, Jae Hee; Kim, Byung Gak; Broaddus, Russell R.; Lim, Jeong M.; Kim, Tae Hoon; Jeong, Jae-Wook

    2017-01-01

    Endometrial cancer is the most common malignancy of the female genital tract. Progesterone (P4) has been used for several decades in endometrial cancer treatment, especially in women who wish to retain fertility. However, it is unpredictable which patients will respond to P4 treatment and which may have a P4 resistant cancer. Therefore, identifying the mechanism of P4 resistance is essential to improve the therapies for endometrial cancer. Mitogen-inducible gene 6 (Mig-6) is a critical mediator of progesterone receptor (PGR) action in the uterus. In order to study the function of Mig-6 in P4 resistance, we generated a mouse model in which we specifically ablated Mig-6 in uterine epithelial cells using Sprr2f-cre mice (Sprr2fcre+Mig-6f/f). Female mutant mice develop endometrial hyperplasia due to aberrant phosphorylation of STAT3 and proliferation of the endometrial epithelial cells. The results from our immunoprecipitation and cell culture experiments showed that MIG-6 inhibited phosphorylation of STAT3 via protein interactions. Our previous study showed P4 resistance in mice with Mig-6 ablation in Pgr positive cells (Pgrcre/+Mig-6f/f). However, Sprr2fcre+Mig-6f/f mice were P4 responsive. P4 treatment significantly decreased STAT3 phosphorylation and epithelial proliferation in the uterus of mutant mice. We showed that Mig-6 has an important function of tumor suppressor via inhibition of STAT3 phosphorylation in uterine epithelial cells and the anti-tumor effects of P4 are mediated by the endometrial stroma. This data helps to develop a new signaling pathway in the regulation of steroid hormones in the uterus, and to overcome P4 resistance in human reproductive diseases, such as endometrial cancer. PMID:28925396

  15. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  16. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  17. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    Science.gov (United States)

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  18. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  19. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs....... In conclusion, we determined that AEC conditioning favoring cellular integrity leads to a tolerogenic MDDC phenotype, which is likely to be important in regulating immune responses against commonly inhaled allergens....

  20. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    Science.gov (United States)

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  1. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    Science.gov (United States)

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  2. Studies of Bystander Effect and Intercellular Communication in Human Epithelial Cell Cultures Irradiated with X-rays

    International Nuclear Information System (INIS)

    Romppanen, E.; Trott, K. R.; Musatonen, R.; Leszcznski, D.; Belyakov, O.

    2004-01-01

    The bystander effect is a phenomenon whereby biological consequences of irradiation are expressed in nonexposed cells in the vicinity of exposed cells. Two main pathways have been proposed to mediate the bystander effect: Gap Junction Intercellular Communication (GJIC) and medium borne soluble factors dependent mechanisms. The present study was designed to evaluate the relative contributions of gap junction intercellular communication and of soluble extracellular factors on the bystander effects of low dose X-ray irradiation. HaCaT human epithelial cell monolayers were exposed to X-ray using specially constructed shield, which cover 95% or 56% or 0% of the cells from the radiation. To evaluate whether the GJIC is involved in transmission of the bystander signal from irradiated to nonirradiated cells, irradiations were performed in presence or absence of GJIC inhibitor lindane. The cytochalasin B block technique was used to quantify fractions of micronucleated cells 48 hours after the irradiation. Our results suggest that more micronucleated cells are induced in partially shielded monolayers than expected according to back extrapolation of the data from open field irradiation. Treatment with lindane considerably reduced amount of the bystander damage. We demonstrated that fraction of micronucleated cells after X-rays irradiation of 5% of cells with 1 Gy was 0.07±0.08 (without lindane) and 0.05±0.004 (in presence of lindane). Irradiation of 100% of cells with the same dose resulted in 0.023±0.04 /without lindane) and 0.013±0.02 (in presence of lindane) fractions of micronucleated cells. Comparison with open field data showed that the fraction of micronucleated cells after irradiation of 5% of the cell culture was 5-10 times greater than the estimated fraction assuming no bystander effect. Irradiation of 44% of cells ded not demonstrate a pronounced bystander effect. (Author) 20 refs

  3. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  4. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  5. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  6. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  7. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  8. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    OpenAIRE

    Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J.

    2001-01-01

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth fa...

  9. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Moriya, Kei; Nishiofuku, Mariko; Matsuda, Ryosuke; Ishizaka, Shigeaki

    2008-01-01

    Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelial cells in the hair follicle

  10. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  11. A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma Ovipneumoniae infections.

    Science.gov (United States)

    Xue, Di; Li, Yanan; Jiang, Zhongjia; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-05-01

    Mycoplasma Ovipneumoniae (M. ovipneumoniae) is a primary etiological agent of enzootic pneumonia in sheep and goats. It can enter and colonize ovine respiratory epithelial cells to establish an infection, which leads a serious cell death of epithelial cells. However, the nature of the interaction between pathogen of M. ovipneumoniae and host cells in the cell injury is currently not well understood. In this study, we investigated the epithelial cell apoptosis caused by an infection of M. ovipneumoniae in sheep primary air-liquid interface (ALI) epithelial cultures. The results showed that M. ovipneumoniae could specifically bind to ciliated cells at early stage of infection. Flow cytometric analysis demonstrated that an infection of M. ovipneumoniae induced a time-dependent cell apoptotic cell death, accompanied with an increased production of extracellular nitric oxide (NO), intracellular reactive oxygen species (ROS) production and activation of caspase-3 signaling in sheep bronchial epithelial cells. The induced cell apoptosis was further confirmed by a transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay. Interestingly, the M. ovipneumoniae-induced apoptosis and activation of caspase-3 were correlated with the production of ROS but not NO. Mechanistically, M. ovipneumoniae-induced cell apoptosis was mediated by a mechanism by increasing the expression of phosphorylation of p38 and pro-apoptotic proteins, and activating caspase-3, caspase-8 and poly ADP-ribose polymerase (PARP) cleavage. These results suggest a ROS-dependent and caspase-3-mediated cell apoptosis in sheep bronchial epithelial cells in response to M. ovipneumoniae infections. Copyright © 2017. Published by Elsevier B.V.

  12. [Ability of Staphylococcus cohnii strains to adhere to epithelial cells and solid surfaces in the hospital environment].

    Science.gov (United States)

    Waldon, Edyta; Szewczyk, Eligia M

    2002-01-01

    Presented study describes abilities of staphylococci to adhere to exfoliated cheek and uroepithelial epithelium cells and to various surfaces such as plastics, glass and steel. The subject of the study were strains of Staphylococcus cohnii ssp. cohnii and Staphylococcus cohnii ssp. urealyticus isolated from Intensive Care Unit of Pediatric Hospital. Staphylococcus cohnii ssp.cohnii adhered in great number to epithelial cells. However, the adhesion differed by individual strains. We did not find relationship between slime production and adherence to epithelial cell. Most of investigated strains adhered closely to surfaces--especially of plastics and glass. This phenomenon was stronger in the presence of culture medium and phosphate buffer.

  13. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  14. The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Máté Manczinger

    2015-01-01

    Full Text Available To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis.

  15. The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro

    Science.gov (United States)

    Manczinger, Máté; Bocsik, Alexandra; Kocsis, Gabriella F.; Vörös, Andrea; Hegedűs, Zoltán; Marton, Annamária; Vízler, Csaba; Tubak, Vilmos; Deli, Mária; Kemény, Lajos; Nagy, István; Lakatos, Lóránt

    2015-01-01

    To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis. PMID:26366412

  16. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    Science.gov (United States)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  17. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    International Nuclear Information System (INIS)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-01-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with 3 H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P 0 C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP

  18. Proteomic analysis of protein interactions between Eimeria maxima sporozoites and chicken jejunal epithelial cells by shotgun LC-MS/MS.

