WorldWideScience

Sample records for culture medium conditioned

  1. Sensitive and selective culture medium for detection of environmental Clostridium difficile isolates without requirement for anaerobic culture conditions.

    Science.gov (United States)

    Cadnum, Jennifer L; Hurless, Kelly N; Deshpande, Abhishek; Nerandzic, Michelle M; Kundrapu, Sirisha; Donskey, Curtis J

    2014-09-01

    Effective and easy-to-use methods for detecting Clostridium difficile spore contamination would be useful for identifying environmental reservoirs and monitoring the effectiveness of room disinfection. Culture-based detection methods are sensitive for detecting C. difficile, but their utility is limited due to the requirement of anaerobic culture conditions and microbiological expertise. We developed a low-cost selective broth medium containing thioglycolic acid and l-cystine, termed C. difficile brucella broth with thioglycolic acid and l-cystine (CDBB-TC), for the detection of C. difficile from environmental specimens under aerobic culture conditions. The sensitivity and specificity of CDBB-TC (under aerobic culture conditions) were compared to those of CDBB (under anaerobic culture conditions) for the recovery of C. difficile from swabs collected from hospital room surfaces. CDBB-TC was significantly more sensitive than CDBB for recovering environmental C. difficile (36/41 [88%] versus 21/41 [51%], respectively; P = 0.006). C. difficile latex agglutination, an enzyme immunoassay for toxins A and B or glutamate dehydrogenase, and a PCR for toxin B genes were all effective as confirmatory tests. For 477 total environmental cultures, the specificity of CDBB-TC versus that of CDBB based upon false-positive yellow-color development of the medium without recovery of C. difficile was 100% (0 false-positive results) versus 96% (18 false-positive results), respectively. False-positive cultures for CDBB were attributable to the growth of anaerobic non-C. difficile organisms that did not grow in CDBB-TC. Our results suggest that CDBB-TC provides a sensitive and selective medium for the recovery of C. difficile organisms from environmental samples, without the need for anaerobic culture conditions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP)

  3. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan A H; van Doeselaar, Marina; Meij, Björn P; Tryfonidou, Marianna A; Ito, K

    2016-01-01

    Objectives: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP)

  4. Prospect of stem cell conditioned medium in regenerative medicine.

    Science.gov (United States)

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  5. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    Science.gov (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Enhancement in irradiated mononuclear cells in culture of mitogen-induced incorporation of [3H]thymidine by homologous conditioned medium

    International Nuclear Information System (INIS)

    Sandru, G.; Greiner, R.

    1994-01-01

    Incorporation of [ 3 H]thymidine in irradiated peripheral blood mononuclear cell cultures irradiated in vitro was stimulated significantly by either concanavalin A or phytohemagglutinin only in the presence of homologous conditioned medium. Production of this activity by mononuclear cells was enhanced by irradiation and/or pulsed exposure to puromycin but was abolished by actinomycin D. Addition of anti-interleukin 1 or anti-interleukin 2 monoclonal antibodies to the conditioned medium before assay did not influence the stimulatory action. A similar significant stimulation of mononuclear cell cultures irradiated with 6 Gy by concanavalin A was obtained when purified preparations of homologous conditioned medium were used in the assay. Purification was done by ultrafiltration and concentration, heparin agarose chromatography, ammonium sulfate precipitation, concanavalin A agarose chromatography, DEAE-ion exchange chromatography and HPLC gel filtration chromatography. With SDS-PAGE and silver staining, the active HPLC fraction gave one band of 50 kDa, suggesting that this protein is responsible for the co-stimulatory effect of homologous conditioned medium for both mitogen-induced irradiated and nonirradiated mononuclear cell cultures. 42 refs., 9 figs., 3 tabs

  8. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures

    OpenAIRE

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2015-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabili...

  9. [Culture conditions for gametes and embryos: Which culture medium? Which impact on newborn?

    Science.gov (United States)

    Koscinski, I; Merten, M; Kazdar, N; Guéant, J-L

    2018-05-01

    Many studies have examined the impact of cell/embryo culture media on the development of human embryo during IVF process, but few studies have followed up and compared the effects of these culture media on the developmental outcome of children conceived by IVF. As recurrent experimental evidence from animal studies suggests potential long-term effects of embryo culture media on the health outcome of IVF-conceived children, more studies are needed to clarify the role of the culture media and mechanisms underlying such effects. In human, however, the effects of culture media are difficult to pinpoint due to complications stem from both the influence of maternal nutrition during the gestational period and the parental genetic. Based on a simple review of the literature integrating animal experimentations and human clinic studies, we suggest that the composition of culture medium should be considered beyond the character of unique or sequential medium, corresponding to "let embryo choose" or "back to nature" respectively. Instead, we suggest that the main components of embryo culture media should be considered from the point of view of metabolic consequences and potential epigenetic effects. Given that energetic metabolites can regulate epigenetic machinery, we hypothesize that metabolic abnormalities linked to morphological abnormalities could reveal epigenetic defects in embryos. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Enhancement of excision-repair efficiency by conditioned medium from density-inhibited cultures in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Nakano, S.

    1979-01-01

    Conditioned medium from density-inhibited V79 Chinese hamster cell cultures, given as a post-treatment to UV-irradiated homologous cells, was demonstrated to reduce the lethal action of ultraviolet light by temporarily blocking DNA replication. Since the increased survival was not affected by various nontoxic concentrations of caffeine, such protective effect would be attributable to the prolonged intervention of excision repair before DNA replication during the post-treatment period. The influence of conditioned medium on the UV-induced mutation at the ouabain-resistance locus was also examined and a significant decrease in mutation frequecy was noted. The observed reduction in killing and mutation as a result of post-incubation in conditioned medium, which delays DNA replication, would be interpreted as evidence that conditioned medium provides a longer period of time for an error-free excision-repair process, leaving lesion in DNA available for error-prone post-replication repair. (Auth.)

  11. Effects of medium components and culture conditions on mycelial biomass and the production of bioactive ingredients in submerged culture of Xylaria nigripes (Ascomycetes), a Chinese medicinal fungus.

    Science.gov (United States)

    Chen, Jian-Zhi; Lo, Hui-Chen; Lin, Fang-Yi; Chang, Shih-Liang; Hsieh, Changwei; Liang, Zeng-Chin; Ho, Wai-Jane; Hsu, Tai-Hao

    2014-01-01

    The optimal culture conditions were investigated to maximize the production of mycelial biomass and bioactive ingredients in submerged cultivation of Xylaria nigripes, a Chinese medicinal fungus. The one-factor-at-a-time method was used to explore the effects of medium components, including carbon, nitrogen, mineral sources, and initial pH of the medium and environmental factors, such as culture temperature and rotation speed, on mycelial growth and production of bioactive ingredients. The results indicated that the optimal culture temperature and rotation speed were 25°C and 100 rpm in a medium with 20 g fructose, 6 g yeast extract, and 2 g magnesiun sulfate heptahydrate as carbon, nitrogen, and mineral sources, respectively, in 1 L distilled water with an initial medium pH of 5.5. With optimal medium components and conditions of cultivation, the maximal production of mycelial biomass was 6.64 ± 0.88 g/L, with maximal production of bioactive ingredients such as extracellular polysaccharides (2.36 ± 0.18 mg/mL), intracellular polysaccharides (2.38 ± 0.07 mg/g), adenosine (43.27 ± 2.37 mg/g), total polyphenols (36.57 ± 1.36 mg/g), and triterpenoids (31.29 ± 1.17 mg/g) in a shake flask culture. These results suggest that different bioactive ingredients including intracellular polysaccharides, adenosine, total polyphenols and triterpenoids in mycelia and extracellular polysaccharides in broth can be obtained from one simple medium for submerged cultivation of X. nigripes.

  12. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures

    Science.gov (United States)

    2013-01-01

    Background Fab antibody fragments in E. coli are usually directed to the oxidizing periplasmic space for correct folding. From periplasm Fab fragments may further leak into extracellular medium. Information on the cultivation parameters affecting this leakage is scarce, and the unpredictable nature of Fab leakage is problematic regarding consistent product recovery. To elucidate the effects of cultivation conditions, we investigated Fab expression and accumulation into either periplasm or medium in E. coli K-12 and E. coli BL21 when grown in different types of media and under different aeration conditions. Results Small-scale Fab expression demonstrated significant differences in yield and ratio of periplasmic to extracellular Fab between different culture media and host strains. Expression in a medium with fed-batch-like glucose feeding provided highest total and extracellular yields in both strains. Unexpectedly, cultivation in baffled shake flasks at 150 rpm shaking speed resulted in higher yield and accumulation of Fabs into culture medium as compared to cultivation at 250 rpm. In the fed-batch medium, extracellular fraction in E. coli K-12 increased from 2-17% of total Fab at 250 rpm up to 75% at 150 rpm. This was partly due to increased lysis, but also leakage from intact cells increased at the lower shaking speed. Total Fab yield in E. coli BL21 in glycerol-based autoinduction medium was 5 to 9-fold higher at the lower shaking speed, and the extracellular fraction increased from ≤ 10% to 20-90%. The effect of aeration on Fab localization was reproduced in multiwell plate by variation of culture volume. Conclusions Yield and leakage of Fab fragments are dependent on expression strain, culture medium, aeration rate, and the combination of these parameters. Maximum productivity in fed-batch-like conditions and in autoinduction medium is achieved under sufficiently oxygen-limited conditions, and lower aeration also promotes increased Fab accumulation into

  13. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  14. Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5.

    Science.gov (United States)

    Kim, Mi-Hee; Kong, Yoon-Jung; Baek, Hong; Hyun, Hyung-Hwan

    2006-01-02

    To enhance the production of micrococcin GO5, a bacteriocin produced by Micrococcus sp. GO5, cultivation conditions and medium composition were optimized. The optimal initial pH and temperature for bacteriocin production were 7.0-9.0 and 37 degrees C, respectively. Micrococcus sp. GO5 displayed the highest micrococcin GO5 activity when grown in modified MRS medium that contained lactose or sucrose, rather than glucose, as a carbon source. The maximum bacteriocin activity was obtained in modified MRS medium containing 0.5% tryptone and 1.0% yeast extract as nitrogen sources instead of the other nitrogen sources present in MRS medium. Bacteriocin production was greatly affected by the concentration of K(2)HPO(4); strain GO5 produced eight-fold more bacteriocin in medium containing 2.0-2.5% K(2)HPO(4) than in medium containing 0.2% K(2)HPO(4). The optimal concentration of MgSO(4).7H(2)O for bacteriocin production was 0.5%. The production of micrococcin GO5 was increased 32-fold in shake flask culture and 16-fold in a bioreactor using the optimized medium (TY medium), compared with culturing in MRS medium.

  15. Optimization of flask culture medium and conditions for hyaluronic acid production by a streptococcus equisimilis mutant nc2168

    Directory of Open Access Journals (Sweden)

    Yong-Hao Chen

    2012-12-01

    Full Text Available A mutant designated NC2168, which was selected from wild-type Streptococcus equisimilis CVCC55116by ultraviolet ray combined with60Co-γ ray treatment and does not produce streptolysin, was employed to produce hyaluronic acid (HA. In order to increase the output of HA in a flask, the culture medium and conditions for NC2168 were optimized in this study. The influence of culture medium ingredients including carbon sources, nitrogen sources and metal ions on HA production was evaluated using factional factorial design. The mathematical model, which represented the effect of each medium component and their interaction on the yield of HA, was established by the quadratic rotary combination design and response surface method. The model estimated that, a maximal yield of HA could be obtained when the concentrations of yeast extract, peptone, glucose, and MgSO4 were set at 3 g/100 mL, 2 g/100 mL, 0.5 g/100 mL and 0.15 g/100 mL, respectively. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a remarkable increase in the output of HA and the maximum of the predicted HA production was 174.76 mg/L. The model developed was accurate and reliable for predicting the production of HA by NC2168.Cultivation conditions were optimized by an orthogonal experimental design and the optimal conditions were as follows: temperature 33ºC, pH 7.8, agitation speed 200 rpm, medium volume 20 mL.

  16. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    International Nuclear Information System (INIS)

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K.

    1990-01-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by [35S]cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the [35S]-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein

  17. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  18. Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium.

    Directory of Open Access Journals (Sweden)

    Dorothea Alexander

    Full Text Available The goal of our research work is to establish mesenchymal osteoprogenitors derived from human jaw periosteum for tissue engineering applications in oral and maxillofacial surgery. For future autologous and/or allogeneic transplantations, some issues must be addressed. On the one hand, animal-free culture conditions have yet to be established. On the other hand, attempts should be undertaken to shorten the in vitro culturing process efficiently. The aim of the present study is to compare and analyze the phenotype of osteoprogenitors from the jaw periosteum under normal FCS-containing and animal-free culture conditions. Therefore, we analyzed the proliferation rates of MesenCult-XF medium (MC- in comparison to DMEM-cultured JPCs. Whereas jaw periosteal cells (JPCs show relatively slow proliferation rates and a fibroblastoid shape under DMEM culture conditions, MC-cultured JPCs diminished their cell size significantly and proliferated rapidly. By live-monitoring measurements of adhesion and proliferation, we made an interesting observation: whereas the proliferation of the MSCA-1(+ subpopulation and the unseparated cell fraction were favored by the animal-free culture medium, the proliferation of the MSCA-1(- subpopulation seemed to be repressed under these conditions. The alkaline phosphatase expression pattern showed similar results under both culture conditions. Comparison of the mineralization capacity revealed an earlier formation of calcium-phosphate precipitates under MC culture conditions; however, the mineralization capacity of the DMEM-cultured cells seemed to be higher. We conclude that the tested animal-free medium is suitable for the in vitro expansion and even for the specific selection of osteoprogenitor cells derived from the jaw periosteum.

  19. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium, which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF. Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH levels (biomarkers of ictal activity and cell death, respectively in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  20. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Science.gov (United States)

    Liu, Jing; Saponjian, Yero; Mahoney, Mark M; Staley, Kevin J; Berdichevsky, Yevgeny

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  1. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir (Pseudotsuga menziesii shoot cultures [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2015-05-01

    Full Text Available The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1 determine medium pH change over time in storage conditions and with presence of explants, 2 evaluate the effects of medium pH change on explant growth performance and 3 assess the effects of adding a pH stabilizer, 2-(N-morpholinoethanesulfonic acid (MES that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth.

