WorldWideScience

Sample records for cultured bronchial epithelial

  1. Novel Bioreactors to Study Forces on Bronchial Epithelial Cultures

    Science.gov (United States)

    Carpenter, Jerome; Millard, Mike; Cozon, Matthew; Superfine, Richard

    2008-10-01

    Studying cells in a physiologically relevant environment is an important tool in understanding cell signaling and gene expression. Human bronchial epithelial cells (HBECs) are responsible for mucociliary clearance, which removes pathogens from the air we breathe. Recreating the in vivo conditions of HBECs is difficult; they are polarized and undergo a variety of forces. Polarization is required for organ-specific systems such as cilia motility and mucus regulation. We achieve polarization by growing cells on an electrospun nanoporous scaffold which we attach to a silastic annulus. Using this geometry we apply vacuum to the annulus and stretch the cells. This bioreactor allows us to study polarized HBECs as they experience cyclic strain similar to breathing. We've grown polarized cultures on the scaffold and are evaluating the scaffold's mechanical properties. In a second bioreactor, we place the scaffold into a microfluidics channel to study the affect of shear stress on polarized cells. We also reproduce the branching structure found in the lungs to investigate the regulation of mucus as it ascends the airway tree.

  2. Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Directory of Open Access Journals (Sweden)

    Gangloff Sophie C

    2007-11-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic in vivo situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.. To circumvent these concerns, we developed a new epithelial cell culture model. Methods Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES. BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8 and leukotriene B4 (LTB4 and the anti-inflammatory mediator prostaglandin E2 (PGE2. Results BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p Conclusion This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an

  3. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    Directory of Open Access Journals (Sweden)

    Ceri E. Stewart

    2012-01-01

    Full Text Available The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC and non-primary (Calu-3, BEAS-2B, BEAS-2B R1 bronchial epithelial cell culture systems as air-liquid interface- (ALI- differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+ and ciliated (β-Tubulin IV+ cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin and development of transepithelial electrical resistance (TEER were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.

  4. Diesel exhaust particle-induced cell death of cultured normal human bronchial epithelial cells.

    Science.gov (United States)

    Matsuo, Mitsuyoshi; Shimada, Toshio; Uenishi, Rie; Sasaki, Naoko; Sagai, Masaru

    2003-04-01

    We investigated the effect of diesel exhaust particles (DEPs) on normal human bronchial epithelial (NHBE) cells. Inclusion of DEPs in culture media was lethal to NHBE cells. NHBE cells are more susceptible to DEPs than other normal human lung cells, normal human pulmonary artery endothelial cells and normal human embryonic lung fibroblasts. DEP-induced cell death was mainly due to necrosis. Using the fluorescence probes diacetoxymethyl 6-carboxy-3',6'-diacetoxy-2',7'-dichloro-3',6'-dideoxydihydrofluorescinate and 4,5-diaminofluorescein diacetate, it was observed that hydrogen peroxide and nitrogen monoxide, respectively, were generated within DEP-exposed NHBE cells. DEP cytotoxicity increased or decreased with an increase or decrease in the cellular level of reduced glutathione (GSH) by treatment with L-buthionine-(R,S)-sulfoximine or ethyl reduced glutathionate, respectively. In addition, DEPs themselves decreased the cellular level of GSH in a dose-dependent manner. Upon exposure of NHBE cells to high concentrations of DEPs, their cellular GSH was depleted almost throughout. Further, the following agents decreased DEP cytotoxicity: 1) antioxidants 2,2,5,7,8-pentamethylchroman-6-ol, ebselen, and N,N'-bis(salicylidene)ethylenediaminomanganese(II) dihydrate (EUK-8); 2) iron ion-chelating agents disodium bathophenanthrolinedisulfonate and desferrioxamine mesylate; 3) nitrogen monoxide synthase inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride and N(G)-methyl-L-arginine acetate salt; and 4) an endocytosis inhibitor quinacrine. On the basis of these observations, the mechanism of DEP cytotoxicity toward NHBE cells is discussed.

  5. Neutrophil and asbestos fiber-induced cytotoxicity in cultured human mesothelial and bronchial epithelial cells.

    Science.gov (United States)

    Kinnula, V L; Raivio, K O; Linnainmaa, K; Ekman, A; Klockars, M

    1995-03-01

    This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.

  6. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    Science.gov (United States)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.

  7. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    Science.gov (United States)

    Loxham, Matthew; Morgan-Walsh, Rebecca J.; Cooper, Matthew J.; Blume, Cornelia; Swindle, Emily J.; Dennison, Patrick W.; Howarth, Peter H.; Cassee, Flemming R.; Teagle, Damon A. H.; Palmer, Martin R.; Davies, Donna E.

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  8. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air-liquid interface on Transwell(®) inserts.

    Science.gov (United States)

    Mukherjee, M; Latif, M L; Pritchard, D I; Bosquillon, C

    2013-01-01

    Organic cation transporters (OCT) have been shown to mediate the transport of inhaled drugs in bronchial epithelial cells and might have important physiological functions in the airway epithelium. However, a quantitative method to evaluate OCT protein expression in physiologically relevant airway epithelial cell culture models is currently lacking. In-cell Western™ (ICW) techniques might fill that gap but to date, have only been performed on cells grown on 96 or 384-well microplates. An ICW assay was designed for measuring levels of the different OCT subtypes in intact layers of the human bronchial epithelial Calu-3 cell line cultured at an air-liquid interface on Transwell(®) inserts. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal standard for normalisation of cell number between the layers. The protocol was subsequently validated by exposing cell layers to compounds known to cause variations in OCT expression. Antibody signals above the background fluorescence were detected for OCT1, OCT3, OCTN1 and OCTN2 but not for OCT2 in 21day old Calu-3 layers, in agreement with previous studies which had reported OCT2 was absent in the Calu-3 cell line. Furthermore, increases in the fluorescence signal associated with OCT1, OCTN1 and OCTN2 were obtained following treatment of the layers with, respectively, the nitric oxide inducer sodium nitroprusside, the peroxisome proliferator activated receptor α (PPARα) agonist fenofibrate or the PPARγ agonist rosiglitazone, confirming the reliability of the ICW method developed. However, a suitable positive control for OCT3 could not be identified. This novel ICW assay can be exploited to quantify basal OCT protein expression as well as changes in transporter levels following external stimuli in various in vitro models. It can also be easily adapted to probe any protein in epithelial layers maintained on permeable filters. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effects of hydrogen peroxide on MAPK activation, IL-8 production and cell viability in primary cultures of human bronchial epithelial cells.

    Science.gov (United States)

    Pelaia, Girolamo; Cuda, Giovanni; Vatrella, Alessandro; Gallelli, Luca; Fratto, Donatella; Gioffrè, Vincenza; D'Agostino, Bruno; Caputi, Mario; Maselli, Rosario; Rossi, Francesco; Costanzo, Francesco S; Marsico, Serafino A

    2004-09-01

    The airway epithelium is continuously exposed to inhaled oxidants, including airborne pollutants and cigarette smoke, which can exert harmful proinflammatory and cytotoxic effects. Therefore, the aim of our study was to investigate, in primary cultures of human bronchial epithelial cells (HBEC), the signal transduction pathways activated by increasing concentrations (0.25, 0.5, and 1 mM) of hydrogen peroxide (H(2)O(2)), as well as their effects on IL-8 production and cell viability. The reported results show that H(2)O(2) elicited, in a concentration-dependent fashion, a remarkable increase in phosphorylation-dependent activation of mitogen-activated protein kinases (MAPKs), associated with a significant induction of IL-8 synthesis and a dramatically enhanced cell death. Pre-treatment of HBEC with MAPK inhibitors was able to significantly inhibit the effects of H(2)O(2) on IL-8 secretion, and to effectively prevent cell death. Therefore, these findings suggest that MAPKs play a key role as molecular transducers of the airway epithelial injury triggered by oxidative stress, as well as potential pharmacologic targets for indirect antioxidant intervention.

  10. Cytotoxic effects of composite dust on human bronchial epithelial cells.

    Science.gov (United States)

    Cokic, Stevan M; Hoet, Peter; Godderis, Lode; Wiemann, Martin; Asbach, Christof; Reichl, Franz X; De Munck, Jan; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2016-12-01

    Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (composite dust particles on bronchial epithelium cells. Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  12. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG

    2004-01-01

    AIM: To investigate the effect ofchymase on the mucin secretion from human bronchial epithelial cells. METHODS:Primarily-cultured human bronchial epithelial (PCHBE) cells and normal human bronchial epithelial (NHBE) cells were cultured with chymase or other stimulus in a mixture of bronchial epithelial growth medium (BEGM) and Dulbecco's modified Eagle's medium (DMEM), and the quantities of stimulatory mucin release were recorded.MUC5AC mucin was measured with an ELISA and dolichos biflorus agglutinin (DBA) mucin was determined with an enzyme linked DBA assay. RESULTS: A dose-dependent secretion of DBA mucin from PCHBE cells was observed with chymase with a maximum secretion of 98 % above baseline being achieved following 3 h incubation.The action of chymase started from 1 h, peaked at 3 h and dramatically decreased at 20 h following incubation.Chymase was able to also stimulate approximately 38 % increase in MUC5AC mucin release from PCHBE cells, and about 121% increase in DBA mucin release from NHBE cells. A chymase inhibitor soybean trypsin inhibitor (SBTI)was able to inhibit up to 85 % chymase induced mucin release, indicating that the enzymatic activity was essential for the actions of chymase on bronchial epithelial cells. CONCLUSION: Chymase is a potent stimulus of mucin secretion from human bronchial epithelial cells. It can contribute to mucus hypersecretion process in the patients with chronic obstructive pulmonary disease or asthma.

  13. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures - Part I: Idealized Axisymmetric Swirling Flow.

    Science.gov (United States)

    Vasquez, Paula A; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M Gregory

    2016-08-01

    A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number.

  14. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  15. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  16. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-04-20

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.

  17. Human Bronchial Epithelial Cell-Derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation.

    Science.gov (United States)

    Salter, Brittany M A; Smith, Steven G; Mukherjee, Manali; Plante, Sophie; Krisna, Sakktee; Nusca, Graeme; Oliveria, John Paul; Irshad, Anam; Gauvreau, Gail M; Chakir, Jamila; Nair, Parameswaran; Sehmi, Roma

    2017-08-30

    Activated bronchial epithelial cells release alarmins, including thymic stromal lymphopoietin (TSLP) that drive type 2 inflammatory responses. We hypothesize that bronchial epithelial-derived factors enhance in situ eosinophil differentiation and maturation from myeloid precursors, a process that is driven by an IL-5 rich micro-environment within asthma airways. To assess the eosinophilopoietic potential of epithelial-derived factors, eosinophil/basophil colony forming units (Eo/B-CFU) were enumerated in 14-day methylcellulose cultures of blood-derived mononuclear cells (NAMNCs) incubated with bronchial epithelial cell supernatants (BECSN) from healthy non-atopic controls (NC; n = 8), mild atopic asthmatics (MA; n = 9) and severe asthmatics (SA; n = 5). Receptor blocking antibodies were used to evaluate the contribution of alarmins. Modulation of mRNA expression of transcription factors crucial for eosinophil differentiation was evaluated. BECSN stimulated the clonogenic expansion of eosinophil progenitors, in vitro. In the presence of IL-5, Eo/B-CFU growth was significantly greater in co-cultures of BESCN from SA, compared to MA and NC. This effect was attenuated by a TSLP receptor blocking antibody but not by an ST2 antibody. Recombinant human TSLP (optimal at 100 pg/ml) stimulated significant Eo/B-CFU growth, which was significantly enhanced in presence of IL-5 (1 ng/ml). Overnight culture of CD34+ cells with IL-5 and TSLP synergistically increased GATA-2 and CEBP-alpha mRNA expression. The eosinophilopoietic potential of factors derived from bronchial epithelial cells is increased in severe asthma. Our data suggest that TSLP is a key alarmin produced by bronchial epithelial cells, which promotes in situ eosinophilopoiesis in a type 2 rich microenvironment.

  18. House dust mite allergen Der p 1 elevates the release of inflammatory cytokines and expression of adhesion molecules in co-culture of human eosinophils and bronchial epithelial cells.

    Science.gov (United States)

    Wong, Chun K; Li, Mandy L Y; Wang, Cheng B; Ip, Wai K; Tian, Ya P; Lam, Christopher W K

    2006-08-01

    House dust mite (HDM) is a common allergen of allergic asthma. Eosinophils are principal effector cells of allergic inflammation and their adhesion onto human bronchial epithelial cells is mediated by a CD18-intracellular adhesion molecule-1 (ICAM-1)-dependent interaction. We studied the effects of HDM Dermatophagoides pteronyssinus (Der p) 1 on the activation of eosinophils and bronchial epithelial BEAS-2B cells. Cytokines and adhesion molecules were measured using flow cytometry. Transcription factor nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) and signaling molecule p38 mitogen-activated protein kinase (MAPK) were analyzed using electromobility shift assay and western blot, respectively. Der p 1 protein was found to potently induce the release of IL-1beta, IL-6, IL-10, tumor necrosis factor (TNF)-alpha and granulocyte macrophage colony-stimulating factor from eosinophils. Such induction was further up-regulated for IL-6 and IL-10, and down-regulated for TNF-alpha and IL-1beta in eosinophil-BEAS-2B cells co-culture. Surface expression of CD18 and ICAM-1 on eosinophils was greatly increased by Der p 1; such inductive effect on ICAM-1 was also found to be more prominent on BEAS-2B cells from the co-culture than BEAS-2B cells alone. Der p 1 was found to activate NF-kappaB and AP-1 activity in eosinophils alone and in co-culture and BEAS-2B cells in co-culture. Moreover, Der p 1 could activate p38 MAPK in BEAS-2B cells and eosinophils alone and in co-culture. Selective inhibition of NF-kappaB, AP-1 and p38 MAPK resulted in differential suppression of the Der p 1-induced cytokine release and adhesion molecule expression. As an allergen, HDM could therefore induce the release of inflammatory cytokines and expression of adhesion molecules from the interaction of human eosinophils and bronchial epithelial cells.

  19. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    Directory of Open Access Journals (Sweden)

    Dinh Bao T

    2008-03-01

    Full Text Available Abstract Background Inflammatory cytokines (e.g. IL-13 and mechanical perturbations (e.g. scrape injury to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE were treated with IL-13 (0, 0.1, 1, or 10 ng/ml for 14 days (day 7 to day 21 following seeding at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium.

  20. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  1. Induction of mucin secretion from human bronchial tissue and epithelial cells by rhinovirus and lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG; Ming-ke DUAN

    2004-01-01

    AIM: To examine the effects of rhinovirus and lipopolysaccharide (LPS) on mucin secretion from bronchial tissue and epithelial cells in vitro. METHODS: Human small bronchial tissue fragments (HSBTF) and human bronchial epithelial cells (HBEC) were cultured with rhinovirus 16 and LPS, respectively and culture supernatants were collected for mucin measurement. To determine mucin levels in the culture supernatants, a MUC5AC enzyme linked immunosorbent assay and an enzyme linked lectin assay procedure with dolichos bifiorus agglutinin (DBA)were developed, and mucin release was expressed as percentage increased (or decreased) secretion over baseline level. RESULTS: A concentration-dependent release of DBA mucin and MUC5AC mucin were observed when HSBTF were infected with various concentrations of rhinovirus 16 at 37 ℃. The maximum-induced DBA mucin and MUC5AC mucin release were approximately 258 % and 83 % over baseline. The response of HSBTF to rhinovirus was completely abolished by metabolic inhibitors. Rhinovirus was also able to induce a concentrationdependent release of DBA mucin and MUC5AC mucin from primarily cultured HBEC. LPS 100 mg/L was able to provoke up to approximately 19 % and 54 % increase in DBA and MUC5AC mucin release over baseline, respectively from HSBTF, and 3.1% and 57 % increase from HBEC at 20 h. Soybean trypsin inhibitor (SBTI) 30 mg/L was able to inhibit LPS-induced mucin release from HSBTF and HBEC. CONCLUSION: Rhinovirus is able to induce mucin secretion from human bronchial tissue and bronchial epithelial cells in vitro. LPS can induce MUC5AC mucin release from HSBTF and HBEC.

  2. EOTAXIN AND EOTAXIN-2 EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; DENG Wei-wu; Albert CHAN; Stanley CHIK; Adrain WU

    2005-01-01

    Objective To study the role of eotaxin and eotaxin-2 expression by Th2 cytokine and analyze their relationship in normal human bronchial epithelial cell line-BEAS-2B cell. Methods Levels of eotaxin mRNA and protein expression in the bronchial epithelial cell line BEAS-2B cell were determined with RT-PCR and ELISA. We also used RT-PCR to evaluate eotaxin-2 expression under the regulation of Th2 cytokine IL-4 and IL-13 as well as proinflammatory agent-TNFα. Results Eotaxin mRNA expression was the highest at the time point of 12h under the stimulation of TNF-α. While Th2 cytokine IL-4 and IL-13 had the amplification effect on the expression. Eotaxin protein was also elevated with the combination stimulation of proinflammatory agent TNF-α and IL-4 in dose and time dependent manner(P<0.01). These results were also seen when the cells were stimulated by TNF-α and IL-13. Eotaxin-2 mRNA expression was the highest at the time point of 8h. The expression evaluated by semi-quantitative RT-PCR also elevated under the co-stimulation of TNF-α and IL-4 or TNF-α and IL-13 and it should significantly correlate with Eotaxin(P<0.05). Conclusion This study demonstrated that Th2 cytokine like IL-4 and IL-13 enhances eotaxin and eotaxin-2 expression when co-stimulated with proinflammatory agent TNF-α. These results showed that Th2 cytokines existence is the strong evidence for bronchial epithelial cells taking part in the allergic inflammation especially in eosinophils recruitment.

  3. Characterization of protocadherin-1 expression in primary bronchial epithelial cells : association with epithelial cell differentiation

    NARCIS (Netherlands)

    Koning, Henk; Sayers, Ian; Stewart, Ceri E.; de Jong, Debora; ten Hacken, Nick H. T.; Postma, Dirkje S.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2012-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for asthma that is expressed in airway epithelium. We aimed to characterize PCDH1 mRNA transcripts and protein expression in primary bronchial epithelial cells and to determine regulation of PCDH1 during mucociliary differentiation. Total RNA an

  4. Carbocysteine regulates innate immune responses and senescence processes in cigarette smoke stimulated bronchial epithelial cells.

    Science.gov (United States)

    Pace, Elisabetta; Ferraro, Maria; Siena, Liboria; Scafidi, Valeria; Gerbino, Stefania; Di Vincenzo, Serena; Gallina, Salvatore; Lanata, Luigi; Gjomarkaj, Mark

    2013-11-25

    Cigarette smoke represents the major risk factor for chronic obstructive pulmonary disease (COPD). Cigarette smoke extracts (CSE) alter TLR4 expression and activation in bronchial epithelial cells. Carbocysteine, an anti-oxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on TLR4 expression and on the TLR4 activation downstream events are largely unknown. This study was aimed to explore whether carbocysteine, in a human bronchial epithelial cell line (16-HBE), counteracted some pro-inflammatory CSE-mediated effects. In particular, TLR4 expression, LPS binding, p21 (a senescence marker), IL-8 mRNA and release in CSE-stimulated 16-HBE as well as actin reorganization in neutrophils cultured with supernatants from bronchial epithelial cells which were stimulated with CSE and/or carbocysteine were assessed. TLR4 expression, LPS binding, and p21 expression were assessed by flow cytometry, IL-8 mRNA by Real Time PCR and IL-8 release by ELISA. Actin reorganization, a prerequisite for cell migration, was determined using Atto 488 phalloidin in neutrophils by flow cytometry and fluorescence microscopy. CSE increased: (1) TLR4, LPS binding and p21 expression; (2) IL-8 mRNA and IL-8 release due to IL-1 stimulation; (3) neutrophil migration. Carbocysteine in CSE stimulated bronchial epithelial cells, reduced: (1) TLR4, LPS binding and p21; (2) IL-8 mRNA and IL-8 release due to IL-1 stimulation; (3) neutrophil chemotactic migration. In conclusion, the present study provides compelling evidences that carbocysteine may contribute to control the inflammatory and senescence processes present in smokers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Zinc Induced G2/M Blockage is p53 and p21 Dependent in Normal Human Bronchial Epithelial Cells

    Science.gov (United States)

    The involvement of the p53 and p21 signal pathway in the G2/M cell cycle progression of zinc supplemented normal human bronchial epithelial (NHBE) cells was examined using the siRNA approach. Cells were cultured for one passage in different concentrations of zinc: <0.4 microM (ZD) as zinc-deficient;...

  6. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  7. Continual exposure to cigarette smoke extracts induces tumor-like transformation of human nontumor bronchial epithelial cells in a microfluidic chip.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Liu, Fen; Wang, Huiling; Wen, Jiabin; Shao, Shujuan; Zhang, Lichuan; Wang, Lei; Liu, Chong; Lu, Jianxin; Wang, Wenxin; Gao, Zhancheng; Wang, Qi

    2014-08-01

    Heavy cigarette smoking-related chronic obstructive pulmonary disease is an independent risk factor for lung squamous carcinoma. However, the mechanisms underlying the malignant transformation of bronchial epithelial cells are unclear. In our study, human tumor-adjacent bronchial epithelial cells were obtained from 10 cases with smoking-related chronic obstructive pulmonary disease and lung squamous carcinoma and cultured in an established microfluidic chip for continual exposure to cigarette smoke extracts (CSE) to investigate the potential tumor-like transformation and mechanisms. The integrated microfluidic chip included upstream concentration gradient generator and downstream cell culture chambers supplied by flowing medium containing different concentrations of CSE. Our results showed that continual exposure to low doses of CSE promoted cell proliferation whereas to high doses of CSE triggered cell apoptosis. Continual exposure to CSE promoted reactive oxygen species production in human epithelial cells in a dose-dependent manner. More importantly, continual exposure to low dose of CSE promoted the epithelial-to-mesenchymal transition process and anchorage-independent growth, and increased chromosome instability in bronchial epithelial cells, accompanied by activating the GRP78, NF-κB, and PI3K pathways. The established microfluidic chip is suitable for primary culture of human tumor-adjacent bronchial epithelial cells to investigate the malignant transformation. Continual exposure to low doses of CSE promoted tumor-like transformation of human nontumor bronchial epithelial cells by inducing reactive oxygen species production and activating the relevant signaling.

  8. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  9. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    Science.gov (United States)

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.

  10. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  11. A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures.

    Science.gov (United States)

    Iskandar, Anita R; Mathis, Carole; Schlage, Walter K; Frentzel, Stefan; Leroy, Patrice; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Ortega-Torres, Laura; Johne, Stephanie; Guedj, Emmanuel; Trivedi, Keyur; Kratzer, Gilles; Merg, Celine; Elamin, Ashraf; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    This study reports a comparative assessment of the biological impact of a heated tobacco aerosol from the tobacco heating system (THS) 2.2 and smoke from a combustible 3R4F cigarette. Human organotypic bronchial epithelial cultures were exposed to an aerosol from THS2.2 (a candidate modified-risk tobacco product) or 3R4F smoke at similar nicotine concentrations. A systems toxicology approach was applied to enable a comprehensive exposure impact assessment. Culture histology, cytotoxicity, secreted pro-inflammatory mediators, ciliary beating, and genome-wide mRNA/miRNA profiles were assessed at various time points post-exposure. Series of experimental repetitions were conducted to increase the robustness of the assessment. At similar nicotine concentrations, THS2.2 aerosol elicited lower cytotoxicity compared with 3R4F smoke. No morphological change was observed following exposure to THS2.2 aerosol, even at nicotine concentration three times that of 3R4F smoke. Lower levels of secreted mediators and fewer miRNA alterations were observed following exposure to THS2.2 aerosol than following 3R4F smoke. Based on the computational analysis of the gene expression changes, 3R4F (0.13 mg nicotine/L) elicited the highest biological impact (100%) in the context of Cell Fate, Cell Proliferation, Cell Stress, and Inflammatory Network Models at 4 h post-exposure. Whereas, the corresponding impact of THS2.2 (0.14 mg nicotine/L) was 7.6%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The function and significance of SELENBP1 downregulation in human bronchial epithelial carcinogenic process.

    Directory of Open Access Journals (Sweden)

    Gu-Qing Zeng

    Full Text Available BACKGROUND: Our quantitative proteomic study showed that selenium-binding protein 1 (SELENBP1 was progressively decreased in human bronchial epithelial carcinogenic process. However, there is little information on expression and function of SELENBP1 during human lung squamous cell cancer (LSCC carcinogenesis. METHODS: iTRAQ-tagging combined with 2D LC-MS/MS analysis was used to identify differentially expressed proteins in the human bronchial epithelial carcinogenic process. SELENBP1, member of selenoproteins family and progressively downregulated in this process, was selected to further study. Both Western blotting and immunohistochemistry were performed to detect SELENBP1 expression in independent sets of tissues of bronchial epithelial carcinogenesis, and ability of SELENBP1 for discriminating NBE (normal bronchial epithelium from preneoplastic lesions from invasive LSCC was evaluated. The effects of SELENBP1 downregulation on the susceptibility of benzo(apyrene (B[a]P-induced human bronchial epithelial cell transformation were determined. RESULTS: 102 differentially expressed proteins were identified by quantitative proteomics, and SELENBP1 was found and confirmed being progressively decreased in the human bronchial epithelial carcinogenic process. The sensitivity and specificity of SELENBP1 were 80% and 79% in discriminating NBE from preneoplastic lesions, 79% and 82% in discriminating NBE from invasive LSCC, and 77% and 71% in discriminating preneoplastic lesions from invasive LSCC, respectively. Furthermore, knockdown of SELENBP1 in immortalized human bronchial epithelial cell line 16HBE cells significantly increased the efficiency of B[a]P-induced cell transformation. CONCLUSIONS: The present data shows for the first time that decreased SELENBP1 is an early event in LSCC, increases B[a]P-induced human bronchial epithelial cell transformation, and might serve as a novel potential biomarker for early detection of LSCC.

  13. Uptake of 12-HETE by human bronchial epithelial cells (HBEC): effects on HBEC cytokine production.

    Science.gov (United States)

    Gormand, F; Chabannes, B; Moliere, P; Perrin-Fayolle, M; Lagarde, M; Pacheco, Y

    1996-04-01

    12-HETE, the major lipoxygenase end-product of platelets and macrophages, may be released in contact of bronchial epithelium in inflammatory diseases of the lung. We have studied the outcome of 12-HETE in presence of human bronchial epithelial cells (HBEC). When HBEC were incubated with [3H]12-HETE for 30 minutes, 27.5% of total radioactivity was found in HBEC and 72.5% in supernatants. Unesterified 12-HETE accounted for 22.4% of total radioactivity, 4.5% being recovered in phospholipids, preferentially in phosphatidylcholine and phosphatidylethanolamine. No incorporation in neutral lipids was detected. 72.9% of the incubated radioactivity was recovered in un identified metabolites. As 12-HETE has been shown to modulate the expression and production of various proteins, the consequence of the 12-HETE uptake on the release of GM-CSF and IL8 by HBEC was assessed. HBEC from control subjects were cultured for 24 hours with 12-HETE (10(-9) to 10(-7)M) in the presence or absence of TNF alpha. Detectable amounts of both cytokines were released in the supernatant in basal conditions at 24hr, and TNF alpha increased significantly the release of GM-CSF. 12-HETE at 10(-7)M weakly but significantly decreased the TNF-induced release of GM-CSF from HBEC. Thus the uptake of 12-HETE could affect the epithelial cell function in some situations.

  14. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Science.gov (United States)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  15. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression.

    Directory of Open Access Journals (Sweden)

    Ariane H Wagener

    Full Text Available BACKGROUND: The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium. OBJECTIVE: Defining gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. METHODS: This cross-sectional study included 18 subjects (6 allergic asthma and allergic rhinitis; 6 allergic rhinitis; 6 healthy controls. The estimated false discovery rate comparing 6 subjects per group was approximately 5%. RNA was extracted from isolated and cultured epithelial cells from bronchial brushings and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array. Data were analysed using R and Bioconductor Limma package. For gene ontology GeneSpring GX12 was used. RESULTS: The study was successfully completed by 17 subjects (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls. Using correction for multiple testing, 1988 genes were differentially expressed between healthy lower and upper airway epithelium, whereas in allergic rhinitis with or without asthma this was only 40 and 301 genes, respectively. Genes influenced by allergic rhinitis with or without asthma were linked to lung development, remodeling, regulation of peptidases and normal epithelial barrier functions. CONCLUSIONS: Differences in epithelial gene expression between the upper and lower airway epithelium, as observed in healthy subjects, largely disappear in patients with allergic rhinitis with or without asthma, whilst new differences emerge. The present data identify several pathways and genes that might be

  16. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2016-07-01

    Full Text Available Shakti D Shukla,1,* Rory L Fairbairn,1,* David A Gell,1 Roger D Latham,1 Sukhwinder S Sohal,1,2 Eugene H Walters,1 Ronan F O’Toole11Breathe Well Centre, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia; 2School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS, Australia*These authors contributed equally to this workBackground: COPD is emerging as the third largest cause of human mortality worldwide after heart disease and stroke. Tobacco smoking, the primary risk factor for the development of COPD, induces increased expression of platelet-activating factor receptor (PAFr in the lung epithelium. Nontypeable Haemophilus influenzae (NTHi and Streptococcus pneumoniae adhere to PAFr on the luminal surface of human respiratory tract epithelial cells.Objective: To investigate PAFr as a potential drug target for the prevention of infections caused by the main bacterial drivers of acute exacerbations in COPD patients, NTHi and S. pneumoniae.Methods: Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE. PAFr expression levels were determined using immunocytochemistry and quantitative polymerase chain reaction. The epithelial cells were challenged with either NTHi or S. pneumoniae labeled with fluorescein isothiocyanate, and bacterial adhesion was measured using immunofluorescence. The effect of a well-evaluated antagonist of PAFr, WEB-2086, on binding of the bacterial pathogens to BEAS-2B cells was then assessed. In silico studies of the tertiary structure of PAFr and the binding pocket for PAF and its antagonist WEB-2086 were undertaken.Results: PAFr expression by bronchial epithelial cells was upregulated by CSE, and significantly associated with increased bacterial adhesion. WEB-2086 reduced the epithelial adhesion by both NTHi and S. pneumoniae to levels observed for non-CSE-exposed cells. Furthermore, it was nontoxic toward the bronchial epithelial

  17. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    OpenAIRE

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line usin...

  18. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust.

    Science.gov (United States)

    Zarcone, Maria C; Duistermaat, Evert; van Schadewijk, Annemarie; Jedynska, Aleksandra; Hiemstra, Pieter S; Kooter, Ingeborg M

    2016-07-01

    Diesel emissions are the main source of air pollution in urban areas, and diesel exposure is linked with substantial adverse health effects. In vitro diesel exposure models are considered a suitable tool for understanding these effects. Here we aimed to use a controlled in vitro exposure system to whole diesel exhaust to study the effect of whole diesel exhaust concentration and exposure duration on mucociliary differentiated human primary bronchial epithelial cells (PBEC). PBEC cultured at the air-liquid interface were exposed for 60 to 375 min to three different dilutions of diesel exhaust (DE). The DE mixture was generated by an engine at 47% load, and characterized for particulate matter size and distribution and chemical and gas composition. Cytotoxicity and epithelial barrier function was assessed, as well as mRNA expression and protein release analysis. DE caused a significant dose-dependent increase in expression of oxidative stress markers (HMOX1 and NQO1; n = 4) at 6 h after 150 min exposure. Furthermore, DE significantly increased the expression of the markers of the integrated stress response CHOP and GADD34 and of the proinflammatory chemokine CXCL8, as well as release of CXCL8 protein. Cytotoxic effects or effects on epithelial barrier function were observed only after prolonged exposures to the highest DE dose. These results demonstrate the suitability of our model and that exposure dose and duration and time of analysis postexposure are main determinants for the effects of DE on differentiated primary human airway epithelial cells.

  19. Cytotoxicity and induction of inflammation by pepsin in Acid in bronchial epithelial cells

    NARCIS (Netherlands)

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; Macnee, William; Drost, Ellen M

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains

  20. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Shen, Shuijie [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States); Chen, Xiaoyan; Zhong, Dafang [Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 (China); Zheng, Jiang, E-mail: jiang.zheng@seattlechildrens.org [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States)

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.

  1. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice.

    Science.gov (United States)

    Jin, Hua; Shen, Shuijie; Chen, Xiaoyan; Zhong, Dafang; Zheng, Jiang

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine.

  2. The Rho Target PRK2 Regulates Apical Junction Formation in Human Bronchial Epithelial Cells ▿

    OpenAIRE

    Wallace, Sean W.; Magalhaes, Ana; Hall, Alan

    2010-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of...

  3. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells.

    Science.gov (United States)

    Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang

    2016-01-01

    Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.

  4. Bronchial Epithelial Cells from Asthmatic Patients Display Less Functional HLA-G Isoform Expression.

    Science.gov (United States)

    Carlini, Federico; Picard, Christophe; Garulli, Céline; Piquemal, David; Roubertoux, Pierre; Chiaroni, Jacques; Chanez, Pascal; Gras, Delphine; Di Cristofaro, Julie

    2017-01-01

    Not all asthmatic patients adequately respond to current available treatments, such as inhaled corticosteroids or omalizumab(®). New treatments will aim to target the bronchial epithelium-immune response interaction using different pathways. HLA-G is involved in immunomodulation and may promote epithelial cell differentiation and proliferation. HLA-G protein has several isoforms generated by alternative splicing that might have differential functionalities. HLA-G protein expression and genetic polymorphisms have been reported to be associated with asthma. Our hypothesis is that bronchial epithelium from asthmatic patients displays less functional HLA-G isoforms. HLA-G transcriptional isoforms were quantified by real-time PCR in human bronchial epithelium cells (HBEC) grown in air-liquid interface culture obtained from five healthy controls (HC), seven patients with mild asthma (MA), and seven patients with severe asthma (SA). They were re-differentiated, and IL-13 exposure was used as a proxy for a pro-inflammatory cytokine. HLA-G protein expression was assessed by western blot analysis. HLA-G allele was typed by direct sequencing. Our results showed that both MA and SA display less functional HLA-G isoforms than HC (p G*01:06 frequency in MA and SA was significantly higher than in the healthy population (p = 0.03 and p G expression. Our results support that an impaired expression of HLA-G isoforms in asthmatic patients could contribute to the loss of inflammation control and epithelium structural remodeling. Therefore, HLA-G might be an interesting alternative target for asthmatic patients not adequately responding to current drugs.

  5. House dust mite allergen Der f enhanced bronchial epithelial cell cytokine expression

    Institute of Scientific and Technical Information of China (English)

    BAO QING SUN; WEI TANG; ALBERT CHAN; ADRIAN WU; NAN SHAN ZHONG

    2006-01-01

    The house dust mites ( Dermatophagoides farinae, Der f) are the major source of aeroallergens implicated in the expression of atopic disorders, including asthma, allergic rhinitis and atopic dermatitis. In particular, strong circumstantial evidence suggests that house dust mite antigens are important precipitating factors of asthma. Many house dust mite allergens are proteases that can elicit airway inflammation by stimulating the release of cytokines from bronchial epithelial cells. To investigate whether Derf allergen proteases induced cytokine production from the epithelial cell line BEAS-2B,BEAS-2B cells were cultured with 4 different concentrations of Derf (0.02, 0.2, 2, 20 μg/ml) for 24-96 h, after which supernatants were assayed for interleukin (IL)-6 and IL-8 with ELISA. Reverse transcription-PCR was also performed. The cell sheets were intact throughout the observation in control group without any exposure to Derf antigen. In the experimental groups cells treated with Der f allergen showed changes in the anchorage status of the monolayer. There was a significant increase in the level of cytokine production compared with the untreated sample. The release of IL-6 and IL-8 increased in a concentration-dependent manner ( P < 0.05, respectively) with the addition of increasing dosage of Der f to the cell sheets. Levels of IL-6 and IL-8 began to rise at 24 h and 48 h after allergen exposure, and they increased significantly in the supernatants at 72 h and 96 h. At the same time the concentration dependence of induction of IL-6 and IL-8 expression as well as an increase in the expression of IL-6 and IL-8 mRNA manifested evidently. HDM-induced airway inflammation may include Der f-mediated release of inflammatory mediators, and the proteolytic activity of an allergen may stimulate the release of proinflammatory cytokines from human bronchial epithelium. It is suggested that IL-6 and IL-8 production by bronchial epithelial cells may play a role in the

  6. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  7. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  8. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  9. (Endo)cannabinoids mediate different Ca(2+) entry mechanisms in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia; Dekkers, Bart G. J.; Droge, Melloney J.; Elzinga, Carolina R. S.; Hasenbosch, Rutger E.; Meurs, Herman; Nelemans, S. Adriaan; Schmidt, Martina; Zaagsma, Johan

    2009-01-01

    In human bronchial epithelial (16HBE14o) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes

  10. (Endo)cannabinoid signaling in human bronchial epithelial and smooth muscle cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia

    2007-01-01

    We investigated the pathways used by various (endo)cannabinoids in regulating intracellular calcium homeostasis, adenylyl cyclase and ERK signaling, in bronchial epithelial cells as well as smooth muscle cells. In DDT1 MF2 smooth muscle cells the synthetic cannabinoid CP55,940 increases [Ca2+]i by a

  11. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust

    NARCIS (Netherlands)

    Zarcone, M.C.; Duistermaat, E.; Schadewijk, A. van; Jedynksa, A.D.; Hiemstra, P.S.; Kooter, I.M.

    2016-01-01

    Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 311: L111–L123, 2016. First published May 17, 2016; doi:10.1152/ajplung.00064.2016.—Diesel emissions are the main source of air pollution in urban areas, and diese

  12. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust

    NARCIS (Netherlands)

    Zarcone, M.C.; Duistermaat, E.; Schadewijk, A. van; Jedynksa, A.D.; Hiemstra, P.S.; Kooter, I.M.

    2016-01-01

    Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 311: L111–L123, 2016. First published May 17, 2016; doi:10.1152/ajplung.00064.2016.—Diesel emissions are the main source of air pollution in urban areas, and

  13. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or heat-inact

  14. Eicosanoid biosynthesis during mucociliary and mucous metaplastic differentiation of bronchial epithelial cells.

    Science.gov (United States)

    Jakiela, Bogdan; Gielicz, Anna; Plutecka, Hanna; Hubalewska, Magdalena; Mastalerz, Lucyna; Bochenek, Grazyna; Soja, Jerzy; Januszek, Rafal; Musial, Jacek; Sanak, Marek

    2013-10-01

    The purpose of this study was to examine the profile of eicosanoids secreted by human bronchial epithelial cells (HBEC) during their in vitro differentiation toward mucociliary or mucous metaplastic phenotype. Eicosanoids were measured in supernatants by mass spectrometry, and corresponding gene expression by real-time PCR. Primary HBEC produced mainly prostaglandins (PGE2, PGD2) and epoxides (e.g. 14,15-EET), but during further mucociliary differentiation we observed a gradual increase in secretion of lipoxygenase derived HETEs. Treatment with IL-13 and IL-4 induced mucous metaplasia and resulted in downregulation of PG pathway, and potent induction of 15-lipoxygenase (marked release of 15-HETE). The deficiency in PG production sustained during long term culture of mucous metaplastic epithelia. In conclusions, Th2-type cytokines induce changes in eicosanoid metabolism of airway epithelial cells, resulting in an immense induction of 15-lipoxygenase pathway, and inhibition of PG pathways. Deficient production of immunomodulatory PGs may promote chronic inflammation and airway remodeling.

  15. Activation of lymphocytes induced by bronchial epithelial cells with prolonged RSV infection.

    Directory of Open Access Journals (Sweden)

    Ling Qin

    Full Text Available Respiratory syncytial virus (RSV preferentially infects airway epithelial cells,which might be responsible for susceptibility to asthma; however, the underlying mechanism is not clear. This study determined the activation of lymphocytes and drift of helper T (Th subsets induced by RSV-infected human bronchial epithelial cells (HBECs in vitro. HBECs had prolonged infection with RSV, and lymphocytes isolated from human peripheral blood were co-cultured with RSV-infected HBECs. Four groups were established, as follows: lymphocytes (group L; lymphocytes infected with RSV (group RL; co-culture of lymphocytes with non-infected HBECs (group HL; and co-culture of lymphocytes with infected HBECs (group HRL. After co-culture with HBECs for 24 hours, lymphocytes were collected and the following were determined in the 4 groups: cell cycle status; apoptosis rate; and concentrations of IL-4, IFN-γ, and IL-17 in the supernatants. Cell cycle analysis for lymphocytes showed a significant increase in S phase cells, a decrease in G1 phase cells, and a higher apoptosis rate in group HRL compared with the other three groups. In group HRL, the levels of IL-4, IFN-γ, and IL-17 in supernatants were also higher than the other three groups. For further study, lymphocytes were individually treated with supernatants from non-infected and RSV-infected HBECs for 24 h. We showed that supernatants from RSV-infected HBECs induced the differentiation of Th2 and Th17 subsets, and suppressed the differentiation of Treg subsets. Our results showed that HBECs with prolonged RSV infection can induce lymphocyte proliferation and apoptosis, and enhance the release of cytokines by lymphocytes. Moreover, subset drift might be caused by RSV-infected HBECs.