    Science.gov (United States)

    Huang, Jingwei; Liu, Tingqi; Li, Ke; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2018-04-04

    Eimeria maxima initiates infection by invading the jejunal epithelial cells of chicken. However, the proteins involved in invasion remain unknown. The research of the molecules that participate in the interactions between E. maxima sporozoites and host target cells will fill a gap in our understanding of the invasion system of this parasitic pathogen. In the present study, chicken jejunal epithelial cells were isolated and cultured in vitro. Western blot was employed to analyze the soluble proteins of E. maxima sporozoites that bound to chicken jejunal epithelial cells. Co-immunoprecipitation (co-IP) assay was used to separate the E. maxima proteins that bound to chicken jejunal epithelial cells. Shotgun LC-MS/MS technique was used for proteomics identification and Gene Ontology was employed for the bioinformatics analysis. The results of Western blot analysis showed that four proteins bands from jejunal epithelial cells co-cultured with soluble proteins of E. maxima sporozoites were recognized by the positive sera, with molecular weights of 70, 90, 95 and 130 kDa. The co-IP dilutions were analyzed by shotgun LC-MS/MS. A total of 204 proteins were identified in the E. maxima protein database using the MASCOT search engine. Thirty-five proteins including microneme protein 3 and 7 had more than two unique peptide counts and were annotated using Gene Ontology for molecular function, biological process and cellular localization. The results revealed that of the 35 annotated peptides, 22 (62.86%) were associated with binding activity and 15 (42.86%) were involved in catalytic activity. Our findings provide an insight into the interaction between E. maxima and the corresponding host cells and it is important for the understanding of molecular mechanisms underlying E. maxima invasion.

  19. Study of substrate topographical effects on epithelial cell behavior using etched alpha-particle tracks on PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Poon, W.L.; Li, W.Y.; Cheung, T.; Cheng, S.H.; Yu, K.N.

    2008-01-01

    Micrometer-size pits on the surface of a polymer (polyallyldiglycol carbonate or PADC) substrate created by alpha-particle irradiation and subsequent chemical etching were used to study the topographical effects alone on cell behavior. Vinculin, the cell adhesion and membrane protrusion protein, was used as an indicator of cytoskeletonal reorganization on the substrate and localization of vinculin was used to demonstrate the presence of focal adhesions. In our experiments, vinculin expressed in epithelial HeLa cells cultured on PADC films with track-etch pits, but not in cells cultured on the raw or chemically etched blank films. In other words, vinculin expression was induced by the topography of track-etch pits, while etching of the substrate alone (without alpha-particle irradiation) did not cause up-regulation of vinculin protein expression. HeLa cells cultured on PADC films with track-etch pits also showed changes in cell proliferation, cell area and cell circularity, and were largely contained by the pits. In other words, the cell membrane edges tended to be in contact with the pits. By comparing the correlation between the positions of HeLa cells and the pits, and that between the positions of cells and computer-simulated pits, the tendency for membrane edges of HeLa cells to be in contact with the pits was recognized. This could be explained by inhibition of membrane protrusion at the pits. In conclusion, substrate track-etch pits were an important determinant of epithelial cell behaviors

  20. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  1. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  2. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  3. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  4. Polarized Airway Epithelial Models for Immunological Co-Culture Studies

    DEFF Research Database (Denmark)

    Papazian, Dick; Würtzen, Peter A; Hansen, Søren Werner Karlskov

    2016-01-01

    Epithelial cells line all cavities and surfaces throughout the body and play a substantial role in maintaining tissue homeostasis. Asthma and other atopic diseases are increasing worldwide and allergic disorders are hypothesized to be a consequence of a combination of dysregulation...... of the epithelial response towards environmental antigens and genetic susceptibility, resulting in inflammation and T cell-derived immune responses. In vivo animal models have long been used to study immune homeostasis of the airways but are limited by species restriction and lack of exposure to a natural...

  5. The autologus graft of epithelial tissue culture

    Directory of Open Access Journals (Sweden)

    Minaee B

    1999-08-01

    Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.

  6. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  7. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  8. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    Science.gov (United States)

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) 90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  9. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Aaron Chidekel

    2012-01-01

    Full Text Available Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH 90% (HFNC for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n=6/condition. Transepithelial resistance and cell viability decreased over time (P<0.001 between HFNC and dry groups (P<0.001. Total protein secretion increased at 8 hours in the dry group (P<0.001. Secretion of interleukin (IL-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P<0.001. Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  10. Helicobacter pylori antigen HP0986 (TieA) interacts with cultured gastric epithelial cells and induces IL8 secretion via NF-κB mediated pathway.

    Science.gov (United States)

    Devi, Savita; Ansari, Suhail A; Vadivelu, Jamuna; Mégraud, Francis; Tenguria, Shivendra; Ahmed, Niyaz

    2014-02-01

    The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera. Also, we studied antigenic role of HP0986 in altering cytokine responses of human gastric epithelial (AGS) cells including its interaction with and localization within the AGS cells. For in vitro expression study of HP0986, 110 H. pylori clinical isolates were cultured from patients with functional dyspepsia. For expression analysis by qRT PCR of HP0986, 10 gastric biopsy specimens were studied. HP0986 was also used to detect antibodies in patient sera. AGS cells were incubated with recombinant HP0986 to determine cytokine response and NF-κB activation. Transient transfection with HP0986 cloned in pEGFPN1 was used to study its subcellular localization or homing in AGS cells. Out of 110 cultured H. pylori strains, 34 (31%) were positive for HP0986 and this observation was correlated with in vitro expression profiles. HP0986 mRNA was detected in 7 of the 10 biopsy specimens. Further, HP0986 induced IL-8 secretion in gastric epithelial cells in a dose and time-dependent manner via NF-κB pathway. Serum antibodies against HP0986 were positively associated with H. pylori positive patients. Transient transfection of AGS cells revealed both cytoplasmic and nuclear localization of HP0986. HP0986 was moderately prevalent in clinical isolates and its expression profile in cultures and gastric biopsies points to its being naturally expressed. Collective observations including the induction of IL-8 via TNFR1 and NF

  11. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    Science.gov (United States)

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  12. Injurious effects of wool and grain dusts on alveolar epithelial cells and macrophages in vitro.

    Science.gov (United States)

    Brown, D M; Donaldson, K

    1991-01-01

    Epidemiological studies of workers in wool textile mills have shown a direct relation between the concentration of wool dust in the air and respiratory symptoms. Injurious effects of wool dust on the bronchial epithelium could be important in causing inflammation and irritation. A pulmonary epithelial cell line in vitro was therefore used to study the toxic effects of wool dust. Cells of the A549 epithelial cell line were labelled with 51Cr and treated with whole wool dusts and extracts of wool, after which injury was assessed. Also, the effects of grain dust, which also causes a form of airway obstruction, were studied. The epithelial injury was assessed by measuring 51Cr release from cells as an indication of lysis, and by monitoring cells which had detached from the substratum. No significant injury to A549 cells was caused by culture with any of the dusts collected from the air but surface "ledge" dust caused significant lysis at some doses. Quartz, used as a toxic control dust, caused significant lysis at the highest concentration of 100 micrograms/well. To determine whether any injurious material was soluble the dusts were incubated in saline and extracts collected. No extracts caused significant injury to epithelial cells. A similar lack of toxicity was found when 51Cr labelled control alveolar macrophages were targets for injury. Significant release of radiolabel was evident when macrophages were exposed to quartz at concentrations of 10 and 20 micrograms/well, there being no significant injury with either wool or grain dusts. These data suggest that neither wool nor grain dust produce direct injury to epithelial cells, and further studies are necessary to explain inflammation leading to respiratory symptoms in wool and grain workers. PMID:2015211

  13. Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells

    International Nuclear Information System (INIS)

    Choudhary, S.; Xiao, T.; Srivastava, S.; Zhang, W.; Chan, L.L.; Vergara, L.A.; Van Kuijk, F.J.G.M.; Ansari, N.H.

    2005-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H 2 O 2 , 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H 2 O 2 -, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H 2 O 2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3 H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST) (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD

  14. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages.