  2. Use of secondary sewage water as a culture medium for Chaetoceros gracilis and Thalassiosira Sp (Chrysophyceae in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Rauquírio André Albuquerque Marinho da Costa

    1999-01-01

    Full Text Available Experiments were carried out in order to test the efficiency of additions of secondary sewage as a culture medium for Chaetoceros gracilis and Thalassiosira sp (Chrysophyceae under laboratory conditions. These algae were cultivated in sea water with concentrations of 10%, 20%, 30% and 40% of wastewater. The results were compared with those obtained by the nutritive medium f2 of Guillard (1975. The best results in terms of cellular densities were observed at 40% additions. There were significant differences (significance levels of 5% between the nutritive medium f2 and the 40% additions for both the species. Maximum cellular densities observed for all additions tested were, 4,125.00 x 10³ cells/ml for Chaetoceros gracilis on the ninth day and 834.00 x 10³ cells/ml for Thalassiosira sp on the fifth day. Biomass was higher in the nutritive medium f2 than in the other treatments, reaching average values of 2,363μg/ml for Chaetoceros gracilis. At all experimental units, the best results were registered at 40% addition for Chaetoceros gracilis, where average values of 0.768μg/ml were observed on the fifth day, and at 30% additions for Thalassiosira sp where 0.883μg/ml were observed on the thirteenth day. It was concluded that secondary sewage could be used as a culture medium for the species tested here, after large scale tests.

  3. Influence of culture conditions and medium composition on the production of antibacterial compounds by marine Serratia sp. WPRA3.

    Science.gov (United States)

    Jafarzade, Mahtab; Yahya, Nur Ain; Shayesteh, Fatemeh; Usup, Gires; Ahmad, Asmat

    2013-06-01

    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.

  4. The influence of serum substituents on serum-free Vero cell conditioned culture media manufactured from Dulbecco's modified Eagle medium in mouse embryo culture.

    Science.gov (United States)

    Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan

    2013-09-01

    This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P media up to 4 weeks did not affect on embryonic development.

  5. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    Directory of Open Access Journals (Sweden)

    Mirtha Henríquez

    Full Text Available Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  6. Selective medium for culture of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Cook, Beth S; Beddow, Jessica G; Manso-Silván, Lucía; Maglennon, Gareth A; Rycroft, Andrew N

    2016-11-15

    The fastidious porcine respiratory pathogen Mycoplasma hyopneumoniae has proven difficult to culture since it was first isolated in 1965. A reliable solid medium has been particularly challenging. Moreover, clinical and pathological samples often contain the fast-growing M. hyorhinis which contaminates and overgrows M. hyopneumoniae in primary culture. The aim of this study was to optimise the culture medium for recovery of M. hyopneumoniae and to devise a medium for selection of M. hyopneumoniae from clinical samples also containing M. hyorhinis. The solid medium devised by Niels Friis was improved by use of Purified agar and incorporation of DEAE-dextran. Addition of glucose or neutralization of acidity in liquid medium with NaOH did not improve the final yield of viable organisms or alter the timing of peak viability. Analysis of the relative susceptibility of M. hyopneumoniae and M. hyorhinis strains to four antimicrobials showed that M. hyopneumoniae is less susceptible than M. hyorhinis to kanamycin. This was consistent in all UK and Danish strains tested. A concentration of 2μg/ml of kanamycin selectively inhibited the growth of all M. hyorhinis tested, while M. hyopneumoniae was able to grow. This forms the basis of an effective selective culture medium for M. hyopneumoniae. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Paecilomyces japonica in liquid culture.

    Science.gov (United States)

    Lee, Jong Seok; Jung, Woo Chul; Park, Seok Jae; Lee, Keun Eok; Shin, Won Cheol; Hong, Eock Kee

    2013-04-01

    In this study, the liquid culture conditions were optimized for maximal production of mycelial biomass and exo-polysaccharide by Paecilomyces japonica. The effects of medium composition, C/N ratio and physical parameters were investigated. From these experiments, 30 g glucose, 20 g yeast extract, 0.5 g KH2PO4, and 0.1 g CuCl2 2H2O in 1-l distilled water were found to be the most suitable carbon, nitrogen, and mineral sources, respectively. The optimal temperature, initial pH, agitation, and aeration were determined to be 27°C, uncontrolled pH, 400 rpm, and 1.0 vvm, respectively. Under these optimal conditions, the maximum mycelial growth and polysaccharides production were 23.1 g/l and 2.5 g/l, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Culture conditions affect photoreactivating enzyme levels in human fibroblasts

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Oliver, R.

    1976-01-01

    Photoreactivation of pyrimidine dimers occured under the experimental conditions given in this study, but has not been observed under conditions used by others. Three possible differences were tested in experimental procedures including dimer separation and analysis methods, illumination conditions and cell culture techniques. The methods in this study of dimer separation and analysis indeed measure cis-syn pyrimidine dimers and give results in quantitative agreement with the methods of others. It was found that white light pre-illumination of fibroblasts from the xeroderma pigmentosum line XP12BE or of normal cells does not affect the cellular capacity for dimer photoreactivation. However, the cell culture conditions can affect photoreactivating enzyme levels, and thus cellular dimer photoreactivation capacity. Cells grown in Eagle's minimal essential medium (supplemented with 15% fetal bovine serum) contain very low levels of photoreactivating enzyme and cannot photoreactivate dimers in their DNA; but companion cultures maintained in Dulbecco's modified Eagle's minimal medium do contain photoreactivating enzyme and can reactivate photoreactive cellular dimers

  9. Selection of culture medium and conditions for the production of ...

    African Journals Online (AJOL)

    defined medium–A, defined medium-B, synthetic medium, rich medium and industrial medium) showed that the synthetic medium yielded maximum yeast biomass (12.8 g/LDCW) followed by rich medium (11.7 g/L DCW) and defined medium B ...

  10. STUDIES REGARDING CULTURE MEDIUM INFLUENCE ON IN VITRO REGENERATION FROM WHEAT IMATURE EMBRYOS

    Directory of Open Access Journals (Sweden)

    M. DANCI

    2008-05-01

    Full Text Available Surnamed „embryos’ saving method”, embryos culture is an in vitro technique used for over half of the century for saving the distant hybridization products, that would have degenerate in other conditions. Immature embryos culture is used for initiation of in vitro cultures imposed by the impossibility of using other explants for some of the plant species. Wheat is one of the crops that immature embryos culture technique is suitable for. This methods principle is based on aseptic embryos excision and their inoculation to an adequate culture medium. In vitro culture results depend in a greater manner of the basic culture medium and the hormonal balance used. Immature embryos isolated from two Romanian wheat cultivars – Dropia and Lovrin 41 – were inoculated for callus production on two types of basic media added with 2,4 D. The selected calluses were transferred on MS basic medium and several parameters were registered. Both cultivars emphasized a good callusing capacity, in a different percentage depending on the culture media used, such as 71,09 – 94,45%.. big differences between the cultivars regarding embriogenic callus frequency, shooting callus frequency and regenerated plants percentage were registered.

  11. Medium optimization for protopectinase production by batch culture of

    African Journals Online (AJOL)

    Medium optimization for protopectinase production by batch culture of. C Fan, Z Liu, L Yao. Abstract. Optimization of medium compositions for protopectinase production by Aspergillus terreus in submerged culture was carried out. The medium components having significant effect on protopectinase production were reported ...

  12. CHROMagar Orientation Medium Reduces Urine Culture Workload

    Science.gov (United States)

    Manickam, Kanchana; Karlowsky, James A.; Adam, Heather; Lagacé-Wiens, Philippe R. S.; Rendina, Assunta; Pang, Paulette; Murray, Brenda-Lee

    2013-01-01

    Microbiology laboratories continually strive to streamline and improve their urine culture algorithms because of the high volumes of urine specimens they receive and the modest numbers of those specimens that are ultimately considered clinically significant. In the current study, we quantitatively measured the impact of the introduction of CHROMagar Orientation (CO) medium into routine use in two hospital laboratories and compared it to conventional culture on blood and MacConkey agars. Based on data extracted from our Laboratory Information System from 2006 to 2011, the use of CO medium resulted in a 28% reduction in workload for additional procedures such as Gram stains, subcultures, identification panels, agglutination tests, and biochemical tests. The average number of workload units (one workload unit equals 1 min of hands-on labor) per urine specimen was significantly reduced (P < 0.0001; 95% confidence interval [CI], 0.5326 to 1.047) from 2.67 in 2006 (preimplementation of CO medium) to 1.88 in 2011 (postimplementation of CO medium). We conclude that the use of CO medium streamlined the urine culture process and increased bench throughput by reducing both workload and turnaround time in our laboratories. PMID:23363839

  13. Medium from X-rayed cultures induces DNA strand-breaks in non-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Ikushima, T.; Okuyama, K.; Tanizaki, Y.

    2002-01-01

    There is growing evidence to indicate that several types of responses are induced by ionizing radiation in non-irradiated cells. Such bystander effects include the killing of non-irradiated cells, the induction of sister chromatid exchanges and chromosomal aberrations, and the induction of gene mutations and chromosomal instability and enhanced cell growth. In the present study, we assessed whether the medium from irradiated cultures can induce DNA strand-breaks in non-irradiated cells, using single-cell gel electrophoresis assay (comet assay). HeLa cells in culture were irradiated with 0.5 to 8 Gy of 140 kVp X-rays and one hour later, the medium was taken from the irradiated culture, passed through a filter and transferred to the parallel culture of non-irradiated HeLa cells as non-target cells. After incubation for 30 min, the comet assay was performed under alkaline and neutral conditions. Such treatments resulted in a dose-dependent increase in tail moment under either alkaline or neutral condition, indicating the induction of DNA single- or double-strand breaks, respectively. It was also shown that the clonogenic survival was reduced in the cells cultured in the medium from irradiated cultures. Such a change was not detected at all when medium alone was irradiated. These results provided disputed evidence that irradiated cells released certain genotoxic factor(s) into the culture medium that can induce DNA strand breaks leading to cell death. Our results suggest that physical contact between irradiated and non-irradiated cells may not be necessary for the bystander effects observed in this study. It appears that bystander responses may be mediated by multiple mechanisms

  14. Developing a Plant Culture Medium Composed of Vinasse Originating from Haematococcus Pluvialis Culture

    International Nuclear Information System (INIS)

    Gollo, A. L.; Silva, A. L. L. D.; Lima, K. K. D. D.; Camara, M. C.; Rodrigues, C.; Vandenberghe, L. P. D. S.; Soccol, V. T.; Soccol, C. R.; Biasi, L. A.

    2016-01-01

    The mineral nutrients in vinasse provide support for algal and plant growth. Algal culture releases organic compounds into its liquid culture medium. These organic and inorganic substances can be useful for formulating a plant tissue culture medium, because tissue culture medium is composed of organic and inorganic components. Therefore, the aims of this study were to develop a plant culture medium by using the vinasse that is employed for Haematococcus pluvialis culture (algal filtrate); to investigate the possible beneficial effects of the biocompounds in the micropropagation of Nidularium procerum (Bromeliaceae), to evaluate quercetin content, total phenolics content in vinasse and to evaluate the cytotoxicity of the media by performing a bioassay with Artemia salina. The vinasse that originated from H. pluvialis culture can be used to formulate plant tissue culture at a 3% dilution, and its mineral nutrients can support In vitro plant growth, but some nutrients must be supplemented to enhance its efficiency. An efficient micropropagation protocol was developed for N. procerum. The micropropagated plants were suitable for transfer to the field (they were acclimatized). This culture medium provides a way to reuse wastewater, gives a rational alternative to vinasse disposal and adds value to what is currently considered to be an undesirable residue. Moreover, this process can reduce the production costs of clonal seedlings and/or bioactive compounds in biofactories. There was no apparent biostimulatory effect by the algal filtrate on morphogenesis; however, it did increase quercetin production. The H. pluvialis culture that was grown in the vinasse decreased the cytotoxicity and phenolic compound contents, which prevented explant tissue necrosis and represented a treatment for this residue for safer disposal in the environment. (author)

  15. Screening of penicillium species and optimisation of culture conditions for the production of ergot alkaloids using surface culture fermentation process

    International Nuclear Information System (INIS)

    Shahid, M.G.

    2015-01-01

    Abstract. The present study deals with the screening of fungal species and suitable fermentation medium for the production of ergot alkaloids. Various species of genus Penicillium were grown on different fermentation media by employing surface culture fermentation technique to achieve the most suitable medium and the best Penicillium sp. The results showed that medium M5 gave maximum yield with Penicillium commune. Different culture conditions such as effect of different carbon and nitrogen sources, their concentration levels, different pH values and sizes of inoculum on the production of ergot alkaloids were also studied to improve the yield. Maximum production of ergot alkaloids (4.32 mg/L) was achieved with 15 mL spore suspension at pH 5 in fermentation medium containing 35% (w/v) sucrose. All these results indicate that culture conditions are very much crucial to improve the yield of ergot alkaloids produced by Penicillium commune through surface culture process. (author)

  16. Development of a vinasse culture medium for plant tissue culture

    International Nuclear Information System (INIS)

    Silva, A.L.L.D.; Gollo, L.

    2014-01-01

    Vinasse is the main pollutant (effluent) obtained from the distillation of sugarcane in the production of fuel alcohol. However, this residue is rich in nutrients that are required by plants. We developed a new culture medium using vinasse for the In vitro propagation of an orchid. The vinasse was treated (decanted and filtered), and the nutrients were determined and quantified. Different formulations using vinasse were tested for an In vitro culture. The vinasse dilutions demonstrated a good buffering effect. The ideal vinasse dilution for media formulation was 2.5%. The best KC formulations with vinasse were KCV1 and KCV5. Compared to KC medium, these formulations demonstrated similar results for In vitro multiplication, with the exception of protocorm-like body number, which was inferior in the vinasse formulations. Conversely, for In vitro elongation and rooting, these vinasse media were superior to KC medium. KC medium promotes a low rooting rate (8%) compared to 68 and 100% obtained by KCV1 and KCV5, respectively. Moreover, plantlets cultured on KC medium become protocorm-like body clusters, which impeded the acclimatization of these explants. Plantlets elongated and rooted on KCV1 and KCV5 were successfully acclimatized with a 91% survival rate for both KC vinasse formulations. This study shows the great potential of this technology as a rational alternative to vinasse disposal and adds value to what is currently considered a waste product. (author)

  17. LED-CT Scan for pH Distribution on a Cross-Section of Cell Culture Medium.

    Science.gov (United States)

    Higashino, Nobuya; Takayama, Toshio; Ito, Hiroaki; Horade, Mitsuhiro; Yamaguchi, Yasutaka; Dylan Tsai, Chia-Hung; Kaneko, Makoto

    2018-01-11

    In cell culture, the pH of the culture medium is one of the most important conditions. However, the culture medium may have non-uniform pH distribution due to activities of cells and changes in the environment. Although it is possible to measure the pH distribution with an existing pH meter using distributed electrodes, the method involves direct contact with the medium and would greatly increase the risk of contamination. Here in this paper, we propose a computed tomography (CT) scan for measuring pH distribution using the color change of phenol red with a light-emitting diode (LED) light source. Using the principle of CT scan, we can measure pH distribution without contacting culture medium, and thus, decrease the risk of contamination. We have developed the device with a LED, an array of photo receivers and a rotation mechanism. The system is firstly calibrated with different shapes of wooden objects that do not pass light, we succeeded in obtaining their 3D topographies. The system was also used for measuring a culture medium with two different pH values, it was possible to obtain a pH distribution that clearly shows the boundary.