  16. Anti-inflammatory effects of antibacterials on human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Hatz Rudolf

    2009-09-01

    Full Text Available Abstract Background Human Bronchial epithelial cells (hu-BEC have been claimed to play a significant role in the pathogenesis of chronic inflammatory airway diseases like COPD. In this context IL-8 and GM-CSF have been shown to be key cytokines. Some antibiotics which are routinely used to treat lower respiratory tract infections have been shown to exert additional immunomodulatory or anti-inflammatory effects. We investigated whether these effects can also be detected in hu-BEC. Methods Hu-BEC obtained from patients undergoing lung resections were transferred to air-liquid-interface (ALI culture. These cultures were incubated with cefuroxime (CXM, 10-62.5 mg/l, azithromycin (AZM, 0.1-1.5 mg/l, levofloxacin (LVX, 1-8 mg/l and moxifloxacin (MXF, 1-16 mg/l. The spontaneous and TNF-α (10 ng/ml induced expression and release of IL-8 and GM-CSF were measured using PCR and ELISA in the absence or presence of these antibiotics. Results The spontaneous IL-8 and GM-CSF release was significantly reduced with MXF (8 mg/l by 37 ± 20% and 45 ± 31%, respectively (both p Conclusion Using ALI cultures of hu-BEC we observed differential effects of antibiotics on spontaneous and TNF-α induced cytokine release. Our data suggest that MXF and AZM, beyond bactericidal effects, may attenuate the inflammatory process mediated by hu-BEC.

  17. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype

    Directory of Open Access Journals (Sweden)

    Mallory Pain

    2014-03-01

    Full Text Available Airway remodelling is a critical feature of chronic bronchial diseases, characterised by aberrant repair of the epithelium and accumulation of fibroblasts, which contribute to extracellular matrix (ECM deposition resulting in fixed bronchial obstruction. Recently, epithelial–mesenchymal transition (EMT has been identified as a new source of fibroblasts that could contribute to the remodelling of the airways. This phenomenon consists of the loss of the epithelial phenotype by bronchial epithelial cells and the acquisition of a mesenchymal phenotype. These cells are then able to migrate and secrete ECM molecules. Herein, we review the different types of EMT. We will then focus on the signalling pathways that are involved, such as transforming growth factor-β and Wnt, as well as the more recently described Sonic Hedgehog pathway. Finally, we will highlight the implication of EMT in airway remodelling in specific chronic bronchial pathologies, such as asthma, chronic obstructive pulmonary disease and bronchiolitis obliterans following lung transplantation. Despite the limitations of in vitro models, future studies of EMT in vivo are warranted to shed new light on the pathomechanisms of bronchial obstruction.

  18. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  19. Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia – a novel mouse model providing insights into geleophysic dysplasia

    Directory of Open Access Journals (Sweden)

    Dirk Hubmacher

    2015-05-01

    Full Text Available Mutations in the secreted glycoprotein ADAMTSL2 cause recessive geleophysic dysplasia (GD in humans and Musladin–Lueke syndrome (MLS in dogs. GD is a severe, often lethal, condition presenting with short stature, brachydactyly, stiff skin, joint contractures, tracheal-bronchial stenosis and cardiac valve anomalies, whereas MLS is non-lethal and characterized by short stature and severe skin fibrosis. Although most mutations in fibrillin-1 (FBN1 cause Marfan syndrome (MFS, a microfibril disorder leading to transforming growth factor-β (TGFβ dysregulation, domain-specific FBN1 mutations result in dominant GD. ADAMTSL2 has been previously shown to bind FBN1 and latent TGFβ-binding protein-1 (LTBP1. Here, we investigated mice with targeted Adamtsl2 inactivation as a new model for GD (Adamtsl2−/− mice. An intragenic lacZ reporter in these mice showed that ADAMTSL2 was produced exclusively by bronchial smooth muscle cells during embryonic lung development. Adamtsl2−/− mice, which died at birth, had severe bronchial epithelial dysplasia with abnormal glycogen-rich inclusions in bronchial epithelium resembling the cellular anomalies described previously in GD. An increase in microfibrils in the bronchial wall was associated with increased FBN2 and microfibril-associated glycoprotein-1 (MAGP1 staining, whereas LTBP1 staining was increased in bronchial epithelium. ADAMTSL2 was shown to bind directly to FBN2 with an affinity comparable to FBN1. The observed extracellular matrix (ECM alterations were associated with increased bronchial epithelial TGFβ signaling at 17.5 days of gestation; however, treatment with TGFβ-neutralizing antibody did not correct the epithelial dysplasia. These investigations reveal a new function of ADAMTSL2 in modulating microfibril formation, and a previously unsuspected association with FBN2. Our studies suggest that the bronchial epithelial dysplasia accompanying microfibril dysregulation in Adamtsl2−/− mice

  20. Virodhamine and CP55,940 modulate cAMP production and IL-8 release in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, E.; Dekkers, B. G. J.; Droege, M. J.; Elzinga, C. R. S.; Schmidt, M.; Meurs, H.; Zaagsma, J.; Nelemans, S. A.

    2007-01-01

    Background and purpose: We investigated expression of cannabinoid receptors and the effects of the endogenous cannabinoid virodhamine and the synthetic agonist CP55,940 on cAMP accumulation and interleukin-8 (IL-8) release in human bronchial epithelial cells. Experimental approach: Human bronchial e

  1. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    Science.gov (United States)

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  2. Subcellular Distribution and Genotoxicity of Silica Nanoparticles 
in Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangqiang ZHAO

    2013-03-01

    Full Text Available Background and objective Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B. Methods The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM. DNA damage was detected by single-cell gel electrophoresis (comet assay. Results TEM revealed that SiO2 nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05. Conclusion The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  3. Alternative spliced CD1d transcripts in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kambez Hajipouran Benam

    Full Text Available CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.

  4. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  5. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Liu AL

    2016-07-01

    Full Text Available Ailing Liu,1,2,* Jinxiang Wu,1,* Aijun Li,2 Wenxiang Bi,3 Tian Liu,1 Liuzhao Cao,1 Yahui Liu,1 Liang Dong1 1Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Pulmonary Diseases, Weihai Municipal Hospital, Weihai, Shandong, People’s Republic of China; 3Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Objectives: Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence.Methods: Human bronchial epithelial cells (16HBE cells cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS, PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway.Results: Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence.Conclusion: CSE can induce cellular senescence in human bronchial

  6. Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers

    OpenAIRE

    Bondì, Maria Luisa; Ferraro, Maria; Di Vincenzo, Serena; Gerbino, Stefania; Cavallaro, Gennara; Giammona, Gaetano; Botto, Chiara; Gjomarkaj, Mark; Pace, Elisabetta

    2014-01-01

    Background Nanomedicine studies have showed a great potential for drug delivery into the lung. In this manuscript nanostructured lipid carriers (NLC) containing Fluticasone propionate (FP) were prepared and their biocompatibility and effects in a human bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extracts (CSE) were tested. Results Biocompatibility studies showed that the NLC did not induce cell necrosis or apoptosis. Moreover, it was confirmed that CSE increased in...

  7. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.

    Science.gov (United States)

    Hagiwara, Masaya; Maruta, Naomichi; Marumoto, Moegi

    2017-06-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left-right asymmetry, and disease pathogenesis of the human lung.

  8. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  9. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Kayo Maruyama

    2015-01-01

    Full Text Available Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs, which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs and human mesothelial cells (HMCs. We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways.

  10. Puerarin protects human bronchial epithelial cells from apoptosis induced by gunpowder smog

    Directory of Open Access Journals (Sweden)

    Yun-xia CHEN

    2016-03-01

    Full Text Available Objective  To investigate protective effects of puerarin on the human bronchial epithelial (BEAS-2B cell line against apoptosis caused by gunpowder smog and its mechanisms. Methods  BEAS-2B cells cultured in vitro were randomly divided into control group, smog group (the group treated with 4g gunpowder smog for 10min, and smog + puerarin group [puerarin group, the cells were pre-incubated with various concentrations of puerarin (12.5, 25.0, 50.0, 100.0µg/ml and then exposed to smoke]. Puerarin was added into the cells after innoculation for 12h and then the cells were sequentially cultured for 24h and followed by exposure to smoke for 10min. After being cultured again for 2h, the smoked cells were examined for cell viability using Cell Counting Kit-8(CCK-8, cell apoptosis was observed using Hoechst33258 nucleus staining, and positive rates of Annexin V-PI staining cells and caspase-3 were determined with flow cytometer. Resu lts  Compared with control, treatment of BEAS-2B cells with 4g gunpowder smog induced a characteristic apoptotic cell death (P<0.01. Pretreatment with various concentrations of puerarin antagonized the action of gunpowder smog in different degrees. The 25µg/ml was determined as the optimal effective concentration of puerarin. Compared with smog group, the apoptosis rate of BEAS-2B cells and positive rates of Annexin V-PI staining cells and caspase-3 were decreased significantly in smog + puerarin group (P<0.05, P<0.01. Conclusion  Gunpowder smog can induce apoptosis of BEAS-2B cells in vitro, while pretreatment with puerarin could protect BEAS-2B cells against apoptosis induced by gunpowder smog. DOI: 10.11855/j.issn.0577-7402.2016.01.16

  11. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation

    Science.gov (United States)

    Juncadella, Ignacio J.; Kadl, Alexandra; Sharma, Ashish K.; Shim, Yun M.; Hochreiter-Hufford, Amelia; Borish, Larry; Ravichandran, Kodi S.

    2013-01-01

    Lung epithelial cells can influence immune responses to airway allergens1,2. Airway epithelial cells also undergo apoptosis after encountering environmental allergens3; yet, relatively little is known about how these are cleared, and their effect on airway inflammation. Here we show that airway epithelial cells efficiently engulf apoptotic epithelial cells and secrete anti-inflammatory cytokines, dependent upon intracellular signalling by the small GTPase Rac1. Inducible deletion of Rac1 expression specifically in airway epithelial cells in a mouse model resulted in defective engulfment by epithelial cells and aberrant anti-inflammatory cytokine production. Intranasal priming and challenge of these mice with house dust mite extract or ovalbumin as allergens led to exacerbated inflammation, augmented Th2 cytokines and airway hyper-responsiveness, with decreased interleukin (IL)-10 in bronchial lavages. Rac1-deficient epithelial cells produced much higher IL-33 upon allergen or apoptotic cell encounter, with increased numbers of nuocyte-like cells1,4,5. Administration of exogenous IL-10 ‘rescued’ the airway inflammation phenotype in Rac1-deficient mice, with decreased IL-33. Collectively, these genetic and functional studies suggest a new role for Rac1-dependent engulfment by airway epithelial cells and in establishing the anti-inflammatory environment, and that defects in cell clearance in the airways could contribute to inflammatory responses towards common allergens. PMID:23235830

  12. Effect of nitrogen dioxide on synthesis of inflammatory cytokines expressed by human bronchial epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Devalia, J.L.; Campbell, A.M.; Sapsford, R.J.; Rusznak, C.; Quint, D.; Godard, P.; Bousquet, J.; Davies, R.J. (St. Bartholomew' s Hospital, London (United Kingdom))

    1993-09-01

    Although studies of nitrogen dioxide (NO2) inhalation, in both animals and humans, have demonstrated that this agent can cause epithelial cell damage and inflammation of the airway epithelium, the mechanisms underlying these effects are not well understood. We have cultured human bronchial epithelial cells, as explant cultures from surgical tissue, and studied these firstly from their ability to constitutively synthesize specific proinflammatory cytokines and then investigated the effect of exposure to NO2 on the generation of these cytokines. Constitutive synthesis of cytokines was evaluated by analysis of both the expression of the mRNA for interleukin (IL)-1 beta, IL-4, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma), by the polymerase chain reaction (PCR), and by immunocytochemical staining for the presence of cell-associated IL-1 beta, IL-8, GM-CSF, TNF-alpha, and IFN-gamma, using specific monoclonal and polyclonal antibodies directed towards these cytokines. Release of IL-4, IL-8, GM-CSF, TNF-alpha, and IFN-gamma following exposure to 5% CO2 in air or 400 ppb and 800 ppb NO2 for 6 h was investigated by enzyme-linked immunosorbent assay. PCR demonstrated that the human bronchial epithelial cells expressed the mRNA for IL-1 beta, IL-8, GM-CSF, and TNF-alpha but not for IL-4 and IFN-gamma. Immunocytochemical staining confirmed the presence of endogenous IL-1 beta, IL-8, GM-CSF, and TNF-alpha.

  13. Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Moore Margo M

    2010-06-01

    Full Text Available Abstract Background Aspergillus fumigatus (A. fumigatus is a ubiquitous fungus which reproduces asexually by releasing abundant airborne conidia (spores, which are easily respirable. In allergic and immunocompromised individuals A. fumigatus can cause a wide spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma and invasive aspergillosis. Previous studies have demonstrated that A. fumigatus conidia are internalized by macrophages and lung epithelial cells; however the exact transcriptional responses of airway epithelial cells to conidia are currently unknown. Thus, the aim of this study was to determine the transcriptomic response of the human bronchial epithelial cell line (16HBE14o- following interaction with A. fumigatus conidia. We used fluorescence-activated cell sorting (FACS to separate 16HBE14o- cells having bound and/or internalized A. fumigatus conidia expressing green fluorescent protein from cells without spores. Total RNA was then isolated and the transcriptome of 16HBE14o- cells was evaluated using Agilent Whole Human Genome microarrays. Results Immunofluorescent staining and nystatin protection assays demonstrated that 16HBE14o- cells internalized 30-50% of bound conidia within six hrs of co-incubation. After FAC-sorting of the same cell culture to separate cells associated with conidia from those without conidia, genome-wide analysis revealed a set of 889 genes showing differential expression in cells with conidia. Specifically, these 16HBE14o- cells had increased levels of transcripts from genes associated with repair and inflammatory processes (e.g., matrix metalloproteinases, chemokines, and glutathione S-transferase. In addition, the differentially expressed genes were significantly enriched for Gene Ontology terms including: chromatin assembly, G-protein-coupled receptor binding, chemokine activity, and glutathione metabolic process (up-regulated; cell cycle phase, mitosis, and intracellular

  14. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. (Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill (United States))

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  15. NGF is an essential survival factor for bronchial epithelial cells during respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Sreekumar Othumpangat

    Full Text Available Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV, but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia.Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF and receptors (trkA, trkB, p75 was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/necrosis was evaluated by flow cytometry following annexin V/7-AAD staining.RSV infection was more efficient in cells from more distal (bronchial vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75(NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75(NTR expression. Furthermore, the survival of bronchial epithelial cells was dramatically decreased when their endogenous NGF supply was depleted prior to RSV infection.RSV infection of the distal airway epithelium, but not of the more proximal sections, results in overexpression of NGF and its trkA receptor, while the other p75(NTR receptor is markedly downregulated. This pattern of neurotrophin expression confers protection against virus-induced apoptosis, and its inhibition amplifies programmed cell death in the infected

  16. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    Full Text Available Respiratory syncytial virus (RSV causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4 inhibitor Roflumilast N-oxide (RNO, alters RSV infection of well-differentiated HBE (WD-HBE in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM. Viral infection (staining of F and G proteins, nucleoprotein RNA level, mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA, Goblet cells (PAS, mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus.

  17. Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection.

    Directory of Open Access Journals (Sweden)

    Alan C-Y Hsu

    Full Text Available Innate antiviral responses in bronchial epithelial cells (BECs provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs. However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.

  18. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation.

    Directory of Open Access Journals (Sweden)

    Xiuling Xu

    Full Text Available Although it is well known that epidermal growth factor receptor (EGFR is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals, a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE, the active form of the cigarette smoke (CS carcinogen benzo(apyrene (BaPs. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.

  19. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation.

    Directory of Open Access Journals (Sweden)

    Laurie-Anne Payet

    Full Text Available The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF, leads to the retention of the protein in the endoplasmic reticulum (ER. The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(- cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.

  20. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  1. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  2. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    Science.gov (United States)

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  3. The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells.

    Science.gov (United States)

    Veronesi, Bellina; de Haar, Colin; Lee, Lseng; Oortgiesen, Marga

    2002-02-01

    The physicochemical complexity of airborne particulate matter (PM) has hampered identifying a specific mechanism(s) for its toxicity. In this study, selected physicochemical characteristics (i.e., size, particle number, acidity, and surface charge) were measured on various field PM, derived from urban ambient (St. Louis, Ottawa, Canada), residential (Woodstove), volcanic dust from Mt. St. Helen (MSH), and industrial [oil fly ash (OFA) coal fly ash (CFA)] sources. Morphometric analysis of visible (10 microm) field particles indicated that the industrial PM (OFA, CFA) had the smallest diameter and lowest total number of particles per weight while Woodstove and Ottawa had the largest diameter and highest number of particles. All PM lowered the pH of an unbuffered 10 mM NaCl solution from pH 7.4 to pH 4.7-6.8 but did not change the neutral pH of the cell culture medium, keratinocyte growth media (KGM). The surface charge (i.e., zeta potential) of microscopically visible (> or = 2.0 microm) field particles, suspended in either a Hepes-buffered KCl solution or in KGM, was measured by microelectrophoresis. In KCl solution, the mean zeta potential of all tested PM ranged from -36 +/- 2 (Woodstove) to -27 +/- 4.3 mV (MSH). When measured in KGM medium, the mean zeta potential value of each PM was significantly less (p > 0.001) than those measured in KCl solution, with values ranging from -17 +/- 0.3 mV (St. Louis) to -9 +/- 0.6 mV (MSH). Suspensions of field PM, its soluble and washed particulate fractions, were next prepared from each PM. The biological effects (i.e., increases in intracellular calcium ([Ca2+]i), cytokine release) of their exposure were measured in human, immortalized, tracheal-bronchial epithelial cells (BEAS-2B). Exposure of BEAS-2B cells to each fraction produced an immediate, but differential increase in [Ca2+]i and the subsequent release of the inflammatory cytokine IL-6, 4 and 16 h later. Increases in [Ca2+]i by field PM significantly correlated with

  4. BEAS S6 (BEAS) human bronchial epithelial cells produce inflammatory mediators following ozone(O sub 3 ) exposure

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, K.; Joyce, M.; Noah, T.; Devlin, R.; Koren, H. (Univ. of North Carolina, Chapel Hill (United States) Environmental Protection Agency, Research Triangle Park, NC (United States))

    1991-03-11

    Ozone induces an inflammatory response in humans. The purpose of this study was to assess the role of epithelial cells in this response. The authors exposed the bronchial epithelial cell line BEAS cultured on collagen-impregnated filters to air or varying concentrations of O{sub 3}. Fluid obtained from either apical or basolateral compartments was analyzed for various inflammatory mediators and other products released in response to O{sub 3} exposure. O{sub 3} had dose-dependent cytotoxic effects as determined by the release of LDH or {sup 51}Cr and by uptake of trypan blue or propidium iodide. PGE{sub 2}, leukotrienes C{sub 4}, B{sub 4}, and E{sub 4}, fibronectin, PAF, and IL 6 were produced in dose-dependent responses following exposure of BEAS cells to 0.1 to 1.0 ppm O{sub 3}. The data demonstrate that the BEAS cell line produces inflammatory substances in response to O{sub 3} and thus functions as a useful model to study pollutant/airway cell interactions.

  5. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  6. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells.

    Science.gov (United States)

    Wallace, Sean W; Magalhaes, Ana; Hall, Alan

    2011-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.

  7. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Argo Aug

    Full Text Available E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1 to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  8. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells.

    Science.gov (United States)

    Jeannet, Natalie; Fierz, Martin; Schneider, Sarah; Künzi, Lisa; Baumlin, Nathalie; Salathe, Matthias; Burtscher, Heinz; Geiser, Marianne

    2016-01-01

    Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro. Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies.

  9. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  10. Curcumin Inhibits Heat-Induced Apoptosis by Suppressing NADPH Oxidase 2 and Activating the Akt/mTOR Signaling Pathway in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yuan Peng

    2017-04-01

    Full Text Available Background: Heat causes bronchial epithelial cell apoptosis, which is a known factor contributing to airway damage during inhalation injury. Accumulating evidence has shown the effect of curcumin on inhibiting apoptosis. In this study, we investigated whether curcumin suppresses heat-induced apoptosis in bronchial epithelial cells and the underlying mechanism. Methods: Bronchial epithelial cell line 16HBE140 cells were incubated at either 42 °C, 47 °C, 52 °C, or 57 °C for 5 min in a cell incubator and then returned back to normal culture conditions (37 °C. An in vivo thermal inhalation injury rat model was established with a heat gun blowing hot air into the airway of rats. 16HBE140 cells and lung tissue were obtained for further study with or without curcumin treatment. Cell viability was determined by measuring the absorbance of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT. 2',7'-dichlorofluorescein diacetate fluorescence was used as a measure of reactive oxygen species (ROS production. Levels of Bcl2, Bax, α-ATP, cleaved Poly (ADP-ribose polymerase (PARP, cleaved caspase-3, gp91phox, p47phox, p67phox, p22phox, p40phox, and Rac were determined by Western blotting. TUNEL staining was used to determine apoptosis. Results: Heat treatment triggered the apoptosis of 16HBE140 cells as shown by the increase in apoptosis molecular markers, including Bcl-2, Bax, cleaved PARP, and cleaved caspase-3. Administration of curcumin significantly inhibited apoptosis of 16HBE140 cells and suppressed the membrane translocation of NADPH oxidase 2 cytosolic components, as well as ROS production. Downregulation of Akt and mTOR phosphorylation induced by heat was also reversed by curcumin. Furthermore, we demonstrated that NADPH oxidase 2 is upstream of Akt/mTOR in heat-induced apoptosis. The protective role of curcumin on bronchial epithelia apoptosis was also confirmed in vivo by a rat inhalation injury model. Conclusion: This study

  11. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells.

    Science.gov (United States)

    Martinez-Nunez, Rocio T; Bondanese, Victor P; Louafi, Fethi; Francisco-Garcia, Ana S; Rupani, Hitasha; Bedke, Nicole; Holgate, Stephen; Howarth, Peter H; Davies, Donna E; Sanchez-Elsner, Tilman

    2014-01-01

    MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions with other micro

  12. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rocio T Martinez-Nunez

    Full Text Available MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions

  13. Differential cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates in primary pediatric bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Coyle Peter V

    2011-01-01

    Full Text Available Abstract Background Human respiratory syncytial virus (RSV causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs. Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.

  14. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  15. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    Science.gov (United States)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  16. Effects of budesonide on P38 MAPK activation, apoptosis and IL-8 secretion, induced by TNF-alpha and Haemophilus influenzae in human bronchial epithelial cells.

    Science.gov (United States)

    Gallelli, L; Pelaia, G; Fratto, D; Muto, V; Falcone, D; Vatrella, A; Curto, L S; Renda, T; Busceti, M T; Liberto, M C; Savino, R; Cazzola, M; Marsico, S A; Maselli, R

    2010-01-01

    Non-typeable Haemophilus influenzae (NTHi) is one of the most frequently involved pathogens in bacterial exacerbations of chronic obstructive pulmonary disease (COPD). In the airways, the main tissue target of NTHi is bronchial epithelium, where this pathogen can further amplify the inflammatory and structural changes induced by proinflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha). Therefore, the aim of this study is to investigate, in primary cultures of human bronchial epithelial cells, the effects of NTHi on signal transduction pathways, apoptotic events and chemokine production activated by TNF-alpha. Moreover, we also evaluated the effects exerted on such cellular and molecular phenomena by a corticosteroid drug. p38 mitogen-activated protein kinase (MAPK) phosphorylation was analyzed by Western blotting, using an anti-phospho-p38 MAPK monoclonal antibody. Apoptosis was assayed by active caspase-3 expression. Interleukin-8 (IL-8/CXCL8) was detected in cell-free culture supernatants by ELISA. TNF-alpha induced a significant increase in p38 MAPK phosphorylation. NTHi was able to potentiate the stimulatory actions of TNF-alpha on caspase-3 expression and, to a lesser extent, on IL-8 secretion. These effects were significantly (P less than 0.01) inhibited by a pharmacological pre-treatment with budesonide. These results suggest that TNF-alpha is able to stimulate, via activation of p38 MAPK signalling pathway, IL-8 release and airway epithelial cell apoptosis; the latter effect can be markedly potentiated by NTHi. Furthermore, budesonide can be very effective in preventing, through inhibition of p38 MAPK phosphorylation, both structural and proinflammatory changes elicited in bronchial epithelium by TNF-alpha and NTHi.

  17. Passive sensitization increases histamine-stimulated calcium signaling and NF-кB transcription activity in bronchial epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Si JIN; Dan TIAN; Jian-guo CHEN; Li-ping ZHU; Sheng-yuan LIU; Di-xun WANG

    2006-01-01

    Aim: To find out if the two aspects of asthma (chronic airway inflammation and bronchial hyperresponsiveness) are related to hypersensitivity of calcium signaling in bronchial epithelial cells. Methods: Porcine bronchial epithelial cells (PBEC) were divided into sensitized (S) and nonsesitized (N) groups. In group S, the cells were preincubated with serum from ovalbumin sensitized guinea pigs. In group N, the cells were preincubated with serum from nonsensitized guinea pigs. Single cell calcium imaging and ELISA-based NF-κB activity were used to evaluate the histamine-stimulated intracellular free calcium level and NF-κB activity, respectively. Results: First, 0.1 umol/L histamine could induce [Ca2+]i oscillations in PBEC of group S, but not in group N. Second, 1 umol/L histamine could induce [Ca2+]i oscillations of PBEC in both group S and group N. The [Ca2+]i oscillation frequency of PBEC was significantly higher in group S than in group N, though the [Ca2+]i oscillation amplitude showed no difference between the two groups. Finally, when 10 umol/L histamine was used to stimulate PBEC, a transient initial increase followed by a sustained elevation (FSE) of [Ca2+]i was observed in PBEC in both groups. The amplitude of the FSE of [Ca2+]i in PBEC was significantly higher in group S than in group N. The subsequent NF-KB activity was in accordance to the calcium oscillation frequency evoked by histamine, but not to the amplitude. Conclusion: It was suggested that the increased sensitivity of calcium signaling in bronchial epithelial cells might contribute to the exorbitant inflammation or increased susceptibility in asthmatic airway epithelial cells.

  18. Ciprofloxacin Is Actively Transported across Bronchial Lung Epithelial Cells Using a Calu-3 Air Interface Cell Model

    Science.gov (United States)

    Ong, Hui Xin; Traini, Daniela; Bebawy, Mary

    2013-01-01

    Ciprofloxacin is a well-established broad-spectrum fluoroquinolone antibiotic that penetrates well into the lung tissues; still, the mechanisms of its transepithelial transport are unknown. The contributions of specific transporters, including multidrug efflux transporters, organic cation transporters, and organic anion-transporting polypeptide transporters, to the uptake of ciprofloxacin were investigated in vitro using an air interface bronchial epithelial model. Our results demonstrate that ciprofloxacin is subject to predominantly active influx and a slight efflux component. PMID:23507281

  19. Features of application of medical physical culture for the children of patients by bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Aleshina A.I.

    2012-07-01

    Full Text Available The purpose of work consists in generalization of scientific recommendations of scientists in relation to application of medical physical culture for children with bronchial asthma. The problem of bronchial asthma is analysed, as an enough widespread disease in the world, the basic tendencies of his prevalence, range of measures instrumental in diagnostics and treatment, are certain. It is presented statistical information about prevalence of bronchial asthma on Ukraine among children. Principal reasons of origin of disease and role of physical exercises in the process of rehabilitation of patients with bronchial asthma are certain. The features of the use and influencing of respiratory gymnastics on the method of Buteyko, Strel'nikovoy, drainage exercises, sound gymnastics, exercises of aerobic character are analysed. The necessity of application of medical physical culture at this disease is grounded.

  20. Emissions from commercial-grade charbroiling meat operations induce oxidative stress and inflammatory responses in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Ning Li

    2014-01-01

    Full Text Available Commercial charbroiling emissions are a significant source of ambient particulate matter (PM in urban settings. The objective of this study was to determine whether organic extract of PM emissions from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells and whether this effect was mediated by oxidative stress. PM samples were collected during cooking hamburgers on a commercial-grade under-fired charbroiler and sequentially extracted with water and methanol to obtain the aqueous PM suspension (AqPM and organic extract (OE. The pro-oxidative and pro-inflammatory effects of OE were assessed using human bronchial epithelial cell line BEAS-2B. While AqPM did not have any effect, OE effectively induced the expression of heme oxygennase-1 and cyclooxygenase-2 in BEAS-2B cells. OE also up-regulated the levels of IL-6, IL-8, and prostaglandin E2. OE-induced cellular inflammatory response could be effectively suppressed by the antioxidant N-acetyl cysteine, nuclear factor (erythroid-derived 2-like 2 activator sulforaphane and p38 MAPK inhibitor SB203580. In conclusion, organic chemicals emitted from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells, which was mediated by oxidative stress and p38 MAPK.

  1. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  2. Pro-inflammatory responses of human bronchial epithelial cells to acute nitrogen dioxide exposure.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2004-04-15

    Nitrogen dioxide (NO2) is an environmental oxidant, known to be associated with lung epithelial injury. In the present study, cellular pro-inflammatory responses following exposure to a brief high concentration of NO2 (45 ppm) were assessed, using normal human bronchial epithelial (NHBE) cells as an in vitro model of inhalation injury. Generation and release of pro-inflammatory mediators such as nitric oxide (NO), IL-8, TNF-alpha, IFN-gamma and IL-1beta were assessed at different time intervals following NO2 exposure. Effects of a pre-existing inflammatory condition was tested by treating the NHBE cells with different inflammatory cytokines such as IFN-gamma, IL-8, TNF-alpha, IL-1beta, either alone or in combination, before exposing them to NO2. Immunofluorescence studies confirmed oxidant-induced formation of 3-nitrotyrosine in the NO2-exposed cells. A marked increase in the levels of nitrite (as an index of NO) and IL-8 were observed in the NO2-exposed cells, which were further enhanced in the presence of the cytokines. Effects of various NO inhibitors combined, with immunofluorescence and Western blotting data, indicated partial contribution of the nitric oxide synthases (NOSs) toward the observed increase in nitrite levels. Furthermore, a significant increase in IL-1beta and TNF-alpha generation was observed in the NO2-exposed cells. Although NO2 exposure alone did induce slight cytotoxicity (<12%), but presence of inflammatory cytokines such as TNF-alpha and IFN-gamma resulted in an increased cell death (28-36%). These results suggest a synergistic role of inflammatory mediators, particularly of NO and IL-8, in NO2-mediated early cellular changes. Our results also demonstrate an increased sensitivity of the cytokine-treated NHBE cells toward NO2, which may have significant functional implications in vivo.

  3. Rhinovirus-16 induced release of IP-10 and IL-8 is augmented by Th2 cytokines in a pediatric bronchial epithelial cell model.

    Directory of Open Access Journals (Sweden)

    Julie A Cakebread

    Full Text Available BACKGROUND: In response to viral infection, bronchial epithelial cells increase inflammatory cytokine release to activate the immune response and curtail viral replication. In atopic asthma, enhanced expression of Th2 cytokines is observed and we postulated that Th2 cytokines may augment the effects of rhinovirus-induced inflammation. METHODS: Primary bronchial epithelial cell cultures from pediatric subjects were treated with Th2 cytokines for 24 h before infection with RV16. Release of IL-8, IP-10 and GM-CSF was measured by ELISA. Infection was quantified using RTqPCR and TCID50. Phosphatidyl inositol 3-kinase (PI3K and P38 mitogen activated protein kinase (MAPK inhibitors and dexamethasone were used to investigate differences in signaling pathways. RESULTS: The presence of Th2 cytokines did not affect RV replication or viral titre, yet there was a synergistic increase in IP-10 release from virally infected cells in the presence of Th2 cytokines. Release of IL-8 and GM-CSF was also augmented. IP-10 release was blocked by a PI3K inhibitor and IL-8 by dexamethasone. CONCLUSION: Th2 cytokines increase release of inflammatory cytokines in the presence of rhinovirus infection. This increase is independent of effects of virus replication. Inhibition of the PI3K pathway inhibits IP-10 expression.

  4. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions

    Science.gov (United States)

    Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.

    1998-11-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.

  5. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Laura Cartularo

    Full Text Available Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress.

  6. Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles.

    Science.gov (United States)

    Baulig, Augustin; Sourdeval, Matthieu; Meyer, Martine; Marano, Francelyne; Baeza-Squiban, Armelle

    2003-01-01

    Epidemiological studies have associated the increase of respiratory disorders with high levels of ambient particulate matter (PM) levels although the underlying biological mechanisms are unclear. PM are a complex mixture of particles with different origins but in urban areas, they mainly contain soots from transport like Diesel exhaust particles (DEP). In order to determine whether PM biological effects can be explained by the presence of DEP, the effects of urban PM, DEP and carbon black particles (CB) were compared on a human bronchial epithelial cell line (16-HBE14o-). Two types of PM were used : reference material (RPM) and PM with an aerodynamic diameter particles. However, DEP and to a lower extent PM inhibited cell proliferation, induced the release of a pro-inflammatory cytokine, GM-CSF, and generated a pro-oxidant state as shown by the increased intracellular peroxides production. By contrast, CB never induced such effects. Nevertheless CB are more endocytosed than DEP whereas PM are the less endocytosed particles. In conclusion, PM induced to a lower extent the same biological effects than DEP in 16-HBE cells suggesting that particle characteristics should be thoroughly considered in order to clearly correlate adverse effects of PM to their composition and to clarify the role of DEP in PM effects.

  7. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    Science.gov (United States)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  8. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  9. Antibiotics and production of granulocyte-macrophage colony-stimulating factor by human bronchial epithelial cells in vitro. A comparison of cefodizime and ceftriaxone.

    Science.gov (United States)

    Pacheco, Y; Hosni, R; Dagrosa, E E; Gormand, F; Guibert, B; Chabannes, B; Lagarde, M; Perrin-Fayolle, M

    1994-04-01

    Cultured human bronchial epithelial cells (HBEC) produce both granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 8 (IL-8). The influence of cefodizime (CAS 69739-16-8), a new broad spectrum cephalosporin with immunostimulatory effects, and ceftriaxone on the production of GM-CSF and IL-8 in HBEC primary cultures was investigated. HBEC were isolated from biopsy specimens obtained during fibreoptic bronchoscopy in 12 patients (most frequent diagnosis: chronic bronchitis). Confluent monolayers of HBEC cultured on collagen were incubated for 24 h in a medium without study drugs (spontaneous production) or containing cefodizime or ceftriaxone at the clinically relevant concentrations of 1, 10 and 100 mg/l, with or without tumor necrosis factor alpha (TNF alpha, 100 U/ml). GM-CSF and IL-8 were measured in supernatant by ELISA technique. TNF alpha alone led to a significant (p ceftriaxone had no influence on cytokine production. This is the first report of a stimulatory effect of a beta-lactam antibiotic on cytokine production by epithelial cells. GM-CSF production by epithelial cells is an important immunological step for neutrophil and monocyte recruitment and cell priming during lung defence. Previous studies with cefodizime in immunodepressed subjects have shown activation of phagocytosis and phagocytosis-related functions in non-lung phagocytes. An indirect mechanism of action, similar to that indicated by our results, may have been responsible for these stimulatory effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Oxidative stress induced Interleukin-32 mRNA expression in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Kudo Megumi

    2012-03-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is characterized by airflow obstruction and persistent inflammation in the airways and lung parenchyma. Oxidative stress contributes to the pathogenesis of COPD. Interleukin (IL-32 expression has been reported to increase in the lung tissue of patients with COPD. Here, we show that IFNγ upregulated IL-32 expression and that oxidative stress augmented IFNγ-induced-IL-32 expression in airway epithelial cells. We further investigated transcriptional regulation responsible for IFNγ induced IL-32 expression in human airway epithelial cells. Methods Human bronchial epithelial (HBE cells were stimulated with H2O2 and IFNγ, and IL-32 expression was evaluated. The cell viability was confirmed by MTT assay. The intracellular signaling pathways regulating IL-32 expression were investigated by examining the regulatory effects of MAPK inhibitors and JAK inhibitor after treatment with H2O2 and IFNγ, and by using a ChIP assay to identify transcription factors (i.e. c-Jun, CREB binding to the IL-32 promoter. Promoter activity assays were conducted after mutations were introduced into binding sites of c-Jun and CREB in the IL-32 promoter. IL-32 expression was also examined in HBE cells in which the expression of either c-Jun or CREB was knocked out by siRNA of indicated transcription factors. Results There were no significant differences of cell viability among groups. After stimulation with H2O2 or IFNγ for 48 hours, IL-32 expression in HBE cells was increased by IFNγ and synergistically upregulated by the addition of H2O2. The H2O2 augmented IFNγ induced IL-32 mRNA expression was suppressed by a JNK inhibitor, but not by MEK inhibitor, p38 inhibitor, and JAK inhibitor I. Significant binding of c-Jun and CREB to the IL-32 promoter was observed in the IFNγ + H2O2 stimulated HBE cells. Introducing mutations into the c-Jun/CREB binding sites in the IL-32 promoter prominently suppressed its

  11. The response of human nasal and bronchial organotypic tissue cultures to repeated whole cigarette smoke exposure.

    Science.gov (United States)

    Talikka, Marja; Kostadinova, Radina; Xiang, Yang; Mathis, Carole; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Merg, Celine; Geertz, Marcel; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation.

  12. Epithelial ciliated beating cells essential for ex vivo ALI culture growth.

    Science.gov (United States)

    Gras, Delphine; Petit, Aurélie; Charriot, Jérémy; Knabe, Lucie; Alagha, Khuder; Gamez, Anne Sophie; Garulli, Céline; Bourdin, Arnaud; Chanez, Pascal; Molinari, Nicolas; Vachier, Isabelle

    2017-05-03

    Bronchial epithelium plays a key role in orchestrating innate and adaptive immunity. The fate of ex vivo airway epithelial cultures growing at the air liquid interface (ALI) derived from human endobronchial biopsies or brushings is not easy to predict. Calibrating and differentiating these cells is a long and expensive process requiring rigorous expertise. Pinpointing factors associated with ALI culture success would help researchers gain further insight into epithelial progenitor behavior. A successful ALI culture was defined as one in which a pseudostratified epithelium has formed after 28 days in the presence of all differentiated epithelial cell types. A 4-year prospective bi-center study was conducted with adult subjects enrolled in different approved research protocols. 463 consecutive endobronchial biopsies were obtained from normal healthy volunteers, healthy smokers, asthmatic patients and smokers with COPD. All demographic variables, the different fiber optic centers and culture operators, numbers of endo-bronchial biopsies and the presence of ciliated cells were carefully recorded. Univariate and multivariate models were developed. A stepwise procedure was used to select the final logistic regression model. ALI culture success was independently associated with the presence of living ciliated cells within the initial biopsy (OR = 2.18 [1.50-3.16], p money. It is still unknown whether successful ALI culture is related to indicators of general cell viability or a purported stem cell state specifically associated with ciliated beating cells.

  13. Identification of transcription factors regulating CTNNAL1 expression in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available Adhesion molecules play important roles in airway hyperresponsiveness or airway inflammation. Our previous study indicated catenin alpha-like 1 (CTNNAL1, an alpha-catenin-related protein, was downregulated in asthma patients and animal model. In this study, we observed that the expression of CTNNAL1 was increased in lung tissue of the ozone-stressed Balb/c mice model and in acute ozone stressed human bronchial epithelial cells (HBEC. In order to identify the possible DNA-binding proteins regulating the transcription of CTNNAL1 gene in HBEC, we designed 8 oligo- nucleotide probes corresponding to various regions of the CTNNAL1 promoter in electrophoretic mobility shift assays (EMSA. We detected 5 putative transcription factors binding sites within CTNNAL1 promoter region that can recruit LEF-1, AP-2α and CREB respectively by EMSA and antibody supershift assay. Chromatin immunoprecipitation (ChIP assay verified that AP-2 α and LEF-1 could be recruited to the CTNNAL1 promoter. Therefore we further analyzed the functions of putative AP-2 and LEF-1 sites within CTNNAL1 promoter by site-directed mutagenesis of those sites within pGL3/FR/luc. We observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2α and LEF-1 sites. Pre-treatment with ASOs targeting LEF-1and AP-2α yielded significant reduction of ozone-stress-induced CTNNAL1 expression. The activation of AP-2α and LEF-1, followed by CTNNAL1 expression, showed a correlation during a 16-hour time course. Our data suggest that a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitments of LEF-1 and AP-2α to the human CTNNAL1 promoter.

  14. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine.

    Science.gov (United States)

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD.

  15. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells.

    Science.gov (United States)

    Qin, Guohua; Meng, Ziqiang

    2009-04-01

    Sulfur dioxide (SO(2)) is a major air pollutant suspected to act as a promoter or co-carcinogen. The present study was designed to investigate whether SO(2) derivatives (bisulfite and sulfite) had effects on the expression of several proto-oncogenes and tumor suppressor genes in cultured human bronchial epithelial (BEP2D) cells. The mRNA and protein levels were measured by real-time RT-PCR and western blotting, respectively, following exposure to differing SO(2)-derivative concentrations and exposure times. SO(2) derivatives caused mRNA and protein over-expression of c-fos, c-jun, and c-myc at all tested doses (0.001-2mM). Over-expression of H-ras and p53 were observed in cells receiving the highest concentration (0.1-2mM), as well as the under-expression of p16 and Rb. The over-expression of c-fos and c-jun was observed after 24h recovery. The expression of c-myc and H-ras decreased to base line levels while the p53 expression decreased compared with control after 24h recovery. The mRNA and protein expression of p16 and Rb remained at initial levels after 24h recovery. The data support the hypothesis that SO(2) derivatives could cause the activation of proto-oncogenes and inactivation of tumor suppressor genes and SO(2) derivatives may play a role in the pathogenesis of SO(2)-associated lung cancer.