    Directory of Open Access Journals (Sweden)

    Anna Pastò

    Full Text Available BACKGROUND AND AIM: Colon crypts are characterized by a hierarchy of cells distributed along the crypt axis. Aim of this paper was to develop an in vitro system for separation of epithelial cell subsets in different maturation stages from normal human colon. METHODOLOGY AND MAJOR FINDINGS: Dissociated colonic epithelial cells were stained with PKH26, which allows identification of distinct populations based on their proliferation rate, and cultured in vitro in the absence of serum. The cytofluorimetric expression of CK20, Msi-1 and Lgr5 was studied. The mRNA levels of several stemness-associated genes were also compared in cultured cell populations and in three colon crypt populations isolated by microdissection. A PKH(pos population survived in culture and formed spheroids; this population included subsets with slow (PKH(high and rapid (PKH(low replicative rates. Molecular analysis revealed higher mRNA levels of both Msi-1 and Lgr-5 in PKH(high cells; by cytofluorimetric analysis, Msi-1(+/Lgr5(+ cells were only found within PKH(high cells, whereas Msi-1(+/Lgr5(- cells were also observed in the PKH(low population. As judged by qRT-PCR analysis, the expression of several stemness-associated markers (Bmi-1, EphB2, EpCAM, ALDH1 was highly enriched in Msi-1(+/Lgr5(+ cells. While CK20 expression was mainly found in PKH(low and PKH(neg cells, a small PKH(high subset co-expressed both CK20 and Msi-1, but not Lgr5; cells with these properties also expressed Mucin, and could be identified in vivo in colon crypts. These results mirrored those found in cells isolated from different crypt portions by microdissection, and based on proliferation rates and marker expression they allowed to define several subsets at different maturation stages: PKH(high/Lgr5(+/Msi-1(+/CK20(-, PKH(high/Lgr5(-/Msi-1(+/CK20(+, PKH(low/Lgr5(-/Msi-1(+/Ck20(-, and PKH(low/Lgr5(-/Msi-1(-/CK20(+ cells. CONCLUSIONS: Our data show the possibility of deriving in vitro, without any

  15. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  16. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    Science.gov (United States)

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  17. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells

    Science.gov (United States)

    2012-01-01

    Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells. PMID:22624805

  18. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul [Univ. of Rochester, NY (United States)

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  19. Attenuation of radiation-induced DNA damage due to paracrine interactions between normal human epithelial and stromal cells

    International Nuclear Information System (INIS)

    Saenko, V.A.; Nakazawa, Yu.; Rogounovitch, T.I.; Suzuki, K.; Mitsutake, N.; Matsuse, M.; Yamashita, S.

    2007-01-01

    Complete text of publication follows. Objective: Developmentally, every tissue accommodates different types of cells, such as epitheliocytes and stromal cells in parenchymal organs. To better understand the complexity of radiation response, it is necessary to evaluate possible cross-talk between different tissue components. This work was set out to investigate reciprocal influence of normal human epithelial cells and fibroblasts on the extent of radiation-induced DNA damage. Methods: Model cultures of primary human thyrocytes (PT), normal diploid fibroblasts (BJ), PT/BJ cell co-culture and conditioned medium transfer were used to examine DNA damage in terms of γ-H2AX foci number per cell or by Comet assay after exposure to different doses of γ-rays. Results: In co-cultures, the kinetics of γ-H2AX foci number change was dose-dependent and similar to that in individual PT and BJ cultures. The number of γ-H2AX foci in co-cultures was significantly lower (∼25%) in both types of cells comparing to individual cultures. Reciprocal conditioned medium transfer to individual counterpart cells prior to irradiation resulted in approximately 35% reduction in the number γ-H2AX foci at 1 Gy and lower doses in both PT and BJ demonstrating the role of paracrine soluble factors. Comet assay corroborated the results of γ-H2AX foci counting in conditioned medium transfer experiments. In contrast to medium conditioned on PT cells, conditioned medium collected from several human thyroid cancer cell lines failed to establish DNA-protected state in BJ fibroblasts. In its turn, medium conditioned on BJ cells did not change the extent of radiation-induced DNA damage in cancer cell lines tested. Conclusion: The results imply the existence of a network of soluble factor-mediated paracrine interactions between normal epithelial and stromal cells that could be a part of natural mechanism by which cells protect DNA from genotoxic stress.

  20. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  1. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-01-01

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC 50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  2. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  4. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    International Nuclear Information System (INIS)

    Arnold, Ralf; Koenig, Wolfgang

    2006-01-01

    We have previously shown that peroxisome proliferator-activated receptor-γ (PPARγ) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARγ agonists (15d-PGJ 2 , ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARγ agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARγ agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process

  5. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  6. Effect of Interlukin-1β on proliferation of gastric epithelial cells in culture

    OpenAIRE

    Beales, Ian LP

    2002-01-01

    Abstract Background Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1β production is increased in H. pylori infection and IL-1β genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1β on gastric epithelial cell proliferation has been examined in this study. Methods ...

  7. Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane

    International Nuclear Information System (INIS)

    Selby, John C.; Shannon, Mark A.

    2007-01-01

    Details are given for the design, calibration, and operation of an apparatus for measuring the finite load-deformation behavior of a sheet of living epithelial cells cultured on a mesoscopic freestanding elastomer membrane, 10 μm thick and 5 mm in diameter. Although similar in concept to bulge tests used to investigate the mechanical properties of micromachined thin films, cell-elastomer composite diaphragm inflation tests pose a unique set of experimental challenges. Composite diaphragm (CD) specimens are extremely compliant (E MIN =0 μl, V MAX ≤40 μl) while simultaneously recording the inflation pressure acting at the fixed boundary of the specimen, p(r=a). Using a carefully prescribed six-cycle inflation test protocol, the apparatus is shown to be capable of measuring the [V,p(r=a)] inflation response of a cell-elastomer CD with random uncertainties estimated at ±0.45 μl and ±2.5 Pa, respectively

  8. Interleukin-13-induced MUC5AC is regulated by 15-lipoxygenase 1 pathway in human bronchial epithelial cells.

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B; O'Donnell, Valerie; Wenzel, Sally E

    2009-05-01

    15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13-induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air-liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma.

  9. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  10. Importância do co-cultivo com fibroblastos de camundongo 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo humano Importance of 3T3 feeder layer to establish epithelial cultures from cell suspension obtained from corneo-scleral rims

    Directory of Open Access Journals (Sweden)

    Priscila Cardoso Cristovam

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a importância da presença de células 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo obtido de rimas córneo-esclerais. MÉTODOS: Rimas de diferentes doadores tiveram seus estroma posterior e endotélio removidos (n=6. Cada rima foi dividida em três segmentos iguais, que foram colocados em cultura em três diferentes condições: um segmento foi colocado na placa de cultura com o lado epitelial para cima (Grupo A. Os dois segmentos restantes foram tripsinizados e a suspensão de células obtida foi cultivada com (Grupo B ou sem (Grupo C células 3T3 irradiadas. As células foram mantidas em meio de cultura "supplemental hormonal epithelial médium" (SHEM, a migração epitelial e a formação de clones nos grupos A, B e C foram avaliadas pela microscopia de contraste de fase e por coloração pela rodamina B. Os resultados foram comparados estatisticamente. RESULTADOS: O crescimento de células epiteliais foi observado em 4/6 rimas (Grupo A. Todas as suspensões de células epiteliais que foram cultivadas com células 3T3 (Grupo B formaram clones. Nenhuma adesão ou formação de clones verdadeiros (holo ou meroclones foi observada na cultura de células que foi cultivada sem 3T3 (Grupo C (p=0,009. CONCLUSÕES: Suspensão de células epiteliais límbicas obtidas de rimas córneo-esclerais no modelo utilizado precisa ser cultivada com células 3T3 para formar clones e estabelecer colônias epiteliais com perspectivas para uso terapêutico na reconstrução da superfície ocular.PURPOSE: To evaluate the importance of the presence of 3T3 fibroblasts for establishing limbal epithelial cultures from cell suspension obtained from corneo-scleral rims (CSR. METHODS: Corneo-scleral rims from different donors (n=6 had their posterior stroma and endothelium stripped away. Each corneo-scleral rim was divided into three equal segments that were set up in tissue culture in three different conditions: one of the