  18. Physiological Response of In Vitro Cultured MAGNOLIA SP. to Nutrient Medium Composition

    Directory of Open Access Journals (Sweden)

    S. Sokolov Rossen

    2014-09-01

    Full Text Available The objective of this study was to assess the regeneration response of in vitro cultured Magnolia × soulangeana ‘Alexandrina’ and Magnolia liliiflora ‘Nigra’ to nutrient medium composition. In the primary culture (initiated from dormant axillary buds combinations of Murashige and Skoog (MS basal salts with 6-benzylaminopurine and α-naphthaleneacetic acid were tested. The primary explants of cv. ‘Alexandrina’ expressed higher regeneration rate than cv. ‘Nigra’. For both species, the regen eration was most strongly potentiated at addition of 0.25 mg dm−3 of the cytokinin alone. The auxin exerted undesir–able effects. Several basal salts media were applied in proliferation stage and their physiological effects were evaluated in reference to traditionally used MS. At culturing on Chée & Pool C2d Vitis Medium (VM that is for the first time introduced to magnolia and on MS, M. liliiflora formed more but less elongated shoots than M. soulangeana. However, on VM, substantial increase (25-30% of the number of axillary shoots and leaves, shoot length and fresh and dry weights over MS was established for both species. This suggested VM as promising composition of nutrients in multiplication stage. Microshoots obtained on MS, VM, Rugini Olive Medium and DKW Juglans Medium were successfully rooted in vitro and subsequently established ex vitro. The findings expand the information on magnolia response to culture conditions and contribute to elaboration of innovative elements of protocols for establishing tissue cultures with high regeneration capacity.

  19. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    Science.gov (United States)

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  20. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    Science.gov (United States)

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  1. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sanjo

    Full Text Available We previously reported the successful induction and completion of mouse spermatogenesis by culturing neonatal testis tissues. The culture medium consisted of α-minimum essential medium (α-MEM, supplemented with Knockout serum replacement (KSR or AlbuMAX, neither of which were defined chemically. In this study, we formulated a chemically defined medium (CDM that can induce mouse spermatogenesis under organ culture conditions. It was found that bovine serum albumin (BSA purified through three different procedures had different effects on spermatogenesis. We also confirmed that retinoic acid (RA played crucial roles in the onset of spermatogonial differentiation and meiotic initiation. The added lipids exhibited weak promoting effects on spermatogenesis. Lastly, luteinizing hormone (LH, follicle stimulating hormone (FSH, triiodothyronine (T3, and testosterone (T combined together promoted spermatogenesis until round spermatid production. The CDM, however, was not able to produce elongated spermatids. It was also unable to induce spermatogenesis from the very early neonatal period, before 2 days postpartum, leaving certain factors necessary for spermatogenic induction in mice unidentified. Nonetheless, the present study provided important basic information on testis organ culture and spermatogenesis in vitro.

  2. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  3. Aleuria aurantia - indole metabolites of fruit bodies, mycelial culture and culture medium

    Directory of Open Access Journals (Sweden)

    Janina Węgiel

    2014-08-01

    Full Text Available The aim of present study was to investigate and compare indole metabolites of fruit bodies, mycelium cultivated in vitro and culture medium of the fungus Aleuria aurantia (Fr. Fuck. By use of a number of chromatographic and spectroscopic methods several indole metabolites have been detected and identified among other the 3-indolebutyric acid was produced and extracted to the culture medium. Furthermore 3-indoleatonitrile and tryptophane degradative products have been found both in fruit bodies and mycelium.

  4. 21 CFR 866.2390 - Transport culture medium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transport culture medium. 866.2390 Section 866.2390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2390 Transport culture...

  5. A Novel Method for Culturing of Leptothrix sp. Strain OUMS1 in Natural Conditions

    Directory of Open Access Journals (Sweden)

    Tomoko Suzuki

    2012-05-01

    Full Text Available Although some strains of Leptothrix spp. isolated from aquatic environments have been characterized by culturing them in laboratory conditions, they often show morphological and chemical features distinct from those found in natural environments. To resolve this discrepancy, a novel cultivation method was devised for culturing such strains in natural groundwater. Leptothrix sp. strain OUMS1 was pre-cultured in a medium lacking Fe for 2 days, and then injected into a small dialysis tube bag and immersed in a container with continuously flowing groundwater for 1–3 and 14 days. Microscopic analysis of the initial phase of sheath formation and arbitrary comparisons with medium cultures revealed that in groundwater the surface coat of the sheath comprised much thinner fibrils, and an inner sheath wall that was much thinner and more indistinct compared with medium cultures. These differences were probably attributable to poorer secretion from the cell surface in groundwater conditions. A nutrient-rich medium likely activates cell metabolism and promotes secretion, resulting in a thicker inner sheath wall and thicker outer coat fibrils. Aqueous-phase Fe was deposited on immature sheaths in a similar manner in both cultures. These results indicate that laboratory culture of isolated microbes does not always reflect their characteristics in natural environments.

  6. Study on bystander effect and associated mechanism mediated through culture medium

    International Nuclear Information System (INIS)

    Tu Xumin; Lei Suwen; Zhang Zhixing; Lv Huimin

    2005-01-01

    Objective: To study the bystander effect and associated mechanism mediated through the irradiated cell culture medium. Methods: Splenic natural killer (NK) cells were obtained from healthy male ICR strain mice. Culture medium irradiated with different doses of 60 Co γ-rays was used for culturing Yac-I lymphoma cells. The degree of injury of the latter by activated NK cells was observed. A part of the culture media were pretreated with 1% DMSO, a scavenger of reactive oxygen species (ROS), in order to investigate the possible mechanism of a radiation-induced bystander response. Results: Severer injury was induced in Yac-I cells cultured in the media pre-irradiated with different doses of γ-rays than that in Yac-I cells cultured in unirradiated medium, as shown by increased sensitivity to murine splenic NK cells (P<0.01). Culturing Yac-I cells in DMSO-pretreated medium considerably reduced the activation of NK cells, especially in 0.25 Gy and 0.5 Gy γ-irradiated media. Therefore, it can be expected that DMSO can partly suppress ROS-induced bystander effect. Conclusion: The irradiated culture medium of Yac-I cells can trigger bystander effect. ROS likely plays an important role in radiation-induced bystander effect that can be partly suppressed by pretreatment with DMSO. (authors)

  7. Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.

    Directory of Open Access Journals (Sweden)

    Md Abdul Muktadir

    2016-01-01

    Full Text Available Several experiments were carried out to establish an efficient regenerating protocol for cultivated eggplant varieties. Among the five varieties cultured on Murashige and Skoog (MS medium with free plant growth regulator (PGR, Nayantara performed better considering the number of shoots/explant (2.48. Considering explant types and culture conditions, better performance was observed (3.68 shoots/explant when seed germination in the dark was proceeded by bottom hypocotyl segments cultured under dark conditions. A higher rate of shoot regeneration was observed in Nayantara when cultured in Zeatin Riboside (ZR and Thidizuron (TDZ supplemented MS medium. The highest number of shoots per explant was produced on MS medium supplemented with 2.0 mg/L ZR and 0.1 mg/L indole acetic acid (6.65 shoots/explant. Proliferation and elongation of the regenerated shoots were obtained in the MS medium with free PGR. The best rooting performance was observed in MS medium supplemented with 2.0 mg/L indole butyric acid. Plantlets with well developed roots and shoots were successfully transferred to soil.

  8. 21 CFR 866.1700 - Culture medium for antimicrobial susceptibility tests.

    Science.gov (United States)

    2010-04-01

    ... tests. 866.1700 Section 866.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1700 Culture medium for antimicrobial susceptibility tests. (a) Identification. A culture medium for...

  9. Does culture medium influence offspring birth weight?

    Science.gov (United States)

    Carrasco, Beatriz; Boada, Montserrat; Rodríguez, Ignacio; Coroleu, Buenaventura; Barri, Pedro N; Veiga, Anna

    2013-11-01

    To determine whether the type of medium used to culture human embryos in vitro influences neonatal birth weight after IVF/intracytoplasmic sperm injection (ICSI). A prospective study and a retrospective study. Private assisted reproduction center. The prospective study included 449 IVF/ICSI cycles from August to December 2008. The retrospective analysis was performed for 2,518 IVF/ICSI cycles from October 2006 to December 2010. In the prospective study, patients were randomized for embryo culture in Cook or Vitrolife medium. The retrospective study was performed with three different culture media (MediCult, Cook, and Vitrolife). Mean birth weight, adjusted for gestational age and gender (z score) of newborns. In the prospective study, the average z score was -0.19 ± 0.85 in Cook and 0.08 ± 1.40 in Vitrolife. In the retrospective study, the z scores obtained in each group were as follows: Cook, -0.14 ± 0.96; MediCult, 0.06 ± 1.13; and Vitrolife, 0.03 ± 1.05. No significant differences were observed regarding the birth weight of children born in the different groups in both studies. The results do not show any relationship between the medium used for in vitro culture and mean birth weight adjusted for gestational age and gender of singletons born after IVF/ICSI. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Zárate-Chaves

    2013-01-01

    Full Text Available The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture.

  11. The type of culture medium and the duration of in vitro culture do not influence birthweight of ART singletons.

    Science.gov (United States)

    De Vos, A; Janssens, R; Van de Velde, H; Haentjens, P; Bonduelle, M; Tournaye, H; Verheyen, G

    2015-01-01

    -significant differences in mean singleton birthweight between the two culture media. Likewise, the adjusted mean singleton birthweight was not different according to the duration of in vitro culture (P = 0.521). The conclusions are limited by its retrospective design; however, the two different sequential culture systems were used in an alternating way during the same time period. Pregnancy-associated factors possibly influencing birthweight (such as diabetes, hypertension, pre-eclampsia) were not included in the analysis. This large retrospective study does not support earlier concerns that both the type of culture medium and the duration of embryo culture influence singleton birthweight. However, a continuous surveillance of human embryo culture procedures (medium type, culture duration and other culture conditions) should remain a priority within assisted reproduction technology. None. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effect of explant density and medium culture volumes on cassava micropropagation in Temporal Immersion System

    Directory of Open Access Journals (Sweden)

    Milagros Basail

    2003-04-01

    Full Text Available Due to the need of producing high quality planting material available to cassava growers, it has been necessary to look for alternatives in order to increase the efficiancy of in vitro propagation methods and their automation, such as the use of the Temporal Immersion Systems (RITA®. This work was carried out to increase the multiplication coefficient for cassava mass propagation through out Temporal Immersion Systems. The clone ‘CMC-40’ was used. Different medium volumes per explant, and material density per unit at a given Immersion frequency were tested. The highest results were obtained in the 2.8 multiplication coefficient with 20 ml culture medium volume and 3.2 using a density of 40 explants/flask. When the Temporal Immersion System is used with these results, a more efficient method for cassava micropropagation is established and also higher quality vitroplants for the rooting stage and further acclimatization in field conditions are produced. Key Words: Tissue Culture, liquid culture medium, Manihot esculenta Crantz

  13. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    Science.gov (United States)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  14. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition

    OpenAIRE

    Liu, Jing; Saponjian, Yero; Mahoney, Mark M.; Staley, Kevin J.; Berdichevsky, Yevgeny

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic ...

  15. Architecture of Institution & Home. Architecture as Cultural Medium

    NARCIS (Netherlands)

    Robinson, J.W.

    2004-01-01

    This dissertation addresses how architecture functions as a cultural medium. It does so by by investigating how the architecture of institution and home each construct and support different cultural practices. By studying the design of ordinary settings in terms of how qualitative differences in

  16. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    Science.gov (United States)

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  17. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.

    Science.gov (United States)

    Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew

    2015-12-01

    The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Protein secretory patterns of rat Sertoli and peritubular cells are influenced by culture conditions

    International Nuclear Information System (INIS)

    Kierszenbaum, A.L.; Crowell, J.A.; Shabanowitz, R.B.; DePhilip, R.M.; Tres, L.L.

    1986-01-01

    An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates

  19. A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: Comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned media

    Directory of Open Access Journals (Sweden)

    Chou Chi-Hsien

    2010-10-01

    Full Text Available Abstract Background Human embryonic stem (hES cell lines were derived from the inner cell mass of human blastocysts, and were cultured on mouse embryonic fibroblast (MEF feeder to maintain undifferentiated growth, extensive renewal capacity, and pluripotency. The hES-T3 cell line with normal female karyotype was previously used to differentiate into autogeneic fibroblast-like cells (T3HDF as feeder to support the undifferentiated growth of hES-T3 cells (T3/HDF for 14 passages. Results A feeder-free culture on Matrigel in hES medium conditioned by the autogeneic feeder cells (T3HDF was established to maintain the undifferentiated growth of hES-T3 cells (T3/CMHDF for 8 passages in this investigation. The gene expression profiles of mRNAs, microRNAs and proteins between the undifferentiated T3/HDF and T3/CMHDF cells were shown to be very similar, and their expression profiles were also found to be similar to those of T3/MEF and T3/CMMEF cells grown on MEF feeder and feeder-free Matrigel in MEF-conditioned medium, respectively. The undifferentiated state of T3/HDF and T3/CMHDF as well as T3/MEF andT3/CMMEF cells was evidenced by the very high expression levels of "stemness" genes and low expression levels of differentiation markers of ectoderm, mesoderm and endoderm in addition to the strong staining of OCT4 and NANOG. Conclusion The T3HDF feeder and T3HDF-conditioned medium were able to support the undifferentiated growth of hES cells, and they would be useful for drug development and toxicity testing in addition to the reduced risks of xenogeneic pathogens when used for medical applications such as cell therapies.

  20. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  1. The Effects of Sertoli Cells Condition Medium and Retinoic Acid on the Number of Colonies of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Maryam Salem

    2017-04-01

    Full Text Available Background & objectives: According to importance of bone marrow mesenchymal stem cells in production of different cell lines, transplantation of these cells are used for treatment of many different diseases during cell therapy. Viability and proliferation of these cells after transplantation are very important. Since infertility is as public health problem in men and women, the scientists attempt to produce germ cells from differentiation of stem cells. It is supposed to use these cells for treatment of different illnesses especially for men with lack of germ cells in testes in future. However, in using stem cells for cell therapy the culture medium should be designed to increase the number of cells and efficiency of transplantation and to guarantee the health of the cells in terms of DNA damage. This study designed a suitable culture medium in order to increase the number of colonies and decrease the cell injuries. Methods: In this study mesenchymal stem cells isolated from bone marrow of mice and exposed to retinoic acid (RA with concentration of 10-6 M and Sertoli cells condition medium. Since mesenchymal stem cells (MSCs produce fibroblastic colonies so the number of colonies was counted every 3 days after culture (days of 2, 5, 8, 11, and 15 under inverted microscope. The staining of ethidium bromide-acridine orange was also done for determination of apoptotic nucleus in days of 10 and 15 after culture. Results: The results showed that the effects of retinoic acid on grow and viability of MSCs is related to the time. It seems that RA increased the proliferation of the cells and the number of colonies increased in low time but the apoptotic cells elevated with increasing the time of culture. Condition medium of Sertoli cells also increased the proliferation of bone marrow stem cells. Conclusion: According to proliferative properties of condition medium, it seems that using condition medium together with RA is better than RA alone for

  2. Production of Mushroom Mycelium as a Protein and Fat Source in Submerged Culture in Medium of Vinasse

    Science.gov (United States)

    Falanghe, H.