  16. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Tao, Xinrong; Hill, Terence E.; Morimoto, Chikao; Peters, Clarence J.; Ksiazek, Thomas G.

    2013-01-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV. PMID:23824802

  17. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma

    Science.gov (United States)

    Bartel, Sabine; Schulz, Nikola; Alessandrini, Francesca; Schamberger, Andrea C.; Pagel, Philipp; Theis, Fabian J.; Milger, Katrin; Noessner, Elfriede; Stick, Stephen M.; Kicic, Anthony; Eickelberg, Oliver; Freishtat, Robert J.; Krauss-Etschmann, Susanne

    2017-01-01

    Asthma is highly prevalent, but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study, we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore, deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17, miR-144, and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment, while it’s expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally, we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies. PMID:28383034

  18. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wei-Xia; He, Min-Di; Mao, Lin [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Qian, Feng-Hua [Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Li, Yu-Ming [Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038 (China); Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Zhou, Zhou, E-mail: lunazhou00@163.com [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China)

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  19. The low PLC-δ1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity.

    Science.gov (United States)

    Vachel, Laura; Norez, Caroline; Jayle, Christophe; Becq, Frédéric; Vandebrouck, Clarisse

    2015-01-01

    Increase of Ca(2+) influx in Cystic Fibrosis (CF) cells has been reported to be related to Transient Receptor Potential Canonical (TRPC6) channel, which is implicated in a functional coupling with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Several members of the Transient Receptor Potential Vanilloid (TRPV) channels family have already been described as emerging target for respiratory diseases. Two specific isoforms, TRPV5 and TRPV6 are of particular interest in the context of CF Ca(2+) homeostasis as they are highly selective toward Ca(2+) and constitutively activated. Thus, we investigated the involvement of these channels in Ca(2+) influx in CF and non-CF human bronchial epithelial cell lines. 16HBE14o-, CFBE41o- cell lines, primary human airway epithelial cells (hAEC) and freshly isolated human airway epithelial cells from CF and non-CF individuals were used. We showed that both channels are expressed in CF and non-CF cells and constitutive Ca(2+) influx was significantly higher (85%) in cells from CF individuals compared to cells from non-CF ones. Using the selective inhibitor of TRPV6 channel SOR-C27 and a siRNA strategy, our results revealed that TRPV6 was mostly involved in the increase of Ca(2+) influx. TRPV6 channel is negatively regulated by the PLC-PIP2 pathway. We measured the Ca(2+) influx in the presence of the non-specific PLC inhibitor, U73122, in non-CF human bronchial epithelial cells. Ca(2+) influx was increased by 33% with U73122 and this increase was largely reduced in the presence of SOR-C27. PLC inhibition in CF cells by U73122 had no effect on Ca(2+) influx. These results showed that PLC-PIP2 pathway is dysregulated in CF cells and leads to the increase of TRPV6 activity. The regulation of TRPV6 by PLC-PIP2 pathway implicates the specific PLC isoform, PLC-δ1. Immunoblot experiments revealed that expression of PLC-δ1 was decreased by 70% in CF cells. TRPV6 activity was normalized but not the level of expression of PLC-δ1

  20. 36. Study on p16INK4a and p15INK4b genes of human bronchial epithelial cells malignantly transformed by cyclophosphamide and thiotepa

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Transformed human bronchial epithelial cells BEAS-2B induced by CP and TEPA were used to study abnormity of the tumor suppressor genes p15INK4b and p16INK4a, through which we can provide clues for explanations of the molecular mechanism in carcinogenesis of human bronchial epithelial cells induced by CP and TEPA. Analysis of the genomic DNA from the transformed BEAS-CP, and BEAS-T cells using PCR amplification, singe strand conformation polymorphism(SSCP) and DNA sequencing

  1. Interleukin-4 Induces CpG Site-Specific Demethylation of the Pendrin Promoter in Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Giada Scantamburlo

    2017-03-01

    Full Text Available Pendrin is upregulated in bronchial epithelial cells following IL-4 stimulation via binding of STAT6 to an N4 GAS motif. Basal CpG methylation of the pendrin promoter is cell-specific. We studied if a correlation exists between IL-4 sensitivity and the CpG methylation status of the pendrin promoter in human bronchial epithelial cell models. Methods: Real-time PCR and pyrosequencing were used to respectively quantify pendrin mRNA levels and methylation of pendrin promoter, with and without IL-4 stimulation, in healthy and diseased primary HBE cells, as well as NCI-H292 cells. Results: Increases in pendrin mRNA after IL-4 stimulation was more robust in NCI-H292 cells than in primary cells. The amount of gDNA methylated varied greatly between the cell types. In particular, CpG site 90 located near the N4 GAS motif was highly methylated in the primary cells. An additional CpG site (90bis, created by a SNP, was found only in the primary cells. IL-4 stimulation resulted in dramatic demethylation of CpG sites 90 and 90bis in the primary cells. Conclusions: IL-4 induces demethylation of specific CpG sites within the pendrin promoter. These epigenetic alterations are cell type specific, and may in part dictate pendrin mRNA transcription.

  2. Pseudomonas aeruginosa suppresses interferon response to rhinovirus infection in cystic fibrosis but not in normal bronchial epithelial cells.

    Science.gov (United States)

    Chattoraj, Sangbrita S; Ganesan, Shyamala; Faris, Andrea; Comstock, Adam; Lee, Wai-Ming; Sajjan, Umadevi S

    2011-10-01

    Despite increased morbidity associated with secondary respiratory viral infections in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection, the underlying mechanisms are not well understood. Here, we investigated the effect of P. aeruginosa infection on the innate immune responses of bronchial epithelial cells to rhinovirus (RV) infection. CF cells sequentially infected with mucoid P. aeruginosa (MPA) and RV showed lower levels of interferons (IFNs) and higher viral loads than those of RV-infected cells. Unlike results for CF cells, normal bronchial epithelial cells coinfected with MPA/RV showed higher IFN expression than RV-infected cells. In both CF and normal cells, the RV-stimulated IFN response requires phosphorylation of Akt and interferon response factor 3 (IRF3). Preinfection with MPA inhibited RV-stimulated Akt phosphorylation and decreased IRF3 phosphorylation in CF cells but not in normal cells. Compared to normal, unstimulated CF cells or normal cells treated with CFTR inhibitor showed increased reactive oxygen species (ROS) production. Treatment of CF cells with antioxidants prior to MPA infection partially reversed the suppressive effect of MPA on the RV-stimulated IFN response. Together, these results suggest that MPA preinfection inhibits viral clearance by suppressing the antiviral response particularly in CF cells but not in normal cells. Further, increased oxidative stress in CF cells appears to modulate the innate immune responses to coinfection.

  3. Proteasome inhibitor MG-132 regulates the expression of VEGF in human bronchial epithelial cell line, BEAS-2B

    Institute of Scientific and Technical Information of China (English)

    Xuefan Cui; Kaisheng Yin; Mao Huang; Linfu Zhou

    2005-01-01

    Objective: To explore the effects of MG-132 on the expression of VEGF in bronchial epithelial cell line, BEAS2B. Methods: Semi-quantitive RT-PCR for VEGF mRNA and enzyme-linked immunosorbent assay (ELISA) for VEGF protein were performed. Results: MG-132 increased the expression of VEGF mRNA and protein BEAS-2B cells in time-and concentration-dependent manners. After 24-h stimulation, 25 μmol/L MG-132 increased the maximal levels of VEGF protein in cell-conditioned medium. When the cells were stimulated with cycloheximide(CHX) before treatment with MG-132, the MG-132-induced production of VEGF protein was inhibited compared to the unstimulated cells. Supernatant of condition-medium treatment with MG-132 enhanced the growth of HUVEC.Conclusion: MG-132 induces VEGF gene expression in human bronchial epithelial cells line, BEAS-2B, and the MG-132-induced expression of VEGF may modulate lung tissue injury due to airway inflammation.

  4. Proteomic Comparison of Two-Dimensional Gel Electrophoresis Pro files from Human Lung Squamous Carcinoma and Normal Bronchial Epithelial Tissues

    Institute of Scientific and Technical Information of China (English)

    Cui Li; Ping Chen; Jingyun Xie; Songping Liang; Xianquan Zhan; Maoyu Li; Xiaoying Wu; Feng Li; Jianling Li; Zhiqiang Xiao; Zhuchu Chen; Xueping Feng

    2003-01-01

    Differential proteome profiles of human lung squamous carcinoma tissue compared to paired tumor-adjacent normal bronchial epithelial tissue were established and analyzed by means of immobilized pH gradient-based two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The results showed that well-resolved, reproducible 2-DE patterns of human lung squamous carcinoma and adjacent normal bronchial epithelial tissues were obtained under the condition of 0.75-ug protein-load. The average deviation of spot position was 0.733+0.101 mm in IEF direction, and 0.925+0.207 mm in SDS-PAGE direction. For tumor tissue, a total of 1241±88 spots were detected, 987±65 spots were matched with an average matching rate of 79.5%. For control, a total of 1190+72 spots were detected, and 875±48 spots were matched with an average matching rate of 73.5%. A total of 864±34 spots were matched between tumors and controls.Forty-three differential proteins were characterized: some proteins were related to oncogenes, and others involved in the regulation of cell cycle and signal transduction. It is suggested that the differential proteomic approach is valuable for mass identification of differentially expressed proteins involved in lung carcinogenesis.These data will be used to establish human lung cancer proteome database to further study human lung squamous carcinoma.

  5. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α

    Directory of Open Access Journals (Sweden)

    Câmara Joana

    2010-01-01

    Full Text Available Abstract Background Defective epithelial repair, excess fibroblasts and myofibroblasts, collagen overproduction and fibrosis occur in a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD and pulmonary fibrosis. Pathological conversion of epithelial cells into fibroblasts (epithelial-mesenchymal transition, EMT has been proposed as a mechanism for the increased fibroblast numbers and has been demonstrated to occur in lung alveolar epithelial cells. Whether other airway cell types also have the capability to undergo EMT has been less explored so far. A better understanding of the full extent of EMT in airways, and the underlying mechanisms, can provide important insights into airway disease pathology and enable the development of new therapies. The main aim of this study was to test whether primary human bronchial epithelial cells are able to undergo EMT in vitro and to investigate the effect of various profibrotic factors in the process. Results Our data demonstrate that primary human bronchial epithelial cells (HBECs are able to undergo EMT in response to transforming growth factor-beta 1 (TGF-β1, as revealed by typical morphological alterations and EMT marker progression at the RNA level by real-time quantitative polymerase chain reaction and, at the protein level, by western blot. By using pharmacological inhibitors we show that this is a Smad-dependent mechanism and is independent of extracellular signal-related kinase pathway activation. Additional cytokines and growth factors such as tumour necrosis factor-alpha (TNF-α, interleukin-1 beta (IL1β and connective tissue growth factor (CTGF were also tested, alone or in combination with TGF-β1. TNF-α markedly enhances the effect of TGF-β1 on EMT, whereas IL1β shows only a very weak effect and CTGF has no significant effect. We have also found that cell-matrix contact, in particular to fibronectin, an ECM component upregulated in fibrotic lesions

  6. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells.

    Science.gov (United States)

    Pylkkänen, Lea; Stockmann-Juvala, Helene; Alenius, Harri; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai

    2009-08-21

    Wood dusts are associated with several respiratory symptoms, e.g. impaired lung function and asthma, in exposed workers. However, despite the evidence from epidemiological studies, the underlying mechanisms are not well understood. In the present study, we investigated different wood dusts for their capacity to induce cytotoxicity and production of radical oxygen species (ROS) as well as activation of the apoptotic caspase-3 enzyme in human bronchial epithelial cells (BEAS-2B). Dusts from three different tree species widely used in wood industry were studied; birch and oak represented hardwood species, and pine a common softwood species. All the experiments were carried out in three different concentrations (10, 50, and 500 microg/ml) and the analysis was performed after 0.5, 2, 6, and 24h exposure. All wood dusts studied were cytotoxic to human bronchial epithelial cells in a dose-dependent manner after 2 and 6h treatment. Exposure to pine, birch, or oak dust had a significant stimulating effect on the production of ROS. Also an induction in caspase-3 protease activity, one of the central components of the apoptotic cascade, was seen in BEAS-2B cells after 2 and 6h exposure to each of the wood dusts studied. In summary, we demonstrate that dusts from pine, birch and oak are cytotoxic, able to increase the production of ROS and the apoptotic response in human broncho-epithelial cells in vitro. Thus, our current data suggest oxidative stress by ROS as an important mechanism likely to function in wood dust related pulmonary toxicity although details of the cellular targets and cell-particle interactions remain to be solved. It is though tempting to speculate that redox-regulated transcription factors such as NFkappaB or AP-1 may play a role in this wood dust-evoked process leading to apparently induced apoptosis of target cells.

  7. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4.

    Science.gov (United States)

    Leclercq, B; Happillon, M; Antherieu, S; Hardy, E M; Alleman, L Y; Grova, N; Perdrix, E; Appenzeller, B M; Lo Guidice, J-M; Coddeville, P; Garçon, G

    2016-11-01

    While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm(2). The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in

  8. Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E.; Carson, Johnny L.; Fischer, William A.; Jaspers, Ilona

    2013-01-01

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  9. Culturing of human nasal epithelial cells at the air liquid interface.

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E; Carson, Johnny L; Fischer, William A; Jaspers, Ilona

    2013-10-08

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  10. The autologus graft of epithelial tissue culture

    Directory of Open Access Journals (Sweden)

    Minaee B

    1999-08-01

    Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.

  11. Alveolar epithelial permeability in bronchial asthma in children; An evaluation by [sup 99m]Tc-DTPA inhalation scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takuji (Nippon Medical School, Tokyo (Japan))

    1993-02-01

    To evaluate alveolar epithelial permeability (k[sub ep]) in children with bronchial asthma, [sup 99m]Tc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the k[sub ep] value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high k[sub ep] values on the whole lung field and 7 had high k[sub ep] value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author).

  12. Macrophages facilitate coal tar pitch extract-induced tumorigenic transformation of human bronchial epithelial cells mediated by NF-κB.

    Directory of Open Access Journals (Sweden)

    Feifei Feng

    Full Text Available OBJECTIVE: Chronic respiratory inflammation has been associated with lung cancer. Tumor-associated macrophages (TAMs play a critical role in the formation of inflammation microenvironment. We sought to characterize the role of TAMs in coal tar pitch extract (CTPE-induced tumorigenic transformation of human bronchial epithelial cells and the underlying mechanisms. METHODS: The expression of TAMs-specific CD68 in lung cancer tissues and paired adjacent tissues from cancer patients was determined using immunostaining. Co-culture of human bronchial epithelial cells (BEAS-2B and macrophage-like THP-1 cells were conducted to evaluate the promotive effect of macrophages on CTPE-induced tumorigenic transformation of BEAS-2B cells. BEAS-2B cells were first treated with 2.4 µg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured either with or without THP-1 cells and passaged using trypsin-EDTA. Alterations of cell cycle, karyotype, colony formation in soft agar and tumor xenograft growth in nude mice of BEAS-2B cells at passages 10, 20 and 30, indicative of tumorigenecity, were determined, respectively. In addition, mRNA and protein levels of NF-κB in BEAS-2B cells were measured with RT-PCR and western blot, respectively. B(aP was used as the positive control. RESULTS: The over-expression of TAMs-specific CD68 around lung tumor tissues was detected and associated with lung cancer progression. The tumorigenic alterations of BEAS-2B cells including increase in cell growth rate, number of cells with aneuploidy, clonogenicity in soft agar, and tumor size in nude mice in vivo occurred at passage 10, becoming significant at passages 20 and 30 of the co-culture following CTPE removal in compared to BEAS-2B cells alone. In addition, the expression levels of NF-κB in BEAS-2B cells were positively correlated to the malignancy of BEAS-2B cells under different conditions of treatment. CONCLUSION: The presence of macrophages

  13. Comparative cytoprotective effects of carbocysteine and fluticasone propionate in cigarette smoke extract-stimulated bronchial epithelial cells.

    Science.gov (United States)

    Pace, Elisabetta; Ferraro, Maria; Di Vincenzo, Serena; Cipollina, Chiara; Gerbino, Stefania; Cigna, Diego; Caputo, Valentina; Balsamo, Rossella; Lanata, Luigi; Gjomarkaj, Mark

    2013-11-01

    Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10(-4) M) in cell survival and intracellular reactive oxygen species (ROS) production (by flow cytometry) as well as total glutathione (GSH), heme oxygenase-1 (HO-1), nuclear-related factor 2 (Nrf2) expression and histone deacetylase 2 (HDAC-2) expression/activation in CSE-stimulated bronchial epithelial cells (16-HBE) and to compare these effects with those of fluticasone propionate (10(-8) M). CSE, carbocysteine or fluticasone propionate did not induce cell necrosis (propidium positive cells) or cell apoptosis (annexin V-positive/propidium-negative cells) in 16-HBE. CSE increased ROS production, nuclear Nrf2 and HO-1 in 16-HBE. Fluticasone propionate did not modify intracellular ROS production, GSH and HDCA-2 but reduced Nrf2 and HO-1 in CSE-stimulated 16-HBE. Carbocysteine reduced ROS production and increased GSH, HO-1, Nrf2 and HDAC-2 nuclear expression/activity in CSE-stimulated cells and was more effective than fluticasone propionate in modulating the CSE-mediated effects. In conclusion, the present study provides compelling evidences that the use of carbocysteine may be considered a promising strategy in diseases associated with corticosteroid resistance.

  14. Abnormal Expression of Eukaryotic Translation Factors in Malignant Transformed Human Bronchial Epithelial Cells Induced by Crystalline Nickel Sulfide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To study the oncogenic potential of mouse translation initiation factor 3 (TIF3) and elongation factor-1δ (TEF-1δ) in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide (NiS). Methods Abnormal expressions of human TIF3 and TEF-1δ genes in two kinds of NiS-transformed cells and NiS-tumorigenic cell lines were investigated and analyzed by the reverse transcript polymerase chain reaction (RT-PCR) and fluorescent quantitative polymerase chain reaction (FQ-PCR), respectively. Results RT-PCR analysis primarily showed that both human TIF3 and TEF-1δ mRNA expressions in two kinds of NiS-transformed cells and NiS-tumorigenic cell lines were increased as compared with controls. FQ-PCR assay showed that the levels of TIF3 expressions in the transformed cells and tumorigenic cells were 3 and 4 times higher respectively, and the elevated expressions of TEF-1δ cDNA copies were 2.7- to 3.5-fold in transformed cells and 4.1- to 5.2-fold in tumorigenic cells when compared with non-transformed cells, indicating that the over-expressions of human TIF3 and TEF-1δ genes were related to malignant degree of the cells induced by nickel. Conclusions These findings demonstrate that there are markedly abnormal expressions of TIF3 and TEF-1δ genes during malignant transformation of human bronchial epithelial cell lines induced by crystalline NiS. They seem to be the molecular mechanisms potentially responsible for human carcinogensis due to nickel.

  15. Proteomic Comparison of Two—Dimensional Gel Electrophoresis Profiles from Human Lung Squamous Carcinoma and Normal Bronchial Epithelial Tissues

    Institute of Scientific and Technical Information of China (English)

    CuiLi; XianquanZhan; MaoyuLi; XiaoyingWu; FengLi; JianlingLi; ZhiqiangXiao; ZhuchuChen; XuepingFeng; PingChen; JingyunXie; SongpingLiang

    2003-01-01

    Differential proteome profiles of human lung squamous carcinoma tissue compared to paired tumor-adjacent normal bronchial epithelial tissue were established and analyzed by means of immobilized pH gradient-based two-dimensional polyacrylamide gel electrophoresis(2-D PAGE)and matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF-MS).The results showed that well-resolved,reproducible 2-DE patterns of human lung squamous carcinoma and adjacent normal bronchial epithelial tissues were obtained under the condition of 0.75-mg protein-load.The average deviation of spot position was 0.733±0.101 mm in IEF direction,and 0.925±0.207mm in SDS-PAGE direction.For tumor tissue,a total of 1241±88 spots were detected,987±65 spots were matched with an average matching rate of 79.5%.For control,a total of 1190±72 spots were detected,and 875±48 spots were matched with an average matching rate of 73.5%.A total of 864±34 spots were matched between tumors and controls.Forth-three differential proteins were characterized:some proteins were related to oncogenes,and others involved in the regulation of cell cycle and signal transduction.It is suggested that the differential proteomic approach is valuable for mass identification of differentially expressed proteins involved in lung carcinogenesis.These data will be used to establish human lung cancer proteome database to further study human lung squamous carcinoma.

  16. Proinflammatory cytokine responses induced by influenza A (H5N1 viruses in primary human alveolar and bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Poon LLM

    2005-11-01

    Full Text Available Abstract Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10. Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97 (H5N1/97 were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a and chemokines (e.g. IP-10 from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97, A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04 with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted and interleukin 6 (IL-6 in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04 appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

  17. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    Science.gov (United States)

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.

  18. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. (TRC Environmental Corporation, Chapel Hill, NC (United States))

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  19. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    Science.gov (United States)

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes.

  20. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    David Van Ly

    Full Text Available Rhinovirus (RV infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC. RV infection of primary human bronchial epithelial cells (HBEC for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor

  1. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Science.gov (United States)

    Van Ly, David; Faiz, Alen; Jenkins, Christine; Crossett, Ben; Black, Judith L; McParland, Brent; Burgess, Janette K; Oliver, Brian G G

    2013-01-01

    Rhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelial cells (HBEC) for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR) by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor activation of COX-2

  2. WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells.

    Science.gov (United States)

    Jang, Jaewoong; Jung, Yoonju; Chae, Seyeon; Chung, Sang-In; Kim, Seok-Min; Yoon, Yoosik

    2017-03-04

    In this study, TNF-α was found to activate the WNT/β-catenin pathway in BEAS-2B human bronchial epithelial cells. Levels of phospho-LRP6, Dvl-2, and phospho-GSK-3β were elevated, while that of Axin was reduced by TNF-α treatment. Nuclear translocation of β-catenin and the reporter activity of a β-catenin-responsive promoter were increased by TNF-α treatment. Under the same experimental conditions, TNF-α activated the NF-κB signaling, which includes the phosphorylation and degradation of IκB and nuclear translocation and target DNA binding of NF-κB, and it was found that an inhibitor of NF-κB activation, JSH-23, inhibited TNF-α-induced Wnt signaling as well as NF-κB signaling. It was also found that recombinant Wnt proteins induced NF-κB nuclear translocations and its target DNA binding, suggesting that Wnt signaling and NF-κB signaling were inter-connected. TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression were significantly suppressed by the transfection of β-catenin siRNA compared to that of control siRNA. Transfection of a β-catenin expression plasmid augmented the TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression. These results clearly demonstrated that the WNT/β-catenin pathway modulates the inflammatory response induced by TNF-α, suggesting that this pathway may be a useful target for the effective treatment of bronchial inflammation.

  3. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model?

    Directory of Open Access Journals (Sweden)

    Natalia Molenda

    Full Text Available It has been reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR besides transcellular chloride transport, also controls the paracellular permeability of bronchial epithelium. The aim of this study was to test whether overexpressing wtCFTR solely regulates paracellular permeability of cell monolayers. To answer this question we used a CFBE41o- cell line transfected with wtCFTR or mutant F508del-CFTR and compered them with parental line and healthy 16HBE14o- cells. Transepithelial electrical resistance (TER and paracellular fluorescein flux were measured under control and CFTR-stimulating conditions. CFTR stimulation significant decreased TER in 16HBE14o- and also in CFBE41o- cells transfected with wtCFTR. In contrast, TER increased upon stimulation in CFBE41o- cells and CFBE41o- cells transfected with F508del-CFTR. Under non-stimulated conditions, all four cell lines had similar paracellular fluorescein flux. Stimulation increased only the paracellular permeability of the 16HBE14o- cell monolayers. We observed that 16HBE14o- cells were significantly smaller and showed a different structure of cell-cell contacts than CFBE41o- and its overexpressing clones. Consequently, 16HBE14o- cells have about 80% more cell-cell contacts through which electrical current and solutes can leak. Also tight junction protein composition is different in 'healthy' 16HBE14o- cells compared to 'cystic fibrosis' CFBE41o- cells. We found that claudin-3 expression was considerably stronger in 16HBE14o- cells than in the three CFBE41o- cell clones and thus independent of the presence of functional CFTR. Together, CFBE41o- cell line transfection with wtCFTR modifies transcellular conductance, but not the paracellular permeability. We conclude that CFTR overexpression is not sufficient to fully reconstitute transport in CF bronchial epithelium. Hence, it is not recommended to use those cell lines to study CFTR-dependent epithelial transport.

  4. Effects of Carbocysteine and Beclomethasone on Histone Acetylation/Deacetylation Processes in Cigarette Smoke Exposed Bronchial Epithelial Cells.

    Science.gov (United States)

    Pace, Elisabetta; Di Vincenzo, Serena; Ferraro, Maria; Siena, Liboria; Chiappara, Giuseppina; Dino, Paola; Vitulo, Patrizio; Bertani, Alessandro; Saibene, Federico; Lanata, Luigi; Gjomarkaj, Mark

    2017-10-01

    Histone deacetylase expression/activity may control inflammation, cell senescence, and responses to corticosteroids. Cigarette smoke exposure, increasing oxidative stress, may negatively affect deacetylase expression/activity. The effects of cigarette smoke extracts (CSE), carbocysteine, and beclomethasone dipropionate on chromatin remodeling processes in human bronchial epithelial cells are largely unknown. The present study was aimed to assess the effects of cigarette smoke, carbocysteine, and beclomethasone dipropionate on histone deacetylase 3 (HDAC3) expression/activity, N-CoR (nuclear receptor corepressor) expression, histone acetyltransferases (HAT) (p300/CBP) expression, p-CREB and IL-1 m-RNA expression, neutrophil chemotaxis. Increased p-CREB expression was observed in the bronchial epithelium of smokers. CSE increased p-CREB expression and decreased HDAC3 expression and activity and N-CoR m-RNA and protein expression. At the same time, CSE increased the expression of the HAT, p300/CBP. All these events increased acetylation processes within the cells and were associated to increased IL-1 m-RNA expression and neutrophil chemotaxis. The incubation of CSE exposed cells with carbocysteine and beclomethasone counteracted the effects of cigarette smoke on HDAC3 and N-CoR but not on p300/CBP. The increased deacetylation processes due to carbocysteine and beclomethasone dipropionate incubation is associated to reduced p-CREB, IL-1 m-RNA expression, neutrophil chemotaxis. These findings suggest a new role of combination therapy with carbocysteine and beclomethasone dipropionate in restoring deacetylation processes compromised by cigarette smoke exposure. J. Cell. Physiol. 232: 2851-2859, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Effects of SO{sub 2} derivatives on expressions of MUC5AC and IL-13 in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijin; Meng, Ziqiang [Shanxi University, Institute of Environmental Medicine and Toxicology, Taiyuan (China)

    2007-12-15

    Sulfur dioxide (SO{sub 2}) is a common air pollutant, and inhaled SO{sub 2} in airway epithelium easily forms its soluble derivatives in vivo (bisulfite and sulfite), which are toxic to the respiratory system and related to the exacerbation of asthma. To investigate the effects of SO{sub 2} derivatives on the expressions of asthma related genes (MUC5AC and IL-13), the mRNA and protein levels of the two genes in cultured human bronchial epithelial (BEP2D) cells were analyzed using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay, immunocytochemistry method and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that the mRNA expressions of MUC5AC and IL-13 were significantly increased at different concentrations of SO{sub 2} derivatives (0.0001, 0.001, 0.01, 0.1 and 1.0 mM), and the maximum appeared at 0.01 mM for MUC5AC (3.9-fold) or at 0.001 mM for IL-13 (4.7-fold). Meanwhile, SO{sub 2} derivatives significantly increased the mRNA levels at 0, 0.5, 1, 4 and 24 h post-exposure with the maximum at 4 h post-exposure (25-fold for MUC5AC and 41-fold for IL-13). Furthermore, the protein levels of MUC5AC and IL-13 in BEP2D cells were significantly increased at different concentrations and different time courses exposed to SO{sub 2} derivatives, along with the maximum at 4 h post-exposure. These results lead to a conclusion that SO{sub 2} derivatives can increase the expressions of MUC5AC and IL-13 genes on the transcription and translation levels, and it suggests that SO{sub 2} derivatives can induce mucus over-production and inflammation responses in human bronchial epithelial cells and may have relations with asthma diseases. This might be one of the possible mechanisms that SO{sub 2} aggravates asthma disease. (orig.)

  6. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.

    Science.gov (United States)

    Heinrich, Annina; Haarmann, Helge; Zahradnik, Sabrina; Frenzel, Katrin; Schreiber, Frauke; Klassert, Tilman E; Heyl, Kerstin A; Endres, Anne-Sophie; Schmidtke, Michaela; Hofmann, Jörg; Slevogt, Hortense

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is complicated by infectious exacerbations with acute worsening of respiratory symptoms. Coinfections of bacterial and viral pathogens are associated with more severe exacerbations. Moraxella catarrhalis is one of the most frequent lower respiratory tract pathogens detected in COPD. We therefore studied the impact of M. catarrhalis on the antiviral innate immune response that is mediated via TLR3 and p53. Molecular interactions between M. catarrhalis and normal human bronchial epithelial (NHBE) cells as well as Beas-2B cells were studied using flow cytometry, quantitative PCR analysis, chromatin immunoprecipitation, RNA interference, and ELISA. M. catarrhalis induces a significant down-regulation of TLR3 in human bronchial epithelial cells. In M. catarrhalis-infected cells, expression of p53 was decreased. We detected a reduced binding of p53 to the tlr3 promoter, resulting in reduced TLR3 gene transcription. M. catarrhalis diminished the TLR3-dependent secretion of IFN-β, IFN-λ, and chemokine (C-X-C motif) ligand 8. In addition in M. catarrhalis infected cells, expression of rhinovirus type 1A RNA was increased compared with uninfected cells. M. catarrhalis reduces antiviral defense functions of bronchial epithelial cells, which may increase susceptibility to viral infections.-Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K. A., Endres, A.-S., Schmidtke, M., Hofmann, J., Slevogt, H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.

  7. Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells

    OpenAIRE

    Ikeda, Masaki; 池田, 政輝

    2015-01-01

    Background: Nontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease. NTHi has been reported to invade bronchial epithelial cells. This penetration enables NTHi to evade the host immune system and antibiotics, and it seems to be related to the intractable features of these diseases. However, the precise mechanism of the invasion has been unknown. We hypothesized that protein-E, an oute...

  8. Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells

    OpenAIRE

    Ikeda, Masaki; Enomoto, Noriyuki; Hashimoto, Dai; Fujisawa, Tomoyuki; Inui, Naoki; Nakamura, Yutaro; Suda, Takafumi; Nagata, Toshi

    2015-01-01

    Background Nontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease. NTHi has been reported to invade bronchial epithelial cells. This penetration enables NTHi to evade the host immune system and antibiotics, and it seems to be related to the intractable features of these diseases. However, the precise mechanism of the invasion has been unknown. We hypothesized that protein-E, an outer...

  9. The Effect of Therapeutic Blockades of Dust Particles-Induced Ca2+ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ju Hee Yoon

    2015-01-01

    Full Text Available Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca2+ signal, which subsequently increases cytokines production such as interleukin- (IL- 8. However, the study of therapeutic blockades of Ca2+ signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca2+ signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca2+ signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca2+ pathway attenuated the PM10-induced Ca2+ response and subsequent IL-8 mRNA expression. PM10-mediated Ca2+ signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca2+ signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm.

  10. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  11. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.

    Science.gov (United States)

    Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta

    2017-08-24

    Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan, E-mail: drqzliu@hotmail.com

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  13. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Scheffler

    2015-04-01

    Full Text Available E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  14. Abnormal expression of c-Myc in human bronchial epithelial cells malignantly transformed by anti-BPDE

    Institute of Scientific and Technical Information of China (English)

    Juan FU; Yiguo JIANG; Xuemin CHEN

    2008-01-01

    Anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) is a metabolite of benzo[a]pyrene (B[a] P) and acts as a potent mutagen in mammalian systems. However, molecular mechanisms related to anti-BPDE-induced carcinogenesis are poorly understood. Here, we investigated the expression of proto-oncogene c-myc in human bronchial epithelial cells (16H BE-T) transformed by exposure to anti-BPDE. The levels ofmRNA and pro-tein of c-M yc were examined in the 16HBE-T and vehicle-treated control cells (16HBE-N) by using different meth-ods respectively, including reverse transcriptase-polymer-ase chain reaction (RT-PCR), quantitative real-time PCR (Q-PCR), western blot and immunocytochemical meth-ods. The level of c-myc mRNA appeared to be signifi-cantly increased in 16HBE-T, as compared with those of the 16H BE-N. Likewise, the expression of c-Myc protein was significantly enhanced as compared with those of the control cells. Moreover, the localization of c-Myc protein shows mainly nuclear staining in 16HBE-T. In conclu-sion, the abnormal expression of c-Myc was present in anti-BPDE malignantly transformed 16HBE cells, which may be involved in the carcinogenesis molecular mech-anism of anti-BPDE.

  15. Adaptation to acrolein through upregulating the protection by glutathione in human bronchial epithelial cells: the materialization of the hormesis concept.

    Science.gov (United States)

    Sthijns, Mireille M J P E; Randall, Matthew J; Bast, Aalt; Haenen, Guido R M M

    2014-04-18

    Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (⩾10 μM) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 μM), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of γ-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds.

  16. [Effect of toluene diisocyanate on reactive oxygen species production and permeability of human bronchial epithelial cells in vitro].

    Science.gov (United States)

    Mo, Guan-wen; Cai, Shao-xi; Zhao, Hai-jin; Li, Wen-jun; Tong, Wan-cheng; Liu, Lai-yu

    2011-02-01

    To investigate the effect of toluene diisocyanate (TDI) on the production of reactive oxygen species (ROS) and the permeability of human bronchial epithelial (HBE) cells. TDI-human serum albumin (TDI-HSA) conjugate was prepared using a modified Son's method. MTT assay was used to assess HBE cell viability after exposure to different concentrations of TDI-HSA. The level of intracellular ROS of HBE cells was detected by flow cytometry with an oxidation-sensitive fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) uploading, and the permeability of cell monolayer was assessed by detecting the transepithelial electrical resistance (TEER). The exposure to 120 µg/ml TDI-HSA did not obviously affect the cell viability. Compared with the control group, the intracellular fluorescent intensity increased significantly in the cells exposed to 20, 60, and 100 µg/ml TDI-HSA (Pproduction increased significantly after 100 µg/ml TDI-HSA treatment (Pproduction was significantly suppressed by pretreatment of the cells with N-acetylcysteine (NAC) (P<0.05), which also enhanced the TEER decreased by TDI-HSA treatment (P<0.05). TDI enhances the permeability of HBE cell monolayer partially through a ROS-mediated pathway, suggesting the importance of oxidative stress in TDI-induced pulmonary diseases.

  17. Primary airway epithelial cell culture and asthma in children-lessons learnt and yet to come.

    Science.gov (United States)

    McLellan, Kirsty; Shields, Mike; Power, Ultan; Turner, Steve

    2015-12-01

    Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies.

  18. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    Science.gov (United States)

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  19. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis

    Science.gov (United States)

    Park, Youn-hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo

    2015-01-01

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals-induced carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the mechanistic studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG → TCG) at codon 47 and the codon 72 polymorphism (CGC → CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. PMID:26091798

  20. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    Science.gov (United States)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  1. Trans, trans-2,4-decadienal induced cell proliferation via p27 pathway in human bronchial epithelial cells.

    Science.gov (United States)

    Chang, Yun-Ching; Lin, Pinpin

    2008-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. Epidemiological studies have shown that exposure to cooking oil fumes (COF) is a risk factor for lung cancer. Trans, trans-2,4-decadienal (tt-DDE), a dienaldehyde, is abundant in heated oils and COF. Previously, we found that long-term exposure (45 days) to a sub-lethal dose (1 microM) of tt-DDE significantly increased growth of human bronchial epithelial cells (BEAS-2B). Aims of this study are to understand the mechanism of tt-DDE-induced cell proliferation and possible protective effects of antioxidant, vitamin C and N-acetylcysteine (NAC) in BEAS-2B cells. Utilizing the real-time RT-PCR and Western immunoblotting, we found that p27 mRNA and protein levels were significantly increased by 1 microM tt-DDE treatment. Co-treatment with vitamin C or NAC partially prevented tt-DDE-induced cell proliferation. In addition, the downstream targets of p27, including CDK4, cyclin D1 and phosphorylated-Rb proteins, increased in 1 microM tt-DDE-treated cells and these changes were prevented by NAC co-treatment. Therefore, these results suggest that tt-DDE increased cell proliferation via inhibition of p27 expression, increase in CDK4/cyclin D1 protein accumulation and enhancement of Rb phosphorylation. Increased cell proliferation is considered as the early stages of lung carcinogenesis. Administration of antioxidants may prevent COF-associated lung carcinogenesis.

  2. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  3. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    Science.gov (United States)

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  4. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus.

    Science.gov (United States)

    Cakebread, Julie A; Xu, Yunhe; Grainge, Chris; Kehagia, Valia; Howarth, Peter H; Holgate, Stephen T; Davies, Donna E

    2011-05-01

    Rhinoviruses are the major cause of asthma exacerbations. Previous studies suggest that primary bronchial epithelial cells (PBECs) from asthmatic subjects are more susceptible to rhinovirus infection because of deficient IFN-β production. Although augmenting the innate immune response might provide a novel approach for treatment of virus-induced asthma exacerbations, the potential of IFN-β to modulate antiviral and proinflammatory responses in asthmatic epithelium is poorly characterized. We sought to compare responses of PBECs from nonasthmatic and asthmatic subjects to exogenous IFN-β and test the inflammatory effects of IFN-β in response to rhinovirus infection. PBECs were treated with IFN-β and infected with a low inoculum of human rhinovirus serotype 1B to simulate a natural viral infection. Expression of interferon-responsive genes and inflammatory responses were analyzed by using reverse transcription-quantitative real-time PCR, cytometric bead arrays, or both; viral titers were assessed by using the 50% tissue culture infection dose. Expression of IFN-β-stimulated antiviral genes was comparable in PBECs from nonasthmatic or asthmatic donors. Exogenous IFN-β significantly protected PBECs from asthmatic donors against rhinovirus infection by suppressing viral replication. Interferon-inducible protein 10 (IP-10), RANTES, and IL-6 release in response to rhinovirus infection was triggered only in PBECs from asthmatic donors. Although exogenous IFN-β alone stimulated some release of IP-10 (but not IL-6 or RANTES), it significantly reduced rhinovirus-induced IP-10, RANTES, and IL-6 expression when tested in combination with rhinovirus. PBECs from asthmatic donors have a normal antiviral response to exogenous IFN-β. The ability of IFN-β to suppress viral replication suggests that it might limit virus-induced exacerbations by shortening the duration of the inflammatory response. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published

  5. Toluene diisocyanate (TDI) induces production of inflammatory cytokines and chemokines by bronchial epithelial cells via the epidermal growth factor receptor and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ogawa, Hirohisa; Inoue, Shizuka; Ogushi, Fumitaka; Ogura, Hideo; Nakamura, Yoichi

    2006-01-01

    Toluene diisocyanate (TDI) is known as one of causes of occupational asthma and hypersensitivity pneumonitis. To investigate the stimulatory effect on bronchial epithelial cells in response to TDI, the authors examined production of cytokines by the bronchial epithelial cell line BEAS-2B and intercellular signal transduction stimulated by TDI-human serum albumin (HSA) conjugate. The production of interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and regulated on activation normal T cell expressed and secreted (RANTES) from the bronchial epithelial cells were augmented by the TDI-HSA conjugate. Extracellular signal-regulated kinase (Erk) 1/2 and p38 mitogen-activated protein kinase (MAPK) were phosphorylated by the TDI-HSA conjugate. AG1478, SB203580, and dexamethasone prevented augmentation of these cytokine production. TDI-HSA conjugate did not augment release of epidermal growth factor (EGF) ligands from BEAS-2B. These results suggest that TDI directly induces production of proinflammatory cytokines and chemokines through p38 MAPK and EGF receptor (EGFR)-Erk pathway without an autocrine mechanism. Thus, TDI was shown to have a stimulatory effect on bronchial epithelial cells, suggesting the potent role of bronchial epithelial cells in TDI-induced asthma.

  6. Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells.