  11. Differential growth factor induction and modulation of human gastric epithelial regeneration

    International Nuclear Information System (INIS)

    Tetreault, Marie-Pier; Chailler, Pierre; Rivard, Nathalie; Menard, Daniel

    2005-01-01

    While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGFα, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGFβ pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGFα exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGFα and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair

  12. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model

    International Nuclear Information System (INIS)

    Ke, Xi-song; Li, Wen-cheng; Hovland, Randi; Qu, Yi; Liu, Run-hui; McCormack, Emmet; Thorsen, Frits; Olsen, Jan Roger; Molven, Anders; Kogan-Sakin, Ira; Rotter, Varda; Akslen, Lars A.; Oyan, Anne Margrete; Kalland, Karl-Henning

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is pivotal in tumor metastasis. Our previous work reported an EMT model based on primary prostate epithelial cells (EP156T) which gave rise to cells with mesenchymal phenotype (EPT1) without malignant transformation. To promote prostate cell transformation, cells were maintained in saturation density cultures to select for cells overriding quiescence. Foci formed repeatedly following around 8 weeks in confluent EPT1 monolayers. Only later passage EPT1, but not EP156T cells of any passage, could form foci. Cells isolated from the foci were named EPT2 and formed robust colonies in soft agar, a malignant feature present neither in EP156T nor in EPT1 cells. EPT2 cells showed additional malignant traits in vitro, including higher ability to proliferate following confluence, higher resistance to apoptosis and lower dependence on exogenous growth factors than EP156T and EPT1 cells. Microarray profiling identified gene sets, many of which belong to cell junction modules, that changed expression from EP156T to EPT1 cells and continued to change from EPT1 to EPT2 cells. Our findings provide a novel stepwise cell culture model in which EMT emerges independently of transformation and is associated with subsequent accumulation of malignant features in prostate cells. Reprogramming of cell junction modules is involved in both steps.

  13. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    Science.gov (United States)

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  14. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  15. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    International Nuclear Information System (INIS)

    Hoentsch, Maxi; Barbara Nebe, J; Von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells. (paper)

  16. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  17. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  18. [Expression of thioredoxin-2 in human lens epithelial cells with oxidative damage and its significance].

    Science.gov (United States)

    Che, Xuanyi; Zhao, Qingxia; Li, Di

    2018-03-28

    To explore whether thioredoin-2 (Trx-2) is involved in the development of cataract and to study the effect of Trx-2 on hydrogen peroxide (H2O2)-induced injury in human lens epithelial cells.
 Methods: A total of 10 volunteers (removing the lens due totraumatism) and 30 patients received phacoemulsification (age more than 60 years) were selected. The expression of Trx-2 protein in lens epithelial cells from cataract patients and volunteers were detected by the immunohistochemical streptavidin-peroxidase (SP) method. SRA01/04 cells were cultured and were divided into six groups according to different treatment: a control group, H2O2-treated groups at 20, 50 or 
100 μmol/L, a negative control group (transfected with pCMV6 plasmid plus 100 μmol/L H2O2), and a Trx-2 overexpression group (transfected with pCMV6-Trx-2 plasmid plus 100 μmol/L H2O2). Methyl thiazolyltetrazolium (MTT) assay and flow cytometry was performed to measure the cell viability and apoptosis for SRA01/04 cells, respectively. The activities of superoxide dismutase (SOD) and catalase (CAT), the content of glutathione (GSH) and malondialdehyde (MDA) in human lens epithelial cells were measured via chemical chromatometry. Western blot was used to measure the protein levels of Trx-2, B-cell lymphoma 2 protein (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3.
 Results: Compared with the volunteers, the expression of Trx-2 was significantly decreased in lens epithelial cells in patients with cataract (PTrx-2 protein in the 20, 50 or 100 μmol/L H2O2 groups was decreased (all PTrx-2 and Bcl-2 expression and up-regulated Bax and caspase-3 expression (all PTrx-2 overexpression group (PTrx-2 and Bcl-2 expression and down-regulated Bax and caspase-3 expression (PTrx-2 might be involved in the apoptosis of lens epithelial cells in patients with cataract. The overexpression of Trx-2 obviously attenuated H2O2-induced injury of human lens epithelial cells, which might be associated with the

  19. Effect of oviduct epithelial cells on the fertilization and development of sheep oocytes in vitro

    DEFF Research Database (Denmark)

    Holm, Peter; Irvine, Brendon J.; Armstrong, David T.

    1994-01-01

    The study examined whether co-culture with oviductal epithelial cells was of benefit to ovine in vitro fertilization ( IVF) and embryo culture procedures utilizing ·a well charac- terized culture system based on a synthetic oviductal fluid medium (SOFM) supple- mented with serum in a 90% N2, 5% 0 2......, 5% C02, atmosphere at 38.6°C. Two experiments were carried out. In Experiment 1, comparison was made between the frequency of fertil- ization and development of in vitro matured ( IVM) oocytes cultured in the absence (Group 1) or presence of oviductal cells for a 24 h (Group 2), 48 h (Group 3) or 96...... h (Group 4) period post insemination. In Experiment 2, comparison was made between the develop- ment of IVM oocytes fertilized and cultured in vitro for 7. 5 days in the absence or presence of oviductal cells with IVM oocytes which had been fertilized in vitro for 20 h in the pres- ence of oviductal...

  20. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  1. Ultrastructural and immunohistochemical studies on Trichomonas vaginalis adhering to and phagocytizing genitourinary epithelial cells

    Institute of Scientific and Technical Information of China (English)

    陈文列; 陈金富; 钟秀容; 梁平; 林炜

    2004-01-01

    Background Trichomonas vaginalis (T. vaginalis) belongs to a common sexually transmitted disease pathogen causing genitourinary trichomoniasis in both sexes. We investigated the pathogenetic mechanism of genitourinary trichomoniasis.Methods Cultured T. vaginalis bodies were injected into the vaginas of rats, or incubated with genitourinary epithelial cells of female subjects, male subjects, and sperm. The ultrastructural and microscopic changes were observed via transmission and scanning electron microscopy and through microscopic histochemistry.Results Groups of T.vaginalis adhered to PAS positive columnar cells at the surface of stratified epithelium in the middle and upper portions of the vaginas. They also traversed under these cells. The parasites were shown to be PAS, cathepsin D, and actin positive, and they could release hydrolase into the cytoplasm of adhered epithelial cells. In the amebiform T.vaginalis, microfilaments were arranged into reticular formation. Similar phenomena were found during the interaction of T.vaginalis with host cells, both in vitro and in vivo. Usually several protozoa adhered to an epithelial cell and formed polymorphic pseudopodia or surface invaginations to surround and phagocytize the microvilli or other parts of the epithelial cytoplasm. Adhesion and phagocytosis of sperm by the protozoa occurred at 15-30 minutes of incubation. Digestion of sperm was found at 45-75 minutes and was complete at 90-105 minutes.Conclusions T.vaginalis tends to parasitize at the fornix of the vagina, because this is the site where columnar cells are rich in mucinogen granules and their microvilli are helpful for adhesion and nibbling. T.vaginalis possesses some invading and attacking abilities. Shape change, canalization, encystation, phagocytosis, digestion, the cell coat, cytoskeleton, and lysosome all play important roles in the process of adhesion. They have two methods of phagocytosis: nibbling and ingestion. Genitourinary epithelium may be

  2. Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2017-09-01

    Full Text Available Visceral fat accumulation as observed in Crohn's disease and obesity is linked to chronic gut inflammation, suggesting that accumulation of gut adipocytes can trigger local inflammatory signaling. However, direct interactions between intestinal epithelial cells (IECs and adipocytes have not been investigated, in part because IEC physiology is difficult to replicate in culture. In this study, we originally prepared intact, polarized, and cytokine responsive IEC monolayers from primary or induced pluripotent stem cell-derived intestinal organoids by simple and repeatable methods. When these physiological IECs were co-cultured with differentiated adipocytes in Transwell, pro-inflammatory genes were induced in both cell types, suggesting reciprocal inflammatory activation in the absence of immunocompetent cells. These inflammatory responses were blocked by nuclear factor-κB or signal transducer and activator of transcription 3 inhibition and by anti-tumor necrosis factor- or anti-interleukin-6-neutralizing antibodies. Our results highlight the utility of these monolayers for investigating IEC biology. Furthermore, this system recapitulates the intestinal epithelium–mesenteric fat signals that potentially trigger or worsen inflammatory disorders such as Crohn's disease and obesity-related enterocolitis.