    1962-01-01

    Of ten mushroom cultures investigated, only Agaricus campestris, Boletus indecisus, and Tricholoma nudum were capable of growing in submerged culture in medium of vinasse with added salts. Higher fermentative efficiencies were found under these conditions than in medium containing molasses or waste sulfite liquor. A. campestris showed a better capacity to produce protein but, since B. indecisus is capable of developing greater mycelium weight, its fermentative efficiencies are comparable. Both microorganisms could be grown in medium of vinasse with greatly varied amounts, producing higher mycelial weight in media with greater vinasse. The capacity of B. indecisus and A. campestris to utilize the noncarbohydrate fraction in total solids, instead of the total carbohydrates when they are in smaller amount, was observed in medium containing vinasse. B. indecisus and A. campestris were easily separated by filtration from the medium, although T. nudum was difficult to separate by this procedure. In experiments with A. campestris, the adaptative capacity of the organism to vinasse was demonstrated. PMID:13962715

  3. Optimization of culture medium for heavy-ion irradiation bread yeast design

    International Nuclear Information System (INIS)

    Ma Liang; Wang Jufang; Lu Dong; Li Wenjian; Xiao Guoqing

    2013-01-01

    A mutant bread yeast strain with high protein content of 55% was gained by use of "1"2C"6"+ ions. The MINITAB 16.0 software, Plackett-Burman experimental design and response surface methodology were applied to optimize the culture medium for the irradiated yeast. The most important three factors which influenced the culture results were identified as glucose, magnesium sulphate and yeast extract. The path of the steepest ascent was undertaken to approach the optimal region of the three significant factors. Box-Behnken design and response surface methodology were used for the regression analysis. Finally, the optimal fermentation conditions were identified as glucose 11.03 g/L, yeast extract 6.53 g/L and magnesium sulphate 5.59 g/L by the regression analysis. It was found that the biomass of the bread yeasts reached 4.84 g/L and increased by 15% compared to original conditions. (authors)

  4. Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    Science.gov (United States)

    Calder, Michele D; Watson, Patricia H; Watson, Andrew J

    2011-11-01

    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.

  5. Influence of Culture Medium Composition and Light Conditions on the Accumulation of Bioactive Compounds in Shoot Cultures of Scutellaria lateriflora L. (American Skullcap) Grown In Vitro.

    Science.gov (United States)

    Kawka, Beata; Kwiecień, Inga; Ekiert, Halina

    2017-12-01

    Methanolic extracts from in vitro grown Scutellaria lateriflora shoots cultured on five Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) under different light conditions (monochromatic light, white light and no light) were analysed by HPLC for three groups of metabolites: flavonoids (26 compounds), phenolic acids and their precursors (19+2) and phenylethanoid glycosides (2). The analyses revealed the presence of baicalein, baicalin, wogonin, wogonoside, 3,4-dihydroxyphenylacetic acid and verbascoside. There was clear evidence of the influence of plant growth regulators and light conditions on the accumulation of the analysed groups of secondary metabolites. The amounts of the compounds changed within a wide range-for the total flavonoid content, 30.2-fold (max. 1204.3 mg·100 g -1 dry weight (DW)); for 3,4-dihydroxyphenylacetic acid, 5.5-fold (max. 33.56 mg·100 g -1 DW); and for verbascoside, 1.5-fold (169.15 max. mg·100 g -1 DW). The best medium for the production of most of the compounds was the Murashige and Skoog variant with 1 mg l -1 BAP and 1 mg l -1 NAA. For verbascoside, the best 'productive' medium was the MS variant supplemented with 0.5 mg l -1 BAP and 2 mg l -1 NAA. The accumulation of the metabolites was stimulated to the greatest extent by blue light, under which the extracts were found to contain the highest total amount of flavonoids and the highest amounts of flavonoid glucuronides, baicalin and wogonoside, as well as of verbascoside. Their amounts were, respectively, 1.54-, 1.49-, 2.05- and 1.86-fold higher than under the control white light.

  6. Effect of the double mutant e//e w//w and the culture medium on the productivity of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2000-01-01

    Full Text Available We investigated the effect of two culture media on the productivity of the double mutant ebony-white (e//e w//w of Drosophila melanogaster, aimed at improving the conditions for maintenance of Drosophila’s collection, Departamento de Biología, Universidad Nacional de Colombia. The results indicate that the productivity is affected by the culture medium, being the maize culture medium more productive than the wheat one; it was also shown that the productivity depends both, on the crosses type that is realize and on the mutant. The “+//+ +//+ x e//e w/ cross is more productive than its reciprocal cross, where the position of the ebony allele is the most important factor. With respect to the white allele, when carried by males it does not have effect on the productivity. In addition, we detected a negative effect of wheat culture medium on females +//e +//w.

  7. Does the type of culture medium used influence birthweight of children born after IVF?

    Science.gov (United States)

    Zandstra, Heleen; Van Montfoort, Aafke P A; Dumoulin, John C M

    2015-03-01

    Do culture media influence birthweight of children born after IVF? Some studies have observed a significant effect of culture media on birthweight, while others have not, but since most studies compared different culture media, conventional meta-analysis was not possible. Animal studies suggest that in vitro culture of embryos can have a significant effect on the birthweight of offspring when compared with in vivo developed embryos. The type of culture medium (or certain components of the medium) used is one of the causal factors. We reviewed all available literature reporting on a relation between culture medium and birthweight in human studies and a selection of animal studies. An extensive literature search on Pubmed and Medline was performed with relevant search criteria relating to IVF, birthweight and culture medium. Eleven studies reporting on a relationship between culture medium and birthweight in human were included in this review. Five of these found significant differences in birthweight when offspring born after culture in different culture media were compared. The remaining studies did not find differences in birthweight after changing culture medium. The number of human studies is limited and different culture media with different compositions are compared which makes a comparison between the studies difficult, if not impossible. Furthermore, most study designs were retrospective with consecutive use of different culture media and limited sample sizes, which makes bias of the results likely. If it could be confirmed that the type of culture medium used does indeed influence phenotypic characteristics (such as birthweight) of children born after IVF, it would underline the importance of monitoring the health of IVF children in relation to aspects of the laboratory techniques used during embryo culture. No funding was applicable to this study. No conflict of interest is declared. © The Author 2015. Published by Oxford University Press on behalf of the

  8. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  9. A defined medium for Leishmania culture allows definition of essential amino acids.

    Science.gov (United States)

    Nayak, Archana; Akpunarlieva, Snezhana; Barrett, Michael; Burchmore, Richard

    2018-02-01

    Axenic culture of Leishmania is generally performed in rich, serum-supplemented media which sustain robust growth over multiple passages. The use of such undefined media, however, obscures proteomic analyses and confounds the study of metabolism. We have established a simple, defined culture medium that supports the sustained growth of promastigotes over multiple passages and which yields parasites that have similar infectivity to macrophages to parasites grown in a conventional semi-defined medium. We have exploited this medium to investigate the amino acid requirements of promastigotes in culture and have found that phenylalanine, tryptophan, arginine, leucine, lysine and valine are essential for viability in culture. Most of the 20 proteogenic amino acids promote growth of Leishmania promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium will be useful for further studies of promastigote substrate requirements, and will facilitate future proteomic and metabolomic analyses. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    Science.gov (United States)

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  11. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Science.gov (United States)

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  12. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Directory of Open Access Journals (Sweden)

    Ai Kaneko

    Full Text Available The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4 cells/mL (8.9×10(3 cells/cm2 without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm, greater cell viability (≥30% for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks.

  13. Isolation and in vitro culture of trypanosomes from Leptodactylus ocellatus from the Atlantic Forest in a new experimental culture medium.

    Science.gov (United States)

    Lemos, M; Souza, C S F; da Costa, S C Gonçalves; Souto-Padrón, T; D'Agosto, M

    2013-02-01

    The purpose of this study was to verify the in vitro development of Trypanosoma sp. isolated from Leptodactylus ocellatus frogs under a new protocol using a biphasic medium composed of Novy, McNeal, and Nicolle (NNN) blood agar medium as a solid phase and liver infusion, brain heart infusion, and tryptose (LIBHIT) medium as a liquid phase. Blood forms, collected by cardiac puncture or after the maceration of different organs, were inoculated in culture tubes containing the biphasic medium composed by NNN and LIBHIT. Trypanosomes were observed 4 days postinoculation; most bloodstream trypomastigotes had differentiated into epimastigotes and amastigotes by this time. Trypomastigotes were again observed in older cultures (7 days). Parasites were successfully subcultured for 8 mo in this medium and successfully cryopreserved. The present study provides a new protocol medium for the isolation and culture of anuran trypanosomes.

  14. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance.

    Science.gov (United States)

    Vijayasankaran, Natarajan; Varma, Sharat; Yang, Yi; Mun, Melissa; Arevalo, Silvana; Gawlitzek, Martin; Swartz, Trevor; Lim, Amy; Li, Feng; Zhang, Boyan; Meier, Steve; Kiss, Robert

    2013-01-01

    As the industry moves toward subcutaneous delivery as a preferred route of drug administration, high drug substance concentrations are becoming the norm for monoclonal antibodies. At such high concentrations, the drug substance may display a more intense color than at the historically lower concentrations. The effect of process conditions and/or changes on color is more readily observed in the higher color, high concentration formulations. Since color is a product quality attribute that needs to be controlled, it is useful to study the impact of process conditions and/or modifications on color. This manuscript summarizes cell culture experiments and reports on findings regarding the effect of various media components that contribute to drug substance color for a specific monoclonal antibody. In this work, lower drug substance color was achieved via optimization of the cell culture medium. Specifically, lowering the concentrations of B-vitamins in the cell culture medium has the effect of reducing color intensity by as much as 25%. In addition, decreasing concentration of iron was also directly correlated color intensity decrease of as much as 37%. It was also shown that the color of the drug substance directly correlates with increased acidic variants, especially when increased iron levels cause increased color. Potential mechanisms that could lead to antibody coloration are briefly discussed. © 2013 American Institute of Chemical Engineers.

  15. Optimum conditions for growth in liquid medium of Oscillatoria formosa Bory used as the principal food in laboratory culture of intermediate hosts for schistosomosis and fasciolosis

    Directory of Open Access Journals (Sweden)

    Ferreira Filipa M.

    2000-09-01

    Full Text Available The rearing of snails, intermediate hosts of Schistosoma haematobium, S. intercalatum, S. bovis and Fasciola hepatica is the first step to maintain the life cycle of these parasites in laboratory in order to have biological material for the different studies, namely on the systematic biology and immunodiagnostic of schistosomosis and fasciolosis. According to the traditional method, the alga Oscillatoria formosa Bory (Cyanobacteria, principal food source for the snails, was cultivated in soil extract (Sampaio Xavier et al., 1968. However, it was sometimes very difficult to find the proper soil extract and the material was also contaminated by protozoa and fungi. In our work, using a new medium having as a base the Mineral Medium II (modified from Hughes et al., 1958 we found that O. formosa had a better growth response than in the soil extract medium. Snails fed on O. formosa reached three times the size of others at the same age, and they also reached sex maturity earlier, having more egg-masses per snail and, in addition, the rate of survival as well as the number of generations per year under laboratory conditions significantly increased. This culture was also easier to perform, and the axenic conditions easier to maintain.

  16. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    Science.gov (United States)

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  17. In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

    Directory of Open Access Journals (Sweden)

    Bong-Soo Kim

    2011-01-01

    Full Text Available A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE, pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.

  18. USE OF SODIUM HIPOCHLORITE IN STERILIZATION OF CULTURE MEDIUM FOR MULTIPLICATION OF Eucalyptus pellita L.

    Directory of Open Access Journals (Sweden)

    Silvio Lopes Teixeira

    2009-10-01

    Full Text Available Lately it has been observed a great interest in the research area of plant tissue culture in discovering new alternatives leading to cost reduction of the plants produced in commercial laboratories, in order to turn this alternative of plant propagation more economical. A potentially promising alternative for this reduction of costs, but which has not been receiving the due attention, is the possibility of substituting the autoclaving technique to a more economical one. With this purpose, two tests were carried out, using a new protocol of medium preparation, which consisted of the chemical sterilization of all the utensils used in the preparation and packaging of the culture medium as well, associated to the addition of the sterilizing agent to the medium, in different concentrations. The objective of the first test was to observe the influence of different concentrations of NaClO added to the culture medium, on its sterilization. The second test aimed at verifying the reaction of the Eucalyptus pellita tissues to different concentrations of NaClO in the culture medium. The addition of NaClO to the culture medium, equal or higher than 0.0005% in the fist test and of 0.005% in the second one, allowed complete sterilization of the medium, without observing any damage to the Eucalyptus pellita tissues, even when they were grown on culture medium containing up to 0.009%, the maximum concentration tried. The results showed the viability of eliminating the autoclave for the sterilization of culture media.

  19. Neutrophil-induced transmigration of tumour cells treated with tumour-conditioned medium is facilitated by granulocyte-macrophage colony-stimulating factor.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    OBJECTIVE: To investigate the effect of different cytokines that are present in tumour-conditioned medium on human neutrophil (PMN)-induced tumour cell transmigration. DESIGN: Laboratory study. SETTING: University hospital, Ireland. MATERIAL: Isolated human PMN and cultured human breast tumour cell line, MDA-MB-231. Interventions: Human PMN treated with either tumour-conditioned medium or different media neutralised with monoclonal antibodies (MoAb), and MDA-MB-231 cells were plated on macrovascular and microvascular endothelial monolayers in collagen-coated transwells to assess migration of tumour cells. MAIN OUTCOME MEASURES: Cytokines present in tumour-conditioned medium, PMN cytocidal function and receptor expression, and tumour cell transmigration. RESULTS: tumour-conditioned medium contained high concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and interleukin 8 (IL-8), but not granulocyte colony-stimulating factor (G-CSF) and interleukin 3 (IL-3). Anti-GM-CSF MoAb significantly reduced PMN-induced transmigration of tumour cells treated with tumour-conditioned medium (p < 0.05), whereas anti-VEGF and anti-IL-8 MoAbs did not affect their migration. In addition, anti-GM-CSF MoAb, but not anti-VEGF or anti-IL-8 MoAb, reduced PMN CD11b and CD18 overexpression induced by tumour-conditioned medium (p < 0.05). CONCLUSION: These results indicate that the GM-CSF that is present in tumour-conditioned medium may be involved, at least in part, in alterations in PMN function mediated by the medium and subsequently PMN-induced transmigration of tumour cells.