    Science.gov (United States)

    Nakajima, Toshiaki; Jo, Taisuke; Meguro, Kentaro; Oonuma, Hitoshi; Ma, Ji; Kubota, Nami; Imuta, Hiroyuki; Takano, Haruhito; Iida, Haruko; Nagase, Takahide; Nagata, Taiji

    2008-06-06

    Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na). However, the percentage of the cells with I(Na) was significantly less in cells pretreated with dexamethasone for 48 h, and the current-density of I(Na) adjusted by cell capacitance in cells with I(Na) was also decreased in cells treated with dexamethasone. RT-PCR analysis showed that alpha and beta subunits mRNA of I(Na) mainly consisted of SCN9A and SCN1beta, respectively. Treatment with dexamethasone for 24-48 h inhibited the expression of SCN9A mRNA. The inhibitory effect of dexamethasone was concentration-dependent, and was observed at a concentration higher than 0.1 nM. The effect of dexamethasone on SCN9A mRNA was not blocked by spironolactone, but inhibited by mifepristone. The inhibitory effects of dexamethasone on SCN9A mRNA could not be explained by the changes of the stabilization of mRNA measured by using actinomycin D. These results suggest that dexamethasone inhibited I(Na) encoded by SCN9A mRNA in cultured human bronchial smooth muscle cells by inhibiting the transcription via the glucocorticoid receptor.

  7. Carbocysteine counteracts the effects of cigarette smoke on cell growth and on the SIRT1/FoxO3 axis in bronchial epithelial cells.

    Science.gov (United States)

    Pace, E; Di Vincenzo, S; Ferraro, M; Bruno, A; Dino, P; Bonsignore, M R; Battaglia, S; Saibene, F; Lanata, L; Gjomarkaj, M

    2016-08-01

    Cigarette smoke may accelerate cellular senescence by increasing oxidative stress. Altered proliferation and altered expression of anti-aging factors, including SIRT1 and FoxO3, characterise cellular senescence. The effects of carbocysteine on the SIRT1/FoxO3 axis and on downstream molecular mechanisms in human bronchial epithelial cells exposed to cigarette smoke are largely unknown. Aim of this study was to explore whether carbocysteine modulated SIRT1/FoxO3 axis, and downstream molecular mechanisms associated to cellular senescence, in a bronchial epithelial cell line (16-HBE) exposed to cigarette smoke. 16HBE cells were stimulated with/without cigarette smoke extracts (CSE) and carbocysteine. Flow cytometry and clonogenic assay were used to assess cell proliferation; western blot analysis was used for assessing nuclear expression of SIRT1 and FoxO3. The nuclear co-localization of SIRT1 and FoxO3 was assessed by fluorescence microscopy. Beta galactosidase (a senescence marker) and SIRT1 activity were assessed by specific staining and colorimetric assays, respectively. ChiP Assay and flow cytometry were used for assessing survivin gene regulation and protein expression, respectively. CSE decreased cell proliferation, the nuclear expression of SIRT1 and FoxO3 and increased beta galactosidase staining. CSE, reduced SIRT1 activity and FoxO3 localization on survivin promoter thus increasing survivin expression. In CSE stimulated bronchial epithelial cells carbocysteine reverted these phenomena by increasing cell proliferation, and SIRT1 and FoxO3 nuclear expression, and by reducing beta galactosidase staining and survivin expression. The study shows for the first time that carbocysteine may revert some senescence processes induced by oxidative stress due to cigarette smoke exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Flagellin of Pseudomonas aeruginosa induces transforming growth factor beta 1 expression in normal bronchial epithelial cells through mitogen activated protein kinase cascades

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-jing; WANG Dan-dan; SUN Tie-ying

    2011-01-01

    Background Acute lung infection due to Pseudomonas aeruginosa (P. Aeruginosa) is a serious problem, especially in patients with structural lung conditions or immune compromised hosts, leading to an overwhelming threat with a high risk of morbidity and mortality. As an outcome of infection, fibrosis can be linked with chronic lung diseases. But some fibrotic manifestations, such as an irreversible decrease of lung function and fibrous bands seen on chest imaging, have been found after an acute infection with P. Aeruginosa. Fibrogenesis/remodeling resulting from acute lung infection by P.aeruginosa is rarely reported. This study was designed to explore the relation between fibrogenesis/remodeling and acute infection by P. Aeruginosa in vitro. We used flagellin protein from P. Aeruginosa, a key initiator of acute P.aeruginosa lung infection, to elucidate mechanisms by which acute lung infection with P. Aeruginosa can cause fibrogenesis/remodeling.Methods We studied the effect of flagellin from P. Aeruginosa (flagellin for short) on the transforming growth factor beta 1 (TGF-β1) and interleukin-8 (IL-8) expression, and the possible involvement of the signaling pathway, tumor necrosis factor receptor-associated factor 6 (TRAF6)/mitogen activated protein kinase (MAPK) pathway. Flagellin was purified from the P. Aeruginosa standard strain, PAO1. Normal bronchial epithelial cells BEAS-2B were challenged with different concentrations of flagellin, and cell viability assessment was performed by cell counting kit-8. BEAS-2B cells were incubated with flagellin with the specific MAPK inhibitors or TRAF6 siRNA. Cell lysates and the cultured supernatant were collected. The level of TGF-β1 and IL-8 were detected by enzyme-linked immunosorbant assay (ELISA). Western blotting was used to detect the protein levels of MAPK signal proteins p38, c-Jun NH2-terminal kinase (JNK) and extracellular regulated kinase (ERK).Results Expression of TGF-β1 in BEAS-2B cells was elevated by

  9. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    Science.gov (United States)

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-08-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004 +H P = 0.049 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure.

  10. Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF-α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions

    Directory of Open Access Journals (Sweden)

    Denise Kviatcovsky

    2017-01-01

    Full Text Available M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN. In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.

  11. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG® and Myco 500®, two commercial forms of folpet

    Directory of Open Access Journals (Sweden)

    Baldi Isabelle

    2007-09-01

    Full Text Available Abstract Background Pesticides, in particular folpet, have been found in rural and urban air in France in the past few years. Folpet is a contact fungicide and has been widely used for the past 50 years in vineyards in France. Slightly water-soluble and mostly present as particles in the environment, it has been measured at average concentration of 40.1 μg/m3 during its spraying, 0.16–1.2 μg/m3 in rural air and around 0.01 μg/m3 in urban air, potentially exposing both the workers and the general population. However, no study on its penetration by inhalation and on its respiratory toxicity has been published. The objective of this study was to determine the physicochemical characteristics of folpet particles (morphology, granulometry, stability in its commercial forms under their typical application conditions. Moreover, the cytotoxic effect of these particles and the generation of reactive oxygen species were assessed in vitro on respiratory cells. Results Granulometry of two commercial forms of folpet (Folpan 80WG® and Myco 500® under their typical application conditions showed that the majority of the particles (>75% had a size under 5 μm, and therefore could be inhaled by humans. These particles were relatively stable over time: more than 75% of folpet remained in the particle suspension after 30 days under the typical application conditions. The inhibitory concentration (IC50 on human bronchial epithelial cells (16HBE14o- was found to be between 2.89 and 5.11 μg/cm2 for folpet commercial products after 24 h of exposure. Folpet degradation products and vehicles of Folpan 80 WG® did not show any cytotoxicity at tested concentrations. At non-cytotoxic and subtoxic concentrations, Folpan 80 WG® was found to increase DCFH-DA fluorescence. Conclusion These results show that the particles of commercial forms of folpet are relatively stable over time. Particles could be easily inhaled by humans, could reach the conducting airways and are

  12. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  13. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youn-hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu

    2015-09-15

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG → TCG) at codon 47 and the codon 72 polymorphism (CGC → CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. - Highlights: • Short-term exposure of BEAS-2B cells to arsenic or Cr(VI) activates p53 and p21. • Chronic exposure of BEAS-2B cells to arsenic or Cr(VI) causes cell transformation and tumorigenesis. • Arsenic-transformed cells exhibit

  14. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  15. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  16. High basal expression of interferon-stimulated genes in human bronchial epithelial (BEAS-2B cells contributes to influenza A virus resistance.

    Directory of Open Access Journals (Sweden)

    Lai-Giea Seng

    Full Text Available Respiratory epithelial cells play a key role in influenza A virus (IAV pathogenesis and host innate response. Transformed human respiratory cell lines are widely used in the study of IAV-host interactions due to their relative convenience, and inherent difficulties in working with primary cells. Transformed cells, however, may have altered susceptibility to virus infection. Proper characterization of different respiratory cell types in their responses to IAV infection is therefore needed to ensure that the cell line chosen will provide results that are of relevance in vivo. We compared replication kinetics of human H1N1 (A/USSR/77 IAVs in normal primary human bronchial epithelial (NHBE and two commonly used respiratory epithelial cell lines namely BEAS-2B and A549 cells. We found that IAV replication was distinctly poor in BEAS-2B cells in comparison with NHBE, A549 and Madin-Darby canine kidney (MDCK cells. IAV resistance in BEAS-2B cells was accompanied by an activated antiviral state with high basal expression of interferon (IFN regulatory factor-7 (IRF-7, stimulator of IFN genes (STING and IFN stimulated genes (ISGs. Treatment of BEAS-2B cells with a pan-Janus-activated-kinase (JAK inhibitor decreased IRF-7 and ISG expression and resulted in increased IAV replication. Therefore, the use of highly resistant BEAS-2B cells in IAV infection may not reflect the cytopathogenicity of IAV in human epithelial cells in vivo.

  17. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  18. Interleukin 4 receptors on human bronchial epithelial cells.An in vivo and in vitro analysis of expression and function

    NARCIS (Netherlands)

    Velden, van der V.H.J.; Naber, B.A.E.; Wierenga-Wolf, A.F.; Debets, R.; Savelkoul, H.F.J.; Overbeek, S.E.; Hoogsteden, H.C.; Versnel, M.A.

    1998-01-01

    Asthma is considered a Th2-like disease, characterized by locally increased levels of interleukin (IL) 4. The bronchial epithelium plays an important role in the initiation and perpetuation of inflammatory reactions within the airways. However, little is known about the presence of IL-4 receptors on

  19. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  20. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  1. Bronchial microdialysis of cytokines in the epithelial lining fluid in experimental intestinal ischemia and reperfusion before onset of manifest lung injury.

    Science.gov (United States)

    Tyvold, Stig Sverre; Solligård, Erik; Gunnes, Sigurd; Lyng, Oddveig; Johannisson, Anders; Grønbech, Jon E; Aadahl, Petter

    2010-11-01

    Today, there is no continuous monitoring of the bronchial epithelial lining fluid. This study used microdialysis as a method of continuous monitoring of early lung cytokine response secondary to intestinal ischemia-reperfusion in pigs. The authors aimed to examine bronchial microdialysis for continuous monitoring of IL-1β, TNF-α, IL-8, and fluorescein isothiocyanate Dextran 4,000 Da (FD-4). The superior mesenteric artery was cross-clamped for 120 min followed by 240 min of reperfusion (ischemia group, n = 8). Four sham-operated pigs served as controls. The pigs were anesthetized and normoventilated (peak inspiratory pressure, intestinal and arterial microdialysis catheters (flow-rate of 1 μL/min) were collected during reperfusion in 60-min fractions. Samples were analyzed for TNF-α, IL-1β, IL-8, and FD-4. Data are presented as median (interquartile range). A lung biopsy was collected at the end of the experiment. During reperfusion, there was an increase in bronchial concentrations of both IL-8 (3.70 [1.47-8.93] ng/mL per h vs. controls, 0.61 [0.47-0.91] ng/mL per h; P intestinal lumen, IL-8 was increased in the ischemia group (6.33 [3.13-9.23] ng/mL per h vs. controls, 0.89 [0.21-1.86] ng/mL per h; P lining fluid and can be used for continuous monitoring of the immediate local lung cytokine response secondary to intestinal ischemia-reperfusion.

  2. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  3. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts For Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    Science.gov (United States)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  4. Dammarane-type glycosides from Gynostemma pentaphyllum and their effects on IL-4-induced eotaxin expression in human bronchial epithelial cells.

    Science.gov (United States)

    Hung, Tran Manh; Thu, Cao Van; Cuong, To Dao; Hung, Nguyen Phi; Kwack, Seung Jun; Huh, Jung-Im; Min, Byung Sun; Choi, Jae Sue; Lee, Hyeong Kyu; Bae, KiHwan

    2010-02-26

    Two new dammarane-type glycosides, 2alpha,3beta,12beta,20S-tetrahydroxydammar-24-ene-3-O-[beta-d-glucopyranosyl(1-->4)-beta-d-glucopyranosyl]-20-O-[beta-d-xylopyranosyl-(1-->6)-beta-d-glucopyranoside] (1) and 2alpha,3beta,12beta,20S-tetrahydroxydammar-24-ene-3-O-beta-d-glucopyranosyl-20-O-[beta-d-6-O-acetylglucopyranosyl-(1-->2)-beta-d-glucopyranoside] (2), were isolated from a MeOH extract of the leaves of Gynostemma pentaphyllum. Their structures were elucidated by 1D and 2D NMR spectroscopic interpretation as well as by chemical studies. The isolated compounds showed potential inhibitory effects on eotaxin expression in BEAS-2B bronchial epithelial cells.

  5. [Characterization of epithelial primary culture from human conjunctiva].

    Science.gov (United States)

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. Exogenous neutrophil elastase enters bronchial epithelial cells and suppresses cigarette smoke extract-induced heme oxygenase-1 by cleaving sirtuin 1.

    Science.gov (United States)

    Lee, Kyoung-Hee; Jeong, Jiyeong; Koo, Yoon-Jung; Jang, An-Hee; Lee, Chang-Hoon; Yoo, Chul-Gyu

    2017-07-14

    An imbalance between oxidative stress and antioxidant activity plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke, a major risk factor of COPD, induces cellular oxidative stress, but levels of antioxidants such as heme oxygenase-1 (HO-1) are reduced in individuals with severe COPD. In this study, we evaluated the molecular mechanism of reduced HO-1 expression in human bronchial epithelial cells. We found that cigarette smoke extract (CSE) increases HO-1 levels via activation of NFE2-related factor 2 (Nrf2). However, pretreating cells with the protease neutrophil elastase (NE) suppressed the CSE-induced expression of HO-1 mRNA and protein. NE also decreased the sirtuin 1 (SIRT1) level, but did not inhibit CSE-induced nuclear translocation and DNA-binding activity of Nrf2. Transfection of cells with a Myc/His-tagged SIRT1 expression vector completely blocked the NE-mediated suppression of HO-1 expression. We further noted that the NE-induced down-regulation of SIRT1 was not due to decreased transcription or proteasomal/lysosomal degradation or loss of solubility. Immunofluorescence staining revealed that NE enters the cell cytoplasm, and we observed that NE directly cleaved SIRT1 in vitro, indicating that SIRT1 levels are decreased via direct degradation by internalized NE. Of note, we observed decreased SIRT1 levels in NE-treated primary human bronchial epithelial cells and in lung homogenates from both smokers and patients with COPD. In conclusion, NE suppresses CSE-induced HO-1 expression by cleaving SIRT1. This finding indicates the importance of cross-talk between oxidative stress and protease responses in the pathogenesis of COPD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2007-02-01

    Nitrogen Dioxide (NO2) is a product of high-temperature combustion and an environmental oxidant of concern. We have recently reported that early changes in NO2-exposed human bronchial epithelial cells are causally linked to increased generation of proinflammatory mediators, such as nitric oxide/nitrite and cytokines like interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and IL-8. The objective of the present in vitro study was to further delineate the cellular mechanisms of NO2-mediated toxicity, and to define the nature of cell death that ensues upon exposure of normal human bronchial epithelial (NHBE) cells to a brief high dose of NO2. Our results demonstrate that the NHBE cells undergo apoptotic cell death during the early post-NO2 period, but this is independent of any significant increase in caspase-3 activity. However, necrotic cell death was more prevalent at later time intervals. Interestingly, an increased expression of HO-1, a redox-sensitive stress protein, was observed in NO2-exposed NHBE cells at 24 h. Since neutrophils (PMNs) play an active role in acute lung inflammation and resultant oxidative injury, we also investigated changes in human PMN-NHBE cell interactions. As compared to normal cells, increased adhesion of PMNs to NO2-exposed cells was observed, which resulted in an increased NHBE cell death. The latter was also increased in the presence of IL-8 and TNF-alpha + interferon (IFN)-gamma, which correlated with upregulation of intercellular adhesion molecule-1 (ICAM-1). Our results confirmed an involvement of nitric oxide (NO) in NO2-induced cytotoxicity. By using NO synthase inhibitors such as L-NAME and 3-aminoguanidine (AG), a significant decrease in cell death, PMN adhesion, and ICAM-1 expression was observed. These findings indicate a role for the L-arginine/NO synthase pathway in the observed NO2-mediated toxicity in NHBE cells. Therapeutic strategies aimed at controlling excess generation of NO and/or inflammatory cytokines may

  8. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  9. Epithelial-mesenchymal transition in injured bronchial epithelial cells and regulation by transforming growth factor-β1%气道上皮损伤后支气管上皮-肌纤维母细胞转分化及转化生长因子β1的调节作用

    Institute of Scientific and Technical Information of China (English)

    蔡闯; 徐军; 张敏; 钟南山

    2009-01-01

    Objective To study phenotypic,ultrastructural changes,and releasing of endothelin-1(ET-1)and transforming growth factor-β1(TGF-β1)following bronchial epithelial injury,and to investigate the regulation of epithelial-mesenchymal transition(EMT)during epithelial restitution by TGF-β1.Methods Bronchial epithelial injury was induced by poly-L-arginine(PA)in 16HBE-140 cell line.ET-1,TGF-β1,lactate dehydrogenase(LDH)content in conditioned culture medium,phenotypic and uhrastructural changes were monitored dynamically along with the regulation of EMT during epithelial repair by TGF-β1.Results PA elicited epithelial injury in 16HBE-14o cells with elevation of LDH,increased releasing of ET-1 and TGF-β1by injured epithelial cells.Transient EMT occurred during epithelial restitution,evidenced by emergence of spindle-shaped,α smooth actin immunostaining cells with stress microfilaments and enriched rough endoplasmic reticulum as well as newly-secreted collagen fibers.Co-incubation with 50 μg/L TGF-β1 promoted EMT whereas TGF-β1 neutralizing antibody abrogated the transition.ET-1 stimulated epithelial release of TGF-β1,which was completely blocked by ET-1 receptor A antagonist,bq123.Conclusions There was overexpression of ET-1,TGF-β1 and transient EMT following bronchial epithelial injury.EMT was driven by TGF-β1 in autocrine/paracrine pattern.ET-1 possibly participated in EMT through stimulating epithelial release of TGF-β1.Epithelial activation and EMT following epithelial injury might play crucial roles in the pathogenesis of airway remodeling in bronchial asthma.%目的 观察支气管上皮细胞损伤后,细胞表型、超微结构、内皮素1(endothelin-1,ET-1)、转化生长因子β1(transforming growth factor-β1,TGF-β1)表达的动态变化以及TGF-β1 对支气管上皮-肌纤维母细胞转分化(epithelial-mesenchymal transition,EMT)的调节.方法 以多聚左旋精氨酸(PA)诱导支气管上皮16HBE-14o细胞损伤,观

  10. 呼吸道上皮细胞钠/氯离子通道与支气管哮喘%Epithelial sodium and chloride channels and bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    王雯; 吉宏龙

    2015-01-01

    支气管哮喘(简称哮喘)是一种慢性气道疾病,表现为气道高反应性和气道炎症导致的可逆性气道阻塞.研究显示,呼吸道上皮细胞钠/氯离子通道(ENaC/CFTR)调节黏液纤毛系统从而参与了慢性气道疾病的发病机制.ENaC及CFTR共同调节黏液的水质层,从而影响气道纤毛清除能力.调节上皮通道蛋白的特异性拮抗剂或激活剂将为哮喘和其他慢性气道疾病的预防和治疗开拓新的研究前景.%Bronchial asthma (asthma) is a chronic respiratory disease characterized by reversible airway obstruction with bronchial hyper-responsiveness and inflammation.Airway cilia system is implicated in the pathogenesis of chronic airway diseases.Epithelial sodium channels (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are closely related to the mucociliary clearance.ENaC and CFTR jointly adjust the water layer of mucus, which affects the airway cilia clearance ability.Specific antagonists or activating agents of ENaC and CFTR could be novel pharmaceutical interventions for the prevention and treatment of asthma as well as other chronic airway diseases.

  11. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  12. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  13. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure

    Science.gov (United States)

    Abstract: We tested the hypothesis that relative to submerged cells, airway epithelial cells grown at an air-liquid interface would have an altered response to particle exposure. RNA for IL-8, IL-6, heme oxygenase 1 and cyclooxygenase 2 increased following exposure of submer...

  14. OIL FLY ASH AND VANADIUM DIMINISH NRAMP-2MRNA AND PROTEIN EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    Science.gov (United States)

    The capacity of Nramp2 to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. Airway epithelial cells increase both mRNA and expression of that isoform of Nramp-2 without an iron response ele...

  15. Trans, trans-2,4-decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells.

    Science.gov (United States)

    Chang, Louis W; Lo, Wai-Sze; Lin, Pinpin

    2005-10-01

    Dienaldehydes are by-products of peroxidation of polyunsaturated lipids and commonly found in many foods or food-products. Both National Cancer Institute (NCI) and NTP have expressed great concern on the potential genotoxicity and carcinogenicity of dienaldehydes. Trans, trans-2,4-decadienal (tt-DDE or 2,4-De), a specific type of dienaldehyde, is abundant in heated oils and has been associated with lung adenocarcinoma development in women due to their exposure to oil fumes during cooking. Cultured human bronchial epithelial cells (BEAS-2B cells) were exposed to 0.1 or 1.0 microM tt-DDE for 45 days, and oxidative stress, reactive oxygen species (ROS) production, GSH/GSSG ratio, cell proliferation, and expression of TNFalpha and IL-1beta were measured. The results show that tt-DDE induced oxidative stress, an increase in ROS production, and a decrease in GSH/GSSG ratio (glutathione status) in a dose-dependent manner. Treatment of BEAS-2B cells with 1.0 microM tt-DDE for 45 days increased cell proliferation and the expression and release of pro-inflammatory cytokines TNFalpha and IL-1beta. Cotreatment of BEAS-2B cells with antioxidant N-acetylcysteine prevented tt-DDE-induced cell proliferation and release of cytokines. Therefore, these results suggest that tt-DDE-induced changes may be due to increased ROS production and enhanced oxidative stress. Since increased cell proliferation and the release of TNF-alpha and IL-1beta are believed to be involved in tumor promotion, our results suggest that tt-DDE may play a role in cancer promotion. Previous studies on dienaldehydes have focused on their genotoxic or carcinogenic effects in the gastrointestinal tract; the present study suggests a potential new role of tt-DDE as a tumor promoter in human lung epithelial cells.

  16. AT-RvD1 Modulates CCL-2 and CXCL-8 Production and NF-κB, STAT-6, SOCS1, and SOCS3 Expression on Bronchial Epithelial Cells Stimulated with IL-4

    Directory of Open Access Journals (Sweden)

    Jhony Robison de Oliveira

    2015-01-01

    Full Text Available Bronchial epithelial cells represent the first line of defense against microorganisms and allergens in the airways and play an important role in chronic inflammatory processes such as asthma. In an experimental model, both RvD1 and AT-RvD1, lipid mediators of inflammation resolution, ameliorated some of the most important phenotypes of experimental asthma. Here, we extend these results and demonstrate the effect of AT-RvD1 on bronchial epithelial cells (BEAS-2B stimulated with IL-4. AT-RvD1 (100 nM decreased both CCL2 and CXCL-8 production, in part by decreasing STAT6 and NF-κB pathways. Furthermore, the effects of AT-RvD1 were ALX/FRP2 receptor dependent, as the antagonist of this receptor (BOC1 reversed the inhibition of these chemokines by AT-RvD1. In addition, AT-RvD1 decreased SOCS1 and increased SOCS3 expression, which play important roles in Th1 and Th17 modulation, respectively. In conclusion, AT-RvD1 demonstrated significant effects on the IL-4-induced activation of bronchial epithelial cells and consequently the potential to modulate neutrophilic and eosinophilic airway inflammation in asthma. Taken together, these findings identify AT-RvD1 as a potential proresolving therapeutic agent for allergic responses in the airways.

  17. Activation of vitamin D regulates response of human bronchial epithelial cells to Aspergillus fumigatus in an autocrine fashion.

    Science.gov (United States)

    Li, Pei; Wu, Ting; Su, Xin; Shi, Yi

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is one of the most common fungi to cause diseases in humans. Recent evidence has demonstrated that airway epithelial cells play an important role in combating A. fumigatus through inflammatory responses. Human airway epithelial cells have been proven to synthesize the active vitamin D, which plays a key role in regulating inflammation. The present study was conducted to investigate the impact of A. fumigatus infection on the activation of vitamin D and the role of vitamin D activation in A. fumigatus-elicited antifungal immunity in normal human airway epithelial cells. We found that A. fumigatus swollen conidia (SC) induced the expression of 1α-hydroxylase, the enzyme catalyzing the synthesis of active vitamin D, and vitamin D receptor (VDR) in 16HBE cells and led to increased local generation of active vitamin D. Locally activated vitamin D amplified SC-induced expression of antimicrobial peptides in 16HBE cells but attenuated SC-induced production of cytokines in an autocrine fashion. Furthermore, we identified β-glucan, the major A. fumigatus cell wall component, as the causative agent for upregulation of 1α-hydroxylase and VDR in 16HBE cells. Therefore, activation of vitamin D is inducible and provides a bidirectional regulation of the responses to A. fumigatus in 16HBE cells.

  18. Particle and ozone-induced inflammation reactions of the lungs: Interactions and reactions of bronchial epithelial and endothelial cells in vitro; Partikel- und ozoninduzierte Entzuendungsreaktionen in der Lunge: Wechselwirkungen und Reaktionen von Bronchialepithelzellen und Endothelzellen in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Moegel, M.

    1998-07-01

    In the present work the influence of ozone, quartz dust (DQ12) and global extracts of atmospheric dust (GEX) on the release of the inflammatory mediators interleukin-6 (IL-6) and interleukin-8 (IL-8) as well as the expression of the intercellular adhesion molecule-1 (ICAM-1) was investigated by use of a human bronchial epithelial cell line (BEAS-2B). Exposure of the cells with 0.15 ppm ozone for 90 minutes resulted in an elevated IL-6- and IL-8-release and an increased expression of ICAM-1. On the other hand, incubations with extracts of atmospheric dust (GEX) only affected the ICAM-1-expression of the cells. The treatment with quartz dust, however, induced a time- and dose-dependent formation of the investigated markers of inflammation. Further investigations dealth with possible immunmodulating effects of ozone determined after a preceding or a subsequent stimulation of the cells with the standard stimuli lipopolysaccharide (LPS) and zymosan or the cytokines tumor-necrosis-factor-{alpha} and interleukin-1{beta}. For all those stimuli an immunsuppressive effect of ozone, manifested in decreased amounts of IL-6, IL-8 and ICAM-1, could be demonstrated. Additionally, the influence of a combined exposure of cells with ozone and quartz dust or ozone and GEX has been investigated. Ozone-treated BEAS-2B cells showed a diminished formation of all investigated markers of inflammation, when treated subsequently with quartz dust, compared with the air-treated control cells. Concerning successive incubations with GEX these effects could not be observed. In the second part of this work a coculture-system of bronchial epithelial cells (BEAS-2B) and endothelial cells (ECV304) has been established. The new culture-system offers the possibility by gas exposure of the epithelial cells to answer questions within the field of inhalation toxicology with respect to possible interactions between different cell types, e.g. epithelial and endothelial cells. (orig.) [Deutsch] In der

  19. Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway.

    Science.gov (United States)

    Ding, Shumin; Hou, Xuefeng; Yuan, Jiarui; Tan, Xiaobin; Chen, Juan; Yang, Nan; Luo, Yi; Jiang, Ziyu; Jin, Ping; Dong, Zibo; Feng, Liang; Jia, Xiaobin

    2015-12-01

    Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ozone induces a proinflammatory response in primary human bronchial epithelial cells through mitogen-activated protein kinase activation without nuclear factor-κB activation.

    Science.gov (United States)

    McCullough, Shaun D; Duncan, Kelly E; Swanton, Samantha M; Dailey, Lisa A; Diaz-Sanchez, David; Devlin, Robert B

    2014-09-01

    Ground-level ozone (O3) is a ubiquitous environmental air pollutant that is a potent inducer of airway inflammation and has been linked with respiratory and cardiovascular morbidity and mortality. Some studies using transformed or immortalized cells have attributed O3-mediated expression of inflammatory cytokines with activation of the canonical NF-κB pathway. In this study, we sought to characterize the O3-mediated activation of cellular signaling pathways using primary human bronchial epithelial cells obtained from a panel of donors. We demonstrate that the O3-induced expression of proinflammatory cytokines requires the activation of the epidermal growth factor receptor/MEK/ERK and MKK4/p38 mitogen-activated signaling pathways but does not appear to involve activation of canonical NF-κB signaling. In addition to providing a novel mechanistic model for the O3-mediated induction of proinflammatory cytokines, these findings highlight the importance of using primary cells over cell lines in mechanistic studies.

  1. Experimental Study onMalignant Transformation of Human Bronchial Epithelial CellsInduced by Glycidyl Methacrylate and Analysis on its Methylation

    Institute of Scientific and Technical Information of China (English)

    WANG An Na; WANG Quan Kai; YANG Min; HU Jie; DONG Lin; andXU Jian Ning

    2014-01-01

    ObjectiveTo establish the model of human bronchial epithelial cells(16HBE) malignant transformation induced by glycidyl methacrylate(GMA)and define the different methylation genes at different stages. MethodsDNA was extracted at different 16HBE malignant phasesandchanges of genes DNA methylation atdifferent stages weredetectedusing Methylation chip of‘NimbleGen HG18 CpG Promoter Microarray Methylation’. Methylation-specific PCR (MSP) was usedto observe the methylation status ofsome genes, and then compared with the control groups. ResultsThe resultshowed that GMA induced 16HBE morphorlogical transformation at the dose of 8µg/mL, and cell exposed to GMA had 1374 genes in protophase, 825 genes inmetaphase, 1149 genes in anaphase, respectively; 30 genes are all methylation in the 3 stages; 318 genes in protophase but not inmetaphase and anaphase; 272 genes in metaphase but not inprotophase and anaphase; 683 genes in anaphase but not inmetaphase and protophase; 73 genes inprotophase andmetaphase but not in anaphase; 67 genes in protophase and anaphase but not inmetaphase; 59 genes inmetaphase and anaphase but not in protophase. ConclusionThe pattern of DNA methylation could change in the process of 16HBEinduced by GMA.

  2. Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells.

    Science.gov (United States)

    Kogel, U; Gonzalez Suarez, I; Xiang, Y; Dossin, E; Guy, P A; Mathis, C; Marescotti, D; Goedertier, D; Martin, F; Peitsch, M C; Hoeng, J

    2015-12-01

    Cigarette smoking causes serious and fatal diseases. The best way for smokers to avoid health risks is to quit smoking. Using modified risk tobacco products (MRTPs) may be an alternative to reduce the harm caused for those who are unwilling to quit smoking, but little is known about the toxic effects of MRTPs, nor were the molecular mechanisms of toxicity investigated in detail. The toxicity of an MRTP and the potential molecular mechanisms involved were investigated in high-content screening tests and whole genome transcriptomics analyses using human bronchial epithelial cells. The prototypic (p)MRTP that was tested had less impact than reference cigarette 3R4F on the cellular oxidative stress response and cell death pathways. Higher pMRTP aerosol extract concentrations had impact on pathways associated with the detoxification of xenobiotics and the reduction of oxidative damage. A pMRTP aerosol concentration up to 18 times higher than the 3R4F caused similar perturbation effects in biological networks and led to the perturbation of networks related to cell stress, and proliferation biology. These results may further facilitate the development of a systems toxicology-based impact assessment for use in future risk assessments in line with the 21st century toxicology paradigm, as shown here for an MRTP. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. s-Ethyl Cysteine and s-Methyl Cysteine Protect Human Bronchial Epithelial Cells Against Hydrogen Peroxide Induced Injury.

    Science.gov (United States)

    Hsia, Te-chun; Yin, Mei-chin

    2015-09-01

    Protective effects and actions from s-ethyl cysteine (SEC) and s-methyl cysteine (SMC) for BEAS-2B cells were examined. BEAS-2B cells were pretreated with SEC or SMC at 4, 8, or 16 μmol/L, and followed by hydrogen peroxide (H2 O2 ) treatment. Data showed that H2 O2 enhanced Bax, caspase-3 and caspase-8 expression, and declined Bcl-2 expression. However, SEC or SMC dose-dependently decreased caspase-3 expression and reserved Bcl-2 expression. H2 O2 increased reactive oxygen species (ROS) production, and lowered glutathione level, glutathione peroxide, and glutathione reductase activities in BEAS-2B cells. SEC or SMC pretreatments reduced ROS generation, and maintained glutathione redox cycle in those cells. H2 O2 upregulated the expression of both p47(phox) and gp91(phox) . SEC and SMC downregulated p47(phox) expression. SEC or SMC at 8 and 16 μmol/L decreased H2 O2 -induced release of inflammatory cytokines. H2 O2 stimulated the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase. SEC and SMC pretreatments dose-dependently downregulated NF-κB p65 and p-p38 expression. Pyrrolidine dithiocarbamate or SB203580 inhibited NF-κB activation and p38 phosphorylation; thus, SEC or SMC pretreatments failed to affect protein expression of these factors. These novel findings suggest that SEC or SMC could protect bronchial cells and benefit respiratory epithelia stability and functions.

  4. Human epithelial tissue culture study on restorative materials.

    Science.gov (United States)

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  5. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    Science.gov (United States)

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  6. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures

    Science.gov (United States)

    Schlage, Walter K.; Kostadinova, Radina; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Talikka, Marja; Geertz, Marcel; Mathis, Carole; Ivanov, Nikolai; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air–liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products. PMID:25046638

  7. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures.

    Science.gov (United States)

    Schlage, Walter K; Iskandar, Anita R; Kostadinova, Radina; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Frentzel, Stefan; Talikka, Marja; Geertz, Marcel; Mathis, Carole; Ivanov, Nikolai; Hoeng, Julia; Peitsch, Manuel C

    2014-10-01

    Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.

  8. CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE14o- cells

    Directory of Open Access Journals (Sweden)

    Wong Hector R

    2006-06-01

    Full Text Available Abstract Background Recognition of repeat unmethylated CpG motifs from bacterial DNA through Toll-like receptor (TLR-9 has been shown to induce interleukin (IL-8 expression in immune cells. We sought to investigate the role of CpG oligodeoxynucleotides (ODN on a human bronchial epithelial cells. Methods RT-PCR and Western blot analysis were used to determine expression of TLR-9 in human bronchial epithelial cells (16HBE14o-. Cells were treated with CpG ODN in the presence or absence of IL-1β and IL-8 protein was determined using ELISA. In some cases cells were pretreated with chloroquine, an inhibitor of TLR-9 signaling, or SB202190, an inhibitor of the mitogen activated protein kinase p38, prior to treatment with IL-1β and CpG. TLR9 siRNA was used to silence TLR9 prior to treatment with IL-1β and CpG. IκBα and p38 were assessed by Western blot, and EMSA's were performed to determine NF-κB activation. To investigate IL-8 mRNA stability, cells were treated with IL-1β in the absence or presence of CpG for 2 h and actinomycin D was added to induce transcriptional arrest. Cells were harvested at 15 min intervals and Northern blot analysis was performed. Results TLR-9 is expressed in 16HBE14o- cells. CpG synergistically increased IL-1β-induced IL-8 protein abundance, however treatment with CpG alone had no effect. CpC (a control ODN had no effect on IL-1β-induced IL-8 levels. In addition, CpG synergistically upregulated TNFα-induced IL-8 expression. Silencing TLR9 using siRNA or pretreatment of cells with chloroquine had little effect on IL-1β-induced IL-8 levels, but abolished CpG-induced synergy. CpG ODN had no effect on NF-κB translocation or DNA binding in 16HBE14o- cells. Treatment with CpG increased phosphorylation of p38 and pretreatment with the p38 inhibitor SB202190 attenuated the synergistic increase in IL-8 protein levels. Analysis of the half-life of IL-8 mRNA revealed that IL-8 mRNA had a longer half-life following the co

  9. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM(2.5) organic extract from Puerto Rico.

    Science.gov (United States)

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R; Jimenez-Velez, Braulio D

    2010-03-15

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM(2.5)) in Puerto Rico. Organic extracts from PM(2.5) collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM(2.5) organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM(2.5) consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1beta and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM(2.5) organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  10. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells.

    Science.gov (United States)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    Science.gov (United States)

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  12. DNA damages induced by trans, trans-2,4-decadienal (tt-DDE), a component of cooking oil fume, in human bronchial epithelial cells.

    Science.gov (United States)

    Young, Shun-Chieh; Chang, Louis W; Lee, Hui-Ling; Tsai, Lung-Hung; Liu, Yin-Chang; Lin, Pinpin

    2010-05-01

    Epidemiological studies have demonstrated that cooking oil fumes (COF) are an environmental risk factor for the development of lung adenocarcinoma among nonsmoking females in Taiwan. Aside from polycyclic aromatic hydrocarbons, aldehydes, especially trans, trans-2,4-decadienal (tt-DDE) are found to be abundant in COF. Although there is indication that tt-DDE induces DNA damage, the precise role of tt-DDE in the induction of DNA damage in lung cells is still not clear. When we assessed DNA breaks with the Comet assay, we found that the DNA breaks induced by 1 muM tt-DDE in human bronchial epithelial cells (BEAS-2B) could be significantly reduced by antioxidants, suggesting that oxidative stress was involved. Indeed, when tt-DDE-treated cells were coincubated with endonuclease III/formamidopyrimidine-DNA glycosylase or with nuclear extract (NE), an enhancement of DNA breaks was observed at 1 hr after tt-DDE exposure. Furthermore, when NE was incubated with an antibody against 8-oxoguanine DNA glycosylase (anti-OGG1), a reduction in tt-DDE/NE-induced DNA breaks could be demonstrated. Since OGG1 is a specific repair enzyme for 8-oxo-deoxyguanosine (8-oxo-dG), these findings indicated that 8-oxo-dG was involved. On the other hand, when NE was incubated with antibodies against nucleotide excision repair enzymes, there was a significant reduction in tt-DDE/NE-induced DNA breaks at 4 hr after tt-DDE treatment. These observations indicate that, in addition to early oxidative DNA damage, nonoxidative DNA damage such as bulky adduct formation, was also induced by tt-DDE. Our study further affirms that tt-DDE is genotoxic to human lung cells and can increase carcinogenic risk.

  13. 支气管上皮细胞在气道高反应中的作用%The role of bronchial epithelial cells in airway hyperresponsiveness

    Institute of Scientific and Technical Information of China (English)

    秦晓群; 向阳; 刘持; 谭宇蓉; 屈飞; 彭丽花; 朱晓琳; 秦岭

    2007-01-01

    气道高反应的发病机制目前仍然不清楚,但大多数人认同是气道的一种慢性炎症.近十年来,上皮缺陷学说逐渐成为解释气道高反应机制的主流观点.气道上皮不再被仅仅看作为单纯的机械屏障,而是机体内环境与外部环境相互作用的界面.气道上皮具有广泛的生理作用,包括抗氧化、内分泌和外分泌、黏液运输、生物代谢、结构性黏附、损伤修复、应激或炎症信号传递、抗原递呈作用等.借助这些生理作用,支气管上皮细胞在气道局部微环境稳态维持中发挥重要作用.有理由相信,气道上皮的结构完整性缺陷或功能紊乱是哮喘和慢性阻塞性肺疾病等气道高反应性疾病的启动环节.%It is commonly Accepted that airway hyperresponsiveness (AHR) is a chronic airway inflammation although the exact mechanism of its pathogenesis is still unclear. In the past ten years, an epithelial defect hypothesis has gradually gained supports from the main stream. Airway epithelium is no longer considered only as a simple mechanic barrier but an active interface between the inner and outer environment. Bronchial epithelial cells play a critical role in maintenance of homeostasis in the airway local microenvironment through a wide range of physiologic functions including anti-oxidation, exocrine/endocrine secretions, mucus production and antigen presentation under health and stressed/inflamed/injured conditions. It is reasonably hypothesized that disruption of these functional processes or defects in airway epithelium integrity may be the initial steps leading to airway hyperresponsiveness such as in asthma and chronic obstructive pulmonary disease.

  14. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  15. Organoid culture systems for prostate epithelial and cancer tissue.

    Science.gov (United States)

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    2016-02-01

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types, whereas organoids derived from prostate cancer tissue mimic the histology of the tumor. We explain how to establish these cultures in the fully defined serum-free conditioned medium that is required to sustain organoid growth. Starting with the plating of digested tissue material, full-grown organoids can usually be obtained in ∼2 weeks. The culture protocol we describe here is currently the only one that allows the growth of both the luminal and basal prostatic epithelial lineages, as well as the growth of advanced prostate cancers. Organoids established using this protocol can be used to study many different aspects of prostate biology, including homeostasis, tumorigenesis and drug discovery.

  16. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    Science.gov (United States)

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The

  17. The role of C/EBPβ phosphorylation in modulating membrane phospholipids repairing in LPS-induced human lung/bronchial epithelial cells.