  3. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  4. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  5. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  6. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  7. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  8. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  9. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    Science.gov (United States)

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    Science.gov (United States)

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc.

  11. Epithelial Cell Adherence Mediated by the Enterotoxigenic Escherichia coli Tia Protein

    OpenAIRE

    Mammarappallil, Joseph G.; Elsinghorst, Eric A.

    2000-01-01

    In vitro studies have shown that enterotoxigenic Escherichia coli (ETEC) strains are capable of invading cultured epithelial cells derived from the human ileum and colon. Two separate invasion loci (tia and tib) have previously been isolated from the classical ETEC strain H10407. The tia locus has been shown to direct the synthesis of Tia, a 25-kDa outer membrane protein. Tia is sufficient to confer the adherence and invasion phenotypes on laboratory stains of E. coli, suggesting that this pr...

  12. Cystine uptake by cultured cells originating from dog proximal tubule segments

    International Nuclear Information System (INIS)

    States, B.; Reynolds, R.; Lee, J.; Segal, S.

    1990-01-01

    Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1:36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37 degrees C with 0.025 mM [ 35 S]L-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of (a) the inticacies of cystine metabolism and (b) regulation of (1) the cystine-dibasic amino acid co-transporter system and (2) the development of the cysteine-glutamate anti-porter system

  13. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    Science.gov (United States)

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  14. Pros and cons of fish skin cells in culture: long-term full skin and short-term scale cell culture from rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina

    2011-12-01

    Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  16. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  18. Adherence of Moraxella bovis to cell cultures of bovine origin.

    Science.gov (United States)

    Annuar, B O; Wilcox, G E

    1985-09-01

    The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.

  19. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis

    International Nuclear Information System (INIS)

    Frame, Fiona M.; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M.; Simms, Matthew S.; Boyle, Ross W.; Maitland, Norman J.

    2015-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

  20. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  1. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  2. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    Energy Technology Data Exchange (ETDEWEB)

    Ryck, Tine de; Impe, Annouchka van; Bracke, Marc E. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Vanhoecke, Barbara W. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), Ghent (Belgium); Heyerick, Arne [Ghent University, Laboratory of Pharmacognosy and Phytochemistry, Ghent (Belgium); Vakaet, Luc; Neve, Wilfried de [Ghent University Hospital, Department of Radiation Oncology, Ghent (Belgium); Mueller, Doreen [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Schmidt, Margret [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK) partner site Dresden and German Cancer Center (DKFZ), Heidelberg (Germany); Doerr, Wolfgang [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Medical University, Department of Radiation Oncology, CCC, and CD-Laboratory RadOnc, Vienna (Austria)

    2015-05-01

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.) [German] Die wesentliche Komponente in der Pathogenese der radiogenen Mukositis ist eine progressive epitheliale Hypoplasie und letztendlich Ulzeration. Die Bestrahlung hemmt die Zellproliferation, waehrend der Zellverlust an der Oberflaeche fortbesteht. Wir versuchten, diese Desquamation durch eine Stimulation der

  3. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    Science.gov (United States)

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  4. Luteolin inhibits the colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition: an experimental study

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2017-11-01

    Full Text Available Objective: To study the regulating effect of luteolin on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition. Methods: Colon cancer HT-29 cells were cultured and randomly divided into two groups, control group were treated with serum-free medium without drugs and LUT group were treated with serum-free medium containing luteolin. After 24 h of treatment, cells were collected to extract RNA, and then fluorescent quantitative PCR method was used to determine the mRNA expression of proliferation genes, migration genes and epithelial-mesenchymal transition genes. Results: After 24 h of luteolin treatment, Lrig1, TSPYL5, Bim, SOX15 and DLC1 mRNA expression in LUT group were significantly higher than those in control group while RPS15a, Bad, TRPV5, TRPV6, PLD2, IBP, SphK1, FAK, Vimentin and N-cadherin mRNA expression were significantly lower than those in control group. Conclusion: Luteolin has inhibiting effect on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition.

  5. Effects of mechanical stress and vitreous samples in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eri, E-mail: eritakahashi@fc.kuh.kumamoto-u.ac.jp; Fukushima, Ayako; Haga, Akira; Inomata, Yasuya; Ito, Yasuhiro; Fukushima, Mikiko; Tanihara, Hidenobu

    2016-02-12

    In rhegmatogenous retinal detachment (RRD), scattered RPE cells from the basement membrane into the vitreous cavity undergo an epithelial mesenchymal transition (EMT) and form the intraocular fibrous membrane in response to vitreous fluid. We investigated whether exposure to vitreous samples was associated with EMT-associated signals and mesenchymal characters. Human vitreous samples were collected from patients with RRD, epiretinal membrane (ERM), or macular hole (MH). We evaluated the effects of vitreous on ARPE-19 cells in suspension cultures using poly 2-hydroxyethyl methacrylate-coated dishes and three-dimensional (3D) Matrigel cultures. We found that exposure to vitreous samples did not induce morphological changes or accelerate wound closure in monolayers. Several samples showed increased phosphorylation of Smad2 and nuclear translocation of nuclear factor-κB. Mechanical stress triggered an elevation of phosphorylation levels in Smad2. In addition, exposure to vitreous fluid increased the phosphorylation of p38 mitogen-activated protein kinase in cell suspension cultures after mechanical stress. Moreover, ARPE-19 cells showed a stellate invasive phenotype in 3D Matrigel cultures with vitreous samples. In this study, we demonstrated that mechanical stress and vitreous were associated with EMT-associated signals and invasive phenotypes in 3D cultures but not in monolayers. These results have important implications for the role of vitreous humor in the induction of EMT and intraocular fibrosis.

  6. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  7. ATM suppresses SATB1-induced malignant progression in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ellen Ordinario

    Full Text Available SATB1 drives metastasis when expressed in breast tumor cells by radically reprogramming gene expression. Here, we show that SATB1 also has an oncogenic activity to transform certain non-malignant breast epithelial cell lines. We studied the non-malignant MCF10A cell line, which is used widely in the literature. We obtained aliquots from two different sources (here we refer to them as MCF10A-1 and MCF10A-2, but found them to be surprisingly dissimilar in their responses to oncogenic activity of SATB1. Ectopic expression of SATB1 in MCF10A-1 induced tumor-like morphology in three-dimensional cultures, led to tumor formation in immunocompromised mice, and when injected into tail veins, led to lung metastasis. The number of metastases correlated positively with the level of SATB1 expression. In contrast, SATB1 expression in MCF10A-2 did not lead to any of these outcomes. Yet DNA copy-number analysis revealed that MCF10A-1 is indistinguishable genetically from MCF10A-2. However, gene expression profiling analysis revealed that these cell lines have significantly divergent signatures for the expression of genes involved in oncogenesis, including cell cycle regulation and signal transduction. Above all, the early DNA damage-response kinase, ATM, was greatly reduced in MCF10A-1 cells compared to MCF10A-2 cells. We found the reason for reduction to be phenotypic drift due to long-term cultivation of MCF10A. ATM knockdown in MCF10A-2 and two other non-malignant breast epithelial cell lines, 184A1 and 184B4, enabled SATB1 to induce malignant phenotypes similar to that observed for MCF10A-1. These data indicate a novel role for ATM as a suppressor of SATB1-induced malignancy in breast epithelial cells, but also raise a cautionary note that phenotypic drift could lead to dramatically different functional outcomes.

  8. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    Science.gov (United States)

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  9. Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B.; O'Donnell, Valerie; Wenzel, Sally E.