  20. Studies on irradiated BNFL culture medium for decontamination and longer storage

    International Nuclear Information System (INIS)

    Singh, Antaryami; Malodia, P.; Jain, S.K.; Ram Gopal

    2001-01-01

    The feasibility of gamma radiation for microbial decontamination and shelf-life extension of culture medium was studied. Changes in total viable count, coliform count and fungal count on exposure to 5, 10, 15, 20 and 25 kGy of gamma radiation were examined. The total viable counts were reduced on irradiation. Complete destruction of bacterial and fungal contamination was observed at 20 kGy. Studies were conducted to examine the changes in microbial contamination of the medium during storage. There was no post irradiation proliferation of microorganisms. Also, no significant change in the efficiency of the irradiated culture medium was observed. Thus, irradiation is extremely useful for longer storage and quality-assurance. (author)

  1. Culture medium for amylase production by toxigenic fungi

    Directory of Open Access Journals (Sweden)

    Figueira Edson Luiz Zangrando

    2000-01-01

    Full Text Available Mycelial growth and amylase production by a mycotoxigenic strain of Fusarium moniliforme and Aspergillus flavus were evaluated in a culture medium containing starch, glycerol, wheat bran or corn. With emphasis on corn, different fractions composed by germ, degermed seed, starch, milky stage corn and the respective starch or supernatant fraction were analyzed for F. moniliforme growth . The medium composed of milky stage corn supernatant promoted the best mycelial growth (p<0.05, and it was used to prepare amylase production medium in the next step. The medium composed with 2% ground corn in milky stage corn supernatant (350g of milky stage corn blended with 250mL water and centrifuged promoted the highest amylase production, which was at the 10th day of fermentation, both for F. moniliforme (42.32U/mL and A. flavus (4,745.54U/mL.

  2. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    Science.gov (United States)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  3. Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Paula J Dolley-Sonneville

    Full Text Available Human mesenchymal stem cells (HMSCS possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT plastic in fetal bovine serum (FBS supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs.

  4. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  5. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  6. Optimization of growth medium and fermentation conditions for ...

    African Journals Online (AJOL)

    A sequential optimization approach based on statistical experimental designs was employed to optimize growth medium and fermentation conditions, in order to improve the antibiotic activity of Xenorhabdus nematophila TB. Tryptone soyptone broth (TSB) was chosen as the original medium for optimization. Glucose and ...

  7. Growth evaluation of Lentinula edodes in solid medium cultures for mycelium production as inoculum

    OpenAIRE

    Villegas E Valeska; Pérez Ana Milena; Arredondo Clara

    2007-01-01

    Shitake (Lentinula edodes) Pegler jumbo strain growth was evaluated in different solid mediums and growth substrates for spawn production. Mycelium growth was tested in three culture mediums (MYA, OMYA, PDYA) at two pHs (5, 5.5), using two eucalyptus sawdust percentages (0.3%, 0.2%). Analysing variance revealed significant differences in culture medium (P0.05). The liquid inoculation technique was used for evaluating mushroom spawn production using five different combinations of eucalyptus sa...

  8. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.

    Science.gov (United States)

    Bohlen, Christopher J; Bennett, F Chris; Tucker, Andrew F; Collins, Hannah Y; Mulinyawe, Sara B; Barres, Ben A

    2017-05-17

    Microglia, the resident macrophages of the CNS, engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increase in the biomass of some green algae species in nitrate and ammonium mediums depending on auto-, mixo- or heterotrophic conditions

    Directory of Open Access Journals (Sweden)

    Stefan Gumiński

    2014-01-01

    Full Text Available The increase in total dry mass and protein in cultures of Chlorella pyrenoidosa, Scenedesmus quadricauda and Ankistrodesmus acicularis was studied. Under autotrophic conditions, increases in dry mass were, as a rule, larger in the nitrate medium than in the ammonium one, under mixotrophic conditions the situation was reversed and in the case of heterotrophy, the individual species reacted differently. The dependence ot the protein content increase on the nitrate or ammonium form of the medium was not clear. Changes in time of the pH and rH of the mediums were followed and the interdependence of these changes with the production of biomass is discussed.

  10. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    Science.gov (United States)

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  11. A Transporter of Ibuprofen is Upregulated in MDCK I Cells under Hyperosmotic Culture Conditions

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Rasmussen, Rune N; Mo, Junying

    2016-01-01

    Ibuprofen is a widely used drug. It has been identified as an inhibitor of several transporters, but it is not clear if ibuprofen is a substrate of any transporter itself. In the present work, we have characterized a transporter of ibuprofen, which is upregulated by hyperosmotic culture conditions...... in Madin-Darby canine kidney I (MDCK I) renal cells. [(3)H]-Ibuprofen uptake rate was measured in MDCK I cell cultured under normal (300 mOsm) and hyperosmotic (500 mOsm) conditions. Hyperosmotic conditions were obtained by supplementing urea, NaCl, mannitol, or raffinose to culture medium. The effect...... of increased osmolarity was investigated for different incubation times. [(3)H]-Ibuprofen uptake in MDCK I cells was upregulated by hyperosmotic culture condition, and was saturable with a Km value of 0.37 ± 0.08 μM and a Vmax of 233.1 ± 17.2 pmol· cm(-2)· min(-1). Racemic [(3)H]-ibuprofen uptake could...

  12. Studies on level of cytokines and expression of connexin43 in tumor and normal cells in culture conditions

    International Nuclear Information System (INIS)

    Asati, V.; Pandey, B.N.

    2016-01-01

    Factors secreted from the tumor cells in culture medium have been known to facilitate the growth of fresh cultures and also to affect the cellular radio-sensitivity. Moreover, expression of gap junction proteins like connexin-43 is known as a key player in cell survival and proliferation. The present study is aimed to evaluate the effects of conditioned medium on the growth of respective tumor/normal cells and the expression of connexin-43 in these cells

  13. Calcium Concentration in Culture Medium as a Nondestructive and Rapid Marker of Osteogenesis.

    Science.gov (United States)

    Tanikake, Yohei; Akahane, Manabu; Furukawa, Akira; Tohma, Yasuaki; Inagaki, Yusuke; Kira, Tsutomu; Tanaka, Yasuhito

    2017-06-09

    Artificial bones made of β-tricalcium phosphate (β-TCP) combined with bone marrow-derived mesenchymal stromal cells (BM-MSCs) are used for effective reconstruction of bone defects caused by genetic defects, traumatic injury, or surgical resection of bone tumors. However, the selection of constructs with high osteogenic potential before implantation is challenging. The purpose of this study was to determine whether the calcium concentration in BM-MSC culture medium can be used as a nondestructive and simple osteogenic marker for selecting tissue-engineered grafts constructed using β-TCP and BM-MSCs. We prepared three cell passages of BM-MSCs derived from three 7-week-old, male Fischer 344 rats; the cells were cultured in osteoinductive medium in the presence of β-TCP for 15 days. The medium was replaced with fresh medium on day 1 in culture and subsequently changed every 48 h; it was collected for measurement of osteocalcin secretion and calcium concentration by enzyme-linked immunosorbent assay and X-ray fluorescence spectrometry, respectively. After cultivation, the constructs were implanted subcutaneously into the backs of recipient rats. Four weeks after implantation, the alkaline phosphatase (ALP) activity and osteocalcin content of the constructs were measured. A strong inverse correlation was observed between the calcium concentration in the medium and the ALP activity and osteocalcin content of the constructs, with Pearson's correlation coefficients of 0.92 and 0.90, respectively. These results indicate that tissue-engineered bone with high osteogenic ability can be selected before implantation based on low calcium content of the culture medium, resulting in successful bone formation after implantation. This nondestructive, simple method shows great promise for assessing the osteogenic ability of tissue-engineered bone.

  14. Protective layer formation on magnesium in cell culture medium.

    Science.gov (United States)

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  15. Fate and effects of octylphenol in a Microcystis aeruginosa culture medium

    International Nuclear Information System (INIS)

    Baptista, Mafalda S.; Stoichev, Teodor; Basto, M. Clara P.; Vasconcelos, Vitor M.; Vasconcelos, M.Teresa S.D.

    2009-01-01

    Octylphenol (OP) is a xenobiotic with endocrine disrupting properties found in freshwaters worldwide. Its effects have been studied in organisms with nuclear receptors but effects on phytoplankton communities are poorly characterized, despite the fact that these organisms are constantly exposed to this compound. For this reason fate and effects of OP in the cyanobacterium Microcystis aeruginosa were assessed from 10 nM to 5 μM OP concentration. Up to a test concentration of 250 nM, OP removal increased significantly in the presence of cyanobacteria, the compound half-life in the absence of cells being 15 days against 9 days in the presence of the cells. Only 4% of the total OP removed was found bound to the cells, indicating an active metabolization of the compound. Moreover, the role of the exudates produced by M. aeruginosa, in the OP removal from culture medium, was assessed. Culture medium with exudates, resulting from a 7-day growth of M. aeruginosa, spiked with 50 nM OP, showed a higher half-life (22 days). Compared to culture medium without exudates, it can be hypothesized that higher organic matter concentrations make the hydrolysis or photolysis of OP more difficult. In culture media, the cells of M. aeruginosa could compensate and even counteract this, as OP half-life was shortened. At higher OP levels (1.25 and 5 μM) M. aeruginosa growth was impaired, indicating toxic effects. This shortage of biomass prevented the M. aeruginosa-assisted OP withdrawal from the culture media

  16. Fate and effects of octylphenol in a Microcystis aeruginosa culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mafalda S. [CIMAR/CIIMAR, Centro Interdisciplinar de Investigacao Marinha e Ambiental and FCUP, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)], E-mail: abaptista@fc.up.pt; Stoichev, Teodor; Basto, M. Clara P.; Vasconcelos, Vitor M.; Vasconcelos, M.Teresa S.D. [CIMAR/CIIMAR, Centro Interdisciplinar de Investigacao Marinha e Ambiental and FCUP, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2009-04-09

    Octylphenol (OP) is a xenobiotic with endocrine disrupting properties found in freshwaters worldwide. Its effects have been studied in organisms with nuclear receptors but effects on phytoplankton communities are poorly characterized, despite the fact that these organisms are constantly exposed to this compound. For this reason fate and effects of OP in the cyanobacterium Microcystis aeruginosa were assessed from 10 nM to 5 {mu}M OP concentration. Up to a test concentration of 250 nM, OP removal increased significantly in the presence of cyanobacteria, the compound half-life in the absence of cells being 15 days against 9 days in the presence of the cells. Only 4% of the total OP removed was found bound to the cells, indicating an active metabolization of the compound. Moreover, the role of the exudates produced by M. aeruginosa, in the OP removal from culture medium, was assessed. Culture medium with exudates, resulting from a 7-day growth of M. aeruginosa, spiked with 50 nM OP, showed a higher half-life (22 days). Compared to culture medium without exudates, it can be hypothesized that higher organic matter concentrations make the hydrolysis or photolysis of OP more difficult. In culture media, the cells of M. aeruginosa could compensate and even counteract this, as OP half-life was shortened. At higher OP levels (1.25 and 5 {mu}M) M. aeruginosa growth was impaired, indicating toxic effects. This shortage of biomass prevented the M. aeruginosa-assisted OP withdrawal from the culture media.

  17. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.; Zheng, Xing; Jaouen, Pascal; Pruvost, Jé ré my; Grizeau, Dominique; Croue, Jean-Philippe; Bourseau, Patrick

    2013-01-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  18. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.

    2013-03-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  19. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    Science.gov (United States)

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  20. Maturation of human dendritic cells by monocyte-conditioned medium is dependent upon trace amounts of lipopolysaccharide inducing tumour necrosis factor alpha

    DEFF Research Database (Denmark)

    Nersting, Jacob; Svenson, Morten; Andersen, Vagn

    2003-01-01

    We investigated the ability of monocyte-conditioned medium (MCM), generated by monocytes cultured on plastic-immobilised immunoglobulin, to stimulate maturation of human monocyte-derived dendritic cells (DC). Earlier reports suggest that MCM is a strong inducer of irreversible DC maturation......, whereas we find, that adding a small amount of lipopolysaccharide (LPS) to the MCM-generating cultures is required for the production of a DC-stimulatory MCM. Moreover, compared with addition of LPS directly to the DC cultures, stimulation via MCM cultures increases by several fold the DC...

  1. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  2. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    Science.gov (United States)

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  3. An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition.

    Science.gov (United States)

    Lang, Gernot; Liu, Yishan; Geries, Janna; Zhou, Zhiyu; Kubosch, David; Südkamp, Norbert; Richards, R Geoff; Alini, Mauro; Grad, Sibylle; Li, Zhen

    2018-04-01

    The aim of this study was to compare the effect of different disease initiators of degenerative disc disease (DDD) within an intervertebral disc (IVD) organ culture system and to understand the interplay between inflammation and degeneration in the early stage of DDD. Bovine caudal IVDs were cultured within a bioreactor for up to 11 days. Control group was cultured under physiological loading (0.02-0.2 MPa; 0.2 Hz; 2 hr/day) and high glucose (4.5 g/L) medium. Detrimental loading (0.32-0.5 MPa, 5 Hz; 2 hr/day) and low glucose (2 g/L) medium were applied to mimic the condition of abnormal mechanical stress and limited nutrition supply. Tumour necrosis factor alpha (TNF-α) was injected into the nucleus pulposus (100 ng per IVD) as a proinflammatory trigger. TNF-α combined with detrimental loading and low glucose medium up-regulated interleukin 1β (IL-1β), IL-6, and IL-8 gene expression in disc tissue, nitric oxide, and IL-8 release from IVD, which indicate a proinflammatory effect. The combined initiators up-regulated matrix metalloproteinase 1 gene expression, down-regulated gene expression of Type I collagen in annulus fibrosus and Type II collagen in nucleus pulposus, and reduced the cell viability. Furthermore, the combined initiators induced a degradative effect, as indicated by markedly higher glycosaminoglycan release into conditioned medium. The combination of detrimental dynamic loading, nutrient deficiency, and TNF-α intradiscal injection can synergistically simulate the proinflammatory and degenerative disease condition within DDD. This model will be of high interest to screen therapeutic agents in further preclinical studies for early intervention and treatment of DDD. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Culture medium and growth regulators on in vitro multiplication of Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Jorge Vilchez

    2014-01-01

    Full Text Available Guava (Psidium guajava L. cultivar `Dwarf Cuban Red 18-40 EEA' has high yields. For large-scale propagation, micropropagation is a possible solution. The aim of this study was to determine the effect of two culture media, two cytokinins and an analog brasinoesteoides (DI-31 in the in vitro multiplication of this cultivar. Two culture media (MS and WPM, three concentrations of benzylaminopurine (BAP (0.5, 1.0, 1.5 mg l-1, three of kinetin (0.5, 1.0, 1.5 mg l-1 and two DI-31 (0.01 and 0.02 mg l-1 were evaluated. The variables evaluated were: number of shoots, number of leaves, shoot length and multiplication coefficient. It was found that the type of culture medium influenced the shoot multiplication of guava. The number of shoots, shoot length and multiplication coefficient were determined by the type and concentration of cytokinin added to the culture medium. With the use of WPM culture medium with 1 mg l-1 BAP It was obtained the highest values of the variables evaluated. The use of DI-31 promoted the shoot growth without affecting the multiplication coefficient. Key words: benzylaminopurine, DI-31, kinetin, guava, micropropagation, multiplication phase

  5. STUDIES ON THE EFFECT OF VARIOUS STERILANTS AND CULTURE CONDITIONS ON IN-VITRO SEED GERMINATION IN TOMATO (SOLANUM LYCOPERSICUM)

    OpenAIRE

    K.B.Himabindu; M.Shanthi Priya; D.Mohan Reddy; P.Sudhakar; Y.Srinivasulu; M.Reddisekhar; P.Latha; B.Rupesh Kumar Reddy

    2012-01-01

    Studies on the effectiveness of various sterilants and culture conditions on in-vitro seed germination in tomato (Solanum lycopersicum L.) cv. PKM-1 revealed that among three sterilants used, surface sterilization of seeds with 5 % NaOCl for 20 minutes was found to be more effective resulting in high germination rate and contamination free cultures. Similarly among the different media and culture conditions considered in the present experiment, MS medium without sucrose with dark incubation f...