    Science.gov (United States)

    Shu, Shiyu; Xu, Yan; Xie, Ling; Ouyang, Yufang

    2017-09-20

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common critical emergency with high mortality in clinical practice. The key mechanism of ALI/ARDS is that the excessive inflammatory response damages the integrity of alveolar and bronchial cell membrane and thus affects their basic function. Phospholipids are the main component of cell membranes. Phospholipase A2 (PLA2), which catalyzes the cleavage of membrane phospholipids, is the most important inflammatory mediator of ALI. However, clara cell secretory protein 1 (CCSP1), an endogenous PLA2 inhibitor can increase the self-defense of membrane phospholipids. Thus, CCSP1 up-regulation and PLA2 inhibition constitutes an effective method for ensuring the stability of membrane phospholipids and for the treatment of ALI/ARDS. In the present study, we developed an in vitro model of ALI via lipopolysaccharide (LPS) stimulation of a human bronchial epithelial cell line, BEAS-2B, and assessed the mRNA and protein levels of CCSP1 and PLA2 in the model cells. The results demonstrated LPS induction inhibited the transcription and protein expression of CCSP1, but only the protein level of membrane associated PLA2 was increased, suggesting that in the in vitro ALI model, abnormally regulated CCSP1 transcription plays a crucial role in the damage of cell membrane. To find out the reason that CCSP1 expression was decreased in the ALI model, we predicted, by means of bioinformatics, putative transcription factors which would bind to CCSP1 promoter, examined their background and expression, and found that a transcription factor, CCAAT/enhancer binding protein β (C/EBP β), was correlated with the transcription of CCSP1 in the in vitro ALI model, and its phosphorylation in the model was decreased. CHIP-PCR and luciferase reporter assay revealed that C/EBP β bound to CCSP1 promoter and facilitated its transcription. Therefore, we conclude that there is a C/EBP β/CCSP1/PLA2 pathway in the in vitro ALI model. The

  18. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  19. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  20. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells.

    Science.gov (United States)

    Vimalanathan, Selvarani; Schoop, Roland; Suter, Andy; Hudson, James

    2017-04-02

    Viral infections may predispose the airways to secondary bacterial infections that can lead to unfavorable progression of principally self-limiting illnesses. Such complicated respiratory infections include pneumonia, bronchitis, sinusitis, acute otitis media, and sepsis, which cause high morbidity and lethality. Some of the pathogenic consequences of viral infections, like the expression of bacterial adhesion receptors and the disturbance of physical barrier integrity due to inflammation, may create permissive conditions for co-infections. Influenza virus A (H3N2) is a major pathogen that causes secondary bacterial infections and inflammation that lead to pneumonia. The herbal medicine Echinacea purpurea, on the other hand, has been widely used to prevent and treat viral respiratory infections, and recent clinical data suggest that it may prevent secondary infection complications as well. We investigated the role of standardized E. purpurea (Echinaforce(®) extract or EF) on H3N2-induced adhesion of live nontypeable Haemophilus influenzae (NTHi) and Staphylococcus aureus, along with the expression of bacterial receptors, intracellular adhesion molecule-1 (ICAM-1), fibronectin, and platelet activating factor receptor (PAFr), by BEAS-2B cells. Inflammatory processes were investigated by determining the cellular expression of IL-6 and IL-8 and the involvement of Toll-like receptor (TLR-4) and NFκB p65. We found that influenza virus A infection increased the adhesion of H. influenzae and S. aureus to bronchial epithelial cells via upregulated expression of the ICAM-1 receptor and, to some extent, of fibronectin and PAFr. Echinaforce (EF) significantly reduced the expression of ICAM-1, fibronectin, and PAFr and consequently the adhesion of both bacterial strains. EF also effectively prevented the super-expression of inflammatory cytokines by suppressing the expression of NFκB and possibly TLR-4. These results indicate that E. purpurea has the potential to reduce the

  1. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  2. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway.

    Science.gov (United States)

    Polimeni, Manuela; Gulino, Giulia Rossana; Gazzano, Elena; Kopecka, Joanna; Marucco, Arianna; Fenoglio, Ivana; Cesano, Federico; Campagnolo, Luisa; Magrini, Andrea; Pietroiusti, Antonio; Ghigo, Dario; Aldieri, Elisabetta

    2016-06-01

    Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. Fully characterized MWCNT (mean length EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E-cadherin repression and following

  3. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  4. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  5. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  6. The Effects of Mitochondrial DNA Depletion in Human Bronchial Epithelial Line on Calcium Homeostasis%线粒体DNA拷贝量降低诱发人支气管上皮细胞钙信号失调

    Institute of Scientific and Technical Information of China (English)

    尉红; 薛莲; 李冰燕; 童建; 张增利

    2012-01-01

    采用溴化乙锭(EtBr)诱导线粒体DNA(mitochondrial DNA,mtDNA)拷贝量降低的人支气管上皮细胞株(p-HBE); Real-time PCR与共聚焦成像表明,经EtBr诱导60 d并挑取的单克隆细胞株,其mtDNA拷贝量下降为正常细胞的24%,成功构建了p-HBE.与母本细胞相比,p-HBE群体倍增时间延长,生长速度减慢.流式细胞术检测细胞线粒体膜电位(AΨm)下降,以Fura-2标记胞浆内游离钙,p-HBE [Ca2+]i升高;线粒体解耦联剂FCCP刺激细胞后,激光共聚焦扫描显微镜动态监测单个活细胞[Ca2+]i变化,发现[Ca2+]i水平波动幅度小.提示mtDNA拷贝数降低可导致细胞内钙信号调节紊乱.%Human bronchial epithelial cells (HBE cells) were cultured in culture medium containing ethidi-um bromide (EtBr) to establish a mitochondrial DNA (mtDNA)-depleted HBE model (p-HBE). Real-time PCR and confocal imaging show that the content of mtDNA in p- HBE selected from limiting-dilution in EtBr-treated cells was 24% of the wide-type HBE. Compared with parent HBE, p- HBE showed a slower growth rate, increased level of intracellular Ca2+concentrations ([Ca2+]i), decreased condition of mitochondrial transmembrane potential (△Ψ), the magnitude of elevation of [Ca2+]i was markedly reduced to FCCP stimulation. These results indicated that the depletion of mtDNA disrupted calcium homeostasis.

  7. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    Science.gov (United States)

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  8. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Marina S Leino

    Full Text Available Sensitization and exposure to the allergenic fungus Alternaria alternata has been associated with increased risk of asthma and asthma exacerbations. The first cells to encounter inhaled allergens are epithelial cells at the airway mucosal surface. Epithelial barrier function has previously been reported to be defective in asthma. This study investigated the contribution of proteases from Alternaria alternata on epithelial barrier function and inflammatory responses and compared responses of in vitro cultures of differentiated bronchial epithelial cells derived from severely asthmatic donors with those from non-asthmatic controls. Polarised 16HBE cells or air-liquid interface (ALI bronchial epithelial cultures from non-asthmatic or severe asthmatic donors were challenged apically with extracts of Alternaria and changes in inflammatory cytokine release and transepithelial electrical resistance (TER were measured. Protease activity in Alternaria extracts was characterised and the effect of selectively inhibiting protease activity on epithelial responses was examined using protease inhibitors and heat-treatment. In 16HBE cells, Alternaria extracts stimulated release of IL-8 and TNFα, with concomitant reduction in TER; these effects were prevented by heat-treatment of the extracts. Examination of the effects of protease inhibitors suggested that serine proteases were the predominant class of proteases mediating these effects. ALI cultures from asthmatic donors exhibited a reduced IL-8 response to Alternaria relative to those from healthy controls, while neither responded with increased thymic stromal lymphopoietin (TSLP release. Only cultures from asthmatic donors were susceptible to the barrier-weakening effects of Alternaria. Therefore, the bronchial epithelium of severely asthmatic individuals may be more susceptible to the deleterious effects of Alternaria.

  9. Surface proteins in normal and transformed rat liver epithelial cells in culture.

    Science.gov (United States)

    Bannikov, G. A.; Saint Vincent, L.; Montesano, R.

    1980-01-01

    The pattern of surface proteins of different types of normal and transformed rat liver cells have been studied in culture by means of lactoperoxidase-catalysed iodination procedures, followed by SDS-gel electrophoresis. The cells examined were primary cultures of epithelial liver cells, long-term cultures of epithelial liver cells, in vitro transformed epithelial liver cell lines and liver tumour-cell lines; mesenchymal cells from liver and skin were also examined. The principal surface proteins of primary cultures of epithelial cells from adult or neonatal rats had components with mol. wts of 140,000-160,000, 100,000 and 40,000-70,000. A band that had the same position as fibronectin from mesenchymal cells was also present and this band, as well as other iodinated components, were less sensitive to trypsin than fibroblastic fibronectin. A similar pattern of iodinated proteins was seen in long-term cultures of epithelial liver cells, with a great reduction in the number and intensity of the bands in the mol. wt region below 100,000. Almost all the in vitro transformed and tumour epithelial cell lines contain a protein with a mol. wt 135,000 as one of the major iodinated bands, and in contrast to the observation in transformed fibroblasts, the fibronectin was retained by most of these transformed cell lines. Images Fig. 1 Fig. 2 Fig. 3 PMID:7053205

  10. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  11. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  12. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  13. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  14. The Nucleotide-Binding Oligomerization Domain-Like Receptor Family Pyrin Domain-Containing 3 Inflammasome Regulates Bronchial Epithelial Cell Injury and Proapoptosis after Exposure to Biomass Fuel Smoke.

    Science.gov (United States)

    Li, Chen; Zhihong, Huang; Wenlong, Li; Xiaoyan, Liu; Qing, Chen; Wenzhi, Luo; Siming, Xie; Shengming, Liu

    2016-12-01

    The number of individuals in the population exposed to biomass fuel smoke (BS) is far greater than the number of cigarette smokers. About 20% of cigarette smokers develop chronic obstructive pulmonary disease (COPD) due to smoke-induced irreversible damage and sustained inflammation of the airway epithelium. However, the role of BS in COPD pathogenesis remains to be elucidated. In this study, we investigated the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 and caspase-1 in the bronchial epithelium from patients with COPD, and further determined the specific role of the NLRP3 inflammasome in bronchial epithelium injury using two in vitro models (BS and cigarette smoke [CS]) in the human bronchial epithelial (HBE) cell line (16HBE). After exposure to BS and CS, the release of damage-associated molecular patterns, the transcriptional and translational up-regulation of NLRP3, and the activation of caspase-1 were observed in cells at different time points. Because IL-1β secretion was dependent on the NLRP3 inflammasome, we assessed CXCL-8 production in response to smoke. Using a transwell migration assay in which 16HBE cells and human alveolar macrophages were cocultured, we showed that smoke-induced NLRP3 activation in 16HBE cells increased the migration of human alveolar macrophages. When the NLRP3 expression was silenced, the average migration distance of 16HBE was increased in scratch assay, because the activation of NLRP3 induced apoptosis by the p53-Bax mitochondrial pathway in the smoke-induced response. These results demonstrate the importance of the NLRP3 inflammasome in mediating BS- and CS-induced HBE cell damage and proapoptosis.

  15. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  16. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Directory of Open Access Journals (Sweden)

    Jianwu Bai

    Full Text Available Human airway epithelial cells are the principal target of human rhinovirus (HRV, a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1 to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2 to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.Air-liquid interface (ALI human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3, and novel ones that were identified for the first time in this study (e.g. CCRL1.ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  17. Clustering and jamming in epithelial-mesenchymal co-cultures.

    Science.gov (United States)

    Gamboa Castro, Marielena; Leggett, Susan E; Wong, Ian Y

    2016-10-12

    Collective behaviors emerge from coordinated cell-cell interactions during the morphogenesis of tissues and tumors. For instance, cells may display density-dependent phase transitions from a fluid-like "unjammed" phase to a solid-like "jammed" phase, while different cell types can "self-sort". Here, we comprehensively track single cell dynamics in mixtures of sheet-forming epithelial cells and dispersed mesenchymal cells. We find that proliferating epithelial cells nucleate multicellular clusters that coarsen at a critical density, arresting migration and strengthening spatial velocity correlations. The addition of mesenchymal cells can slow cluster formation and coarsening, resulting in more dispersed individual cells with weak spatial velocity correlations. These behaviors have analogies with a jamming-unjamming transition, where the control parameters are cell density and mesenchymal fraction. This complex interplay of proliferation, clustering and correlated migration may have physical implications for understanding epithelial-mesenchymal interactions in development and disease.

  18. Adherence of Actinobacillus pleuropneumoniae to primary cultures of porcine lung epithelial cells.

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Stockhofe, N.; Smith, H.E.; Kamp, E.M.; Putten, van J.P.; Verheijden, J.H.

    2003-01-01

    To study adherence of Actinobacillus pleuropneumoniae to porcine lower respiratory epithelium, a cell culture model was developed using primary cultures of porcine lung epithelial cells (LEC). Adherence assays were performed and results were compared with data obtained with swine kidney cells (SK6).

  19. Bronchial stents

    Directory of Open Access Journals (Sweden)

    Ibrahim Emad

    2006-01-01

    Full Text Available Bronchial stents are mostly used as a Palliative relief of symptoms often caused by airway obstruction, It is also used for sealing of stump fistulas after pneumonectomy and dehiscence after bronchoplastic operations. Advances in airway prosthetics have provided a variety of silicone stents, expandable metal stents, and pneumatic dilators, enabling the correction of increasingly complex anatomical problems. Several series have been published describing the application and results of these techniques. This manuscript reviews the historical development of stents, types, indication, outcome, and complications. Alternative therapies for tracheobronchial stenting were also reviewed

  20. Polarized Airway Epithelial Models for Immunological Co-Culture Studies

    DEFF Research Database (Denmark)

    Papazian, Dick; Würtzen, Peter A; Hansen, Søren Werner Karlskov

    2016-01-01

    Epithelial cells line all cavities and surfaces throughout the body and play a substantial role in maintaining tissue homeostasis. Asthma and other atopic diseases are increasing worldwide and allergic disorders are hypothesized to be a consequence of a combination of dysregulation of the epithel...

  1. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    A primary culture system for the cells of mouse renal-tubular epithelium was established and used to observe the adhesion of leptospires. Virulent strains of serovars copenhageni and ballum attached themselves to epithelial cells within 3 h of infection whereas an avirulent variant of serovar...... copenhageni did not adhere to epithelial cells at all within the experimental period of 24 h. The saprophytic Leptospira biflexa serovar patoc became attached non-specifically to inert glass surfaces as well as to the cells. The adhesion of leptospires to epithelial cells was not inhibited by homologous...

  2. Epithelial monolayer culture system for real-time single-cell analyses.

    Science.gov (United States)

    Seo, Jong Bae; Moody, Mark; Koh, Duk-Su

    2014-01-01

    Abstract Many epithelial cells form polarized monolayers under in vivo and in vitro conditions. Typically, epithelial cells are cultured for differentiation on insert systems where cells are plated on a porous filter membrane. Although the cultured monolayers have been a standard system to study epithelial physiology, there are some limits: The epithelial cells growing inside the commercial inserts are not optimal to visualize directly through lenses on inverted microscopes. The cell images are optically distorted and background fluorescence is bright due to the filter membrane positioned between the cells and the lens. In addition, the cells are not easily accessible by electrodes due to the presence of tall side walls. Here, we present the design, fabrication, and practical applications of an improved system for analysis of polarized epithelial monolayers. This new system allows (1) direct imaging of cells without an interfering filter membrane, (2) electrophysiological measurements, and (3) detection of apical secretion with minimal dilution. Therefore, our culture method is optimized to study differentiated epithelial cells at the single-cell and subcellular levels, and can be extended to other cell types with minor modifications.

  3. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    Tor Paaske Utheim

    2016-03-01

    Full Text Available The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC, which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD. Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  4. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  5. The Biological Study of the Cultured Human Lens Epithelial Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The human lens epithelial cells (HLE) cultured in vitro was established in normal and cataractous lenses. The biological feature, histological characteristics and the ultrastructure of the cultured HLE cells were investigated. The results reveal that the proliferative capacity of the culutured HLE cells is reversely proportional to the donour age; the cultured HLE cells has the limited proliferative capacity in vitro. The relieve of the contact inhibition is the effective trigger of the HLE cell prolife...

  6. Bergamot (Citrus bergamia Risso fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    Directory of Open Access Journals (Sweden)

    Sacchetti Gianni

    2011-04-01

    Full Text Available Abstract Background Cystic fibrosis (CF airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β and chemokines (i.e. IL-8 are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance, GC-FID (gas chromatography-flame ionization detector, GC-MS (gas chromatography-mass spectrometry and HPLC (high pressure liquid chromatography. Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.

  7. A comparative evaluation of corneal epithelial cell cultures for assessing ocular permeability.

    Science.gov (United States)

    Becker, Ulrich; Ehrhardt, Carsten; Schneider, Marc; Muys, Leon; Gross, Dorothea; Eschmann, Klaus; Schaefer, Ulrich F; Lehr, Claus-Michael

    2008-02-01

    The purpose of this study was to evaluate the potential value of different epithelial cell culture systems as in vitro models for studying corneal permeability. Transformed human corneal epithelial (HCE-T) cells and Statens Serum Institut rabbit corneal (SIRC) cells were cultured on permeable filters. SkinEthic human corneal epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as ready-to-use systems. Excised rabbit corneas (ERCs) and human corneas (EHCs) were mounted in Ussing chambers, and used as references. Barrier properties were assessed by measuring transepithelial electrical resistance, and by determining the apparent permeability of markers with different physico-chemical properties, namely, fluorescein, sodium salt; propranolol hydrochloride; moxaverine hydrochloride; timolol hydrogenmaleate; and rhodamine 123. SIRC cells and the S-HCE failed to develop epithelial barrier properties, and hence were unable to distinguish between the permeation markers. Barrier function and the power to differentiate compound permeabilities were evident with HCE-T cells, and were even more pronounced in the case of C-HCE, corresponding very well with data from ERCs and EHCs. A net secretion of rhodamine 123 was not observed with any of the models, suggesting that P-glycoprotein or similar efflux systems have no significant effects on corneal permeability. Currently available corneal epithelial cell culture systems show differences in epithelial barrier function. Systems lacking functional cell-cell contacts are of limited value for assessing corneal permeability, and should be critically evaluated for other purposes.

  8. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  9. Response of a co-culture model of epithelial cells and gingival fibroblasts to zoledronic acid

    Directory of Open Access Journals (Sweden)

    Fernanda Gonçalves BASSO

    Full Text Available Abstract Osteonecrosis of the jaw is an adverse effect of bisphosphonates. While the etiopathogenesis of this condition has been investigated, the interactions and effects of bisphosphonates on oral mucosa cells remain unclear. It is hypothesized that cell culture models, such as co-culture or three-dimensional cell culture models, can provide valuable insight. Therefore, the aim of this study was to evaluate the effects of zoledronic acid (ZA on epithelial cells and gingival fibroblasts in a co-culture model. Briefly, epithelial cells were seeded on transwell inserts and gingival fibroblasts were seeded in the lower well of 24-well plates. The latter were treated with ZA (5 μM for 24 or 48 h. Cell viability and synthesis of the inflammatory chemokine, CCL2, were subsequently assessed. Data were subjected to statistical analysis with a 5% significance level. In the presence of ZA, the epithelial cells exhibited significant toxicity in both cell culture models and at both time points. However, greater cytotoxicity was observed in the co-culture model. Greater viability for the gingival fibroblasts was also associated with the co-culture model, and ZA-mediated toxicity was observed for the 48 h time point. ZA promoted a significant increase in CCL2 synthesis in both sets of cells, with greater CCL2 synthesis detected in the gingival fibroblasts. However, this effect was diminished in the co-culture model. Taken together, these results confirm the specific response patterns of the cells seeded in the co-culture model and also demonstrate the protective mechanism that is mediated by epithelial/mesenchymal cell interactions upon exposure to ZA.

  10. Response of a co-culture model of epithelial cells and gingival fibroblasts to zoledronic acid.

    Science.gov (United States)

    Basso, Fernanda Gonçalves; Soares, Diana Gabriela; Pansani, Taisa Nogueira; Turrioni, Ana Paula Silveira; Scheffel, Débora Lopes; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2016-11-28

    Osteonecrosis of the jaw is an adverse effect of bisphosphonates. While the etiopathogenesis of this condition has been investigated, the interactions and effects of bisphosphonates on oral mucosa cells remain unclear. It is hypothesized that cell culture models, such as co-culture or three-dimensional cell culture models, can provide valuable insight. Therefore, the aim of this study was to evaluate the effects of zoledronic acid (ZA) on epithelial cells and gingival fibroblasts in a co-culture model. Briefly, epithelial cells were seeded on transwell inserts and gingival fibroblasts were seeded in the lower well of 24-well plates. The latter were treated with ZA (5 μM) for 24 or 48 h. Cell viability and synthesis of the inflammatory chemokine, CCL2, were subsequently assessed. Data were subjected to statistical analysis with a 5% significance level. In the presence of ZA, the epithelial cells exhibited significant toxicity in both cell culture models and at both time points. However, greater cytotoxicity was observed in the co-culture model. Greater viability for the gingival fibroblasts was also associated with the co-culture model, and ZA-mediated toxicity was observed for the 48 h time point. ZA promoted a significant increase in CCL2 synthesis in both sets of cells, with greater CCL2 synthesis detected in the gingival fibroblasts. However, this effect was diminished in the co-culture model. Taken together, these results confirm the specific response patterns of the cells seeded in the co-culture model and also demonstrate the protective mechanism that is mediated by epithelial/mesenchymal cell interactions upon exposure to ZA.

  11. An investigation of donor and culture parameters which influence epithelial outgrowths from cultured human cadaveric limbal explants.

    Science.gov (United States)

    Baylis, Oliver; Rooney, Paul; Figueiredo, Francisco; Lako, Majlinda; Ahmad, Sajjad

    2013-05-01

    Limbal stem cell deficiency is a blinding disease which affects the cornea at the front of the eye. The definitive cure involves replacing the corneal epithelial (limbal) stem cells, for example by transplanting cultured limbal epithelial cells. One method of performing cultures is to grow a sheet of epithelial cells from a limbal explant on human amniotic membrane. The growth of limbal tissue can be variable. The aim of this study is to investigate how different donor and culture factors influence the ex vivo growth of cadaveric limbal explants. Limbal explant cultures were established from 10 different cadaveric organ cultured corneo-scleral discs. The growth rate and the time taken for growth to be established were determined. Statistical analysis was performed to assess correlation between these factors and donor variables including donor age, sex, time from donor death to enucleation, time from enucleation to organ culture storage and duration in organ culture. Growth curves consistently showed a lag phase followed by a steeper linear growth phase. Donor age, time between death and enucleation, and time between enucleation and organ culture were not correlated to the lag time or the growth rate. Time in organ culture had a significant correlation with the duration of lag time (P = 0.003), but no relationship with the linear growth rate. This study shows that an important factor correlating with growth variation is the duration of corneo-scleral tissue in organ culture. Interestingly, donor age was not correlated with limbal explant growth. Copyright © 2012 Wiley Periodicals, Inc.

  12. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  13. Effects of benzo(a)pyrene on telomere length in human bronchial epithelial cells%苯并(a)芘对人支气管上皮细胞端粒长度的影响

    Institute of Scientific and Technical Information of China (English)

    宾萍; 段化伟; 王亚东; 戴宇飞; 牛勇; 刘清君; 陈泓; 刘庆; 郑玉新

    2011-01-01

    Objective To investigate the effects of Benzo(a) pyrene[B(a) P] on telomere length in human bronchial epithelial cells in vitro. Methods Human bronchial epithelial cell lines(16HBE) were treated with B(a) P in vitro. Real-time polymerase chain reaction (RT-PCR) was used to evaluate the telomere length of genomic DNA in cells, and the changes of relative telomere length were marked. The positive control was 4 μg/ml Bleomycin (BLM). Results Compared to the group of 0μmol/L B(a) P, the groups of 1 μmol/L,4μmol/L and positive control group, the telomere length were significantly shorter (P < 0. 05 ), but no significant difference was found between group of 16 μmol/L B(a) P and control. Conclusion The data showed that B(a) P had influence on the telomere length of genomic DNA in 16HBE cells. It might lead to short telomere length in a certain range of dosage.%目的 体外探讨苯并(a)芘[Benzo(a)pyrene,B(a)P]对人支气管上皮细胞端粒长度的影响.方法 应用人支气管上皮细胞株16HBE,给予不同浓度的B(a)P处理,采用定量PCR方法测定细胞全基因组DNA的相对端粒长度,观察细胞全基因组DNA相对端粒长度的变化情况.以4μg/ml博来霉素(Bleomycin,BLM)为阳性对照.结果 与0μmol/L组比较,1和4μmol/L B(a)P染毒组,以及阳性对照组的相对端粒长度较短,差异有统计学意义(P0.05).结论 B(a)P可对人支气管上皮细胞16HBE的全基因组DNA端粒长度产生影响,在一定剂量内会导致细胞全基因组DNA端粒长度缩短.

  14. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Glahn, Felix; Wiese, Jan; Foth, Heidi [Martin-Luther-University, Halle-Wittenberg, Institute of Environmental Toxicology, Halle/Saale (Germany); Schmidt-Heck, Wolfgang; Guthke, Reinhard [Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena (Germany); Zellmer, Sebastian; Gebhardt, Rolf [University of Leipzig, Institute of Biochemistry, Medical Faculty, Leipzig (Germany); Golka, Klaus; Degen, Gisela H.; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany); Hergenroeder, Roland [ISAS, Institute for Analytical Sciences, Dortmund (Germany); Lehmann, Thomas [Translational Centre for Regenerative Medicine, Leipzig (Germany); Hengstler, Jan G. [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany)

    2008-08-15

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15{mu}g/l Cd(II), 25{mu}g/l Co(II) and 550{mu}g/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. (orig.)

  15. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro

    DEFF Research Database (Denmark)

    Papazian, Dick; Wagtmann, Valery R; Hansen, Soren

    2015-01-01

    Background: Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. Objec...

  16. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Science.gov (United States)

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2013-01-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells. PMID:23440124

  17. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  18. Organoid culture systems for prostate epithelial and cancer tissue

    NARCIS (Netherlands)

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    2016-01-01

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material cont

  19. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    Science.gov (United States)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  20. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    Science.gov (United States)

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.

  1. Primary Adult Human Retinal Pigment Epithelial Cell Cultures on Human Amniotic Membranes

    Directory of Open Access Journals (Sweden)

    Singhal Shweta

    2005-01-01

    Full Text Available Purpose: Retinal pigment epithelial (RPE cells grow well on surfaces that provide an extracellular matrix. Our aim was to establish primary adult human RPE cell cultures that retain their epithelial morphology in vitro using human amniotic membrane (hAM as substrate. Materials and Methods: Human cadaver eyeballs (16 were obtained from the eye bank after corneal trephination. RPE cells were harvested by a mechanical dissection of the inner choroid surface (10, group 1 or by b enzymatic digestion using 0.25% Trypsin/0.02% EDTA (6, group 2. The cells were explanted onto de-epithelialized hAM, nourished using DMEM/HAMS F-12 media and monitored for growth under the phase contrast microscope. Cell cultures were characterised by whole mount studies and paraffin sections. Growth data in the two groups were compared using the students′ ′t′ test. Results: Eleven samples (68.75% showed positive cultures with small, hexagonal cells arising from around the explant which formed a confluent and progressively pigmented monolayer. Whole mounts showed closely placed polygonal cells with heavily pigmented cytoplasm and indistinct nuclei. The histologic sections showed monolayers of cuboidal epithelium with variable pigmentation within the cytoplasm. Growth was seen by day 6-23 (average 11.5 days in the mechanical group, significantly earlier ( P Conclusions: Primary adult human RPE cell cultures retain epithelial morphology in vitro when cultured on human amniotic membranes . Mechanical dissection of the inner choroid surface appears to be an effective method of isolating RPE cells and yields earlier growth in cultures as compared to isolation by enzymatic digestion

  2. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether th

  3. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether th

  4. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    NARCIS (Netherlands)

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether

  5. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    Science.gov (United States)

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  6. Subcellular Distribution and Genotoxicity of Silica Nanoparticles in Human Bronchial Epithelial Cells%纳米二氧化硅在人支气管上皮细胞内的亚细胞分布和遗传毒性

    Institute of Scientific and Technical Information of China (English)

    赵光强; 黄云超; 李光剑; 李森; 周永春; 雷玉洁; 陈小波; 杨凯云; 陈颖

    2013-01-01

    Background and objective Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). Methods The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). Results TEM revealed that SiO2 nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). Conclusion The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.%背景与目的 纳米二氧化硅广泛应用于社会生产生活中,肺部是吸入暴露纳米二氧化硅的主要靶器官,因此,二氧化硅对肺部的生物毒性作用引起人们的广泛关注.本研究旨在探讨纳米二氧化硅在人支气管上皮细胞内的亚细胞分布和遗传毒性.方法 应用透射电子显微镜(transmission electron microscope,TEM)观察不同粒径二氧化硅在人支气管上皮细胞(immortalized human bronchial epithelium cells,BEAS-2B)内的亚细胞分布;应用单细胞凝胶电泳检测不同粒径二氧化硅处理BEAS-2B细胞24 h后的DNA损伤,了解不同粒径二氧化硅的遗传毒性作用.结果 透射电镜观察到微米二氧化硅不能进入细胞,纳米二氧化硅赋存在细胞质,纳米二氧化硅导致线粒体、内质网等细胞器损伤.纳米二氧化硅导致比微米二氧化硅更严重的DNA损伤(P<0.05).结论 二氧化硅的粒径决定二氧化硅颗粒物是否能进入细胞及在细胞

  7. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature.

    Science.gov (United States)

    Cerveira, Joana F; Sánchez-Aragó, María; Urbano, Ana M; Cuezva, José M

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H(+)-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects.

  8. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI compromises their respiratory capacity and alters their bioenergetic signature

    Directory of Open Access Journals (Sweden)

    Joana F. Cerveira

    2014-01-01

    Full Text Available Previous studies on the impact of hexavalent chromium [Cr(VI] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI and of their molecular basis, we assessed the impact of a mild Cr(VI exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels. Cells derived from normal human bronchial epithelium (BEAS-2B cell line, the main in vivo target of Cr(VI carcinogenicity, were subjected for 48 h to 1 μM Cr(VI. We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β of the mitochondrial H+-ATP synthase (β-F1-ATPase and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH. The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature upon Cr(VI exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI effects.

  9. Perilla frutescens leaf extract inhibits mite major allergen Der p 2-induced gene expression of pro-allergic and pro-inflammatory cytokines in human bronchial epithelial cell BEAS-2B.

    Directory of Open Access Journals (Sweden)

    Jer-Yuh Liu

    Full Text Available Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2 and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38 and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens.

  10. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  11. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  12. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri

    Directory of Open Access Journals (Sweden)

    Miessen Katrin

    2012-03-01

    Full Text Available Abstract Background Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. Results We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. Conclusions We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  13. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins

    Science.gov (United States)

    Mullins, Stefanie R.; Sameni, Mansoureh; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F.; Moin, Kamiar

    2013-01-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer. To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyperplasia (MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L, reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity-based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression. PMID:23667900

  14. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    Science.gov (United States)

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  15. Reduning on Thymic Stromal Lymphopoietin Secretion in Human Bronchial Epithelial Cells Infected by Respiratory Syncytial Virus in Vitro%热毒宁对RSV感染人支气管上皮细胞分泌TSLP的影响

    Institute of Scientific and Technical Information of China (English)

    蓝丹; 檀卫平; 陈环; 吴葆菁; 麦贤弟; 黄花荣

    2011-01-01

    [ Objective ] To study effects of traditional Chinese medicine Reduning injection on the secretion of TSLP in human bronchial epithelial cell infected by RSV in vitro. [Method] Hep-2 cell lines were used to pack and generate RSV. The RSV infectious titer was determined by TCID50 technique. An NHBE model of RSV infection in vitro was established and identified. First experiment included RSV infection-NHBE group and normal NHBE group. RSV-infected NHBE group was divided into 5 group based on RSV titers ( 1000, 500, 100, 50,and 10 TCID50) in which each group also divided to different incubation hours ( 12 h,24 h,48 h,72 h,96 h,and 120 h). The concentrations of TSLP in the culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA). Second experiment concern the effect of Redunig treatment on TSLP secretion based on cell culture in vitro. According to the way of Reduning delivery, experiments were divided into 3 groups (including precaution, direct deactivation and therapy),accompanying a negative (normal NHBE ) and a positive (NHBE-RSV) control group in which each group divided into 5 different incubation period ( 12 h,24 h,48 h,and 72 h). The concentration of TSLP in the culture supernatants were also determined by ELISA.[Result] The mRNA of RSV was detected in total RNA of NHBE infected with RSV by real-time RT-PCR method, which demonstrated that a model of RSV infection in vitro was established successfully. 1. The concentration of TSLP in NHBE cells supernatants infected by RSV significantly increased, compared with non-RSV. In the same post-inoculation time (12 h, 24 h, 48 h,72 h, 96 h, and 120 h), TSLP level increased obviously with raised RSV titers (P < 0.05 ). According to the same RSV titer( 10, 50,100, 500,and 1000 TCID50), TSLP level increased statistically in series infection time, compared with 12 h group(P < 0.05). 2. The TSLP level of NHBE-RSV-Reduning group and NHBE-RSV-Ribavirin group were evidently lower than NHBE-RSV group

  16. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  17. Splitting culture medium by air-jet and rewetting for the assessment of the wettability of cultured epithelial cell surfaces.

    Science.gov (United States)

    Tanaka, Nobuyuki; Kondo, Makoto; Uchida, Ryohei; Kaneko, Makoto; Sugiyama, Hiroaki; Yamato, Masayuki; Okano, Teruo

    2013-12-01

    This study found that the phenomenon of rewetting after squeezing culture medium varied in different culture conditions for rat oral mucosal epithelial cells. When culture medium covering over cultured cells was squeezed by an air-jet application, the motion of squeezed culture medium was able to be observed by using a commercially available movie camera. Squeezed width on cells cultured in keratinocyte culture medium (KCM), which contained with fetal bovine serum, was one-sixth of that in FBS-free KCM. This result corresponded to the mucous layer staining statuses of cultured cells in both cases; positive in KCM and negative in FBS-free medium. Furthermore, the gene expression of mucous glycoprotein MUC4 in KCM was 100 times higher than that in FBS-free medium, and the expression of MUC4 protein only showed on the apical surface of cells cultured in KCM. The relative gene expression levels of MUC1, 13, 15, and 16 in both the normal and FBS-free medium were found to be no more than one-thirtieth of that of MUC4 in KCM. The main factor of the wettability difference between KCM and FBS-free medium was speculated to be the difference of MUC4 expression between both media. This method can be a simple technique for testing not only the surface wettability but also the mucous formation of cultured cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Ursini, Cinzia Lucia; Cavallo, Delia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Buresti, Giuliana; Casciardi, Stefano; Bellucci, Stefano; Iavicoli, Sergio

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1-40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity.

  19. Differences in Cytotoxic, Genotoxic, and Inflammatory Response of Bronchial and Alveolar Human Lung Epithelial Cells to Pristine and COOH-Functionalized Multiwalled Carbon Nanotubes

    Science.gov (United States)

    Fresegna, Anna Maria; Ciervo, Aureliano; Buresti, Giuliana

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1–40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity. PMID:25147797

  20. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    Directory of Open Access Journals (Sweden)

    Aaron H Fronk

    2016-07-01

    Full Text Available The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

  1. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  2. Amnion-derived mesenchymal stromal cells show a mesenchymal-epithelial phenotype in culture.

    Science.gov (United States)

    König, Julia; Lang, Ingrid; Siwetz, Monika; Fröhlich, Julia; Huppertz, Berthold

    2014-06-01

    The amnionic membrane is a rich source of multipotent mesenchymal stromal cells (hAMSC), which are readily available and show a potential use in regenerative medicine and tissue engineering. Before these cells can be applied clinically, careful characterization is necessary, especially as primary cells are known to change their phenotype in culture. We analyzed the mesenchymal phenotype of hAMSC at different stages after isolation using immunohistochemistry. Shortly after isolation (1 day), 92 % (± 7 %) of the hAMSC expressed the mesenchymal marker vimentin, 2 % (± 1 %) stained for the epithelial marker cytokeratin-7 and 5 % (± 4 %) co-expressed these markers. After 5 days, the double positive cells slightly increased to 7 % (± 3 %), while exclusive expression of cytokeratin-7 or vimentin remained unchanged (1 % ± 2 % and 92 % ± 1 %, respectively). After the first passage, all attached cells were vimentin-positive, while 54 % (± 9 %) co-expressed cytokeratin-7 and vimentin. Thus, we conclude that under culture, hAMSC adopt a hybrid mesenchymal-epithelial phenotype. It is also essential to perform microscopical examination during the first days after isolation to detect contaminations with human amnion-derived epithelial cells in cultures of hAMSC.

  3. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  4. MCP-1 expression by rat type II alveolar epithelial cells in primary culture.

    Science.gov (United States)

    Paine, R; Rolfe, M W; Standiford, T J; Burdick, M D; Rollins, B J; Strieter, R M

    1993-05-15

    Recruitment and activation of mononuclear phagocytes are potentially critical regulatory events for control of pulmonary inflammation. Located at the boundary between the alveolar airspace and the interstitium, alveolar epithelial cells are ideally situated to regulate the recruitment and activation of mononuclear phagocytes through the production of cytokines in response to inflammatory stimulation from the alveolar space. To test this hypothesis, we investigated the production of monocyte chemotactic polypeptide-1 (MCP-1), a protein that is chemotactic for and that activates monocytes, by rat type II alveolar epithelial cells in primary culture. Immunocytochemical staining using anti-murine JE, an antibody recognizing rat MCP-1, demonstrated cell-associated MCP-1 Ag throughout the monolayer. The intensity of staining was increased in response to IL-1 beta. When type II epithelial cells formed a tight monolayer on a filter support, there was polar secretion of MCP-1 Ag into the apical compartment by both control and IL-1-stimulated cells as measured by specific MCP-1 ELISA. Northern blot analysis revealed that IL-1 and TNF-alpha stimulated MCP-1 mRNA expression in a dose-dependent manner, whereas dexamethasone blocked MCP-1 expression by cells stimulated with IL-1. In contrast to previous results using transformed epithelial cell lines, MCP-1 mRNA was induced in these primary cultures directly by stimulation with LPS. These data suggest that alveolar epithelial cells may have an important and previously unrecognized role in the initiation and maintenance of inflammatory processes in the lung by recruiting and activating circulating monocytes through the production of MCP-1.

  5. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model.

    Science.gov (United States)

    Kobayashi, Takeshi; Shiraishi, Atsushi; Hara, Yuko; Kadota, Yuko; Yang, Lujun; Inoue, Tomoyuki; Shirakata, Yuji; Ohashi, Yuichi

    2015-06-01

    Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell

  6. Isolation of mammary epithelial cells from three-dimensional mixed-cell spheroid co-culture.

    Science.gov (United States)

    Xu, Kun; Buchsbaum, Rachel J

    2012-04-30

    While enormous efforts have gone into identifying signaling pathways and molecules involved in normal and malignant cell behaviors(1-2), much of this work has been done using classical two-dimensional cell culture models, which allow for easy cell manipulation. It has become clear that intracellular signaling pathways are affected by extracellular forces, including dimensionality and cell surface tension(3-4). Multiple approaches have been taken to develop three-dimensional models that more accurately represent biologic tissue architecture(3). While these models incorporate multi-dimensionality and architectural stresses, study of the consequent effects on cells is less facile than in two-dimensional tissue culture due to the limitations of the models and the difficulty in extracting cells for subsequent analysis. The important role of the microenvironment around tumors in tumorigenesis and tumor behavior is becoming increasingly recognized(4). Tumor stroma is composed of multiple cell types and extracellular molecules. During tumor development there are bidirectional signals between tumor cells and stromal cells(5). Although some factors participating in tumor-stroma co-evolution have been identified, there is still a need to develop simple techniques to systematically identify and study the full array of these signals(6). Fibroblasts are the most abundant cell type in normal or tumor-associated stromal tissues, and contribute to deposition and maintenance of basement membrane and paracrine growth factors(7). Many groups have used three dimensional culture systems to study the role of fibroblasts on various cellular functions, including tumor response to therapies, recruitment of immune cells, signaling molecules, proliferation, apoptosis, angiogenesis, and invasion(8-15). We have optimized a simple method for assessing the effects of mammary fibroblasts on mammary epithelial cells using a commercially available extracellular matrix model to create three

  7. 支气管上皮-肌上皮癌1例报道%Bronchial epithelial-myoepitholial carcinoma: a case report

    Institute of Scientific and Technical Information of China (English)

    毕利泉; 耿明; 刘晓红; 郑金峰; 王翠翠; 江慧

    2011-01-01

    @@ 上皮-肌上皮癌(epithelial-myoepithelial carcinoma,EMC)是一种低度恶性的涎腺肿瘤,好发于中老年女性,80%发生在腮腺,小涎腺少见[1].发生于支气管的上皮-肌上皮癌是支气管恶性肿瘤中罕见的类型,组织学特征类似于涎腺的上皮-肌上皮癌.肿瘤由伴有梭形细胞、透明细胞或形态类似浆细胞样的肌上皮细胞和不等量的导管上皮组成.

  8. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  9. The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Siân C Piper

    Full Text Available Human Rhinovirus (HRV is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α, interleukin-1beta (IL-1β and interleukin-18 (IL-18 have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses.

  10. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.