    2009-01-01

    Rationale: 15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. Objectives: To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13–induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Methods: Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air–liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Measurements and Main Results: Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Conclusions: Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma. PMID:19218191

  10. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  11. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    Science.gov (United States)

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  12. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    Science.gov (United States)

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen

  14. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Science.gov (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  16. Effects of Lutein on Hyperosmoticity-Induced Upregulation of IL-6 in Cultured Corneal Epithelial Cells and Its Relevant Signal Pathways

    Directory of Open Access Journals (Sweden)

    Shih-Chun Chao

    2016-01-01

    Full Text Available Dry eye is a common disorder characterized by deficiency of tear. Hyperosmoticity of tear stimulates inflammation and damage of ocular surface tissues and plays an essential role in the pathogenesis of dry eye. Cultured human corneal epithelial (CE cells were used for the study of effects of lutein and hyperosmoticity on the secretion of IL-6 by CE cells. Cell viability of CE cells was not affected by lutein at 1–10 μM as determined by MTT assay. Hyperosmoticity significantly elevated the secretion of IL-6 by CE cells as measured by ELISA analysis. The constitutive secretion of IL-6 was not affected by lutein. Lutein significantly and dose-dependently inhibited hyperosmoticity-induced secretion of IL-6. Phosphorylated- (p- p38 MAPK, p-JNK levels in cell lysates and NF-κB levels in cell nuclear extracts were increased by being exposed to hyperosmotic medium. JNK, p38, and NF-κB inhibitors decreased hyperosmoticity-induced secretion of IL-6. Lutein significantly inhibited hyperosmoticity-induced elevation of NF-κB, p38, and p-JNK levels. We demonstrated that lutein inhibited hyperosmoticity-induced secretion of IL-6 in CE cells through the deactivation of p38, JNK, and NF-κB pathways. Lutein may be a promising agent to be explored for the treatment of dry eye.

  17. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  18. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    Science.gov (United States)

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  19. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  20. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    Directory of Open Access Journals (Sweden)

    Hélène Bierne

    Full Text Available Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.

  1. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    Science.gov (United States)

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells.

    Science.gov (United States)

    Ricciardi, M; Zanotto, M; Malpeli, G; Bassi, G; Perbellini, O; Chilosi, M; Bifari, F; Krampera, M

    2015-03-17

    Epithelial-to-mesenchymal transition (EMT) has a central role in cancer progression and metastatic dissemination and may be induced by local inflammation. We asked whether the inflammation-induced acquisition of mesenchymal phenotype by neoplastic epithelial cells is associated with the onset of mesenchymal stromal cell-like immune-regulatory properties that may enhance tumour immune escape. Cell lines of lung adenocarcinoma (A549), breast cancer (MCF7) and hepatocellular carcinoma (HepG2) were co-cultured with T, B and NK cells before and after EMT induction by either the supernatant of mixed-lymphocyte reactions or inflammatory cytokines. EMT occurrence following inflammatory priming elicited multiple immune-regulatory effects in cancer cells resulting in NK and T-cell apoptosis, inhibition of lymphocyte proliferation and stimulation of regulatory T and B cells. Indoleamine 2,3-dioxygenase, but not Fas ligand pathway, was involved at least in part in these effects, as shown by the use of specific inhibitors. EMT induced by inflammatory stimuli confers to cancer cells some mesenchymal stromal cell-like immune-modulatory properties, which could be a cue for cancer progression and metastatic dissemination by favouring immune escape.

  3. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  4. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-01-01

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca 2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival

  5. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Science.gov (United States)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  6. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  7. House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions

    Science.gov (United States)

    Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.

    2013-01-01

    Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402

  8. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  9. ATP7B detoxifies silver in ciliated airway epithelial cells

    International Nuclear Information System (INIS)

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-01-01

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B -/- mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag + /Cu + transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  10. Generation of organotypic raft cultures from primary human keratinocytes.

    Science.gov (United States)

    Anacker, Daniel; Moody, Cary

    2012-02-22

    The development of organotypic epithelial raft cultures has provided researchers with an efficient in vitro system that faithfully recapitulates epithelial differentiation. There are many uses for this system. For instance, the ability to grow three-dimensional organotypic raft cultures of keratinocytes has been an important milestone in the study of human papillomavirus (HPV)(1). The life cycle of HPV is tightly linked to the differentiation of squamous epithelium(2). Organotypic epithelial raft cultures as demonstrated here reproduce the entire papillomavirus life cycle, including virus production(3,4,5). In addition, these raft cultures exhibit dysplastic lesions similar to those observed upon in vivo infection with HPV. Hence this system can also be used to study epithelial cell cancers, as well as the effect of drugs on epithelial cell differentiation in general. Originally developed by Asselineau and Prunieras(6) and modified by Kopan et al.(7), the organotypic epithelial raft culture system has matured into a general, relatively easy culture model, which involves the growth of cells on collagen plugs maintained at an air-liquid interface (Figure 1A). Over the course of 10-14 days, the cells stratify and differentiate, forming a full thickness epithelium that produces differentiation-specific cytokeratins. Harvested rafts can be examined histologically, as well as by standard molecular and biochemical techniques. In this article, we describe a method for the generation of raft cultures from primary human keratinocytes. The same technique can be used with established epithelial cell lines, and can easily be adapted for use with epithelial tissue from normal or diseased biopsies(8). Many viruses target either the cutaneous or mucosal epithelium as part of their replicative life cycle. Over the past several years, the feasibility of using organotypic raft cultures as a method of studying virus-host cell interactions has been shown for several herpesviruses, as

  11. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  12. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    Science.gov (United States)

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  13. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-01-01

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (β III ) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  14. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  15. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaoyan; Chen Peili [Department of Medicine, University of Chicago, Chicago, Illinois (United States); Sonis, Stephen T. [Division of Oral Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Biomodels, Watertown, Massachusetts (United States); Lingen, Mark W. [Department of Pathology, University of Chicago, Chicago, Illinois (United States); Berger, Ann [NephRx Corporation, Kalamazoo, Michigan (United States); Toback, F. Gary, E-mail: gtoback@medicine.bsd.uchicago.edu [Department of Medicine, University of Chicago, Chicago, Illinois (United States)

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  16. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E 2 , directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  17. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available The epithelial-mesenchymal transition (EMT in retinal pigment epithelial (RPE cells plays a central role in the development of proliferative vitreoretinopathy (PVR. The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF-α (10 ng/ml and transforming growth factor (TGF-β2 (5 ng/ml. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01. Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5'-amino-5'-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

  18. Cellular Plasticity of Epithelial Cells-Cause of Metastasis

    National Research Council Canada - National Science Library

    Sukumar, Saraswati

    2005-01-01

    .... We present a novel concept that cancer epithelial cells, possibly of stem cell origin, have inherent cellular plasticity and can differentiate into endothelial cells and form microvessels that serve...

  19. The effect of LHRH antagonist cetrorelix in crossover conditioned media from epithelial (BPH-1) and stromal (WPMY-1) prostate cells.

    Science.gov (United States)

    Siejka, A; Schally, A V; Barabutis, N

    2014-01-01

    Stromal cells strictly modulate the differentiation of the normal prostate epithelium. In benign prostatic hyperplasia (BPH) tissue, the ratio of stromal to epithelial cells reaches a 5:1 ratio. In this study, we evaluated the effects of crossover conditioned media (CM) of stromal and epithelial prostate cells before and after treatment with LHRH antagonist Cetrorelix. WPMY-1 human prostate stromal cells and BPH-1 human benign prostatic hyperplasia cells were cultured in vitro and the effects of crossover conditioned media (CM) from those cells were studied. We evaluated the effect of Cetrorelix on the expression of PCNA and p53 in those cells. We then studied the effect of Cetrorelix on BPH-1 cells cultured with the CM from WPMY-1 cells, as well as the mechanisms which govern these interactions. CM from WPMY-1 cells strongly stimulated the proliferation of BPH-1 cells in a dose dependent manner, while CM from BPH-1 cells only slightly increased the proliferation of WPMY-1 cells. Cetrorelix inhibited the proliferation of both cell lines and the expression of PCNA, while the expression of p53 was increased. Cetrorelix also inhibited the proliferation of BPH-1 cells stimulated with the CM from WPMY-1 cells. In the crossover experiment, conditioned media from WPMY-1 and BPH-1 cells increased the expression of phosphorylated ERK1/2 and STAT3. Our results support previous observations on the bidirectional stromal-epithelial interactions in prostate gland and shed more light on the mechanistic action of those effects. Our study strongly supports the hypothesis that LHRH antagonists may be beneficial for BPH prevention and treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  1. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  2. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  3. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  4. Cholinergic modulation of epithelial integrity in the proximal colon of pigs.