  6. Optimizing in vitro large scale production of giant reed (Arundo donax L.) by liquid medium culture

    International Nuclear Information System (INIS)

    Cavallaro, Valeria; Patanè, Cristina; Cosentino, Salvatore L.; Di Silvestro, Isabella; Copani, Venera

    2014-01-01

    Tissue culture methods offer the potential for large-scale propagation of giant reed (Arundo donax L.), a promising crop for energy biomass. In previous trials, giant reed resulted particularly suitable to in vitro culture. In this paper, with the final goal of enhancing the efficiency of in vitro production process and reducing costs, the influence of four different culture media (agar or gellan-gum solidified medium, liquid medium into a temporary immersion system-RITA ® or in a stationary state) on in vitro shoot proliferation of giant reed was evaluated. Giant reed exhibited a particular sensitivity to gelling agents during the phase of secondary shoot formation. Gellan gum, as compared to agar, improved the efficiency of in vitro culture giving more shoots with higher mean fresh and dry weight. Moreover, the cultivation of this species into a liquid medium under temporary immersion conditions or in a stationary state, was comparatively as effective as and cheaper than that into a gellan gum medium. Increasing 6-benzylaminopurine (BA) up to 4 mg l −1 also resulted in a further enhancement of secondary shoot proliferation. The good adaptability of this species to liquid medium and the high multiplication rates observed indicate the possibility to obtain from a single node at least 1200 plantlets every six multiplication cycles (about 6 months), a number 100 fold higher than that obtained yearly per plant by the conventional methods of vegetative multiplication. In open field, micropropagated plantlets guaranteed a higher number of survived plants, secondary stems and above ground biomass as compared to rhizome ones. - Highlights: • In vitro propagation offers the potential for large-scale propagation of giant reed. • The success of an in vitro protocol depends on the rate and mode of shoot proliferation. • Substituting liquid media to solid ones may decrease propagation costs in Arundo donax. • Giant reed showed good proliferation rates in

  7. Growth evaluation of Lentinula edodes in solid medium cultures for mycelium production as inoculum

    Directory of Open Access Journals (Sweden)

    Valeska Villegas E

    2007-07-01

    Full Text Available Shitake (Lentinula edodes Pegler jumbo strain growth was evaluated in different solid mediums and growth substrates for spawn production. Mycelium growth was tested in three culture mediums (MYA, OMYA, PDYA at two pHs (5, 5.5, using two eucalyptus sawdust percentages (0.3%, 0.2%. Analysing variance revealed significant differences in culture medium (P0.05. The liquid inoculation technique was used for evaluating mushroom spawn production using five different combinations of eucalyptus sawdust and wheat grain, finding significant differences between treatments, the best combination for shiitake growth being 80% wheat grain and 20% eucalyptus sawdust.

  8. In vitro conditions for 14C-leucine incorporation into the protein of cultured ovaries of the silkworm, Bombyx mori

    International Nuclear Information System (INIS)

    Miyadai, Toshiaki; Yamashita, Okitsugu

    1980-01-01

    Vitellogenic ovaries of silkworm pupae were incubated in vitro in different media based on the Wyatt's medium to establish an adequate condition for culture of silkworm ovaries. Incorporation of 14 C-leucine into protein fraction was determined to assess the biochemical activity of the ovary. When ovaries were incubated in vitro for a short time by 6 hr, a saturation kinetics of incorporation of the labelled leucine was shown. Sequential substitution of K + ion to Na + ion in the medium had no effect on the incorporation of 14 C-leucine, but Mg 2+ ion appeared to stimulate synthetic activity at more than 10 mM. The activity was not affected at pH range 5.0-7.2. Neither different sugars, nor vitellogenin nor lipoprotein prepared from silkworm haemolymph affected the incorporation of 14 C-leucine, when added into the medium. The synthesis of protein depended upon the developmental stages of the cultured ovaries and was most active in 6-day-old ovary. Ovaries developing in pupal body showed comparable changes in synthetic activity. It is concluded that the chemical composition of the medium does not exert a strict effect on synthetic activity of protein in short-term cultures and the ovaries cultured in vitro maintain the activity comparable with those found in in situ condition. (author)

  9. Embryo quality and implantation rate in two different culture media: ISM1 versus Universal IVF Medium.

    Science.gov (United States)

    Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Giulini, Simone; La Marca, Antonio; Tirelli, Alessandra; Volpe, Annibale

    2010-04-01

    To compare the outcome of two different culture media marketed by the MediCult AS Company (Jyllinge, Denmark)-Universal IVF Medium and ISM1 Medium culture-which, in addition to glucose, pyruvate, and energy-providing components, also contain amino acids, nucleotides, vitamins, and cholesterol. Laboratory and retrospective clinical study. University teaching hospital. A total of 726 patients, undergoing IVF-intracytoplasmic sperm injection procedure, comparable in mean age range, oocyte retrieval, and infertility indication, were included in the study. Laboratory quality and standard procedures were maintained unaffected. Oocyte retrieval, different embryo culture media. Embryo quality, ongoing pregnancy, and implantation rate. The frequency of good-quality embryos (79% vs. 74%) and the percentages of ongoing pregnancy (27.5% vs. 18%) and implantation rate (15% vs. 10%) were significantly higher in the group treated with ISM1 Medium rather than Universal IVF Medium. ISM1 Medium culture seems to improve the performance of embryonic growth and development, as well as increasing the percentage of pregnancy. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Influence of culture medium composition on relative mRNA abundances in domestic cat embryos.

    Science.gov (United States)

    Hribal, R; Jewgenow, K; Braun, B C; Comizzoli, P

    2013-04-01

    Different culture conditions have been used to produce domestic cat embryos. As part of the in vitro procedures, the medium composition significantly affects the quality of the embryo development also. Quality assessments based on cleavage kinetics and blastomere symmetry are useful, but embryos also can differ in their relative gene expression patterns despite similar morphological characteristics. The aim of this study was to compare cat embryos produced with two different in vitro culture systems routinely used in two different laboratories [Smithsonian Conservation Biology Institute, Washington D.C., USA (SCBI) and Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (IZW)]. Specifically, relative mRNA expression patterns of critical genes for pre-implantation embryo development were assessed in both conditions. Embryos were produced in parallel in both culture systems by IVF using frozen-thawed ejaculated semen in the United States and fresh epididymal sperm in Germany. Success of embryo development in vitro was recorded as well as relative mRNA abundances [DNA methyltransferases 1 and 3A (DNMT1, DNMT3A), gap junction protein alpha 1 (GJA1), octamer-binding transcription factor 4 [OCT4], insulin-like growth factors 1 and 2 receptors (IGF1R, IGF2R), beta-actin (ACTB)] in pools of days 4-5 morulae by semi-quantitative RT-PCR assay. Percentages of cleaved embryos were similar (p > 0.05) between both culture systems, regardless of the location. OCT4 mRNA abundance was higher (p culture system compared with those from the IZW system when epididymal sperm was used for IVF. No clear correlation between the expression pattern and the culture system could be found for all other genes. It is suggested that OCT4 expression might be affected by the media composition in some conditions and can be the indicator of a better embryo quality. © 2012 Blackwell Verlag GmbH.

  11. Determination of Glucose Concentration in Yeast Culture Medium

    Science.gov (United States)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  12. Cultural condition for the formation of starchlike polysaccharide from glucose by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S; Wang, P.Y, Taketomi, N.

    1964-01-01

    A starch like polysaccharide (I) was produced in the culture medium of A. niger during the process of citric acid fermentation from glucose under certain conditions. I could be produced in high aerobic conditions in the presence of (NH/sub 4/) SO/sub 4/ as a N source. The use of NH/sub 4/NO/sub 3/, urea, or NaNO/sub 3/ as the N sources or the addition of 2% MeOH reduced the production of I.

  13. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium

    International Nuclear Information System (INIS)

    Zhu Ying; Ran Tiecheng; Li Yuguo; Guo Jinxue; Li Wenxin

    2006-01-01

    This study examined the influence of multi-walled carbon nanotubes (MWNTs) on the growth of the unicellular protozoan Tetrahymena pyriformis. Contrary to the findings from most other investigations, our experiment indicated that MWNTs stimulated growth of the cells cultured in proteose peptone yeast extract medium (PPY). Atomic force microscopy images and thermogravimetric analysis showed the spontaneous formation of peptone-MWNT conjugates in the medium by noncovalent binding. Uptake of large amounts of the conjugates by Tetrahymena pyriformis was responsible for growth stimulation, evidenced by images with fluorescently labelled peptone. After the PPY medium was replaced by a filtrated pond water medium (FPW), however, inhibition of the growth of cells exposed to MWNTs occurred. Measurements of the level of malondialdehyde and superoxide dismutase activity demonstrated further that MWNTs might be either toxic or nontoxic, depending on the medium used to cultivate Tetrahymena pyriformis. The biological effects of the interaction of MWNTs with some composites in culture media would be helpful for understanding the mechanisms of the toxicity of carbon nanotubes to living systems

  14. Performance of HEPA Filter Medium under Accidental Conditions in Nuclear Installations

    International Nuclear Information System (INIS)

    El-Fawal, M.M.

    2011-01-01

    High Efficiency Particulate Air filters (HEPA Filters) are the main components in ventilation or confinement system for the retention of radioactive particles in nuclear installations. During abnormal conditions or accidents (e.g. fire accident, criticality in a nuclear fuel cycle facility and LOCA in power reactors) the resulting heat, smoke and humidity affect to a large extent the performance of HEPA filters. As a part of a research programme aims at the evaluation and improvement of the performance of HEPA filter media during abnormal conditions, the effect of elevated temperatures up to 400 degree C on the resistance of medium to penetration of water under pressure has been investigated. The test results showed that the resistance of the medium to penetration of water decreases with increase in temperature and thermal exposure time. This could be attributed to burnout of the organic binder used to improve the resistance of the medium to the penetration of water. The results also showed that at 400 degree C the resistance of the medium to the penetration of water disappeared. This was confirmed by inspection of the filter medium samples after exposure to high temperature using a scanning electron microscope. The inspection of the medium samples showed that the organic binder in the medium was deformed and finally collapsed at 400 degree C. Also, a best estimate model for the relation of filter medium resistance to water penetration under elevated temperature has been implemented. The results of this study can help in establishing a regulatory operating limit conditions (OLCs) for HEPA filter operation at high temperatures conditions in nuclear installations

  15. Performance of HEPA Filter Medium under Accidental Conditions in Nuclear Installations

    International Nuclear Information System (INIS)

    ElFawal, M.M.

    2009-01-01

    High Efficiency Particulate Air filters (HEPA Filters) are the main components in ventilation or confinement system for the retention of radioactive particles in nuclear installations. During abnormal conditions or accidents (e.g. fire accident, criticality in a nuclear fuel cycle facility and LOCA in power reactors) the resulting heat, smoke and humidity affect to a large extent the performance of HEPA filters. As a part of a research programme aims at the evaluation and improvement of the performance of HEPA filter media during abnormal conditions, the effect of elevated temperatures up to 400 degree C on the resistance of medium to penetration of water under pressure has been investigated. The test results showed that the resistance of the medium to penetration of water decreases with increase in temperature and thermal exposure time. This could be attributed to burnout of the organic binder used to improve the resistance of the medium to the penetration of water. The results also showed that at 400 degree C the resistance of the medium to the penetration of water disappeared. This was confirmed by inspection of the filter medium samples after exposure to high temperature using a scanning electron microscope. The inspection of the medium samples showed that the organic binder in the medium was deformed and finally collapsed at 400 degree C. Also, a best estimate model for the relation of filter medium resistance to water penetration under elevated temperature has been implemented. The results of this study can help in establishing a regulatory operating limit conditions (OLCs) for HEPA filter operation at high temperatures conditions in nuclear installations.

  16. Human dental pulp stem cells cultured in serum-free supplemented medium

    Directory of Open Access Journals (Sweden)

    Virginie eBonnamain

    2013-12-01

    Full Text Available Growing evidence show that human dental pulp stem cells (DPSCs could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells.Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 hours. Adherent (ADH and non-adherent (non-ADH cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF and basic fibroblast growth factor (bFGF. Both ADH and non-ADH populations were analyzed by FACS and/or PCR.Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133 and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expended and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte precursors at different stages of commitment and interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the

  17. Sugarcane Bagasse: A Potential Medium for Fungal Cultures

    OpenAIRE

    Arushdeep Sidana; Umar Farooq

    2014-01-01

    Worldwide, sugarcane industries produce tons of sugarcane bagasse as residual/waste material. This residual material is rich in complex lignocellulosic substances and may be used as a low cost carbon and energy source for the growth of fungal species. The present work was aimed at designing a sugarcane waste-based medium as a substitute for expensive commercial media for growing fungal cultures. Eight species of fungi, namely, Aspergillus niger, Candida albicans, Saccharomyces cerevisiae, Fus...

  18. Matrix albedo for discrete ordinates infinite-medium boundary condition

    International Nuclear Information System (INIS)

    Mathews, K.; Dishaw, J.