    Science.gov (United States)

    Maria, Ola M; Tran, Simon D

    2011-06-01

    Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.

  11. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    Science.gov (United States)

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  12. Quantifying Epithelial Early Common Progenitors from Long-Term Primary or Cell Line Sphere Culture.

    Science.gov (United States)

    Clément, Flora; Zhu, Helen He; Gao, Wei-Qiang; Delay, Emmanuel; Maguer-Satta, Véronique

    2015-11-04

    Here, a protocol to quantify epithelial early common progenitor/stem cells grown as spheres in non-adherent culture conditions is described. This protocol is based on the combination of two functional tests: the sphere assay to maintain and enrich early progenitor/stem cells, and the epithelial colony-forming cells (E-CFC) assay to identify and quantify further differentiated epithelial progenitors. Primary spheres mainly contain progenitors and rare stem/early common progenitor cells while secondary and tertiary spheres contain progenitor cells derived from the early common progenitor/stem cell population maintained through passages and partially differentiated. Spheres are enzymatically and mechanically dissociated; the derived cells are subsequently plated on irradiated NIH-3T3 fibroblasts for further processing, as in the E-CFC assay. The principle of this assay is to quantify the number of epithelial colonies generated by cells present in the different sequential spheres. This assay has therefore been named the early common progenitor-derived colonies assay (ECP-DC).

  13. Three-dimensional culture system can induce expression of casein in immortalized bovine mammary epithelial cells.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, MingMei; Sui, YangNan; Babekir, Haitham Mohammed; Zhao, GuoQi

    2017-05-01

    Primary bovine mammary epithelial cells (BMECs) are not ideal models for long-term studies of lactation mechanisms because these cells in a monolayer culture system cannot be polarized to simulate the physiological functions in vitro. We investigate the effects of different culture models and karyotypes on casein expression in a three-dimensional (3D) culture system. The immortalized cells' karyotypes were analyzed at passages 10, 20, 30 and 40 to detect the effects of chromosome stability. Western blotting examined that whether or not the immortalized cells at passages 5, 10, 20, 30, 40 and 50 could induce expression of casein in a 3D culture system. The proper polarization of the acinar structures was monitored. BMECs were successfully immortalized. The cell karyotype at passage 30 remained at 60 chromosomes and the average value was 57.1 ± 0.40 after passage 40. The polarized protein's levels were up-regulated in 3D culture compared to 2D culture. Expression of αs1, β and κ-casein could be detectable in a passage range in 3D culture. Expression of αs2-casein was undetectable in all experimental groups. However, all casein expressions were barely detectable in traditional 2D culture system. Therefore, 3D culture system is an important tool for the long-term study of lactation mechanisms in vitro. © 2016 Japanese Society of Animal Science.

  14. Comparison of bronchial washing, brushing and biopsy for diagnosis of pulmonary tuberculosis.

    Science.gov (United States)

    Palenque, E; Amor, E; Bernaldo de Quiros, J C

    1987-04-01

    The diagnostic yields of bronchial washings, bronchial brushings and lung biopsy specimens were compared in 50 patients with positive Mycobacterium tuberculosis cultures. The number of positive results obtained with cultures of bronchial brushings was significantly higher than that with bronchial washings (p less than 0.001). The histological study of biopsy lung material improved the rate of immediate or rapid diagnosis of tuberculosis (p less than 0.001).

  15. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Li, Yuan [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Li, Huiqiao [Qujing Center for Disease Control and Prevention, Qujing 655000, Yunnan (China); Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Zhou, Jianwei; Wang, Xinru [The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China)

    2013-01-15

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  16. Physico-chemical characterization of African urban aerosols (Abidjan in Cote d'Ivoire and Cotonou in Benin) and their toxic effects in human bronchial epithelial cells during the dry season 2016.

    Science.gov (United States)

    Adon, Jacques; Liousse, Cathy; Yoboue, Veronique; Baeza, Armelle; Akpo, Aristide; Bahino, Julien; Chiron, Christelle; Galy-Lacaux, Corinne; Keita, Sékou

    2017-04-01

    This study is a contribution to the WP2-DACCIWA program with the aim to characterize particulate pollution on domestic fire site, traffic sites and waste burning site of two West-African capitals (Abidjan, Cote d'Ivoire and Cotonou, Benin) and to study aerosol biological impacts on lung inflammation. Such an impact is still largely unknown, especially for the particles emitted by intense African traffic sources and domestic fires. In this context, fundamental research of this study is centered on the following key scientific question: what is the link between aerosol size differentiated composition and inflammation markers for the main combustion sources prevailing in South West Africa during dry and wet seasons? To tackle this question, intensive campaigns in Abidjan and Cotonou have been conducted in July 2015, January and July 2016, and January 2017. In this paper, we will present our first results for the campaign of January 2016. In terms of aerosol size differentiated composition, main aerosol components (mass, black carbon, organic carbon, water soluble particles ...) were measured. We may notice that PM measured for all the sites is generally higher than WHO norms. Organic carbon and dust particles are the two more important contributors for the ultra-fine and fine particle sizes with more organic carbon in Abidjan and dust particles in Cotonou respectively. In terms of in vitro biological studies on sampled aerosols on these sites, size-fractionated PM from the different sampling sites were compared for their ability to induce a proinflammatory response characterized by the release of the cytokine IL-6 by human bronchial epithelial cells. PM from waste burning site did not induce significant IL-6 release whatever the size fraction whereas PM from domestic fire were the most reactive especially the ultra-fine fraction. Ultra-fine particles from traffic (Abidjan and Cotonou) always induced a dose-dependent IL-6 release. A tentative cross-analysis between

  17. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    Science.gov (United States)

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO2-emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Extracellular matrix-dependent differentiation of rabbit tracheal epithelial cells in primary culture.

    Science.gov (United States)

    Baeza-Squiban, A; Boisvieux-Ulrich, E; Guilianelli, C; Houcine, O; Geraud, G; Guennou, C; Marano, F

    1994-01-01

    The differentiation of tracheal epithelial cells in primary culture was investigated according to the nature of the extracellular matrix used. Cultures obtained by the explant technique were realized on a type I collagen substratum either as a thin, dried coating or as a thick, hydrated gel supplemented with culture medium and serum. These two types of substratum induced distinct cell morphology and cytokeratin expression in the explant derived cells. Where cells are less proliferating (from Day 7 to 10 of culture), differentiation was evaluated by morphologic ultrastructural observations, immunocytochemical detection of cytokeratins, and determination of cytokeratin pattern by biochemical analysis. The epithelium obtained on gel was multilayered, with small, round basal cells under large, flattened upper cells. The determination of the keratin pattern expressed by cells grown on gel revealed an expression of keratin 13, already considered as a specific marker of squamous metaplasia, that diminished with retinoic acid treatment. Present results demonstrated by confocal microscopy that K13-positive cells were large upper cells with a dense keratin network, whereas lower cells were positively stained with a specific monoclonal antibody to basal cells (KB37). Moreover, keratin neosynthesis analysis pointed out a higher expression of K6, a marker of hyperproliferation, on gel than on coating. All these data suggest a differentiation of rabbit tracheal epithelial cells grown on gel toward squamous metaplasia. By contrast, the epithelium observed on coating is nearly a monolayer of very large and spread out cells. No K13-positive cells were observed, but an increase in the synthesis of simple epithelium marker (K18) was detected. These two substrata, similar in composition and different in structure, induce separate differentiation and appear as good tools to explore the mechanisms of differentiation of epithelial tracheal cells.

  19. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    Science.gov (United States)

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  20. [Bronchial asthma pathogenesis and genetic prognosis development].

    Science.gov (United States)

    Balmasova, I P; Sepiashvili, R I; Sepiashvili, Ia R; Malova, E S

    2014-01-01

    The review is dedicated to an actual problem--genetic prognosis of risk of bronchial asthma development that is quite a complex aspect of studies from a methodological viewpoint. Bronchial asthma--heterogeneous disease by both etiology and clinical characteristics. At the same time genetic prognosis is based on the unity of pathogenetic mechanisms of development, though in immunological reactions that are the base of this disease, alternative variants are possible. The aim of this review is carrying out parallels between modern achievements in the field of deciphering trigger mechanisms of bronchial asthma pathogenesis and object of genetic studies based on these mechanisms. Among the examined conceptions--role of epithelial tissue in trigger mechanisms of bronchial asthma, variants of key role of immune system cells, first of all, T-helpers of various types for further development of inflammatory-effector reactions with damage characteristic for this disease. Compliance of contemporary approaches of genetic studies and novel concepts of bronchial asthma pathogenesis is shown.

  1. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  2. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  3. Bovine mammary epithelial cells retain stem-like phenotype in long-term cultures.

    Science.gov (United States)

    Cravero, Diego; Diego, Cravero; Martignani, Eugenio; Eugenio, Martignani; Miretti, Silvia; Silvia, Miretti; Macchi, Elisabetta; Elisabetta, Macchi; Accornero, Paolo; Paolo, Accornero; Baratta, Mario; Mario, Baratta

    2014-10-01

    The detection and characterization of bovine mammary stem cells may give a better understanding of the cyclic characteristic of mammary gland development. In turn, this could potentially offer techniques to manipulate lactation yield and for regenerative medicine. We previously demonstrated that adult stem cells reside in the bovine mammary gland and possess an intrinsic regenerative potential. In vitro maintenance and expansion of this primitive population is a challenging task that could make easier the study of adult mammary stem cells. The aim of this study is to investigate this possibility. Different subpopulations of mammary epithelial cells emerge when they are cultured in two defined culture conditions. Specific cell differentiation markers as cytokeratin 18 (CK18) and cytokeratin 14 (CK14) were expressed with significant differences according to culture conditions. Vimentin, a well-known fibroblast marker was observed to increase significantly (P day 20. In both conditions, after prolonged culture (25 days) a subset of cells still retained regenerative capabilities. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice as shown by the expression of cytokeratin 14 (CK14), cytokeratin 18 (CK18), p63 (a mammary basal cell layer marker) and Epithelial Cell Adhesion Molecule (EpCAM). We also were able to observe the presence of milk proteins signal in these regenerated structures, which is a specific marker of functional mammary alveoli. Progenitor content was also analyzed in vitro through Colony-Forming Cell (CFC) assays with no substantial differences among culture conditions and time points. These results demonstrate that long-term culture of a multipotent cell subpopulation with intrinsic regenerative potential is possible.

  4. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression.

    Science.gov (United States)

    Seriani, Robson; de Souza, Claudia Emanuele Carvalho; Krempel, Paloma Gava; Frias, Daniela Perroni; Matsuda, Monique; Correia, Aristides Tadeu; Ferreira, Márcia Zotti Justo; Alencar, Adriano Mesquita; Negri, Elnara Marcia; Saldiva, Paulo Hilário Nascimento; Mauad, Thais; Macchione, Mariangela

    2016-05-01

    Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes.

  5. Benign segmental bronchial obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Loercher, U.

    1988-09-01

    The benigne segmental bronchial obstruction - mostly discovered on routine chest films - can well be diagnosed by CT. The specific findings in CT are the site of the bronchial obstruction, the mucocele and the localized empysema of the involved segment. Furthermore CT allows a better approach to the underlying process.

  6. Isolation and Culture of Bovine Oviductal Epithelial Cells for Use in the Anatomy and Physiology Laboratory and Undergraduate Research

    Science.gov (United States)

    Way, Amy L.

    2006-01-01

    This article presents methods for the isolation and culture of epithelial cells from the bovine oviduct for use in both research and the teaching laboratory and provides examples of ways that an oviductal cell culture can be incorporated into an undergraduate research program. Cow reproductive tracts are readily available from area butchers, and…

  7. The Anti-Proliferative Effect of Inhibitor of Telomerase on Cultured Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to provide a new method for treating proliferative vitreoretinopathy (PVR), the effects of anti-proliferation and apoptosis induction of inhibitors of telomerase and heat shock protein 90 (Hsp90) on the cultured retinal pigment epithelial (RPE) cells were investigated. The rate of apoptosis cells was measured by using TUNEL on the cultured RPE cells, the co-cultured RPE cells with inhibitor of telomerase (camptothecin) or the co-cultured RPE cells with inhibitor of Hsp90 (geldanamycin). The cell proliferation status was measured in the above three groups by using MTT method. The rate of apoptosis in the RPE cells co-cultured with camptothecin or geldanamycin was increased remarkably (P<0.05). MTT showed the rate of growth inhibition was 8.4 %, 32.3 % and 72.3 % at the concentrations of camptothecin 1 μmol/L, 5 μmol/L, 10 μmol/L, respectively, and 6.5 %, 30.9 %, 71.9 % at the concentrations of geldanamycin 1 μmol/L, 5 μmol/L, 10 μmol/L, respectively. It was concluded that telomerase and Hsp90 can promote the proliferation of the cultured RPE cells, while the inhibitor of them can induce apoptosis and inhibit the growth of the RPE cells.

  8. Mechanisms of aldehyde-induced bronchial reactivity: role of airway epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D. (Department of Environmental Health, University of Cincinnati Medical Center, OH (United States))

    1992-02-01

    To investigate the relative irritant potencies of inhaled aldehydes, guinea pigs were exposed to formaldehyde or acrolein and specific total pulmonary resistance and bronchial reactivity to intravenous acetylcholine were assessed. The mechanisms associated with these responses were investigated by analyzing morphologic and biochemical changes in airway epithelial cells after in vivo and in vitro exposures. Immediately after exposure to formaldehyde or acrolein, specific resistance increased transiently and returned to control values within 30 to 60 minutes. Bronchial hyperreactivity, assessed by the acetylcholine dose necessary to double resistance, increased and became maximal two to six hours after exposure to at least 9 parts per million2 (ppm) formaldehyde or at least 1 ppm acrolein for two hours. The effect of exposure to 3 ppm formaldehyde for two hours was less than the effect of exposure to 1 ppm formaldehyde for eight hours; thus, extended exposures produced a disproportionate heightening of bronchial reactivity. Bronchial hyperreactivity often persisted for longer than 24 hours. Increases in three bronchoconstrictive eicosanoids, prostaglandin F2 alpha, thromboxane B2, and leukotriene C4, occurred immediately after exposure, whereas an influx of neutrophils into lavage fluid occurred 24 hours later. Histological examination of the tracheal epithelium and lamina propria also demonstrated a lack of inflammatory cell infiltration. Treatment with leukotriene synthesis inhibitors and receptor antagonists inhibited acrolein-induced hyperreactivity, supporting a causal role for these compounds in this response. Acrolein also stimulated eicosanoid release from bovine epithelial cells in culture. However, the profile of metabolites formed differed from that found in lavage fluid after in vivo exposure.

  9. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  10. Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells.

    Science.gov (United States)

    Gualtieri, Maurizio; Skuland, Tonje; Iversen, Tore-Geir; Låg, Marit; Schwarze, Per; Bilaničová, Dagmar; Pojana, Giulio; Refsnes, Magne

    2012-11-01

    Amorphous silica nanoparticles (SiNPs, 30 and 50 nm) and rhodamine-coated SiNPs (50 nm) were examined for their ability to induce pro-inflammatory responses and cytotoxicity in BEAS-2B cells under different experimental conditions. The SiNPs formed micrometre-sized agglomerates in the absence of bovine serum albumin (BSA) in the culture medium, whereas with BSA (0.1%) they were much less agglomerated. All the SiNPs induced IL-6 and IL-8 responses, as measured by ELISA and real-time PCR. The responses were more marked without BSA and higher for the rhodamine SiNPs than the plain ones. Rhodamine SiNPs were not taken up by cells during a 3-h exposure, even though cytokine mRNAs were up-regulated. In conclusion, agglomerated SiNPs induced more potent cytokine responses than the non-agglomerated ones; either due to the agglomeration state per se or more conceivably to a change in surface reactivity against cellular targets due to BSA. Furthermore, cytokine expression was up-regulated independently of SiNP uptake.

  11. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts.

    Science.gov (United States)

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell-cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  12. Primary Culture of Alveolar Epithelial Type Ⅱ Cells and Its Bionomic Study

    Institute of Scientific and Technical Information of China (English)

    SHI Xuemei; NI Wang; ZHANG Huilan; XIONG Shengdao; ZHEN Guohua; XIONG Weining; ZHANG Zhenxiang; XU Yongjian; HU Qiongjie; ZHAO Jianping

    2007-01-01

    To establish a better method of primary culture for alveolar epithelial type Ⅱ cells (AEC Ⅱ) and to study its bionomics, alveolar epithelial type Ⅱ cells were isolated by digestion with tryp- sin and collagenase, which were then purified by plated into culture flask coated with rat immu- noglobulin G. The purified AEC Ⅱ were identified by alkaline phosphatase staining, electron mi-croscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expres-sion and transfection characteristics were compared with those of A549 cell line. The results showed that AEC Ⅱ could be isolated by digestion with trysin and collagenase and purified by adhesive pu- rification by using IgG, with a yield of about 2-3×107, and a purity of about 75%-84 %. Cells could be quickly identified with AKP staining. AEC Ⅱ were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC Ⅱ, and AKP staining is simple in cell identification. AEC Ⅱ can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.

  13. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures.

    Science.gov (United States)

    Rose, William A; McGowin, Chris L; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D; Popov, Vsevolod L; Pyles, Richard B

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.

  14. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    Science.gov (United States)

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  15. Changes of Th17 cytokine in human bronchial epithelial cells induced by coke oven emission%焦炉逸散物致支气管上皮细胞 Th17细胞因子改变

    Institute of Scientific and Technical Information of China (English)

    李红丽; 解秋艳; 刘秀玲; 牛勇; 戴宇飞; 郑玉新; 姚林; 段化伟

    2014-01-01

    OBJECTIVE To find the infla mmation bio markers induced by coke oven e missions (COE),we investigated the changes of T helper 17 (Th17 )cytokines in hu man bronchial epithelial (16HBE)cells.METHODS 16HBE cells were exposed to organic extracts of COE collected fro m co-king plant at the concentrations of 5,10 and 20 mg·L -1 for 24 h or 5 d to establish short-term and long-term cell models,respectively.Cell viability was measured by MTT assay and infla mmatory da mage was assessed by lactate dehydrogenase assay (LDH).The cytokines in culture supernatant sa mples was detected by co mmercial hu man Th17 cytokine panel kit.RESULTS COE Can induce infla mmation in COE 20 mg·L -1 group and no expression on IL-17 F and IL-1 β.The concentration of IL-10 was 1 .25 ± 0.54,1 .39 ±0.13 and (1 .90 ±0.73)pg·mL -1 in COE 5,10 and 20 mg·L -1 group showing good con-centration-effect relationship (r=0.98,P <0.05 ).IL-23 expression was found only higher at 10 and 20 mg·L -1 and the concentrations were 3.38 ±3.90 and (1 .74 ±2.00 )pg·mL -1 ,respectively.In 16HBE cells treated by COE for 5 d,elevated expression of IL-17A was found in COE 5 and 10 mg·L -1 group,and there was statistically sigificant difference between COE 10 mg·L -1 and DMSO group (P<0.05).Elevated concentration of IL-17F of 10.2 ±1 1 .78 and (6.79 ±7.84)pg·mL -1 was found in COE 5 and 10 mg·L -1 group.The concentration of IL-10 was 1 .71 ±0.02,1 .49 ±0.25 and (2.82 ± 0.33)pg·mL -1 in COE 5,10 and 20 mg·L -1 group,respectively.We found increased IL-1 βexpression with concentration of 2.72 ±0.62,2.25 ±0.33 and (0.93 ±0.21 )pg·mL -1 in COE 5,10 and 20 mg·L -1 group with negative dose-response relationship.We also found more elevated TNF-αlevels in the 5 d than in the 24 h model with no COE specific relationship.CONCLUSION COE induces expression changes of Th17 cytokines profile in 16HBE cells,including IL-23 and IL-1 βfor early and long-term infla mmation,respectively.IL-10 may be a candidate

  16. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    Science.gov (United States)

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  17. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ji Yeun Kim; Myeong Soo Park; Geun Eog Ji

    2012-01-01

    AIM:TO investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS:Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or inverted systems and were stimulated with heat-killed probiotic bacteria,Bifidobacteriumlactis AD011 (BL),Bifidobacterium bifidum BGN4 (BB),Lactobacillus casei IBS041 (LC),and Lactobacillus acidophilus AD031 (LA),for 12 h.Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent assay and phenotypic analysis of DC was investigated by flow cytometry.RESULTS:BB and LC in single-cultured DC increased the expression of I-Ad,CD86 and CD40 (I-Ad,18.51 vs 30.88,46.11; CD86,62.74 vs 92.7,104.12; CD40,0.67vs 6.39,3.37,P < 0.05).All of the experimental probiotics increased the production of inflammatory cytokines,interleukin (IL)-6 and tumor necrosis factor (TNF)-α.However,in the normal co-culture systems,LC and LA decreased the expression of I-Ad (39.46 vs 30.32,33.26,P < 0.05),and none of the experimental probiotics increased the levels of IL-6 or TNF-α.In the inverted coculture systems,LC decreased the expression of CD40 (1.36 vs-2.27,P < 0.05),and all of the experimental probiotics decreased the levels of IL-6.In addition,BL increased the production of IL-10 (103.8 vs 166.0,P< 0.05) and LC and LA increased transforming growth factor-3 secretion (235.9 vs 618.9,607.6,P < 0.05).CONCLUSION:These results suggest that specific probiotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.

  18. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system.

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhu

    Full Text Available We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM. The cultured pterygial epithelial cells (PECs were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4, which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(PH dehydrogenase (quinone 1 (NQO1, NF-E2-related factor-2 (NRF2 and superoxide dismutases (SOD2. Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6. We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.

  19. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  20. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    Science.gov (United States)

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  1. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells.

    Science.gov (United States)

    Sehrawat, Anuradha; Singh, Shivendra V

    2011-07-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells and suppresses mammary cancer development in a transgenic mouse model. We now show, for the first time, that BITC inhibits epithelial-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell line (PL-45) to BITC resulted in upregulation of epithelial markers (e.g., E-cadherin and/or occludin) with a concomitant decrease in protein levels of mesenchymal markers, including vimentin, fibronectin, snail, and/or c-Met. The BITC-mediated induction of E-cadherin protein was accompanied by an increase in its transcription, whereas BITC-treated MDA-MB-231 cells exhibited suppression of vimentin, snail, and slug mRNA levels. Experimental EMT induced by exposure to TGFβ and TNFα or Rb knockdown in a spontaneously immortalized nontumorigenic human mammary epithelial cell line (MCF-10A) was also partially reversed by BITC treatment. The TGFβ-/TNFα-induced migration of MCF-10A cells was inhibited in the presence of BITC, which was partially attenuated by RNA interference of E-cadherin. Inhibition of MDA-MB-231 xenograft growth in vivo in female athymic mice by BITC administration was associated with an increase in protein level of E-cadherin and suppression of vimentin and fibronectin protein expression. In conclusion, this study reports a novel anticancer effect of BITC involving inhibition of EMT, a process triggered during progression of cancer to invasive state.

  2. Fresh and cultured human lens epithelial cells: an electrophysiological study of cell coupling and membrane properties.

    Science.gov (United States)

    Jacob, T J

    1988-09-01

    Microelectrode studies of fresh human and rabbit lens epithelia revealed stable membrane potentials [VR (human) = -36 mV; VR (rabbit) = -45 mV] and low input resistances [Ri (human) = 10 M omega; Ri (rabbit) = 20 M omega]. Coupling studies, using two voltage microelectrodes, demonstrated that the low input resistance of the fresh epithelial tissue was due to electrotonic coupling, which was found to be extremely labile and sensitive to perfusion of the apical (fibrefacing) surface of the epithelium. The intercellular coupling could be stabilized by raising the calcium concentration of the perfusate. Studies performed on confluent monolayers of cultured human lens epithelial (HLE) cells demonstrated a membrane potential (VR = -33 mV) and input resistance (Ri = 29 M omega) similar to their fresh counterparts. The intercellular coupling of these cells was found to be much more robust. Ultrastructural studies revealed that the apical junction of cultured HLE cells was less complex than that found in fresh tissue, the latter exhibiting multiple interdigitations and folds. The cultured monolayer was dissociated into single cells by a variety of methods and the membrane properties of individual cells were studied. Single cells were found to have a lower membrane potential (-20 to -25 mV) and an input resistance in the range 110-170 M omega, depending on the method of dissociation. Channel blocking and ion replacement studies revealed significant conductance pathways for potassium, sodium and chloride and a cell-attached patch clamp investigation revealed three distinct channel types. Of the two channels with inward currents at the resting potential, one, with a conductance of 25 pS, is identified as a non-selective cation channel, and the other, with a conductance of 14 pS and reversal potential of - 14 mV, is a possible candidate for a chloride channel but has yet to be characterized. A third channel with an outward current at the resting potential is identified as a

  3. [Metastatic bronchial carcinoid tumors].

    Science.gov (United States)

    Bouledrak, K; Walter, T; Souquet, P J; Lombard-Bohas, C

    2016-02-01

    Bronchial carcinoids are uncommon pulmonary neoplasms and represent 1 to 2 % of all lung tumors. In early stage of disease, the mainstay and only curative treatment is surgery. Bronchial carcinoids are generally regarded as low-grade carcinomas and metastatic dissemination is unusual. The management of the metastatic stage is not currently standardized due to a lack of relevant studies. As bronchial carcinoids and in particular their metastatic forms are rare, we apply treatment strategies that have been evaluated in gastrointestinal and pancreatic neuroendocrine tumors. However, bronchial carcinoids have their own characteristic. A specific therapeutic feature of these metastatic tumors is that they require a dual approach: both anti-secretory for the carcinoid syndrome, and anti-tumoral.

  4. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  5. The function of TLR4 in interferon gamma or interleukin-13 exposed and lipopolysaccharide stimulated gingival epithelial cell cultures.

    Science.gov (United States)

    Beklen, A; Sarp, A S; Uckan, D; Tsaous Memet, G

    2014-10-01

    Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.

  6. 单核巨噬细胞在煤焦沥青烟提取物诱导永生化人支气管上皮细胞恶变中的作用%The Effects of monocyte-macrophages on malignant transformation of human bronchial epithelial cells induced by extracts from coal tar pitch

    Institute of Scientific and Technical Information of China (English)

    周凡静; 张少峰; 冯斐斐; 燕贞; 王威; 吴逸明

    2012-01-01

    目的 探讨单核巨噬细胞(THP-1)在煤焦沥青烟提取物(coal tar pitch,CTP)致永生化人支气管上皮细胞(human bronchial epithelial cells,BEAS-2B)恶变过程中的作用及肿瘤坏死因子α(tumor necrosis factor alpha,TNF-α)在该过程中的表达.方法 以THP-1和BEAS-2B为研究对象,设立CTP组、苯并(a)芘[B(a)P]组(阳性对照组)、二甲亚砜对照组(溶剂对照组)、BEAS-2B与THP-1共培养组,建立细胞恶性变模型.应用软琼脂集落形成实验、染色体数目畸变分析、流式细胞仪测定细胞周期中不同培养时期(10、20、30代)细胞的恶变情况,利用ELISA方法测定CTP组及共培养组细胞培养上清中TNF-α的含量.结果 染色体数目异常在实验的早期(10代)已经显现,表现为非整倍体和多倍体比例增加,二倍体数目减少.在第20代:共培养组克隆形成率(17.63‰±0.97‰)明显高于CTP组(13.94‰±0.84‰)和阳性对照组组(12.96‰± 1.62‰),差异有统计学意义(P<0.05);共培养组S期细胞比例(44.49%±0.68%)明显高于CTP组(38.19%±1.26%)和阳性对照组(36.41%±1.19%),差异有统计学意义(P<0.05).共培养组细胞培养上清中TNF-α含量明显高于CTP组,差异有统计学意义(P<0.01).结论 THP-1能够加速CTP诱导的BEAS-2B恶变,增加TNF-α的表达水平.%Objective To study the effects of monocyte-macrophages (THP-1) in malignant transformation of human bronchial epithelial cells (BEAS-2B) cells induced by coal tar pitch (CTP) and the expression of TNF-α in the process of the cell malignant transformation.Methods BEAS-2B cells and THP-1 Cells were divided into four groups:coal tar pitch (CTP) group,benzo(a)pyrene [B(a)P] group,dimethyl sulfoxide (DMSO) group,BEAS-2B and THP-1 co-culture (co-culture group) group.Carcinogenesis model was established.The soft agar colony formation,chromosome aberrations and cell cycle tests were used to detect the cellular malignant transformation.The ELISA

  7. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.;

    2014-01-01

    oligonucleotide arrays. A limited number of 11 transcripts could be identified as potential biomarkers to identify respiratory sensitizers. Three of these transcripts are associated to immune system processes (HSPA5, UPP1, and SEPRINEI). In addition, the transcriptome was screened for transcripts...

  8. Primary culture of intestinal epithelial cells as a potential model for Toxoplasma gondii enteric cycle studies

    Directory of Open Access Journals (Sweden)

    Marcos de Assis Moura

    2009-09-01

    Full Text Available The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.

  9. Effects of Cigarette Smoke Extract on E-cadherin Expression in Cultured Airway Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xi; WU Renling; CHEN Fang; HAO Tianling

    2000-01-01

    To investigate whether the change of E-cadherin (ECD) expression plays a role in the injury and repair of airway epithelial cells (AEC) caused by smoking, porcine AECs were cultured by using an enzyme-dispersed method. After exposure of the AECs to cigarette smoke extract(CSE), the ECD expression in the cells was detected by using immunocytochemistry and in situ hybridization. The results showed that ECD was distributed on the plasma membrane at the cell junctions of AECs. After exposure to 20% CSE, the membranous ECD expression was decreased, the cytoplasmic ECD expression was increased (P<0.01) as the exposure time went on.But the content of ECD mRNA in the AECs did not chang. It suggests that the change of ECD expression is regulated at the posttranslational level and plays a role in the injury and repair of AEC caused by smoking.

  10. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...... tissue sections, were positive for FasL, indicating a discrepancy between RPE cells in vitro and in vivo with regard to this molecule....

  11. Ex vivo organ culture of human hair follicles: a model epithelial-neuroectodermal-mesenchymal interaction system.

    Science.gov (United States)

    Tobin, Desmond J

    2011-01-01

    The development of hair follicle organ culture techniques is a significant milestone in cutaneous biology research. The hair follicle, or more accurately the "pilo-sebaceous unit", encapsulates all the important physiologic processes found in the human body; controlled cell growth/death, interactions between cells of different histologic type, cell differentiation and migration, and hormone responsitivity to name a few. Thus, the value of the hair follicle as a model for biological scientific research goes way beyond its scope for cutaneous biology or dermatology alone. Indeed, the recent and dramatic upturn in interest in hair follicle biology has focused principally on the pursuit of two of biology's holy grails; post-embryonic morphogenesis and control of cyclical tissue activity. The hair follicle organ culture model, pioneered by Philpott and colleagues, ushered in an exceptionally accessible way to assess how cells of epithelial (e.g., keratinocytes), mesenchymal (e.g., fibroblasts), and neuroectodermal (e.g., melanocytes) origin interact in a three-dimensional manner. Moreover, this assay system allows us to assess how various natural and pharmacologic agents affect complex tissues for growth modulation. In this article, I focus on the culture of the human hair follicle mini-organ, discussing both the practical issues involved and some possible research applications of this assay.

  12. 奶牛乳腺上皮细胞的原代培养%Primary Culture of Bovine Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    吴娟; 王凤龙; 王申元

    2009-01-01

    [Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tissue explant method in order to investigate the optimal culture conditions. The morphology observation and identification of the cultured cells were performed by inverted microscope observation, Giemsa staining and cytokeratin immunohistochemistry. [Result] Observed with inverted microscope, most of the bovine mammary epithelial cells were polygonal and displayed typical slabstone-like appearance. As it can be seen from cell staining results, the cell body was big and the nucleus was stained dark blue and was round or oval in shape, with clearly visible nucleoli, generally 2-4 nucleoli. The tissue-specific expression of cytokeratin 14 and cytokeratin 18 genes in mammary epithelial cells was identified by cytokeratin immunohistochemistry. [Conclusion] Primary bovine mammary epithelial cells were successfully cultured in biochemical incubator.

  13. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  14. Combined laser phototherapy and growth factor treatment of bronchial obstruction after lung transplantation.

    Science.gov (United States)

    Hertz, M I; Harmon, K R; Knighton, D R; Cahill, B C; Duvall, A J; Shumway, S J; Bolman, R M

    1991-12-01

    Lung transplantation has resulted in dramatic functional improvement in patients with end-stage pulmonary diseases. Among the complications of lung transplantation are dehiscence and stenosis at the site of the bronchial or tracheal anastomosis. In this case report, we describe a single lung transplant recipient in whom partial bronchial dehiscence, followed by exuberant growth of granulation tissue, resulted in obstruction of the bronchial lumen. After mechanical dilation failed to produce lasting relief of bronchial obstruction, a novel approach to this problem was successfully employed: YAG laser phototherapy was used to remove obstructing granulation tissue, followed by application of a preparation derived from autologous blood platelets to promote epithelialization of the bronchial anastomosis. The bronchus remains patent and fully epithelialized six months after therapy.

  15. Establishment of a Novel Lingual Organoid Culture System: Generation of Organoids Having Mature Keratinized Epithelium from Adult Epithelial Stem Cells

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Kanno, Shohei; Tokuyama, Yoko; Komai, Yoshihiro; Ohe, Shuichi; Yanai, Hirotsugu; Omachi, Taichi; Ueno, Hiroo

    2013-11-01

    Despite the strong need for the establishment of a lingual epithelial cell culture system, a simple and convenient culture method has not yet been established. Here, we report the establishment of a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Histological analyses showed that the generated organoids had both a stratified squamous epithelial cell layer and a stratum corneum. Very recently, we showed via a multicolor lineage tracing method that Bmi1-positive stem cells exist at the base of the epithelial basal layer in the interpapillary pit. Using our new culture system, we found that organoids could be generated by single Bmi1-positive stem cells and that in the established organoids, multiple Bmi1-positive stem cells were generated at the outermost layer. Moreover, we observed that organoids harvested at an early point in culture could be engrafted and maturate in the tongue of recipient mice and that the organoids generated from carcinogen-treated mice had an abnormal morphology. Thus, this culture system presents valuable settings for studying not only the regulatory mechanisms of lingual epithelium but also lingual regeneration and carcinogenesis.

  16. Epstein-Barr virus infection in ex vivo tonsil epithelial cell cultures of asymptomatic carriers.

    NARCIS (Netherlands)

    Pegtel, DM; Middeldorp, J.M.; Thorley-Lawson, DA

    2004-01-01

    Epstein-Barr virus (EBV) is found frequently in certain epithelial pathologies, such as nasopharyngeal carcinoma and oral hairy leukoplakia, indicating that the virus can infect epithelial cells in vivo. Recent studies of cell lines imply that epithelial cells may also play a role in persistent EBV

  17. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  18. Isolation, cryopreservation and culture of human amnion epithelial cells for clinical applications.

    Science.gov (United States)

    Murphy, Sean V; Kidyoor, Amritha; Reid, Tanya; Atala, Anthony; Wallace, Euan M; Lim, Rebecca

    2014-12-21

    Human amnion epithelial cells (hAECs) derived from term or pre-term amnion membranes have attracted attention from researchers and clinicians as a potential source of cells for regenerative medicine. The reason for this interest is evidence that these cells have highly multipotent differentiation ability, low immunogenicity, and anti-inflammatory functions. These properties have prompted researchers to investigate the potential of hAECs to be used to treat a variety of diseases and disorders in pre-clinical animal studies with much success. hAECs have found widespread application for the treatment of a range of diseases and disorders. Potential clinical applications of hAECs include the treatment of stroke, multiple sclerosis, liver disease, diabetes and chronic and acute lung diseases. Progressing from pre-clinical animal studies into clinical trials requires a higher standard of quality control and safety for cell therapy products. For safety and quality control considerations, it is preferred that cell isolation protocols use animal product-free reagents. We have developed protocols to allow researchers to isolate, cryopreserve and culture hAECs using animal product-free reagents. The advantage of this method is that these cells can be isolated, characterized, cryopreserved and cultured without the risk of delivering potentially harmful animal pathogens to humans, while maintaining suitable cell yields, viabilities and growth potential. For researchers moving from pre-clinical animal studies to clinical trials, these methodologies will greatly accelerate regulatory approval, decrease risks and improve the quality of their therapeutic cell population.

  19. Organochlorine pesticides induce epithelial to mesenchymal transition of human primary cultured hepatocytes.

    Science.gov (United States)

    Zucchini-Pascal, Nathalie; Peyre, Ludovic; de Sousa, Georges; Rahmani, Roger

    2012-11-01

    Persistent organic pollutants (POPs) are a group of organic or chemicals that adversely affect human health and are persistent in the environment. These highly toxic compounds include industrial chemicals, pesticides such as organochlorines, and unwanted wastes such as dioxins. Although studies have described the general toxicity effects of organochlorine pesticides, the mechanisms underlying its potential carcinogenic effects in the liver are not well understood. In this study, we analyzed the effect of three organochlorine pesticides (dichlorodiphenyltrichloroethane, heptachlore and endosulfan) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the epithelial to mesenchymal transition (EMT) in primary cultured human hepatocytes. We found that these compounds modified the hepatocyte phenotype, inducing cell spread, formation of lamellipodia structures and reorganization of the actin cytoskeleton in stress fibers. These morphological alterations were accompanied by disruption of cell-cell junctions, E-cadherin repression and albumin down-regulation. Interestingly, these characteristic features of dedifferentiating hepatocytes were correlated with the gain of expression of various mesenchymal genes, including vimentin, fibronectin and its receptor ITGA5. These various results show that organochlorines and TCDD accelerate cultured human hepatocyte dedifferentiation and EMT processes. These events could account, at least in part, for the carcionogenic and/or fibrogenic activities of these POPs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparison of bronchial brushing and sputum in detection of pediatric pulmonary tuberculosis.

    Science.gov (United States)

    Chen, Qiao-Pei; Ren, Shi-Feng; Wang, Xin-Feng; Wang, Mao-Shui

    2016-01-27

    The retrospective study aimed to evaluate the diagnostic value of bronchial brushing and sputum using acid fast bacilli smear, mycobacterial culture and real-time PCR in detection of pediatric pulmonary tuberculosis, sensitivity and specificity of bronchial brushing and sputum examined by the three methods were calculated and compared to each other. Data showed there were no significant difference in sensitivity between bronchial brushing and matched sputum using each method. But the specificity of real-time PCR on bronchial brushing was lower than on sputum. Compared with bronchial brushing, sputum was better specimen in detection of pediatric pulmonary tuberculosis.

  1. Scoliosis and bronchial obstruction.

    Science.gov (United States)

    Qiabi, Mehdi; Chagnon, Karine; Beaupré, Alain; Hercun, Julian; Rakovich, George

    2015-01-01

    Severe scoliosis may have a significant effect on respiratory function. The effect is most often restrictive due to severe anatomical distortion of the chest, leading to reduced lung volumes, limited diaphragmatic excursion and chest wall muscle inefficiency. Bronchial compression by the deformed spine may also occur but is more unusual. Management options include a conservative approach using bracing and physiotherapy in mild cases, as well as surgical correction of the scoliosis in more severe cases. Bronchial stenting has also been used successfully as an alternative to surgical correction, and in cases in which spinal surgery was either unsuccessful or not feasible. The authors present a case involving a 52-year-old woman who exhibited symptomatic compression of the bronchus intermedius by severe residual scoliosis despite previous corrective surgery. She was treated with an indwelling bronchial stent.

  2. Scoliosis and Bronchial Obstruction

    Directory of Open Access Journals (Sweden)

    Mehdi Qiabi

    2015-01-01

    Full Text Available Severe scoliosis may have a significant effect on respiratory function. The effect is most often restrictive due to severe anatomical distortion of the chest, leading to reduced lung volumes, limited diaphragmatic excursion and chest wall muscle inefficiency. Bronchial compression by the deformed spine may also occur but is more unusual. Management options include a conservative approach using bracing and physiotherapy in mild cases, as well as surgical correction of the scoliosis in more severe cases. Bronchial stenting has also been used successfully as an alternative to surgical correction, and in cases in which spinal surgery was either unsuccessful or not feasible. The authors present a case involving a 52-year-old woman who exhibited symptomatic compression of the bronchus intermedius by severe residual scoliosis despite previous corrective surgery. She was treated with an indwelling bronchial stent.

  3. LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas.

    Science.gov (United States)

    Yin, Jia; Yu, Fu-Shin X

    2010-04-01

    Purpose. Patients with diabetes are at higher risk for delayed corneal reepithelialization and infection. Previous studies indicated that high glucose (HG) impairs epidermal growth factor receptor (EGFR) signaling and attenuates ex vivo corneal epithelial wound healing. The authors investigated the effects of antimicrobial peptide LL-37 on HG-attenuated corneal epithelial EGFR signaling and wound closure. Methods. Human corneal epithelial cells (HCECs) were stimulated with LL-37. Heparin-binding EGF-like growth factor (HB-EGF) shedding was assessed by measuring the release of alkaline phosphatase (AP) in a stable HCEC line expressing HB-EGF-AP. Activation of EGFR, phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinases 1/2 (ERK1/2) was determined by Western blot analysis. Corneal epithelial wound closure was assessed in cultured HCECs and porcine corneas. LL-37 expression was determined by immune dot blot. Results. LL-37 induced HB-EGF-AP release and EGFR activation in a dose-dependent manner. LL-37 prolonged EGFR signaling in response to wounding. LL-37 enhanced the closure of a scratch wound in cultured HCECs and partially rescued HG-attenuated wound healing in an EGFR- and a PI3K-dependent manner and restored HG-impaired EGFR signaling in cultured porcine corneas. HG attenuated wounding-induced LL-37 expression in cultured HCECs. Conclusions. LL-37 is a tonic factor promoting EGFR signaling and enhancing epithelial wound healing in normal and high glucose conditions. With both antimicrobial and regenerative capabilities, LL-37 may be a potential therapeutic for diabetic keratopathy.