    Science.gov (United States)

    Lesko, Szilvia; Wessler, Ignaz; Gäbel, Gotthold; Petto, Carola; Pfannkuche, Helga

    2013-01-01

    Within the gut, acetylcholine (ACh) is synthesised by enteric neurons, as well as by 'non-neuronal' epithelial cells. In studies of non-intestinal epithelia, ACh was involved in the generation of an intact epithelial barrier. In the present study, primary cultured porcine colonocytes were used to determine whether treatment with exogenous ACh or expression of endogenous epithelium-derived ACh may modulate epithelial tightness in the gastrointestinal tract. Piglet colonocytes were cultured on filter membranes for 8 days. The tightness of the growing epithelial cell layer was evaluated by measuring transepithelial electrical resistance (TEER). To determine whether ACh modulates the tightness of the cell layer, cells were treated with cholinergic, muscarinic and/or nicotinic agonists and antagonists. Choline acetyltransferase (ChAT), cholinergic receptors and ACh were determined by immunohistochemistry, RT-PCR and HPLC, respectively. Application of the cholinergic agonist carbachol (10 µm) and the muscarinic agonist oxotremorine (10 µM) resulted in significantly higher TEER values compared to controls. The effect was completely inhibited by the muscarinic antagonist atropine. Application of atropine alone (without any agonist) led to significantly lower TEER values compared to controls. Synthesis of ACh by epithelial cells was proven by detection of muscarinic and nicotinic receptor mRNAs, immunohistochemical detection of ChAT and detection of ACh by HPLC. ACh is strongly involved in the regulation of epithelial tightness in the proximal colon of pigs via muscarinic pathways. Non-neuronal ACh seems to be of particular importance for epithelial cells forming a tight barrier. Copyright © 2013 S. Karger AG, Basel.

  5. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells.

    Science.gov (United States)

    Ishinaga, Hajime; Kitano, Masako; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Shah, Said Ahmad; Takeuchi, Kazuhiko

    2017-02-01

    We investigated whether IL-33 is involved in mucus overproduction and goblet cell hyperplasia in eosinophilic chronic rhinosinusitis (ECRS). IL-33 mRNA was significantly higher in the eosinophilic CRS group than in the non-eosinophilic CRS group from human nasal polyps. IL-33 induced MUC5AC mRNA and MUC5AC protein, and also goblet cell hyperplasia at air liquid interface culture in human nasal epithelial cells. In addition to that, IL-33 induced MUC5B and FOXA3, and reduces FOXJmRNA. In conclusion, our present study demonstrated that the direct evidence of IL-33 which lead to increase mucin gene and protein expression, as well as goblet cell hyperplasia. This study provides novel insights into the role of IL-33 on mucus overproduction in eosinophilic inflammation of human airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    Science.gov (United States)

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  8. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues.

    Science.gov (United States)

    Sasaki, Ayana; Nagatake, Takahiro; Egami, Riku; Gu, Guoqiang; Takigawa, Ichigaku; Ikeda, Wataru; Nakatani, Tomoya; Kunisawa, Jun; Fujita, Yasuyuki

    2018-04-24

    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, aspirin treatment significantly facilitates eradication of transformed cells from the epithelial tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence competitive interaction between normal and transformed cells, providing insights into cell competition and cancer preventive medicine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  10. Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium

    International Nuclear Information System (INIS)

    Bonham, Rita T.; Fine, Michael R.; Pollock, Fiona M.; Shelden, Eric A.

    2003-01-01

    Cadmium is a widely distributed industrial and environmental toxin. The principal target organ of chronic sublethal cadmium exposure is the kidney. In renal epithelial cells, acute high-dose cadmium exposure induces differential expression of proteins, including heat shock proteins. However, few studies have examined heat shock protein expression in cells after prolonged exposure to cadmium at sublethal concentrations. Here, we assayed total cell protein, neutral red uptake, cell death, and levels of metallothionein and heat shock proteins Hsp27 and inducible Hsp70 in cultures of MDCK and LLC-PK1 renal epithelial cells treated with cadmium for 3 days. Treatment with cadmium at concentrations equal to or greater than 10 μM (LLC-PK1) or 25 μM (MDCK) reduced measures of cell vitality and induced cell death. However, a concentration-dependent increase in Hsp27 was detected in both cell types treated with as little as 5 μM cadmium. Accumulation of Hsp70 was correlated only with cadmium treatment at concentrations also causing cell death. Metallothionein was maximally detected in cells treated with cadmium at concentrations that did not reduce cell vitality, and further increases were not detected at greater concentrations. These results reveal that heat shock proteins accumulate in renal epithelial cells during prolonged cadmium exposure, that cadmium induces differential expression of heat shock protein in epithelial cells, and that protein expression patterns in epithelial cells are specific to the cadmium concentration and degree of cellular injury. A potential role for Hsp27 in the cellular response to sublethal cadmium-induced injury is also implicated by our results

  11. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    International Nuclear Information System (INIS)

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-01-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  12. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Rundi; Chen, Ruilin; Cao, Yu [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Wang, Yuan [Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Song, Kang [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Zhang, Ya [Zhejiang Chinese Medicine University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310006 (China); Yang, Junchao, E-mail: yangjunchaozj@zcmu.edu.cn [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China)

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  13. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy.

    Science.gov (United States)

    van Leenders, G; Dijkman, H; Hulsbergen-van de Kaa, C; Ruiter, D; Schalken, J

    2000-08-01

    In human prostate epithelium, morphologically basal and luminal cells can be discriminated. The basal cell layer that putatively contains progenitor cells of the secretory epithelium is characterized by the expression of keratins (K) 5 and 14. Luminal cells represent the secretory compartment of the epithelium and express K8 and 18. We developed a technique for the simultaneous analysis of K5, 14, and 18 to identify intermediate cell stages in the prostate epithelium and to study the dynamic aspects of its differentiation in vitro. Nonmalignant prostate tissue and primary epithelial cultures were immunohistochemically characterized using triple staining with antibodies for K5, K14, and K18. Antibodies for K18 and K5 were conjugated directly with fluorochromes Alexa 488 and 546. K14 was visualized indirectly with streptavidin-Cy5. Keratin expression was analyzed by confocal scanning microscopy. The occurrence of exocrine and neuroendocrine differentiation in culture was determined via antibodies to prostate-specific antigen (PSA), chromogranin A, and serotonin. We found that basal cells expressed either K5(++)/14(++)/18+ or K5(++)/18+. The majority of luminal cells expressed K18(++), but colocalization of K5+/18(++) were recognized. Epithelial monolayer cultures predominantly revealed the basal cell phenotype K5(++)/14(++)/18+, whereas intermediate subpopulations expressing K5+/14+/18(++) and K5+/18(++) were also identified. On confluence, differentiation was induced as multicellular gland-like buds, and extensions became evident on top of the monolayer. These structures were composed of K18(++)- and K5+/18(+)-positive cell clusters surrounded by phenotypically basal cells. Few multicellular structures and cells in the monolayer showed exocrine differentiation (PSA+), but expression of chromogranin A and serotonin was absent. We conclude that simultaneous evaluation of keratin expression is useful for analyzing epithelial differentiation in the prostate. During this

  14. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L.

    1990-01-01

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips (≤12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 μm thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with [ 3 H]arachidonic acid in M199 medium (0.5 μCi/ml) for 24 hours at 37C. The strips incorporated 36±4% (mean ± SEM) of the total radioactivity and released 8.0±1.2% of incorporated radioactivity when stimulated by 5.0 μM calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE 2 , PGF 2 α, and 12-HETE standards. The greatest activity corresponded to the PGE 2 and PGF 2 α standards, which is a similar pattern to that reported for cultured human tracheal epithelium

  15. Production of interleukin-1alpha by human endometrial stromal cells is triggered during menses and dysfunctional bleeding and is induced in culture by epithelial interleukin-1alpha released upon ovarian steroids withdrawal.