    2007-01-01

    Discrete ordinates problems with an infinite exterior medium (reflector) can be more efficiently computed by eliminating grid cells in the exterior medium and applying a matrix albedo boundary condition. The albedo matrix is a discretized bidirectional reflection distribution function (BRDF) that accounts for the angular quadrature set, spatial quadrature method, and spatial grid that would have been used to model a portion of the exterior medium. The method is exact in slab geometry, and could be used as an approximation in multiple dimensions or curvilinear coordinates. We present an adequate method for computing albedo matrices and demonstrate their use in verifying a discrete ordinates code in slab geometry by comparison with Ganapol's infinite medium semi-analytic TIEL benchmark. With sufficient resolution in the spatial and angular grids and iteration tolerance to yield solutions converged to 6 digits, the conventional (scalar) albedo boundary condition yielded 2-digit accuracy at the boundary, but the matrix albedo solution reproduced the benchmark scalar flux at the boundary to all 6 digits. (authors)

  19. [Preliminary Study of Lonicera hypoglauca on Germination Conditions of Sand Culture Seeds and Sterilization Method of Sand Culture Seedling Sterilization].

    Science.gov (United States)

    Tan, Mu-xiu; Zeng, Wen-wen; Wei, Peng-xiao; Mo, Qiao-cheng; Pu, Zu-ning; Cen, Xiu-fen; Shi, Feng-hua

    2015-05-01

    To explore the germination conditions of Lonicera hypoglauca sand culture seeds and the effects of sand culture seedlings sterilization. 0.1% HgCl2 with different sterilization time, different illumination time and temperature culture condition were adopted to study the germination conditions of sand culture seeds. Different sterilization treatments and different hardening-seedling days were used to test the sterilization effect of sand culture seedlings. The sterilization effect of the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min on Lonicera hypoglauca seeds was the optimum,with the average pollution rate of 15.56%, and the average germination rate reached 51.11%. The combination of varied temperature-room temperature under light for 12 h/d was the best, with the average germination rate peaked at 75.49%, and the average germination potential reached 68.36%. The treatment of detergent liquor scrub-tap water wash on the part above the hypocotyl, which was sand cultured under the opening condition and had no root, showed the best sterilization effect, with the average pollution rate was zero, and the average survival rate peaked at 100.00%. The sterilization effect of sand culture seedlings, which was disinfected after cleaning by detergent liquor scrub-tap water wash after hardening-seeding for 30 days, was the best, with the average pollution rate of 50.00%, and the average survival rate of 100.00%. The best sterilization effect is the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min; Lighting for 12 h/d of varied temperature-room temperature is regarded as the optimum culture condition. The treatment of detergent liquor scrub-tap water wash treatment on the part above the hypocotyl,which is sand cultured under the opening condition and had no root, shows the best sterilization effect. For the sand culture seedlings, before inoculated in subculture medium, should be hardening-seedling for some days and sterilized after detergent liquor scrub-tap water wash.

  20. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.

    Science.gov (United States)

    Ramírez-López, Citlally; Chairez, Isaac; Fernández-Linares, Luis

    2016-07-01

    A novel culture medium to enhance the biomass and lipid production simultaneously by Chlorella vulgaris UTEX 26 was designed in three stages of optimization. Initially, a culture medium was inferred applying the response surface method to adjust six factors [NaNO3, NH4HCO3, MgSO4·7H2O, KH2PO4, K2HPO4 and (NH4)2HPO4], which were selected on the basement of BBM (Bold's Basal Medium) and HAMGM (Highly Assimilable Minimal Growth Medium) culture media. Afterwards, the nitrogen source compound was optimized to reduce both, ammonium and nitrate concentrations. As result of the optimization process, the proposed culture medium improved 40% the biomass (0.73gL(-1)) compared with the BBM medium and 85% the lipid concentration (281mgL(-1)), with respect to HAMGM medium. Some culture media components concentrations were reduced up to 50%. Gas chromatography analysis revealed that C16:0, C18:0, C18:1, C18:2 and C18:3 were the major fatty acids produced by C. vulgaris UTEX 26. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    Science.gov (United States)

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  2. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    International Nuclear Information System (INIS)

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-01-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  3. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  4. IVF culture medium affects post-natal weight in humans during the first 2 years of life

    NARCIS (Netherlands)

    Kleijkers, Sander H. M.; van Montfoort, Aafke P. A.; Smits, Luc J. M.; Viechtbauer, Wolfgang; Roseboom, Tessa J.; Nelissen, Ewka C. M.; Coonen, Edith; Derhaag, Josien G.; Bastings, Lobke; Schreurs, Inge E. L.; Evers, Johannes L. H.; Dumoulin, John C. M.

    2014-01-01

    Is post-natal growth during the first 2 years of life in IVF singletons affected by type of medium used for culturing human embryos during an IVF treatment? The in vitro culture of human embryos in medium from Cook resulted in singletons with a lower weight during the first 2 years of life compared

  5. Biological effects of low doses of ionizing radiations. Evidence of effect of pre-irradiation of culture medium on subsequent growth in Cyanobacterium Synechococcus lividus in culture

    International Nuclear Information System (INIS)

    Conter, A.; Planel, H.

    1986-01-01

    In order to distinguish the direct effects of low dose of ionizing radiations at the cellular level from those indirect through the culture medium, we have compared proliferation of Synechococcus lividus grown in pre-irradiated medium to proliferation of cultures grown in non-irradiated medium. A stimulation of growth was observed at the 7th day in cultures inoculated with cells selected in deceleration phase, while an inhibition occured in cultures inoculated with exponential growing cells. Addition of catalase (100 U/ml) counteracted the stimulating effect but did not change the inhibiting effect induced by pre-irradiated medium. Results demonstrated the indirect effect of low dose of irradiation, implying hydrogen peroxide, but let us to think that others radioproduced products could be also involved in the mechanism [fr

  6. 21 CFR 866.2410 - Culture medium for pathogenic Neisseria spp.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Culture medium for pathogenic Neisseria spp. 866.2410 Section 866.2410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2410...

  7. Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium

    Science.gov (United States)

    Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.

    2013-01-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  8. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    Science.gov (United States)

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Ginseng is a valuable medicinal plant with ginsenosides as its mian effective components. Because ginseng is a perennial plant and has a very strict demand for soil conditions, the way of cultivating ginseng by cutting woods is still used in China at present and thus forest resources has been extremely destroyed. Increasing attention has been paid to the hairy roots induced by the infection of Agrobacterium rhizogenes in the production of plant secondary metabolic products for the hairy roots are characterized by rapid growth and stable hereditary and biochemical traits. That has opened a new way for the industrial production of ginseosides. However, there is little report for such studies from China. In this paper, hairy roots of ginseng were induced from the root explants of two-year-old ginseng by Agrobacterium rhizogenes A4 with directly inoculating. The transformed hairy roots could grow rapidly on MS medium and 1/2 MS medium without hormones. The cultured clones of the hairy roots were established on a solid 1/2 MS medium. After 4 - 5 subcultures the hairy roots still maintained a vigorous growth. A pair of primers were designed and synthesized according to the analytical results of RiA4TL-DNA sequence by Slightom et al . 0.8kb rolC was obtained by PCR using the genome DNA of hairy root of ginseng. Transformation was confirmed by PCR amplification of rolC genes from the hairy roots of P. ginseng. Growth rate of hairy roots on liquid medium increased by 2 times then that of the solid medium. The growth of the hairy roots can be divided into three stages: high speed in the first two weeks, middle speed in the 3 - 4 weeks and low speed hereafter. Changing the culture solution at 2 weeks regular intervals is conductive to maintaining the rapid growth of the hairy roots. By means of determination for specific growth rate and ginsenosides content, the high-yield hairy root clone R9923 was selected. The content of monomer gisenoside of Rg1, Re, Rf, Rbl, Rc, Rb2 and

  9. The release of elements from dental casting alloy into cell-culture medium and artificial saliva.

    Science.gov (United States)

    Can, Gülşen; Akpınar, Gül; Aydın, Ahmet

    2007-04-01

    The biocompatibility of dental casting alloys is a critical issue because these alloys are in long-term intimate contact with oral tissues. Since the biocompatibility of alloys is not completely known; the release of elements from the alloys has been studied. The aim of this study was to compare the elemental release from dental casting alloy during exposure to artificial saliva and cell-culture medium. Twenty specimens made from Ni-Cr alloy were provided in the form of 5 mm diameter discs, 2 mm in thickness with a 7 mm stem attached to one face to facilitate handling. Ten of twenty samples were polished separately using a conventional technique. The remaining ten samples were left sandblasted with 50 mum Al(2)0(3). Ten samples (5 polished, 5 sandblasted) were separately placed into cell-culture wells with Dulbecco's Modified Eagle's Medium. The other ten samples were placed separately into cell-culture wells with artificial saliva. The samples were subjected in contact with these medium for 30 days. These medium were collected every 7 days. The cell-culture medium and artificial saliva without alloy samples were subjected to elemental analyses as a control. At the end of the exposure time, Atomic Absorption Spectrometry (AAS) was used to determine the release of elements from the alloys into all collected medium. Statistical analyses were assessed with two-way ANOVA. In general, the elemental release occurred with in all medium. The elemental releases of sandblasted alloys were higher than polished alloys. Artificial saliva was found to cause more release from the samples. In both media, Ni released from polished and sandblasted alloys were higher than Cr and Mo. The results suggest that the release of elements from the alloys might have correlated with the environments and the surface of dental alloy.

  10. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    Science.gov (United States)

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  11. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts

    Directory of Open Access Journals (Sweden)

    Sachchida Nand Pandey

    2015-05-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is believed to be caused by aberrant expression of double homeobox 4 (DUX4 due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01 and primary (4.7 fold, p < 0.01 FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.

  12. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    Science.gov (United States)

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  13. THE INFLUENCE OF THE COMPOSITION OF THE CULTURE MEDIUM ON THE DEVELOPMENT OF LEUCONOSTOC LACTIS PRE-FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2017-01-01

    Full Text Available The regularity of the influence of the culture medium (substrate on the development of microflora at the stage of preliminary fermentation of the model medium on the basis of white cabbage varieties "Parus" was studied. During the research, strains of lactic acid microorganisms Leuconostoc lactis were used. Step-by-step mathematical processing of the experimental data was carried out. Functional dependencies are obtained that most adequately approximate experimental data for modified (MMC and basic (BMS model media. Analysis of the experimental data showed that, depending on the type (composition of the medium, the same species of microorganisms exhibit different dynamics of titer growth. In connection with this, an algorithm was developed to determine the optimal duration of pre-fermentation – «stop points». As a result of the research, it can be seen that the modification of the model medium with the addition of table salt and ascorbic acid to it promotes the formation of positive dynamics of the comparison indicator. This dynamics has three extremes, but only extremes are of practical significance, which were in the interval of the monotonic decrease of the titer. For successful development of the starting culture of the stage of the main fermentation, one of the conditions is a relatively small amount of the titer of the first culture at the end of the preliminary fermentation step to exclude competition. Thus, the position of the «stop-point» position corresponds to the period after the last peak of the comparison indicator. The investigated regularity of the effect of the preliminary cultivation of gram-positive microorganisms on the activity of lactic acid microorganisms in the process of fermentation is topical, since the whole process and the production of high-quality products fully depend on this approach.

  14. Addition of Carbon to the Culture Medium Improves the Detection Efficiency of Aflatoxin Synthetic Fungi

    Directory of Open Access Journals (Sweden)

    Tadahiro Suzuki

    2016-11-01

    Full Text Available Aflatoxin (AF is a harmful secondary metabolite that is synthesized by the Aspergillus species. Although AF detection techniques have been developed, techniques for detection of AF synthetic fungi are still required. Techniques such as plate culture methods are continually being modified for this purpose. However, plate culture methods require refinement because they suffer from several issues. In this study, activated charcoal powder (carbon was added to a culture medium containing cyclodextrin (CD to enhance the contrast of fluorescence and improve the detection efficiency for AF synthetic fungi. Two culture media, potato dextrose agar and yeast extract sucrose agar, were investigated using both plate and liquid cultures. The final concentrations of CD and carbon in the media were 3 mg/mL and 0.3 mg/mL, respectively. Addition of carbon improved the visibility of fluorescence by attenuating approximately 30% of light scattering. Several fungi that could not be detected with only CD in the medium were detected with carbon addition. The carbon also facilitated fungal growth in the potato dextrose liquid medium. The results suggest that addition of carbon to media can enhance the observation of AF-derived fluorescence.

  15. Effect of sucrose, benzylaminopurine and culture condition on in vitro propagation of curcuma xanthorrhiza roxb and zingiber aromaticum val

    International Nuclear Information System (INIS)

    Kusumastuti, M.Y.; Keng, C.L.; Bhatt, A

    2014-01-01

    Curcuma xanthorrhiza and Zingiber aromaticum, are important medicinal species of the Zingiberaceae family. They are used in traditional medicine known as Jamu. This study reports on the presence of sucrose and BA (benzylaminopurine) supplements in the culture medium and also the effect of varying culture condition on In vitro propagation of these two species. Murashige and Skoog (MS) medium supplemented with 5 mg L-1 BA and 30 g L-1 sucrose, incubated under total darkness, induced the highest number of multiple shoots in C. xanthorrhiza while the Z. aromaticum produced the highest number of multiple shoot in the same medium incubated under continuous light. The increase in sucrose concentration reduced shoot height in both species. Rooting of micro-shoots was not affected by the different culture treatments. The acclimatized plantlets of C. xanthorrhiza and Z. aromaticum were normal with 83.3-100% percentage when transferred to the outside environment.(author)

  16. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  17. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrey, E-mail: andrey.shchukarev@umu.se [Department of Chemistry, Umeå University, Umeå SE-90187 (Sweden); Malekzadeh, Behnosh Öhrnell [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Ransjö, Maria [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Tengvall, Pentti [Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Westerlund, Anna [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden)

    2017-04-15

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  18. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    International Nuclear Information System (INIS)

    Shchukarev, Andrey; Malekzadeh, Behnosh Öhrnell; Ransjö, Maria; Tengvall, Pentti; Westerlund, Anna

    2017-01-01

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  19. Optimization of Culture Medium for Lactobacillus bulgaricus using Box-Behnken Design

    Directory of Open Access Journals (Sweden)

    Zhang Bowen

    2017-06-01

    Full Text Available Lactobacillus bulgaricus is a common yogurt starter in dairy production. But the viable counts of the bacteria in the productions are relatively low during free-drying and storage which is not good for its commercial production. In order to obtain a medium with high activity and high density for bacterial cultured, the experiments and regression analysis were conducted by Box-Behnken design in this study, and a model was established to predict the influence of glucose (9-11 g·L−1, casein hydrolysate (15-17 g·L−1 and glutamate (6.5-7.5 mg·L−1 on viable counts of L. bulgaricus and. The results showed that the glucose, 9.5 g·L−1; casein hydrolysate, 15.5 g·L−1; glutamate, 7.0mg·L−1, the number of viable bacteria of L. bulgaricus could reach (2.95±0.07 ×109, which was very similar to the predicted value of the model of 3.00×109 cfu·mL−1, indicating that the optimized conditions and models used were feasible and effective. The optimized medium components can improve the viable counts of bacteria which are useful from its application in industrial production.