  4. Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems.

    Science.gov (United States)

    Jordaens, L; Arias-Alvarez, M; Pintelon, I; Thys, S; Valckx, S; Dezhkam, Y; Bols, P E J; Leroy, J L M R

    2015-10-01

    Elevated non-esterified fatty acids (NEFAs) have been recognized as an important link between lipolytic metabolic conditions and impaired fertility in high-yielding dairy cows. However, NEFA effects on the oviductal micro-environment currently remain unknown. We hypothesize that elevated NEFAs may contribute to the complex pathology of subfertility by exerting a negative effect on bovine oviductal epithelial cell (BOEC) physiology. Therefore, the objectives of this study were to elucidate direct NEFA effects on BOEC physiology in three different in vitro cell culture systems. Bovine oviductal epithelial cells (four replicates) were mechanically isolated, pooled, and cultured as conventional monolayers, as explants, and in a polarized cell culture system with Dulbecco's modified Eagle's medium/F12-based culture medium. Bovine oviductal epithelial cells were exposed to an NEFA mixture of oleic, stearic, and palmitic acids for 24 hours at both physiological and pathologic concentrations. A control (0 μM NEFA) and a solvent control (0 μM NEFA + 0.45% ethanol) group were implemented. Bovine oviductal epithelial cells physiology was assessed by means of cell number and viability, a sperm binding assay, transepithelial electric resistance (TER), and a wound-healing assay. Bovine oviductal epithelial cell morphology was assessed by scanning electron microscopy on cell polarity, presence of microvilli and cilia, and monolayer integrity. Bovine oviductal epithelial cell number was negatively affected by increasing NEFAs, however, cell viability was not. Sperm binding affinity significantly decreased with increasing NEFAs and tended (P = 0.051) to be more affected by the direction of NEFA exposure in the polarized cell culture system. The absolute TER increase after NEFA exposure in the control (110 ± 11 Ω.cm(2)) was significantly higher than that in all the other treatments and was also different depending on the exposure side. Bidirectional exposed monolayers were even

  5. Cultivated vaginal microbiomes alter HIV-1 infection and antiretroviral efficacy in colonized epithelial multilayer cultures.

    Directory of Open Access Journals (Sweden)

    Richard B Pyles

    Full Text Available There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1. The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.

  6. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    Directory of Open Access Journals (Sweden)

    Lindsay M Godin

    Full Text Available The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs and lung fibroblasts (hLFs. Native aged (1 year lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  7. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    Science.gov (United States)

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  8. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine.

    Science.gov (United States)

    Chi, Meiying; Yi, Banya; Oh, Seunghan; Park, Dong-June; Sung, Jong Hwan; Park, Sungsu

    2015-01-01

    Physiological and morphological properties of the human intestine cannot be accurately mimicked in conventional culture devices such as well plates and petri dishes where intestinal epithelial cells form a monolayer with loose contacts among cells. Here, we report a novel microfluidic cell culture device (μFCCD) that can be used to culture cells as a human intestinal model. This device enables intestinal epithelial cells (Caco-2) to grow three-dimensionally on a porous membrane coated with fibronectin between two polydimethylsiloxane (PDMS) layers. Within 3 days, Caco-2 cells cultured in the μFCCD formed villi- and crypt-like structures with small intercellular spaces, while individual cells were tightly connected to one another through the expression of the tight junction protein occludin, and were covered with a secreted mucin, MUC-2. Caco-2 cells cultured in the μFCCD for 3 days were less susceptible to bacterial attack than those cultured in transwell plates for 21 days. μFCCD-cultured Caco-2 cells also displayed physiologically relevant absorption and paracellular transport properties. These results suggest that our intestinal model more accurately mimics the morphological and physiological properties of the intestine in vivo than the conventional transwell culture model.

  9. Bronchial malignant melanoma.

    Science.gov (United States)

    Weshler, Z; Sulkes, A; Kopolovitch, J; Leviatan, A; Shifrin, E

    1980-01-01

    We describe a case of malignant melanoma presenting initially as an endobronchial lesion located in the left main bronchus causing total atelectasis. This resolved with radiation therapy. Widespread metastases developed shortly thereafter. The differential diagnosis of primary and metastatic bronchial malignant melanoma is discussed. Other isolated case reports are reviewed.

  10. Reflexology and bronchial asthma

    DEFF Research Database (Denmark)

    Brygge, T; Heinig, J H; Collins, P

    2001-01-01

    Many asthma patients seek alternative or adjunctive therapies. One such modality is reflexology, whereby finger pressure is applied to certain parts of the body. The aim of the study was to examine the popular claim that reflexology treatment benefits bronchial asthma. Ten weeks of active...

  11. Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells.

    Science.gov (United States)

    Yamaya, Mutsuo; Nishimura, Hidekazu; Nadine, Lusamba Kalonji; Ota, Chiharu; Kubo, Hiroshi; Nagatomi, Ryoichi

    2014-04-01

    The mucolytic drug ambroxol hydrochloride reduces the production of pro-inflammatory cytokines and the frequency of exacerbation in patients with chronic obstructive pulmonary disease (COPD). However, the inhibitory effects of ambroxol on rhinovirus infection, the major cause of COPD exacerbations, have not been studied. We examined the effects of ambroxol on type 14 rhinovirus (RV14) infection, a major RV group, in primary cultures of human tracheal epithelial cells. RV14 infection increased virus titers and cytokine content in the supernatants and RV14 RNA in the cells. Ambroxol (100 nM) reduced RV14 titers and cytokine concentrations of interleukin (IL)-1β, IL-6 and IL-8 in the supernatants and RV14 RNA in the cells after RV14 infection, in addition to reducing susceptibility to RV14 infection. Ambroxol also reduced the expression of intercellular adhesion molecule-1 (ICAM-1), the receptor for RV14, and the number of acidic endosomes from which RV14 RNA enters the cytoplasm. In addition, ambroxol reduced the activation of the transcription factor nuclear factor kappa B (NF-κB) in the nucleus. These results suggest that ambroxol inhibits RV14 infection partly by reducing ICAM-1 and acidic endosomes via the inhibition of NF-κB activation. Ambroxol may modulate airway inflammation by reducing the production of cytokines in rhinovirus infection.

  12. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  13. Typhoid fever as a triggering factor in acute and intractable bronchial asthma attack.

    Science.gov (United States)

    Wardhana; Surachmanto, Eko E; Datau, E A

    2013-10-01

    Typhoid fever is an enteric infection caused by Salmonella typhi. In Indonesia, typhoid fever is endemic with high incidence of the disease. In daily practice we frequently have patients with bronchial asthma, and it is becoming worse when these patients get typhoid fever. After oral ingestion, Salmonella typhi invades the the intestine mucosa after conducted by microbial binding to epithelial cells, destroying the microfold cells (M cell) then passed through the lamina propria and detected by dendritic cells (DC) which express a variety of pathogen recognition receptors on the surfaces, including Toll-Like Receptor (TLR). expressed on macrophages and on intestinal epithelial cells inducing degradation of IB, and translocation of NF-B (Nuclear Factor-Kappa Beta). This process initiates the induction of pro-inflammatory gene expression profile adhesion molecules, chemokines, adhesion molecules, and other proteins that induce and perpetuate the inflammation in host cells then will induce acute ant intractable attack of bronchial asthma. The role of typhoid fever in bronchial asthma, especially in persons with acute attack of bronchial asthma, is not well understood. In this article, we will discuss the role of typhoid fever in the bronchial asthma patients which may cause bronchial asthma significantly become more severe even triggering the acute and intractable attack of bronchial asthma. This fact makes an important point, to treat completely the typhoid fever in patients with bronchial asthma.

  14. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by ...... of inflammatory ocular diseases such as uveitis and age-related macular degeneration. --------------------------------------------------------------------------------...

  15. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentratio...

  16. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentratio...

  17. Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro.

    Science.gov (United States)

    Yeste, M; Lloyd, R E; Badia, E; Briz, M; Bonet, S; Holt, W V

    2009-07-01

    Oviductal epithelial cell (OEC) co-culture prolongs sperm viability and motility in vitro in a number of species including humans and horses. This study has sought to determine the effects of homologous OEC co-culture on boar sperm function. To determine whether the effects on spermatozoa were specifically caused by co-culture with or by OEC secretions, or by both factors together, a number of co-culture and cell-conditioned medium (CM) experiments were conducted. Firstly, Percoll-washed spermatozoa were co-cultured with OECs and pig kidney epithelial (LLC-PK1) cells, and in medium without cells. Secondly, Percoll-washed spermatozoa were incubated with CM derived from both OECs and LLC-PK1 cells and in unconditioned medium. A number of sperm function parameters were assessed after 5, 30, 60, 90, 120, and 180 min, and 24h of co-culturing or incubation with CM. Of all the sperm function parameters investigated, the percentage (%) viability data yielded the most interesting results. OECs (mean+/-S.E.M.; 31.2+/-1.10) were better than LLC-PK1 cells (24.3+/-0.93) at prolonging the viability of unbound spermatozoa after 24h of co-culturing (Pcells (53.5+/-1.43; Psperm function parameters, e.g., capacitation and motility, were also influenced by OEC co-culturing and incubation with CM, although to a lesser degree. In conclusion, porcine homologous OEC co-culture and CM incubation specifically affect sperm function. However, we propose that it is OEC co-culturing, rather than OEC-CM, that has the greater influence.

  18. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...... sensitive to amiloride but insensitive to bumetanide. As compared with the trachea, the bronchial (absorptive) epithelium is characterized by 1) a large amiloride-sensitive cellular conductance and 2) a relatively depolarized basolateral membrane. We conclude that this primary cell culture technique...... matrices, and maintained in serum-free, hormone-supplemented media. Transepithelial and intracellular studies showed that both the tracheal and bronchial culture preparations exhibited bioelectric parameters quantitatively similar to those of intact tissues. Similar to the native tissue, the tracheal...

  19. Phospholipase cε, an effector of ras and rap small GTPases, is required for airway inflammatory response in a mouse model of bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Tatsuya Nagano

    Full Text Available BACKGROUND: Phospholipase Cε (PLCε is an effector of Ras and Rap small GTPases and expressed in non-immune cells. It is well established that PLCε plays an important role in skin inflammation, such as that elicited by phorbol ester painting or ultraviolet irradiation and contact dermatitis that is mediated by T helper (Th 1 cells, through upregulating inflammatory cytokine production by keratinocytes and dermal fibroblasts. However, little is known about whether PLCε is involved in regulation of inflammation in the respiratory system, such as Th2-cells-mediated allergic asthma. METHODS: We prepared a mouse model of allergic asthma using PLCε+/+ mice and PLCεΔX/ΔX mutant mice in which PLCε was catalytically-inactive. Mice with different PLCε genotypes were immunized with ovalbumin (OVA followed by the challenge with an OVA-containing aerosol to induce asthmatic response, which was assessed by analyzing airway hyper-responsiveness, bronchoalveolar lavage fluids, inflammatory cytokine levels, and OVA-specific immunoglobulin (Ig levels. Effects of PLCε genotype on cytokine production were also examined with primary-cultured bronchial epithelial cells. RESULTS: After OVA challenge, the OVA-immunized PLCεΔX/ΔX mice exhibited substantially attenuated airway hyper-responsiveness and broncial inflammation, which were accompanied by reduced Th2 cytokine content in the bronchoalveolar lavage fluids. In contrast, the serum levels of OVA-specific IgGs and IgE were not affected by the PLCε genotype, suggesting that sensitization was PLCε-independent. In the challenged mice, PLCε deficiency reduced proinflammatory cytokine production in the bronchial epithelial cells. Primary-cultured bronchial epithelial cells prepared from PLCεΔX/ΔX mice showed attenuated pro-inflammatory cytokine production when stimulated with tumor necrosis factor-α, suggesting that reduced cytokine production in PLCεΔX/ΔX mice was due to cell-autonomous effect of

  20. Phospholipase cε, an effector of ras and rap small GTPases, is required for airway inflammatory response in a mouse model of bronchial asthma.

    Science.gov (United States)

    Nagano, Tatsuya; Edamatsu, Hironori; Kobayashi, Kazuyuki; Takenaka, Nobuyuki; Yamamoto, Masatsugu; Sasaki, Naoto; Nishimura, Yoshihiro; Kataoka, Tohru

    2014-01-01

    Phospholipase Cε (PLCε) is an effector of Ras and Rap small GTPases and expressed in non-immune cells. It is well established that PLCε plays an important role in skin inflammation, such as that elicited by phorbol ester painting or ultraviolet irradiation and contact dermatitis that is mediated by T helper (Th) 1 cells, through upregulating inflammatory cytokine production by keratinocytes and dermal fibroblasts. However, little is known about whether PLCε is involved in regulation of inflammation in the respiratory system, such as Th2-cells-mediated allergic asthma. We prepared a mouse model of allergic asthma using PLCε+/+ mice and PLCεΔX/ΔX mutant mice in which PLCε was catalytically-inactive. Mice with different PLCε genotypes were immunized with ovalbumin (OVA) followed by the challenge with an OVA-containing aerosol to induce asthmatic response, which was assessed by analyzing airway hyper-responsiveness, bronchoalveolar lavage fluids, inflammatory cytokine levels, and OVA-specific immunoglobulin (Ig) levels. Effects of PLCε genotype on cytokine production were also examined with primary-cultured bronchial epithelial cells. After OVA challenge, the OVA-immunized PLCεΔX/ΔX mice exhibited substantially attenuated airway hyper-responsiveness and broncial inflammation, which were accompanied by reduced Th2 cytokine content in the bronchoalveolar lavage fluids. In contrast, the serum levels of OVA-specific IgGs and IgE were not affected by the PLCε genotype, suggesting that sensitization was PLCε-independent. In the challenged mice, PLCε deficiency reduced proinflammatory cytokine production in the bronchial epithelial cells. Primary-cultured bronchial epithelial cells prepared from PLCεΔX/ΔX mice showed attenuated pro-inflammatory cytokine production when stimulated with tumor necrosis factor-α, suggesting that reduced cytokine production in PLCεΔX/ΔX mice was due to cell-autonomous effect of PLCε deficiency. PLCε plays an important

  1. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    Science.gov (United States)

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  2. Concise review: transplantation of cultured oral mucosal epithelial cells for treating limbal stem cell deficiency-current status and future perspectives.

    Science.gov (United States)

    Utheim, Tor Paaske

    2015-06-01

    A number of diseases and external factors can deplete limbal stem cells, causing pain and visual loss. Ten years have passed since the first transplantation of cultured oral mucosal epithelial cells in humans, representing the first autologous cell-based therapy for severe bilateral limbal stem cell deficiency. Its steady increase in popularity since then can be attributed to the accumulating evidence of its efficacy in reverting limbal stem cell deficiency. In this review, the focus is on clinical, and to a lesser degree laboratory, features of cultured oral mucosal epithelial transplants over the past 10 years. Comparisons with other available technologies are made. Avenues for research to stimulate further improvements in clinical results and allow worldwide distribution of limbal stem cell therapy based on oral mucosal cells are discussed. These include storage and transportation of cultured oral mucosal epithelial sheets and in vivo culture of oral mucosal epithelial cells.

  3. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway.

    Science.gov (United States)

    Xue, Di; Ma, Yan; Li, Min; Li, Yanan; Luo, Haixia; Liu, Xiaoming; Wang, Yujiong

    2015-01-15

    Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.

  4. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response

    NARCIS (Netherlands)

    Peters, S.J.A.C.; Vanhaecke, T.; Papeleu, P.; Rogiers, V.; Haagsman, H.P.; Norren, van K.

    2010-01-01

    Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6- stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CCRLEC), a collagen type

  5. Transforming Growth Factor-β Expression Induced by Rhinovirus Infection in Respiratory Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Rhinovirus infection of the lower airways is now a recognized disease, associated with bronchiolitis and asthma. The bronchial epithelial cells are the host cells when rhinovirus infection occurs in the airway. It was hypothesized that a pro-fibrotic growth factor response may occur in these infected cells,leading to production of a key transforming growth factor, TGF-β-1. Bronchial epithelial cells were inoculated with human rhinovirus and compared at day 1, 3 and 5 to control non-infected cells. Cell culture supernatant fluid and cellular RNA were isolated. The amount of released TGF-β protein was measured by enzyme-linked immunosorbent assay (ELISA). Expression of TGF-β at the level of transcription was measured by polymerase chain reaction (PCR) and gel electrophoresis. The results show that at all time points studied, TGF-β production is greater in the infected cells, as demonstrated by ELISA (P<0.05) and by semiquantitative PCR analysis. It was concluded that bronchial epithelial cells infected with common cold virus and rhinovirus, showed higher levels of TGF-β. The production of TGF-β may be indicative of a normal repair mechanism to counter inflammation, or in the setting of persistent asthma, could potentially lead to increased fibrosis and collagen deposition.

  6. Bronchial Thermoplasty in Asthma

    Directory of Open Access Journals (Sweden)

    Wayne Mitzner

    2006-01-01

    Full Text Available In this review we discuss the potential of a new procedure, termed Bronchial Thermoplasty to prevent serious consequences resulting from excessive airway narrowing. The most important factor in minimizing an asthmatic attack is limiting the degree of smooth muscle shortening. The premise that airway smooth muscle can be either inactivated or obliterated without any long-term alteration of other lung tissues, and that airway function will remain normal, albeit with reduced bronchoconstriction, has now been demonstrated in dogs, a subset of normal subjects, and mild asthmatics. Bronchial Thermoplasty may thus develop into a useful clinical procedure to effectively impair the ability for airway smooth muscle to reach the levels of pathologic narrowing that characterizes an asthma attack. It may also enable more successful treatment of asthma patients who are unresponsive to more conventional therapies. Whether this will remain stable for the lifetime of the patient still remains to be determined, but at the present time, there are no indications that the smooth muscle contractility will return. This successful preliminary experience showing that Bronchial Thermoplasty could be safely performed in patients with asthma has led to an ongoing clinical trial at a number of sites in Europe and North America designed to examine the effectiveness of this procedure in subjects with moderately severe asthma.

  7. 25羟维生素D3对支气管上皮细胞维生素D受体表达及分布的影响%Effect of 25-hydroxyvitamin D3 on vitamin D receptor expression and distribution in human bronchial epithelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    董航明; 赵海金; 刘来昱; 梁振宇; 吕燕华; 蔡绍曦

    2012-01-01

    Objective To evaluate the effect of 25-hydroxyvitamin D5 on the expression and distribution of vitamin D receptor in normal human bronchial epithelial cells. Methods MTT assay was used to assess the "viability of human airway epithelial cell line 16HBE following a 24-h exposure to different concentrations of 25-hydroxyvitamin D3. Real-time quantitative PCR, Western blotting, and immunofluorescence assay were used to observe the expression and distribution of vitamin D receptor in the cells following the exposure. Results Compared with the control cells, 16HBE cells exposed to different concentrations of 25-hydroxyvitamin D3 exhibited no significantly increase in the expression or distribution of vitamin D receptor. Conclusion The influence of 25-hydroxyvitamin D3 on bronchial epithelial cells might be independent of the expression and translocation of vitamin D receptor.%目的 探讨25羟维生素D3对人正常气道上皮维生素D受体表达及分布的影响.方法 选取正常人支气管上皮细胞系16HBE为研究对象,MTT法分别检测不同浓度25羟维生素D3对细胞活力的影响;实验组分为对照组和不同浓度25羟维生素D3处理组.各处理因素作用细胞时间为24 h.用实时荧光定量PCR、Western blot、免疫荧光法观测各处理组维生素D受体(VDR)mRNA及蛋白表达、分布的情况.结果 与对照组相比,各个不同处理浓度的25羟维生素D3对VDR的表达量及分布均无显著增加(P>0.05).结论 25羟维生素D3对支气管上皮细胞的影响可能并不依赖于VDR的表达及转位.

  8. [Bronchial morphologic modification in asthma].

    Science.gov (United States)

    Cataldo, D; Louis, R; Godon, A; Munaut, C; Noël, A; Foidart, J M; Bartsch, P

    2000-07-01

    Asthma is an inflammatory disease of the airways clinically characterised by recurrent bronchial obstructions at least partially reversible. Recent epidemiologic data suggest that asthmatics have an increased rate of decrease of their expiratory volumes during life. This irreversible lung function impairment is associated with fundamental structural changes of the bronchial wall in terms of conjunctive tissue and smooth muscle composition. We describe these changes and explore the different mechanisms proposed to explain these structural modifications. We also review their consequences in terms of bronchial physiology and their potential influence on bronchial hyperresponsiveness.

  9. Virus Infection-Induced Bronchial Asthma Exacerbation

    Directory of Open Access Journals (Sweden)

    Mutsuo Yamaya

    2012-01-01

    Full Text Available Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs, leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.

  10. Leukocyte peroxidase and leptin: an associated link of glycemic tolerance and bronchial asthma?

    OpenAIRE

    2010-01-01

    Sergio ParcoImmunopathology Unit, Laboratory of the Department of Medicine, Children’s Hospital, IRCCS Burlo Garofolo, Trieste, ItalyAbstract: Recent observations suggest the presence of an interaction between leptin and the inflammatory system during bronchial asthma. Although there is evidence of a positive association between asthma and obesity in adults and children, little is yet known about the role of serum leptin, as a potential mediator for bronchial epithelial homeostasis,...

  11. Bovine Oviduct Epithelial Cells Dedifferentiate Partly in Culture, While Maintaining their Ability to Improve Early Embryo Development Rate and Quality.

    Science.gov (United States)

    Schmaltz-Panneau, B; Locatelli, Y; Uzbekova, S; Perreau, C; Mermillod, P

    2015-10-01

    There are convincing arguments to suggest that the success of early reproductive events is reliant on a satisfactory dialogue between gametes-embryo and the oviduct epithelium. The aim of this study was to develop and characterize an in vitro model to study these interactions. Cattle zygotes produced in vitro were cultured in either SOF or TCM-199 in the presence or absence of bovine oviduct cell monolayers (BOEC), under 20% or 5% O2 . The embryonic development rate and its quality (cell numbers, cryosurvival) were evaluated, as were the BOEC contents in 11 candidate transcripts (real-time PCR) at different time points. A BOEC co-culture did indeed increase the rate of development in both media under 5% O2 (41 vs 27% and 28 vs 10% of Day 8 blastocysts in SOF and TCM-199, respectively; p culture, although mRNA levels of OGP, C3, PGR and ESR2 were clearly reduced, suggesting a dedifferentiation of BOEC during culture. However, SSP1 and GPX4 transcripts were slightly increased during culture, this rise becoming significant by the end of the culture period. In conclusion, our co-culture system with bovine oviduct epithelial cells used for the development of bovine zygotes produced in vitro enhanced blastocyst formation and above all the quality of the resulting embryos, which was associated with specific transcriptomic changes. © 2015 Blackwell Verlag GmbH.

  12. Growth Inhibition, Induction of Apoptosis by Green Tea Constituent (-)-Epigallocatechin-3-gallate in Cultured Rabbit Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Wenyong Huang; Shaozhen Li; Junwen Zeng; Yizhi Liu; Mingxing Wu; Ming Zhang

    2000-01-01

    Purpose: To evaluate effect of green tea extract (-)-Epigallocatechin-3-gallate (EGCG)in cultured rabbit lens epithelial cells in order to pave a new way to postcapsular opacity (PCO) prevention.Methods: Cell survival rate was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) coloimetric assay. Cell apoptosis was detected by electron microscopy, Hochest 33258 stain and flow cytometer. DNA fragment was detected using agarose gel electrophoresis.Result: Proliferation of the cultured rabbit lens epithelia cells was inhibited by EGCG in a dose and time dependent manner. Morphologic study showed that the cells became shrunk, round shaped with their nuclei condensed and broken. Apoptotic bodies were also seen under electron microscope and in Hochest 33258 stain assay 24 hours after EGCG was added to the medium. DNA ladders were shown in agarose gel eletrophoresis.In flow cytometry assay, apoptosis peak was also evident.Conclusion: Green Tea Constituent(-)-Epigallocatechin-3-gallate could inhibit cultured rabbit lens epithelial cells proliferation by inducing their apoptosis in the concentration used by us, which indicates that it is possible to prevent PCO by using herb extract.

  13. [Bronchial mucoepidermoid carcinoma].

    Science.gov (United States)

    Bregante, J I; Rituerto, B; Font de Mora, F; Alonso, F; Andreu, M J; Figuerola, J; Mulet, J F

    1998-07-01

    We submit the case of a child afflicted with a mucoepidermoid bronchial tumor. The patient is a boy, aged seven, who after undergoing antibiotic treatment for six weeks because of a fever and atelectasia-condensation in the right lower lobe showed no signs of clinical improvement and was sent to our department to undergo further study and treatment. A bronchoscopy performed shows a polypoid mass that partially blocks the main bronchial tube a few milimiters under the access to the right upper lobe. A biopsy is carried out and the anatomopathological test shows there is a low degree epidermoid carcinoma. We decide to perform a lobectomy which for the tumor location and the lung condition has to be medium and lower right. We proceed to remove the adenopaty of hilium not affected by the tumor. The postoperative period develops without incidents. A check-up bronchoscopy performed three months later shows two polypoid masses in the right bronchial tube which, once a biopsy is performed, proved to be granulation tissue. Twelve months after undergoing surgery, the patient's condition is good, there is no evidence of tumor relapse and the breathing capacity is adequate, though there is an obstructive restrictive pattern in the espirometry. Even taking into consideration that lung tumors are extremely unusual, the epidermoid carcinoma is the one which most frequently occurs. The tumor's low malignancy is a sign that points to a good prognosis. Performing conservative surgery by means of bronchoplasty should be taken into account so as to keep the sequelae on the lung condition to a minimum, even though in this case the tumor location made it impossible.

  14. Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates.

    Science.gov (United States)

    Hutter, V; Hilgendorf, C; Cooper, A; Zann, V; Pritchard, D I; Bosquillon, C

    2012-09-29

    A rat respiratory epithelial cell culture system for in vitro prediction of drug pulmonary absorption is currently lacking. Such a model may however enhance the understanding of interspecies differences in inhaled drug pharmacokinetics by filling the gap between human in vitro and rat in/ex vivo drug permeability screens. The rat airway epithelial cell line RL-65 was cultured on Transwell inserts for up to 21 days at an air-liquid (AL) interface and cell layers were evaluated for their suitability as a drug permeability measurement tool. These layers were found to be morphologically representative of the bronchial/bronchiolar epithelium when cultured for 8 days in a defined serum-free medium. In addition, RL-65 layers developed epithelial barrier properties with a transepithelial electrical resistance (TEER) >300 Ω cm(2) and apparent (14)C-mannitol permeability (P(app)) values between 0.5-3.0 × 10(-6)cm/s; i.e., in the same range as established in vitro human bronchial epithelial absorption models. Expression of P-glycoprotein was confirmed by gene analysis and immunohistochemistry. Nevertheless, no vectorial transport of the established substrates (3)H-digoxin and Rhodamine123 was observed across the layers. Although preliminary, this study shows RL-65 cell layers have the potential to become a useful in vitro screening tool in the pre-clinical development of inhaled drug candidates.

  15. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  16. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    Directory of Open Access Journals (Sweden)

    Wang YB

    2013-10-01

    Full Text Available Yanbo Wang, Xuxia Yan, Linglin Fu Marine Resources and Nutrition Biology Research Center, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, People's Republic of China Abstract: Nano-selenium (Se, with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. Keywords: selenium nanoparticle, intestinal epithelial cell, crucian carp, primary culture

  17. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  18. Gene expression profile comparison of Barrett's esophagus epithelial cell cultures and biopsies

    NARCIS (Netherlands)

    van Baal, J. W. P. M.; Rygiel, A. M.; Milano, F.; Anderson, M.; Bergman, J. J. G. H. M.; Spek, C. A.; Wang, K. K.; Peppelenbosch, M. P.; Krishnadath, K. K.

    2008-01-01

    Barrett's esophagus (BE) is a metaplastic process in which the normal squamous epithelium of the distal esophagus is replaced by columnar lined epithelium. The aim was to gain more insight in the process of metaplasia and to identify which genes are specifically expressed by the epithelial cells and

  19. 过氧化氢诱导支气管上皮细胞高迁移率族蛋白1主动释放%Hydrogen peroxide induces high mobility group box 1 release in human bronchial epithelial cells

    Institute of Scientific and Technical Information of China (English)

    侯长春; 赵海金; 李文军; 蔡绍曦

    2012-01-01

    Objective To investigate the effect of hydrogen dioxide (H2O2) on the release and translocation of high mobility group box 1 release (HMGB1) from normal human bronchiolar epithelial cells (HBE). Methods MTT assay was used to assess the viability of HBE135-E6E7 cells exposed to different concentrations of H2O2. The expression and location of HMGB1 in the cytoplasm, nuclei and culture medium of the exposed cells were determined using Western blotting and immunofluorescence assay. Results Exposure to 125 μmmol/L H2O2 did not obviously affect the cell viability. At the concentration of 250 μmmol/L, H2O2 significantly decreased the cell viability (P<0.05), but significant cell death occurred only after exposure to 400 μmmol/L HA (P=0.000). Compared with the control cells, the cells exposed to 12.5, 125 and 250 μmmol/L H2O2 for 24 h showed significantly increased levels of HMGB1 in the culture medium (P<0.05), and exposure to 125 μmmol/L H2O2 for 12 and 24 h also caused significantly increased HMGB1 level (P<0,05). Exposure to 125 μmmol/L H2O2 for 24 h significantly increased HMGB1 expression in the cytoplasm but decreased its expression in the nucleus. HMGB1 translocation from the nuclei to the cytoplasm and to the plasmalemma occurred after 125 μmmol/L H2O2 exposure for 12 h and 24 h, respectively. Conclusion Haft can induce HMGB1 translocation and release in human bronchial epithelial cells, suggesting the involvement of HMGB1 in airway oxidative stress in chronic inflammatory diseases such as asthma and COPD.%目的 研究过氧化氢(H2O2)对正常人支气管上皮细胞(HBE)HMGB1表达、移位和释放的影响.方法 四唑盐(MTT)法检测不同浓度H2O2对支气管上皮细胞活力的影响;蛋白免疫印迹方法分别检测H2O2刺激HBE胞核,胞浆以及细胞培养上清中HMGB1浓度.免疫荧光观察HBE的HMGB1的定位和H2O2刺激后对HBE HMGB1的移位的影响.结果 125 μmmol/L刺激对HBE活力无影响,而250 μmmol/L会导致细

  20. Effect of cigarette smoke extract on P-glycoprotein function in primary cultured and newly developed alveolar epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Naka, Ryosuke; Sasaki, Yoshihiro; Nishimoto, Saori; Yumoto, Ryoko

    2016-12-01

    The effect of cigarette smoke extract (CSE) on P-glycoprotein (P-gp) function in the distal lung is unclear. In this study, we first examined the expression and function of P-gp and the effect of CSE in rat primary cultured alveolar epithelial cells. The expression of P-gp protein was observed in type I-like cells, but not in type II cells. In type I-like cells, rhodamine 123 (Rho123) accumulation was enhanced by various P-gp inhibitors such as verapamil and cyclosporine A. In addition, the expression of P-gp mRNAs, mdr1a and mdr1b, as well as P-gp activity increased along with the transdifferentiation. When type I-like cells were co-incubated with CSE, P-gp activity was suppressed. Next, we attempted to clarify the effect of CSE on P-gp function in human-derived cultured alveolar epithelial cells. For this purpose, we isolated an A549 clone (A549/P-gp) expressing P-gp, because P-gp expression in native A549 cells was negligible. In A549/P-gp cells, P-gp was functionally expressed, and the inhibitory effect of CSE on P-gp was observed. These results suggested that smoking would directly suppress P-gp activity, and that A549/P-gp cell line should be a useful model to further study the effect of xenobiotics on P-gp function in the alveolar epithelial cells.

  1. Trehalose-Based Eye Drops Preserve Viability and Functionality of Cultured Human Corneal Epithelial Cells during Desiccation

    Directory of Open Access Journals (Sweden)

    Aneta Hill-Bator

    2014-01-01

    Full Text Available This paper presents the evaluation of cytoprotective ability of trehalose-based eye drops in comparison with commercially available preparations during the experimental desiccation of cultured human corneal epithelial cells. Cultured human corneal epithelial cells (hCEC underwent incubation with 7 different, commercially available medicaments used commonly in dry eye syndrome treatment, followed by desiccation trial performed on air under the flow hood for 5, 15, 30, and 45 minutes. Cell viability was quantified by live/dead fluorescent assay, while the presence of apoptotic cells was estimated by immunofluorescent staining for active caspase 3 protein. The preservation of membrane functions was evaluated using neutral red staining, while the preservation of proper morphology and phenotype was determined by fluorescent staining for actin filaments, nuclei, and p63 protein. The trehalose-based eye drops showed the highest efficiency in prevention of cell death from desiccation; moreover, this preparation preserved the normal cellular morphology, functions of cell membrane, and proliferative activity more effectively than other tested medicaments.

  2. GLUCOSE METABOLITE PATTERNS AS MARKERS OF FUNCTIONAL DIFFERENTIATION IN FRESHLY ISOLATED AND CULTURED MOUSE MAMMARY EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Emerman, J.T.; Bartley, J.C.; Bissell, M.J.

    1980-06-01

    In the mammary gland of nonruminant animals, glucose is utilized in a characteristic and unique way during lactation. We have measured the incorporation of glucose carbon from [U-{sup 14}C] glucose into intermediary metabolites and metabolic products in mammary epithelial cells from virgin, pregnant, and lactating mice and demonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate were important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells from pregnant mice have a pattern similar to freshly isolated cells from pregnant mice. The pattern of cells from lactating mice is different from that of the cells of origin, and resembles that of the cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state.

  3. Visualization of bronchial circulation at bronchial anastomotic site using bronchial fluorescein angiography technique.

    Science.gov (United States)

    Iga, Norichika; Miyoshi, Kentaroh; Takata, Katsuyoshi; Hirano, Yutaka; Konishi, Yusuke; Otani, Shinji; Sugimoto, Seiichiro; Yamane, Masaomi; Miyoshi, Shinichiro; Oto, Takahiro

    2016-11-01

    Successful bronchial healing after a bronchoplastic procedure mainly depends on bronchial circulation at the anastomostic site. We developed a bronchial fluorescein angiography (B-FAG) technique for visualizing circulation on the bronchial surface. The technique was evaluated in animals. Fluorescein was used as a contrast agent and an autofluorescence imaging (AFI) bronchoscope as a detector. The left main pulmonary artery (PA) and main bronchus of 10 pigs were isolated. After transection of the left main bronchus and bronchial arteries and re-anastomosis of the bronchus, the pigs were randomly divided into two groups: the PA- group (n = 5), in which the pulmonary artery was transected; and the PA+ group (n = 5), in which the pulmonary artery was preserved. Following intravenous injection of fluorescein, the distal anastomotic site was observed for 30 min with autofluorescence imaging bronchoscopy. Bronchial specimens sampled 2 days after the surgical intervention were histologically evaluated. In the PA- group, there was no fluorescein enhancement in the distal bronchus throughout the observation time. However, enhancement, which turned the bronchial surface from magenta to bright green, was clearly observed in less than 207 ± 102.5 s in the PA+ group. The enhancement status detected by bronchial fluorescein angiography was related to the extent of tissue damage, as was proven histologically in the acute healing stage. Bronchial fluorescein angiography clearly visualized the circulatory status promptly after the anastomosis procedure at the central bronchus. This technique is a potentially practical approach to predict ischaemic airway complications following bronchial anastomosis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Effect of serum, fibronectin, and laminin on adhesion of rabbit intestinal epithelial cells in culture.

    Science.gov (United States)

    Burrill, P H; Bernardini, I; Kleinman, H K; Kretchmer, N

    1981-01-01

    Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or eith medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment of 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with either fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.

  5. Three-dimensional epithelial and mesenchymal cell co-cultures form early tooth epithelium invagination-like structures: expression patterns of relevant molecules.

    Science.gov (United States)

    Xiao, Li; Tsutsui, Takeki

    2012-06-01

    Epithelium invagination is the key feature of early tooth development. In this study, we built a three-dimensional (3D) model to represent epithelium invagination-like structure by tissue engineering. Human normal oral epithelial cells (OECs) and dental pulp stem cells (DPSCs) were co-cultivated for 2-7 weeks on matrigel or collagen gel to form epithelial and mesenchymal tissues. The histological change and gene expression were analyzed by HE staining, immunostaining, and quantitative real-time RT-PCR (qRT-PCR). After 4 weeks of cultivation, OECs-formed epithelium invaginated into DPSCs-derived mesenchyme on both matrigel and collagen gel. OEC-DPSC co-cultures on matrigel showed typical invagination of epithelial cells and condensation of the underlying mesenchymal cells. Epithelial invagination-related molecules, CD44 and E-cadherin, and mesenchymal condensation involved molecules, N-cadherin and Msx1 expressed at a high level in the tissue model, suggesting the epithelial invagination is functional. However, when OECs and DPSCs were co-cultivated on collagen gel; the invaginated epithelium was transformed to several epithelial colonies inside the mesenchyme after long culture period. When DPSCs were co-cultivated with immortalized human OECs NDUSD-1, all of the above-mentioned features were not presented. Immunohistological staining and qRT-PCR analysis showed that p75, BMP2, Shh, Wnt10b, E-cadherin, N-cadherin, Msx1, and Pax9 are involved in initiating epithelium invagination and epithelial-mesenchymal interaction in the 3D OEC-DPSC co-cultures. Our results suggest that co-cultivated OECs and DPSCs on matrigel under certain conditions can build an epithelium invagination-like model. This model might be explored as a potential research tool for epithelial-mesenchymal interaction and tooth regeneration.

  6. Fractura bronquial BRONCHIAL FRACTURE

    Directory of Open Access Journals (Sweden)

    IVÁN CAVIEDES S

    2003-04-01

    Full Text Available El traumatismo torácico es una entidad patológica emergente, relacionada con accidentes automovilísticos. La lesión más frecuente es la fractura costal. Dependiendo de su gravedad, éste puede provocar tórax volante, contusión cardíaca, lesiones vasculares u otras alteraciones. La ruptura bronquial se observa ocasionalmente en traumatismos torácicos cerrados, y por lo general tiene lugar en el tronco principal del árbol tráqueo-bronquial. Su diagnóstico y manejo inicial representan un problema mayor. Los signos clásicos son la persistencia de neumotórax y flujo masivo de aire a través del drenaje torácico; sin embargo también hay casos que no son típicos. Es difícil determinar el momento correcto para iniciar la ventilación mecánica con presión positiva, la que puede aumentar gravemente el flujo de aire a través de la ruptura bronquial y acentuar el neumotórax a tensión. Presentamos el caso de un hombre de 25 años con un traumatismo torácico cerrado, causado por un accidente de automóvil, en quien la broncoscopía demostró una fractura del bronquio lobar medio. Comprobamos en este paciente, que la fibrobroncoscopía es el procedimiento más útil tanto en el diagnóstico, como en el tratamiento inicial y en el seguimiento post operatorio de su fractura bronquiaThoracic trauma is an emerging pathology related to the increase of motor vehicle accidents. Rib fracture is the most frequent injury; depending on the severity of the event it may be associated with flail chest, cardiac contusion, vascular lesions and other injuries. Bronchial rupture is occasionally seen in blunt trauma and it occurs mostly in the main stem of the tracheobronchial tree. It represents a great task in diagnosis and initial management. Persistent pneumothorax and massive airflow by the thoracic drain are the classic signs, however other cases are not so typical. The right moment to begin positive pressure ventilation is challenging, because in

  7. SPLUNC1 regulation in airway epithelial cells: role of toll-like receptor 2 signaling

    Directory of Open Access Journals (Sweden)

    Smith Sean

    2010-11-01

    Full Text Available Abstract Background Respiratory infections including Mycoplasma pneumoniae (Mp contribute to various chronic lung diseases. We have shown that mouse short palate, lung, and nasal epithelium clone 1 (SPLUNC1 protein was able to inhibit Mp growth. Further, airway epithelial cells increased SPLUNC1 expression upon Mp infection. However, the mechanisms underlying SPLUNC1 regulation remain unknown. In the current study, we investigated if SPLUNC1 production following Mp infection is regulated through Toll-like receptor 2 (TLR2 signaling. Methods Airway epithelial cell cultures were utilized to reveal the contribution of TLR2 signaling including NF-κB to SPLUNC1 production upon bacterial infection and TLR2 agonist stimulation. Results Mp and TLR2 agonist Pam3CSK4 increased SPLUNC1 expression in tracheal epithelial cells from wild type, but not TLR2-/- BALB/c mice. RNA interference (short-hairpin RNA of TLR2 in normal human bronchial epithelial cells under air-liquid interface cultures significantly reduced SPLUNC1 levels in Mp-infected or Pam3CSK4-treated cells. Inhibition and activation of NF-κB pathway decreased and increased SPLUNC1 production in airway epithelial cells, respectively. Conclusions Our data for the first time suggest that airway epithelial TLR2 signaling is pivotal in mycoplasma-induced SPLUNC1 production, thus improving our understanding of the aberrant SPLUNC1 expression in airways of patients suffering from chronic lung diseases with bacterial infections.