    Science.gov (United States)

    Pretto, Chrystel M; Gaide Chevronnay, Héloïse P; Cornet, Patricia B; Galant, Christine; Delvaux, Denis; Courtoy, Pierre J; Marbaix, Etienne; Henriet, Patrick

    2008-10-01

    Endometrial breakdown during menstruation and dysfunctional bleeding is triggered by the abrupt expression of matrix metalloproteinases (MMPs), including interstitial collagenase (MMP-1). The paracrine induction of MMP-1 in stromal cells via epithelium-derived IL-1alpha is repressed by ovarian steroids. However, the control by estradiol (E) and progesterone (P) of endometrial IL-1alpha expression and bioactivity remains unknown. Variations of endometrial IL-1alpha mRNA and protein along the menstrual cycle and during dysfunctional bleeding were determined using RT-PCR, in situ hybridization, and immunolabeling. The mechanism of EP control was analyzed using culture of explants, laser capture microdissection, and purified cells. Data were compared with expression changes of IL-1beta and IL-1 receptor antagonist. IL-1alpha is synthesized by epithelial cells throughout the cycle but E and/or P prevents its release. In contrast, endometrial stromal cells produce IL-1alpha only at menses and during irregular bleeding in areas of tissue breakdown. Stromal expression of IL-1alpha, like that of MMP-1, is repressed by P (alone or with E) but triggered by epithelium-derived IL-1alpha released upon EP withdrawal. Our experiments in cultured endometrium suggest that IL-1alpha released by epithelial cells triggers the production of IL-1alpha by stromal cells in a paracrine amplification loop to induce MMP-1 expression during menstruation and dysfunctional bleeding. All three steps of this amplification cascade are repressed by EP.

  16. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    International Nuclear Information System (INIS)

    Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J.

    2002-01-01

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland

  17. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  18. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  19. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  20. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  1. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  2. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.

    Science.gov (United States)

    Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K

    2013-08-01

    Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.

  3. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  4. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Niss, Kristoffer; Kotarsky, Knut

    2018-01-01

    Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the abse......Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis...

  5. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  6. Metabolic cooperativity between epithelial cells and adipocytes of mice

    International Nuclear Information System (INIS)

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from [ 14 C]glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations

  7. Candida albicans: The Ability to Invade Epithelial Cells and Survive under Oxidative Stress Is Unlinked to Hyphal Length

    Directory of Open Access Journals (Sweden)

    Paloma K. Maza

    2017-07-01

    Full Text Available In its hyphal form, Candida albicans invades epithelial and endothelial cells by two distinct mechanisms: active penetration and induced endocytosis. The latter is dependent on a reorganization of the host cytoskeleton (actin/cortactin recruitment, whilst active penetration does not rely on the host's cellular machinery. The first obstacle for the fungus to reach deep tissues is the epithelial barrier and this interaction is crucial for commensal growth, fungal pathogenicity and host defense. This study aimed to characterize in vitro epithelial HeLa cell invasion by four different isolates of C. albicans with distinct clinical backgrounds, including a C. albicans SC5314 reference strain. All isolates invaded HeLa cells, recruited actin and cortactin, and induced the phosphorylation of both Src-family kinases (SFK and cortactin. Curiously, L3881 isolated from blood culture of a patient exhibited the highest resistance to oxidative stress, although this isolate showed reduced hyphal length and displayed the lowest cell damage and invasion rates. Collectively, these data suggest that the ability of C. albicans to invade HeLa cells, and to reach and adapt to the host's blood, including resistance to oxidative stress, may be independent of hyphal length.

  8. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  9. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-10-01

    The massive uptake of compatible osmolytes is a self-protective response shared by lens exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet B-induced cytotoxicity in the lens epithelial cells. Real-time PCR was used to measure osmolytes transport. Radioimmunoassay was used to measure osmolytes uptake. Cell counting kit-8 assays were used to measure cellular viability. Flow cytometry analysis was used to measure apoptosis level. Compared with normotonic stress, hypertonic stress-induced osmolytes uptake into the lens epithelial cells such as betaine, myoinositol and taurine. UVB exposure increased osmolytes transporter mRNA expression together with osmolytes uptake. Moreover, taurine suppressed UVB-induced cell apoptosis in the lens epithelial cells significantly. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  10. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    Science.gov (United States)

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  11. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A; Zabinski, Mary C; Yuen, Constance K; Lung, Wing Yi; Gower, Adam C; Belkina, Anna C; Ramirez, Maria I; Deng, Jane C; Quinton, Lee J; Jones, Matthew R; Mizgerd, Joseph P

    2016-09-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.

  12. Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells.

    Science.gov (United States)

    Mustapha, Pascale; Paris, Isabelle; Garcia, Magali; Tran, Cong Tri; Cremniter, Julie; Garnier, Martine; Faure, Jean-Pierre; Barthes, Thierry; Boneca, Ivo G; Morel, Franck; Lecron, Jean-Claude; Burucoa, Christophe; Bodet, Charles

    2014-07-01

    Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes.

    Science.gov (United States)

    Carvalho Barros, Luciana Rodrigues; Linhares-Lacerda, Leandra; Moreira-Ramos, Klaysa; Ribeiro-Alves, Marcelo; Machado Motta, Maria Cristina; Bou-Habib, Dumith Chequer; Savino, Wilson

    2017-12-01

    The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD4 + T cells are the main target of HTLV-1, but other cell types are known to be infected, including immature lymphocytes. Developing T cells undergo differentiation in the thymus, through migration and interaction with the thymic microenvironment, in particular with thymic epithelial cells (TEC) the major component of this three dimensional meshwork of non-lymphoid cells. Herein, we show that TEC express the receptors for HTLV-1 and can be infected by this virus through cell-cell contact and by cell-free virus suspensions. The expression of anti-apoptosis, chemokine and adhesion molecules genes are altered in HTLV-1-infected TEC, although gene expression of antigen presentation molecules remained unchanged. Furthermore, HTLV-1-infected TEC transmitted the virus to a CD4 + T cell line and to CD4 + T cells from healthy donors, during in vitro cellular co-cultures. Altogether, our data point to the possibility that the human thymic epithelial cells play a role in the establishment and progression of HTLV-1 infection, functioning as a reservoir and transmitting the virus to maturing CD4 + T lymphocytes, which in turn will cause disease in the periphery. Copyright © 2017. Published by Elsevier GmbH.

  14. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  15. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  16. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    Science.gov (United States)

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  17. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures.

    Science.gov (United States)

    Al-Buheissi, S Z; Cole, K J; Hewer, A; Kumar, V; Bryan, R L; Hudson, D L; Patel, H R; Nathan, S; Miller, R A; Phillips, D H

    2006-06-01

    Dietary heterocyclic amines (HCAs) are carcinogenic in rodent prostate requiring activation by enzymes such as cytochrome P450 (CYP) and N-acetyltransferase (NAT). We investigated by Western blotting and immunohistochemistry the expression of CYP1A1, CYP1A2, and NAT1 in human prostate and in prostate epithelial cells (PECs) derived from primary cultures and tested their ability to activate the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and its N-hydroxy metabolite (N-OH-IQ) to DNA-damaging moieties. Western blotting identified CYP1A1, CYP1A2, and NAT1. Immunohistochemistry localized NAT1 to the cytoplasm of PECs. Inter-individual variation was observed in the expression levels of CYP1A1, 1A2, and NAT1 (11, 75, and 35-fold, respectively). PECs expressed CYP1A1 and NAT1 but not CYP1A2. When incubated with IQ or N-OH-IQ, PECs formed DNA adducts indicating their ability to metabolically activate these compounds. Prostate cells possess the capacity to activate dietary carcinogens. PECs may provide a useful model system to study their role in prostate carcinogenesis.

  18. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  19. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  20. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.