  8. Study of Tanreqing on thymic stromal lymphopoietin secretion in human bronchial epithelial cell infected by respiratory syncytial virus in vitro%痰热清对呼吸道合胞病毒感染人支气管上皮细胞分泌胸腺基质淋巴细胞生成素作用的体外研究

    Institute of Scientific and Technical Information of China (English)

    蓝丹; 檀卫平; 陈环; 吴葆菁; 麦贤弟; 黄花荣

    2011-01-01

    Objective To study effects of traditional Chinese medicine Tanreqing injection on the secretion of thymic stromal lymphopoietin ( TSLP) in human bronchial epithelial cell infected by respiratory syncytial virus ( RSV) in vitro. Methods 1. Hep-2 cell lines were cultured in vitro and infected hy RSV . Then the infectious titer of RSV was determined by TCID 50 technique. We established a model of NHBE infected by RSV . 2. NHBE were infected with series RSV titers and in series incubated hours . The level of TSLP in the culture supernatants was determined by enzyme -linked immunosorbent assay ( ELISA) . 3. The effect of Tanreqing treatment on TSLP secretion was based on cell culture in vitro. The level of TSLP in three types of drug delivery (inculing precaution , direct deactivation and therapy ) were determined by ELISA. Results 1. The mRNA of RSV was detected in total RNA of NHBE infected by RSV with QPCR method , which demonstrated that a model of RSV infection in vitro was established succesfully. 2. The level of TSLP in NHBE cells supernatants infected by RSV significantly increased , compared with non-RSV. In the same postinoculation ( 12,24 ,48 ,72 ,96 , 120 h) , TSLP level increased obviously with raised RSV titers , compared with NHBE group ( P< 0. 05 ) . According to the same RSV titer( 10 , 50 , 100 , 500 , 1000 TCID50) , TSLP level increased statistically in series infection time , compared with 12 h group ( P < 0. 05 ) .3. The TSLP level of NHBE -RSV +Tanreqing group and NHBE -RSV + Ribavirin group were evidently lower than NHBE -RSV group in all detected point ( 12 , 24 ,48, 72 h) and in all drug deliveiy ways ( P < 0. 05 ) , especially in precaution way. TSLP level of NHBE-Tanreqing group are depressed than NHBE -Ribavirin group by precaution ( P < 0. 05 ) . Conclusions 1. TSLP secretion induced by RSV infection obviously increased which was related with raiseded RSV titer and infected duration . 2. Tanreqing injection inhibited TSLP secretion

  9. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  10. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  11. Establishment of Primary Cell Culture From Ascitic Fluid and Solid Tumor Obtained From Epithelial Ovarian Carcinoma Patients.

    Science.gov (United States)

    Kar, Rajarshi; Chawla, Diwesh; Gupta, Bindiya; Mehndiratta, Mohit; Wadhwa, Neelam; Agarwal, Rachna

    2017-08-16

    Ovarian cancer is the seventh leading cause of cancer death worldwide. This is mainly due to late diagnosis and high rate of relapse and resistance following chemotherapy. In the present study, we describe simple and cost-effective method to establish primary culture from ascitic fluid and solid tumor obtained from epithelial ovarian carcinoma patient, which may provide a better tool for in vitro testing of drug sensitivity and designing individualized treatment protocol. Complete Dulbecco modified Eagle medium (DMEM) was prepared by supplementing DMEM with 10% fetal bovine serum and antibiotics (ciprofloxacin and amphotericin B). Establishment of primary culture of ovarian cancer cells from ascites fluid and solid tumor was done by using complete DMEM media. Primary cultures of ovarian cancer cells were established from ascitic fluid and solid tumor tissue. Of the 7 ascitic fluid samples, we were able to establish 5 primary cultures of ovarian cancer cells. All the 7 samples were diagnosed as serous papillary adenocarcinoma. Some fibroblasts were also attached to culture flask on day 4; they were removed by exposing them to trypsin for a brief period. On day 7, grape-like clusters were visualized under inverted microscope. The cells became confluent on the 10th and 11th day and showed cobblestone appearance, which is a hallmark of ovarian cancer cells. Senescent irregularly shaped cells that have ceased dividing were seen after 8 to 10 passages. This study highlights the fact that establishing primary cultures from ascitic fluid or solid tumor tissue may help us to understand the molecular profile of the cancer cells, which allow us to select the best chemotherapeutic agent for ovarian cancer patients and thus take a step toward patient-tailored therapy so that patients are not exposed to drugs to which they are not likely to respond.

  12. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors.

  13. Disseminated typical bronchial carcinoid tumor

    Directory of Open Access Journals (Sweden)

    Novković Dobrivoje

    2013-01-01

    Full Text Available Introduction. Bronchial carcinoids belong to a rare type of lung tumors. If they do not expose outstanding neuroendocrine activity, they develop without clearly visible symptoms. They are often detected during a routine examination. According to their clinical pathological features, they are divided into typical and atypical tumors. Typical bronchial carcinoids metastasize to distant organs very rarely. Localized forms are effectively treated by surgery. The methods of conservative treatment should be applied in other cases. Case report. We presented a 65-year-old patient with carcinoid lung tumor detected by a routine examination. Additional analysis (chest X-ray, computed tomography of the chest, ultrasound of the abdomen, skeletal scintigraphy, bronhoscopy, histopathological analysis of the bioptate of bronchial tumor, as well as bronchial brushing cytology and immunohistochemical staining performed with markers specific for neuroendocrine tumor proved a morphologically typical lung carcinoid with dissemination to the liver and skeletal system, which is very rarely found in typical carcinoids. Conclusion. The presented case with carcinoid used to be showed morphological and pathohistological characteristics of typical bronchial carcinoid. With its metastasis to the liver and skeletal system it demonstrated unusual clinical course that used to be considered as rare phenomenon. Due to its frequent asymptomatic course and varied manifestation, bronchial carcinoid could be considered as a diagnostic challenge requiring a multidisciplinary approach.

  14. Bronchial artery embolization in hemoptysis

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-xiu; YANG Ding-cai; LIU Wei-hong; TANG He-qing; LIU Ke-yong; ZHAO Xiao-hua; TAN Yi-qing; WANG Jun

    2005-01-01

    Massive hemoptysis is one of the most dreaded of all respiratory emergencies and can have a variety of underlying causes. It is mostly caused by bleeding from bronchial circulation. Bronchial artery embolization is now considered to be the treatment of choice for acute massive hemoptysis. Bronchial artery embolization (BAE) is a safe and effective nonsurgical treatment for patients with massive hemoptysis. However, nonbronchial systemic arteries can be a significant source of massive hemoptysis and a cause of recurrence after successful BAE. So knowledge of the bronchial artery anatomy, together with an understanding of the pathophysiologic features of massive hemoptysis, are essential for planning and performing BAE in affected patients. In addition, interventional radiologists should be familiar with the techniques, results, efficacy, safety and possible complications of BAE and with the characteristics of the various embolic agents. Bronchial arterial catheterisation in human via a percutaneous approach has been practiced for 32 years (1973) in the world and 20 years (1986) in China, initially for direct chemotherapy treatment for bronchial malignancies and then for the embolization of patients with massive haemoptysis. A review of clinical experience to evaluate technique,embolic materials,outcome and complications of BAE is presented.

  15. Effects of Sodium Salicylate on the Expression of HSP27 Protein during Oxidative Stress in Tissue-cultured Human Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of sodium salicylate on the expression of heat shock protein 27 (HSP27)during oxidative stress in tissue-cultured human lens epithelial cells were investigated. Cultured human lens epithelial cells (HLB-3) were divided into 3 groups: control group (group A), oxidation injury group (group B) and sodium salicylate group (group C). Apoptosis of human lens epithelial cells cultured in vitro was induced in the presence of 150 μmol/L H2O2. Cells viability and the expression of HSP27 were analyzed. Viability of the cells was measured by methyl thiazole tetrazolium (MTT)chromatometry. The expression of HSP27 in HLB-3 cells was detected by using immunohistochemistry and image analysis system. Sodium salicylate could induce the expression of HSP27, and the cells viability in group C was significantly higher than in group B (0.2667±0.01414 vs 0.2150±0.01080, P=0.012<0.05). The average gray value of HSP27 in group B was less than that in group C (P=0.000<0.05). The increased expression of HSP27 by sodium salicylate might play an important role in the protection of hydrogen peroxide-induced injury of human lens epithelial cells,suggesting that sodium salicylate could suppress, at least in part, the apoptosis of human lens epithelial cells.

  16. MAPK/Foxa2 involved in abnormal differentiation of bronchial epithelial cells in cigarette smoking rat model%MAPK/Foxa2参与吸烟大鼠模型支气管上皮细胞的异常分化

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective To explore the effects of cigarette smoking(CS)exposure on mitogen-activated protein kinase(MAPK)signaling pathways,Foxa2 and the differentiation of the bronchial epithelial cell in CS rat model.Methods 40 rats were randomly divided into 5 groups,control group,CS group,CS +U0126 group,CS +SB203580 group,CS +SP600125 group.Sprague-Dawley rats were used to challenge with CS exposure for 90 days.At the same time,MAPK inhibitors were administrated for 90 days,the phos-phorylations of ERK,p38 and JNK were measured by ELISA.The mRNA and protein expression of Foxa2 and E-cadherin were measured by quantitative real-time polymerase chain reaction(PCR)and Western blotting,respectively.Histological staining to observe the morphological changes of bronchial epithelial cells.Results In CS group,the phosphorylations of ERK,p38 and JNK protein expression in lung tissue were significantly increased when compared with control group,meanwhile mRNA and protein levels of Foxa2 and E-adherin were significantly decreased,bronchial epithelial hyperplasia and local squamous metaplasia were observed.While in MAPK inhibitors group,included in the ERK,p38 and JNK inhibitors, the expression of Foxa2 and E-cadherin were significantly improved,and squamous metaplasia of the epithelial cells also were decreased.Conclusion Cigarette smoking can lead to abnormal airway epithelial cell differentiation,involved in MAPK/Foxa2 pathways.%目的:采用大鼠吸烟模型,探讨吸烟对丝裂原活化蛋白激酶(MAPK)信号通路、叉头框蛋白 a2(Foxa2)及支气管上皮细胞分化的影响。方法将40只大鼠随机分为5组(n =8):空白对照组、吸烟组、吸烟+U0126(ERK 抑制剂)组、吸烟+SB203580(p38抑制剂)组、吸烟+SP600125(JNK 抑制剂)组。连续吸烟造模并同时给药干预90天后,采用酶联免疫吸附试验(ELISA)法检测各组磷酸化 ERK1/2、JNK、p38蛋白水平,采用实时荧光定

  17. Effects of phenylalanine and threonine oligopeptides on milk protein synthesis in cultured bovine mammary epithelial cells.

    Science.gov (United States)

    Zhou, M M; Wu, Y M; Liu, H Y; Liu, J X

    2015-04-01

    This study was conducted to investigate the effects of phenylalanine (Phe) and threonine (Thr) oligopeptides on αs1 casein gene expression and milk protein synthesis in bovine mammary epithelial cells. Primary mammary epithelial cells were obtained from Holstein dairy cows and incubated in Dulbecco's modified Eagle's medium-F12 medium (DMEM/F12) containing lactogenic hormones (prolactin and glucocorticoids). Free Phe (117 μg/ml) was substituted partly with peptide-bound Phe (phenylalanylphenylalanine, phenylalanyl threonine, threonyl-phenylalanyl-phenylalanine) in the experimental media. After incubation with experimental medium, cells were collected for gene expression analysis and medium was collected for milk protein or amino acid determination. The results showed that peptide-bound Phe at 10% (11.7 μg/ml) significantly enhanced αs1 casein gene expression and milk protein synthesis as compared with equivalent amount of free Phe. When 10% Phe was replaced by phenylalanylphenylalanine, the disappearance of most essential amino acids increased significantly, and gene expression of peptide transporter 2 and some amino acid transporters was significantly enhanced. These results indicate that the Phe and Thr oligopeptides are important for milk protein synthesis, and peptide-bound amino acids could be utilised more efficiently in milk protein synthesis than the equivalent amount of free amino acids.

  18. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    Science.gov (United States)

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management.

  19. Modification of Isolation and Culture of Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    ZhengJL; GuoY

    1999-01-01

    Purpose:To modify the isolation of human retinal pigment pithelial(RPE)cells and to increase the purification and production of cultured RPE cells.Methods:The human eyecups were fixed on a fubber holder.After digestion by trypsin,RPE cells were collected,then cultured and identified by morphology,immunohistochemistry and electron microscopy.Results:The cultured RPE cells grew actively in the early stage with transparent nucleus and abundant melanin particles in cytoplasm.These cells were positive in DOPA oxidase reaction and in anti-pancytokeratin antibody staining.Cellular microvilli and tight junctions could be seen through transmission electrom microscopy.Conclusion:We developed a rubber holder to fix the eyecup.Using this holder,more and purer cultured RPE cells can be obtained.These cultured REP cells are similar to those in vivo in morphology and immunohistochemical staining.

  20. Direct binding of boar ejaculate and epididymal spermatozoa to porcine epididymal epithelial cells is also needed to maintain sperm survival in in vitro co-culture.

    Science.gov (United States)

    Yeste, Marc; Castillo-Martín, Míriam; Bonet, Sergi; Briz, Maria Dolors

    2012-04-01

    The aim of the present study was to compare the influence of cultured epididymal epithelial cells (EEC) from corpus, caput or cauda, oviductal epithelial cells (OEC) and non-reproductive epithelial cells (LLC-PK1) on function and survival of epididymal and ejaculated spermatozoa, in the latter case to determine whether such influence differed between morphologically normal and abnormal spermatozoa. For this purpose, either spermatozoa were directly co-cultured with EEC from caput, corpus, or cauda, OEC and LLC-PK1 cells (experiment 1) or a membrane-diffusible insert was included in these co-cultures (experiment 2). EEC cultured from the three epididymal regions did not differently affect the sperm parameters. Morphologically normal spermatozoa presented a higher ability to bind EEC, OEC, and LLC-PK1 than abnormal spermatozoa with cytoplasmic droplets or with tail/head malformations. Epididymal spermatozoa were more able to bind EEC during the first 24 h of co-culture, while ejaculated spermatozoa presented a higher capacity to bind OEC between 30 min and 3 h of co-incubation. In all cases, the ability to bind to epithelial cells was higher when they were co-cultured with EEC and OEC than with LLC-PK1. After 2 h of co-culture, the viability of epididymal spermatozoa was better maintained when they bound EEC than when they bound OEC. Conversely, the viability of ejaculated spermatozoa was better maintained when bound OEC than when bound EEC after 24 and 48 h of co-culture. Our work, apart from corroborating the involvement of morphologically normal spermatozoa in the formation of sperm reservoir, highlights the importance of direct contact spermatozoa-EEC in maintaining the sperm survival in in vitro co-culture, and also suggests that a specific binding between EEC and epididymal spermatozoa exists.

  1. Effect of Zebularine loaded MePEG-PCL nanoparticles on viability, attachment of in vitro cultured lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Si-Wei Liu

    2015-01-01

    Full Text Available AIM: To investigate the effect of zebularine(Zebloaded Poly(ethylene glycol-block-poly(ε-caprolactonemethyl ether(MePEG-PCLnanoparticles(NPson the viability, attachment, and apoptosis of in vitro cultured lens epithelial cells(LECs. METHODS: In vitro cultured infant human lens tissue HLE B-3 immortalized cells were distributed randomly divided into six groups. Each group was administered with free Zeb 50μmol/L(ZebF1 group, 100μmol/L(ZebF2 group, Zeb -loaded MePEG-PCL NPs 50μmol/L(ZebNP1 group, Zeb -loaded MePEG-PCL NPs 100μmol/L(ZebNP2 group, MePEG-PCL empty NPs(NPs groupor blank medium(group Crespectively. A tetrazolium dye assay(MTTtest and modified MTT test were performed to determine cell viability and cell attachment. DNA ladder was used to detect the cell apoptosis. RESULTS: Determined by MTT colorimetric method: Cell proliferation rate of LECs were suppressed by all Zeb administration groups in a concentration-time dependent manner(PPP ZebNP1>ZebF2(PCONCLUSION: Zeb loaded MePEG-PCL NPs had better effect on suppressing the viability and attachment of in vitro cultured LECs than the free Zeb groups, as well as enhancing the apoptosis.

  2. Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries.

    Science.gov (United States)

    Fang, Taolin; Lineaweaver, William C; Sailes, Frederick C; Kisner, Carson; Zhang, Feng

    2014-11-01

    Achieving permanent replacement of skin in extensive full-thickness and deep partial-thickness burn injuries and chronic wounds remains one of the fundamental surgical problems. Presently, split-thickness skin grafts are still considered the best material for surgical repair of an excised burn wound. However, in burns that affect greater than 50% of total body surface area, the patient has insufficient areas of unaffected skin from which split-thickness skin grafts can be harvested. The use of cultured epithelial (or epidermal) autografts (CEAs) has achieved satisfactory results. But the take rate of CEAs is poor in full-thickness bed or in chronically infected area. Providing temporary cover with allograft skin, or a more permanent allodermis, may increase clinical take. This review aims to (1) describe the use of CEAs in the regeneration of the epidermis, (2) introduce the application of the acellular dermal matrices (ADMs) in the clinics, and (3) enhance understanding of the CEAs applied with ADM as an appropriate strategy to treat the extended burn injuries. The current evidence regarding the cultured epithelial cell or keratinocyte autograft and dermal grafts applied in the treatment of burn injuries was investigated with an extensive electronic and manual search (MEDLINE and EMBASE). The included literature (N=136 publications) was critically evaluated focusing on the efficacy and safety of this technique in improving the healing of the deep dermal and full-thickness burn injuries. This review concluded that the use of ADM with CEAs is becoming increasingly routine, particularly as a life-saving tool after acute thermal trauma.

  3. Oral insulin stimulates intestinal epithelial cell turnover following massive small bowel resection in a rat and a cell culture model.

    Science.gov (United States)

    Ben Lulu, Shani; Coran, Arnold G; Shehadeh, Naim; Shamir, Raanan; Mogilner, Jorge G; Sukhotnik, Igor

    2012-02-01

    We have recently reported that oral insulin (OI) stimulates intestinal adaptation after bowel resection and that OI enhances enterocyte turnover in correlation with insulin receptor expression along the villus-crypt axis. The purpose of the present study was to evaluate the effect of OI on intestinal epithelial cell proliferation and apoptosis in a rat model of short bowel syndrome (SBS) and in a cell culture model. Caco-2 cells were incubated with increasing concentrations of insulin. Cell proliferation and apoptosis were determined by FACS cytometry. Cell viability was investigated using the Alamar Blue technique. Male rats were divided into three groups: Sham rats underwent bowel transection, SBS rats underwent a 75% bowel resection, and SBS-OI rats underwent bowel resection and were treated with OI given in drinking water (1 U/ml) from the third postoperative day. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Real time PCR was used to determine the level of bax and bcl-2 mRNA and western blotting was used to determine bax, bcl-2, p-ERK and AKT protein levels. Statistical analysis was performed using the one-way ANOVA test, with P statistically significant. Treatment of Caco-2 cells with insulin resulted in a significant increase in cell proliferation (twofold increase after 24 h and 37% increase after 48 h) and cell viability (in a dose-dependent manner), but did not change cell apoptosis. In a rat model of SBS, treatment with OI resulted in a significant increase in all parameters of intestinal adaptation. Elevated cell proliferation rate in insulin treated rats was accompanied by elevated AKT and p-ERK protein levels. Decreased cell apoptosis in SBS-INS rats corresponded with a decreased bax/bcl-2 ratio. Oral insulin stimulates intestinal epithelial cell turnover after massive small bowel resection in a rat model of SBS and a cell culture model.

  4. [Rhino-bronchial syndrome].

    Science.gov (United States)

    Gani, F; Vallese, G; Piglia, P; Senna, G; Mezzelani, P; Pozzi, E

    2000-12-01

    A close anatomical and functional relationship between superior and inferior airways is well documented. A typical example is offered by the close relationship between allergic rhinitis and asthma whose close connection is documented by epidemiological and pathological data. The mechanisms which can explain this phenomenon are not fully known but naso-bronchial reflexes, mouth-breathing due to nasal obstruction and aspiration of nasal secretions seem all to be important. Moreover it has been recently proved that the treatment of rhinitis can improve the concomitant asthma thus confirming their relationship. Another less frequent association is between sinusitis and asthma. Such a connection seems to be frequent in patients suffering of atopic rhinitis but also in patients presenting a nasal obstruction of different nature such as deviations of the nasal septum, adenoid hypertrophy etc. Also in this case a correct medical or surgical treatment of sinusitis can improve asthma symptomathology. Finally a classic example of involvement of superior and inferior airways is represented by the syndrome of ASA intolerance. These patients in fact initially complain of rhinitis which afterwards is complicated by the onset of nasal polyposis and asthma which can prove clinically very severe. Nowadays, anyway, there is no evidence that the treatment of rhinitis or polypectomy can improve the clinical course of asthma. In conclusion, diseases of superior and inferior airways must be considered in strict connection and need the same global treatment.

  5. Absence of Fungal Spore Internalization by Bronchial Epithelium in Mouse Models Evidenced by a New Bioimaging Approach and Transmission Electronic Microscopy.

    Science.gov (United States)

    Rammaert, Blandine; Jouvion, Grégory; de Chaumont, Fabrice; Garcia-Hermoso, Dea; Szczepaniak, Claire; Renaudat, Charlotte; Olivo-Marin, Jean-Christophe; Chrétien, Fabrice; Dromer, Françoise; Bretagne, Stéphane

    2015-09-01

    Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues.

  6. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    Science.gov (United States)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  7. Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro.

    Science.gov (United States)

    Liu, Xiao Fei; Li, Meng; Li, Qing Zhang; Lu, Li Min; Tong, Hui Li; Gao, Xue Jun

    2012-10-01

    Signal transducer and activator of transcription 5a (Stat5a) transduces signals of extracellular cytokines and growth factors to the nucleus of mammary gland epithelial cells and thereby regulates gene transcription during pregnancy, lactation, and weaning. However, its function on the milk production of dairy cows needs further investigation. In this experiment, the effects of Stat5a on lactation ability of dairy cow mammary gland epithelial cells (DCMECs) were analyzed. Eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was constructed by inserting stat5a gene into the plasmid vector pcDNA3.1+ and replacing CMV promoter with α-S1-casein 5' flanking sequence. The recombinant vector was stably transfected into DCMECs after geneticin (G418) selection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and the content of lactose were detected. The results showed that stat5a gene in eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was highly expressed in DCMECs and could increase the lactation ability of DCMECs. The associativity of Stat5a with nutrients on the lactation ability of DCMECs was also evaluated. Lysine (Lys), methionine (Met), sodium acetate, β-sodium hydroxybutyrate, and glucose all had more positive effects on the lactation function of DCMECs after pcDNA3.1+-stat5a-αS1 transfection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and contents of lactose and triglyceride were detected. The results revealed that nutrients could promote expression of Stat5a gene to increase lactation of DCMECs. These data help to clarify the function of stat5 gene on lactation and gene regulatory networks linking stat5a.

  8. Mechanisms of aldehyde-induced bronchial reactivity: Role of airway epithelium. Research report, July 1986-January 1991

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.

    1991-01-01

    The purpose of the study was to determine whether exposures to environmentally relevant concentrations of two aldehydes of low molecular weight were associated with impaired airway function. Specifically, the study addressed questions of the relative irritant potency of formaldehyde and acrolein on the induction of increased bronchial reactivity to acetylcholine in guinea pigs. The relationship of bronchial reactivity to epithelial damage and inflammation were also examined after both in vivo and in vitro exposures.

  9. The Effects of Vitamin A Compounds on Hyaluronic Acid Released from Cultured Rabbit Corneal Epithelial Cells and Keratocytes

    National Research Council Canada - National Science Library

    TOSHIDA, Hiroshi; TABUCHI, Nobuhito; KOIKE, Daisuke; KOIDE, Misao; SUGIYAMA, Keikichi; NAKAYASU, Kiyoo; KANAI, Atsushi; MURAKAMI, Akira

    2012-01-01

    .... Hyaluronic acid is produced by corneal epithelial cells and keratocytes in the eye. We investigated whether rabbit corneal epithelial cells and keratocytes release hyaluronic acid after exposure to vitamin A compounds...

  10. 鸡小肠上皮细胞的分离培养与鉴定%Culture of Chicken Intestine Epithelial Cells in vitro and its Characterization

    Institute of Scientific and Technical Information of China (English)

    李艳; 彭春燕; 梁榕旺; 赵国琦; 金晓君

    2011-01-01

    选择组织块法分离培养鸡小肠上皮细胞(intestinal epithelial cells,IEC),采用机械刮除法和相差消化-相差贴壁法纯化细胞,0.05%的Trypsin-EDTA对获得的IEC进行消化传代,免疫细胞化学法鉴定IEC.结果表明,组织块培养法可分离出活性较强的IEC,并获得纯化的上皮细胞;形态学和免疫细胞化学法检测显示获得的细胞表面抗原呈阳性,鉴定为IEC;纯化的IEC可在体外稳定传代.%In this study,we selected tissue culture method to isolation chicken intestinal epithelial cells (IEC), using curetrage, phase contrast digest and adherence methods to purify cells, with 0.05 % Trypsin to digest and passage, immunocytochemical method to identify intestinal epithelial cells.The results showed that hadro-activity intestinal epithelial cells could be dissociated by tissue culture method, and obtain purified intestine epithelium.Morphology and immunocytochemical method showed that intestinal epithelial cells surface antigen demonstrate masculine, and purified intestine epithelium could be passaged in vitro.

  11. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    Science.gov (United States)

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A recombinant matriptase causes an increase in caspase-3 activity in a small-intestinal epithelial IEC-6 line cultured on fibronectin-coated plates.

    Science.gov (United States)

    Mochida, Seiya; Tsuzuki, Satoshi; Inouye, Kuniyo; Fushiki, Tohru

    2014-05-01

    Matriptase is an epithelial-derived type-II transmembrane serine protease. This protease is expressed prominently in the villus tip of small-intestinal epithelia at which senescent cells undergo shedding and/or apoptosis. The basement membrane of epithelial cells, including small-intestinal epithelial cells, contains extracellular matrix (ECM) proteins such as fibronectin and laminin. We found previously that high concentrations of a recombinant matriptase catalytic domain (r-MatCD) (e.g. 1 μM) caused an increased detachment of and increases in the activity of apoptotic effector caspase-3 in a rat small-intestinal epithelial IEC-6 line cultured on laminin-coated plates and proposed that at sites with its high level of expression, matriptase contributes to promoting shedding and/or detachment-induced death of epithelial cells through a mechanism mediating loss of cell-ECM adhesion. In this study, we found that even without increasing cell detachment, a high concentration of r-MatCD causes an increase in caspase-3 activity in IEC-6 cells cultured on fibronectin-coated plates, suggesting that the recombinant matriptase can cause apoptosis by a mechanism unrelated to cell detachment. Also, r-MatCD-treated IEC-6 cells on fibronectin were found to display spindle-like morphological changes. We suggest that r-MatCD causes apoptosis of IEC-6 on fibronectin by a mechanism involving the disruption of cell integrity.

  13. An In Vitro Culture System for Long-Term Expansion of Epithelial and Mesenchymal Salivary Gland Cells: Role of TGF-β1 in Salivary Gland Epithelial and Mesenchymal Differentiation

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    2013-01-01

    Full Text Available Despite a pivotal role in salivary gland development, homeostasis, and disease, the role of salivary gland mesenchyme is not well understood. In this study, we used the Col1a1-GFP mouse model to characterize the salivary gland mesenchyme in vitro and in vivo. The Col1a1-GFP transgene was exclusively expressed in the salivary gland mesenchyme. Ex vivo culture of mixed salivary gland cells in DMEM plus serum medium allowed long-term expansion of salivary gland epithelial and mesenchymal cells. The role of TGF-β1 in salivary gland development and disease is complex. Therefore, we used this in vitro culture system to study the effects of TGF-β1 on salivary gland cell differentiation. TGF-β1 induced the expression of collagen, and inhibited the formation of acini-like structures in close proximity to mesenchymal cells, which adapted a fibroblastic phenotype. In contrast, TGF-βR1 inhibition increased acini genes and fibroblast growth factors (Fgf-7 and Fgf-10, decreased collagen and induced formation of larger, mature acini-like structures. Thus, inhibition of TGF-β signaling may be beneficial for salivary gland differentiation; however, due to differential effects of TGF-β1 in salivary gland epithelial versus mesenchymal cells, selective inhibition is desirable. In conclusion, this mixed salivary gland cell culture system can be used to study epithelial-mesenchymal interactions and the effects of differentiating inducers and inhibitors.

  14. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  15. Effects of Escherichia Coli Subtilase Cytotoxin and Shiga Toxin 2 on Primary Cultures of Human Renal Tubular Epithelial Cells

    Science.gov (United States)

    Márquez, Laura B.; Velázquez, Natalia; Repetto, Horacio A.; Paton, Adrienne W.; Paton, James C.; Ibarra, Cristina; Silberstein, Claudia

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2. PMID:24466317

  16. Effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on primary cultures of human renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Laura B Márquez

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC cause post-diarrhea Hemolytic Uremic Syndrome (HUS, which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC and compare its effects with those produced by Shiga toxin type 2 (Stx2, in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.

  17. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  18. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid.

    Directory of Open Access Journals (Sweden)

    Robert A Hirst

    Full Text Available BACKGROUND: The diagnosis of primary ciliary dyskinesia (PCD requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns. METHODS: We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n  111 was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture. RESULTS: Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced. CONCLUSIONS: The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia.

  19. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures.

    Science.gov (United States)

    Zanetti, Filippo; Sewer, Alain; Mathis, Carole; Iskandar, Anita R; Kostadinova, Radina; Schlage, Walter K; Leroy, Patrice; Majeed, Shoaib; Guedj, Emmanuel; Trivedi, Keyur; Martin, Florian; Elamin, Ashraf; Merg, Céline; Ivanov, Nikolai V; Frentzel, Stefan; Peitsch, Manuel C; Hoeng, Julia

    2016-08-15

    Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared

  20. Evaluation of ultraviolet light toxicity on cultured retinal pigment epithelial and retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Sankarathi Balaiya

    2010-01-01

    Full Text Available Sankarathi Balaiya, Ravi K Murthy, Vikram S Brar, Kakarla V ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: Our study is aimed at evaluating the role of UVB light in inducing cytotoxicity in an in vitro model.Methods: RGC-5 and ARPE-19 cells were exposed to different time periods of UVB light: 0, 15, 30, and 45 min. They were subsequently examined for changes in cell morphology, cell viability (neutral red uptake assay, generation of reactive oxygen species (ROS, expression of bax, bcl-2 and cytochome C by reverse transcriptase polymerase chain reaction and western blot, respectively.Results: Dose-dependent reduction in cell viability to UVB light was demonstrated with parallel increase in ROS. Increased duration of exposure (>15 minutes, was associated with increased expression of bax and cytochrome C, and absence of bcl-2 expression.Conclusion: UVB light exposure results in cell cytotoxicity. The concomitant generation of ROS and expression of apoptotic markers suggests the role of oxidative stress in UVB-mediated apoptosis in an in vitro model of retinal ganglion and pigment epithelial cells.Keywords: ultraviolet light, retinal pigment epithelium, retinal ganglion cell, reactive oxygen species, cytochrome C

  1. Effect of retinoic acid on proliferation and polyamine metabolism in cultured bovine retinal pigment epithelial cells.

    Science.gov (United States)

    Yasunari, T; Yanagihara, N; Komatsu, T; Moriwaki, M; Shiraki, K; Miki, T; Yano, Y; Otani, S

    1999-01-01

    Reports regarding the effect of all-trans-retinoic acid (RA) on the cell growth of retinal pigment epithelial cells (RPE) have been contradictory. The aims of this study are to clarify the in vitro effect of RA on RPE cells and to examine polyamine metabolism after RA stimulation. A 4-day incubation of fetal-calf-serum (FCS)-stimulated RPE cells with 10 or 25 microM RA significantly increased both cell number and [3H]thymidine incorporation. RPE cells grown over an extended period for 8 days also increased in number and reached full confluency. However, if the incubation was further extended to 12 days, no further increase in cell number was detected. RA treatment of FCS-stimulated RPE cells shifted the peak of ornithine decarboxylase (ODC) activity from 16 to 4 h. S-adenosylmethionine decarboxylase (SAMDC) activity and spermidine/spermine N1-acetyltransferase (SAT) activity of RA-treated RPE cells were significantly greater until 8 and 16 h after incubation, respectively. The putrescine content was significantly increased in RA-treated RPE cells up until 24 h, while spermidine, spermine and N1-acetylspermidine contents were significantly increased until 16 h. Our findings suggest that RA treatment increases the intracellular polyamine concentration of RPE cells via activation of ODC, SAMDC and SAT and that this results in the promotion of RPE cell growth until the cells reach full confluency.

  2. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    Science.gov (United States)

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  3. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    Directory of Open Access Journals (Sweden)

    Claudia González

    2013-01-01

    Full Text Available Background. Mucociliary transport (MCT is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms.

  4. The role of proteases in fibronectin matrix remodeling in thyroid epithelial cell monolayer cultures.

    Science.gov (United States)

    Nezi, Luigi; Greco, Dario; Nitsch, Lucio; Garbi, Corrado

    2002-01-01

    Fischer rat thyroid (FRT) cells organize a matrix of extracellular fibronectin (FN) fibrils, which undergoes extensive remodeling according to cell culture confluence. In non-confluent cells FN forms a fibrillar array associated with the ventral cell surface. However, basal FN is progressively removed in confluent cultures and substituted by non-fibrillar FN deposits at lateral cell domains in regions of cell-cell contacts. FRT cells secrete and expose on the plasma membrane the tissue-type plasminogen activator and, in serum-free cultures, plasminogen induces a rapid loss of FN fibrils. Incubation with plasmin inhibitors greatly reduces this effect. FRT cells also express annexin II, a plasminogen receptor, suggesting that plasmin activity is associated with the pericellular enviroment. This is in agreement with the observation that a great reduction in FN degradation is observed if the cells are pre-incubated with carboxypeptidase B, which prevents plasminogen binding to the cells. A gelatinolytic activity with a molecular weigth equivalent to MMP-2 has been demonstrated by zymography of culture media, and the presence of MMP-2 and MT1-MMP on the cell plasma membrane has been detected by immunofluorescence. These results indicate that in the FN remodeling process, occurring during FRT epithelium maturation, both plasmin-dependent (tPA activated) and plasmin-independent proteolytic activities are involved.

  5. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    Science.gov (United States)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  6. Expression of inducible nitric oxide in human lung epithelial cells.

    Science.gov (United States)

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  7. HIV Infects Bronchial Epithelium and Suppresses Components of the Mucociliary Clearance Apparatus

    Science.gov (United States)

    Chinnapaiyan, S.; Parira, T.; Dutta, R.; Agudelo, M.; Morris, A.; Nair, M.; Unwalla, H. J.

    2017-01-01

    Recurrent lung infections and pneumonia are emerging as significant comorbidities in the HIV-infected population in the era of combination antiretroviral therapy (cART). HIV infection has been reported to suppress nasal mucociliary clearance (MCC). Since the primary components driving nasal MCC and bronchial MCC are identical, it is possible that bronchial MCC is affected as well. Effective MCC requires optimal ciliary beating which depends on the maintenance of the airway surface liquid (ASL), a function of cystic fibrosis transmembrane conductance regulator (CFTR) activity and the integrity of the signaling mechanism that regulates ciliary beating and fluid secretion. Impairment of either component of the MCC apparatus can compromise its efficacy and promote microbial colonization. We demonstrate that primary bronchial epithelium expresses HIV receptor CD4 and co-receptors CCR5 and CXCR4 and can be infected by both R5 and X4 tropic strains of HIV. We show that HIV Tat suppresses CFTR biogenesis and function in primary bronchial epithelial cells by a pathway involving TGF-β signaling. HIV infection also interferes with bronchial epithelial cell differentiation and suppresses ciliogenesis. These findings suggest that HIV infection suppresses tracheobronchial mucociliary clearance and this may predispose HIV-infected patients to recurrent lung infections, pneumonia and chronic bronchitis. PMID:28060951

  8. HIV Infects Bronchial Epithelium and Suppresses Components of the Mucociliary Clearance Apparatus.

    Science.gov (United States)

    Chinnapaiyan, S; Parira, T; Dutta, R; Agudelo, M; Morris, A; Nair, M; Unwalla, H J

    2017-01-01

    Recurrent lung infections and pneumonia are emerging as significant comorbidities in the HIV-infected population in the era of combination antiretroviral therapy (cART). HIV infection has been reported to suppress nasal mucociliary clearance (MCC). Since the primary components driving nasal MCC and bronchial MCC are identical, it is possible that bronchial MCC is affected as well. Effective MCC requires optimal ciliary beating which depends on the maintenance of the airway surface liquid (ASL), a function of cystic fibrosis transmembrane conductance regulator (CFTR) activity and the integrity of the signaling mechanism that regulates ciliary beating and fluid secretion. Impairment of either component of the MCC apparatus can compromise its efficacy and promote microbial colonization. We demonstrate that primary bronchial epithelium expresses HIV receptor CD4 and co-receptors CCR5 and CXCR4 and can be infected by both R5 and X4 tropic strains of HIV. We show that HIV Tat suppresses CFTR biogenesis and function in primary bronchial epithelial cells by a pathway involving TGF-β signaling. HIV infection also interferes with bronchial epithelial cell differentiation and suppresses ciliogenesis. These findings suggest that HIV infection suppresses tracheobronchial mucociliary clearance and this may predispose HIV-infected patients to recurrent lung infections, pneumonia and chronic bronchitis.

  9. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Siebens, A.W.; Spring, K.R. (National Heart, Lung, and Blood Institute, Bethesda, MD (USA))

    1989-12-01

    The renal papillary epithelial cell line, GRB-PAP1, accumulates sorbitol when grown in a hypertonic (500 mosmol/kgH2O) bathing medium. When the cells are returned to a 300 mosmol/kgH2O medium, they lose their sorbitol rapidly to the bath. Sorbitol movement across the membranes of these cells was investigated by studying the uptake of radioactive sorbitol and related compounds. Sorbitol uptake increased 71-fold when cells grown in 500 mosmol/kgH2O medium were exposed to a 300 mosmol/kgH2O test solution. The magnitude of the permeability increase was proportional to the size of the change in the osmolality of the bathing medium and not the absolute osmolality. Sorbitol uptake was a linear function of medium sorbitol concentration with no sign of saturation at sorbitol concentrations up to 315 mM. Although the permeability of other polyols was increased when the osmolality was reduced, competition between sorbitol and related sugars and polyols could not be demonstrated. Both the increased sorbitol uptake after a decrease in medium osmolality and the decrease to control permeability after return to the original osmolality were complete within 30 s. A wide variety of transport inhibitors and ion substitutions failed to alter the magnitude of the sorbitol permeability increase. The most effective inhibitor was quinidine, 1 mM reducing sorbitol uptake by 73%. The sorbitol permeability increase could also be blocked by reducing the temperature to 0 degrees C. Nonspecific uptake of sorbitol, such as endocytosis, was shown to be of only minor significance. The large increase in sorbitol permeability and subsequent sorbitol efflux enables these cells to withstand large decreases in osmolality without excessive swelling and consequent damage. A similar compensatory mechanism may operate in vivo in the renal papilla during the onset of diuresis.

  10. Autosomal mutations in mouse kidney epithelial cells exposed to high-energy protons in vivo or in culture.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Dan, Cristian; Eckelmann, Bradley; Lasarev, Michael; Gauny, Stacey; Kwoh, Ely; Kronenberg, Amy

    2013-05-01

    Proton exposure induces mutations and cancer, which are presumably linked. Because protons are abundant in the space environment and significant uncertainties exist for the effects of space travel on human health, the purpose of this study was to identify the types of mutations induced by exposure of mammalian cells to 4-5 Gy of 1 GeV protons. We used an assay that selects for mutations affecting the chromosome 8-encoded Aprt locus in mouse kidney cells and selected mutants after proton exposure both in vivo and in cell culture. A loss of heterozygosity (LOH) assay for DNA preparations from the in vivo-derived kidney mutants revealed that protons readily induced large mutational events. Fluorescent in situ hybridization painting for chromosome 8 showed that >70% of proton-induced LOH patterns resembling mitotic recombination were in fact the result of nonreciprocal chromosome translocations, thereby demonstrating an important role for DNA double-strand breaks in proton mutagenesis. Large interstitial deletions, which also require the formation and resolution of double-strand breaks, were significantly induced in the cell culture environment (14% of all mutants), but to a lesser extend in vivo (2% of all mutants) suggesting that the resolution of proton-induced double-strand breaks can differ between the intact tissue and cell culture microenvironments. In total, the results demonstrate that double-strand break formation is a primary determinant for proton mutagenesis in epithelial cell types and suggest that resultant LOH for significant genomic regions play a critical role in proton-induced cancers.