  20. Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn.

    Science.gov (United States)

    Kleijkers, Sander H M; van Montfoort, Aafke P A; Smits, Luc J M; Coonen, Edith; Derhaag, Josien G; Evers, Johannes L H; Dumoulin, John C M

    2015-06-01

    Does age of G-1 PLUS v5 embryo culture medium affect IVF outcome? Birthweight of singletons born after IVF showed an inverse association with age of the embryo culture medium, while no association was found between age of culture medium and fertilization rate, embryonic development or ongoing pregnancy. It has been reported that IVF culture media can deteriorate during storage, which suggests that the capacity of culture media to support optimal embryo development decreases over time. Some animal studies showed an effect of storage time on embryo development, in contrast to other studies, while the effect of aging culture medium on IVF outcome in humans is unknown. We used data on outcome of 1832 IVF/ICSI cycles with fresh embryo transfer, performed in the period 2008-2012 to evaluate the association of fertilization rate, embryonic development, ongoing pregnancy and birthweight of singletons with age of the culture medium (Vitrolife AB G-1 PLUS v5). Age of the culture medium was calculated by subtracting the production date from the date of ovum retrieval. Data analysis included linear regression and logistic regression on continuous and categorical outcomes, respectively. Age of the culture medium was not associated with fertilization rate (P = 0.543), early cleavage rate (P = 0.155), percentage of embryos containing four or more cells on Day 2 (P = 0.401), percentage of embryos containing eight or more cells on Day 3 (P = 0.175), percentage of embryos with multinucleated blastomeres (P = 0.527), or ongoing pregnancy (P = 0.729). However, birthweight of the newborn was inversely associated with age of the medium (β = -3.6 g, SE: 1.5 g, P = 0.021), after controlling for possible confounders (day of embryo transfer, number of transferred embryos, child's gender, gestational age at birth, parity, pregnancy complications, maternal smoking, height and weight, and paternal height and weight) and the association was not biased by year of treatment, time since first

  1. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  2. Protective layer formation on magnesium in cell culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, V.; Virtanen, S., E-mail: virtanen@ww.uni-erlangen.de

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO{sub 2}). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous

  3. Protective layer formation on magnesium in cell culture medium

    International Nuclear Information System (INIS)

    Wagener, V.; Virtanen, S.

    2016-01-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO_2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  4. Selection of culture medium and conditions for the production of ...

    African Journals Online (AJOL)

    oyaide

    2013-05-15

    May 15, 2013 ... improving the productivity and economical benefits in livestock production ... was to improve the yeast biomass production measured as dry cell ... the total livestock population in India was 1708 Million ... Media for culture maintenance and optimization .... which is very economical and efficient source for the.

  5. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization?

    Directory of Open Access Journals (Sweden)

    Céline Bouillon

    Full Text Available In animal studies, extensive data revealed the influence of culture medium on embryonic development, foetal growth and the behaviour of offspring. However, this impact has never been investigated in humans. For the first time, we investigated in depth the effects of embryo culture media on health, growth and development of infants conceived by In Vitro Fertilization until the age of 5 years old. This single-centre cohort study was based on an earlier randomized study. During six months, in vitro fertilization attempts (No. 371 were randomized according to two media (Single Step Medium--SSM group or Global medium (Global group. This randomized study was stopped prematurely as significantly lower pregnancy and implantation rates were observed in the SSM group. Singletons (No. 73 conceived in the randomized study were included (42 for Global and 31 for SSM. The medical data for gestational, neonatal and early childhood periods were extracted from medical records and parental interviews (256 variables recorded. The developmental profiles of the children in eight domains (social, self-help, gross motor, fine motor, expressive language, language comprehension, letter knowledge and number knowledge--270 items were compared in relation to the culture medium. The delivery rate was significantly lower in the SSM group than in the Global group (p<0.05. The culture medium had no significant effect on birthweight, risk of malformation (minor and major, growth and the frequency of medical concerns. However, the children of the Global group were less likely than those of the SSM group to show developmental problems (p = 0.002, irrespective of the different domains. In conclusion, our findings showed that the embryo culture medium may have an impact on further development.

  6. Growth of nutrient-replete Microcystis PCC 7806 cultures is inhibited by an extracellular signal produced by chlorotic cultures.

    Science.gov (United States)

    Dagnino, Denise; de Abreu Meireles, Diogo; de Aquino Almeida, João Carlos

    2006-01-01

    The frequency of cyanobacterial blooms has been increasing all over the world. These blooms are often toxic and have become a serious health problem. The aim of this work was to search for population density control mechanisms that could inhibit the proliferation of the toxic bloom-forming genus Microcystis. Microcystis PCC 7806 cultured for long periods in liquid ASM-1 medium loses its characteristic green colour. When a medium of chlorotic cultures is added to a nutrient-replete culture, cell density increase is drastically reduced when compared with controls. Inhibition of cell proliferation occurs in Microcystis cultures from any growth stage and was not strain-specific, but other genera tested showed no response. Investigations on the mechanism of growth inhibition showed that cultures treated with the conditioned medium acquired a pale colour, with pigment concentration similar to that found in chlorotic cultures. Ultrastructural examination showed that the conditioned medium induced thylakoid membrane disorganization, typical of chlorotic cells, in nutrient-replete cultures. An active extract was obtained and investigations showed that activity was retained after heating and after addition of an apolar solvent. This indicates that activity of the conditioned medium from chlorotic cells results from non-protein, apolar compound(s).

  7. Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products

    Directory of Open Access Journals (Sweden)

    Manju Pathak

    2012-10-01

    Full Text Available Background: This study aimed to modify de Man Rogosa Sharpe culture medium (termed MRS for selective cultivation of probiotics strain for the consumption by the strictly vegetarian human population. Vegetarian probiotic foods by definition must be free from all animal-derived ingredients. This not only includes the product ingredients but the probiotic inoculum as well. Probiotic starter cultures are traditionally grown and stored in media containing milk or meatderived ingredients. The presence of these ingredients makes the probiotic cell concentrates unsuitable for use in vegetarian products and thus creates the need for a growth medium which isfree from animal-derived ingredients. Present study investigated the growth of a strain of Lactobacillus lactis in MRS. The present invention relates in general to a bacterial culture media,and more specifically a complex microbial culture media, based on plant seed powder extract in place of animal extract for probiotic bacterial growth.Methods: Lactobacillus lactis, a probiotic, was grown in standard MRS culture medium as well as in our various test media (TM containing various vegetal source in place of beef extract, yeast extract and peptone as in case of MRS. The inoculated culture mediums were incubated at 37C for 72 hours and growth of probiotic is recorded at regular intervals. The growth was recorded as Colony Forming Units (CFUs.Results: The best growth of probiotic is observed in TM 2. TM 2 is the leguminous seed extract. Starter culture mediums for probiotics or other bacteria primarily contain protein from animal source. The possibility of using vegetal protein from TM 2 extract in place of peptones and meat extract for the nitrogen supplementation of culture media for the growth of lactic acid bacteria has been demonstrated.Functional Foods in Health and Disease 2012, 2(10:369-378 Conclusion: The absolute vegetarian culture medium containing TM 2 is better than standard MRS for the

  8. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... conditions following good manufacturing practice (GMP). The aims of the study were first to establish culture conditions following GMP quality demands for human MSC expansion and differentiation for use in clinical trials, and second to compare these MSCs with MSCs derived from culture in four media commonly...... analysis showed that the plastic-adherent MSCs cultured in EMEA medium or in the other four media were identically negative for the haematopoietic surface markers CD45 and CD34 and positive for CD105, CD73, CD90, CD166 and CD13, which in combined expression is characteristic of MSCs. MSC stimulation...

  9. In Vitro Selection of Peanut Somatic Embryos on Medium Containing Culture Filtrate of Sclerotium rolfsii and Plantlet Regeneration

    Directory of Open Access Journals (Sweden)

    YUSNITA

    2005-06-01

    Full Text Available Attempts to identify somaclonal variants of peanut with resistance to Sclerotium stem rot disease due to infection of S. rolfsii were conducted. The objectives of this study were to develop in vitro selection method using culture filtrates of S. rolfsii, identify culture filtrate-insensitive somatic embryo (SE of peanut after in vitro selection and regenerate peanut R0 lines originated from culture filtrate-insensitive SE. To achieve these objectives, peanut embryogenic tissues were cultured on selective medium containing various concentrations of S. rolfsii culture filtrates and sublethal concentration of the filtrates. Medium containing sublethal level of S. rolfsii culture filtrates was used to identify culture filtrate-insensitive SE of peanut. Subsequently, the selected SEs were germinated, plantlets were regenerated and preliminary tested against S. rolfsii. Results of the experiments showed that addition of S. rolfsii culture filtrates into medium for inducing peanut somatic embryos drastically reduced their growth and proliferation. S. rolfsii culture filtrates at 10% concentration has significantly reduced the number of proliferated SE per explant. However, sublethal level was achieved at 30% of culture filtrates concentration. Responses of five peanut cultivars against 30% of culture filtrates were similar, indicating they were similar in their susceptibility against S. rolfsii. A number of culture filtrate-insensitive SE were identified after culturing 1500 clumps of embryogenic tissue of peanut cv. Kelinci for three consecutive passages on medium containing 30% of culture filtrates. Germination of selected SE and regeneration of plantlet from culture filtrate-insensitive SE resulted in 50 peanut R0 lines. These lines have been grown in the plastic house and produced normal seeds for further evaluation. Results of S. rolfsii inoculation indicated the existence of chimera for insensitivity against S. rolfsii.

  10. Determination of free cisplatin in medium by differential pulse polarography after ultrasound and cisplatin treatment of a cancer cell culture

    International Nuclear Information System (INIS)

    Bernard, Vladan; Skorpikova, Jirina; Mornstein, Vojtech; Fojt, Lukas

    2011-01-01

    The in vitro study was carried out for detection of the cisplatin in free form and in culture medium, depending on various conditions of sonodynamic human ovarian cancer cells A2780 treatment by differential pulse polarography (DPP). For sonodynamic treatment, we used cisplatin alone and combined cisplatin/ultrasound treatments. The ultrasound exposure intensity of 1.0 and 2.0 Wcm 2 in far field for incubation periods 1, 24 and 48 h was used. The parameters of DPP measurements were - 1 s drop time, 5 mV.s -1 voltage scan rate, 50 mV modulation amplitude and negative scanning direction; platinum wire served as counter electrode and Ag|AgCl|3 M KCI as reference electrode. The results showed the dependence of free platinum quantities in culture medium on incubation time and treatment protocol. We found difference in concentration of free cisplatin between conventional application of cisplatin and sonodynamic treatment. The sonodynamic combined treatment of cisplatin and ultrasound field showed a higher cisplatin content in the culture medium than cisplatin treatment alone; a difference of 20% was observed for incubation time 48 h. The results also showed the influence of a time sequence of ultrasound and cytostatics in the sonodynamic treatment. The highest amount of free cisplatin in the solution was found for primary application of cisplatin and the subsequent ultrasound exposure. The quantity of free cisplatin increased with time, namely for time intervals 1-24 h. There was no difference between the DPP signal of cisplatin in reaction mixture containing cells in small quantities and micro-filtered mixture without cells. Thus, the DPP method is suitable for the detection and quantification of free cisplatin in the culture medium of cell suspension. Ultrasound field can be important factor during cytostatic therapy. (author)

  11. Growth and Development of Colletotrichum gloeosporioides f. alatae During Culture in Liquid Medium

    Directory of Open Access Journals (Sweden)

    Laura E. Cerón Rincón

    2006-01-01

    Full Text Available Some characteristics known as virulence factors for Colletotrichum sp. genus, like: weight of the produced mycelium, sporulation, poligalacturonase activity and pH medium were evaluated during the growth of C. gloeosporioides f. alatae in three liquid medium commonly used for fungi culture (Czapeck, Martin broth and potato broth and additionally (Czapeck with yam extract as the only source of carbon. After of 17 days of growth, maximum values were obtained for the above parameters in the last medium, compared with others growth media evaluated. The implemented medium with yam extract, supply nutritional requirements of the pathogen for the development of characteristic factors related with mechanism of infections that may play a role in the pathogenesis.

  12. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization?

    Science.gov (United States)

    Bouillon, Céline; Léandri, Roger; Desch, Laurent; Ernst, Alexandra; Bruno, Céline; Cerf, Charline; Chiron, Alexandra; Souchay, Céline; Burguet, Antoine; Jimenez, Clément; Sagot, Paul; Fauque, Patricia

    2016-01-01

    In animal studies, extensive data revealed the influence of culture medium on embryonic development, foetal growth and the behaviour of offspring. However, this impact has never been investigated in humans. For the first time, we investigated in depth the effects of embryo culture media on health, growth and development of infants conceived by In Vitro Fertilization until the age of 5 years old. This single-centre cohort study was based on an earlier randomized study. During six months, in vitro fertilization attempts (No. 371) were randomized according to two media (Single Step Medium--SSM group) or Global medium (Global group). This randomized study was stopped prematurely as significantly lower pregnancy and implantation rates were observed in the SSM group. Singletons (No. 73) conceived in the randomized study were included (42 for Global and 31 for SSM). The medical data for gestational, neonatal and early childhood periods were extracted from medical records and parental interviews (256 variables recorded). The developmental profiles of the children in eight domains (social, self-help, gross motor, fine motor, expressive language, language comprehension, letter knowledge and number knowledge--270 items) were compared in relation to the culture medium. The delivery rate was significantly lower in the SSM group than in the Global group (pculture medium had no significant effect on birthweight, risk of malformation (minor and major), growth and the frequency of medical concerns. However, the children of the Global group were less likely than those of the SSM group to show developmental problems (p = 0.002), irrespective of the different domains. In conclusion, our findings showed that the embryo culture medium may have an impact on further development.

  13. Variation of Spirulina maxima biomass production in different depths of urea-used culture medium.

    Science.gov (United States)

    Affan, Md-Abu; Lee, Dae-Won; Al-Harbi, Salim Marzoog; Kim, Han-Jun; Abdulwassi, Najah Ibrahim; Heo, Soo-Jin; Oh, Chulhong; Park, Heung-Sik; Ma, Chae Woo; Lee, Hyeon-Yong; Kang, Do-Hyung

    2015-01-01

    Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.

  14. Protective effect of astrocyte-conditioned medium on neurons following hypoxia and mechanical injury

    Directory of Open Access Journals (Sweden)

    YAN Ji-wen

    2013-02-01

    Full Text Available 【Abstract】Objective: To investigate the protec-tive effect of mouse astrocyte-conditioned medium (ACM on hypoxic and mechanically injured neurons by a cell model in vitro, and to explore the possible mechanism. Methods: The model of hypoxic neuronal injury was caused by 3% O 2 in three-gas incubator. Neurons were cul-tured with ordinary medium or 20% ACM respectively and randomly divided into hypoxic group (hypoxia for 4, 8, 24 h and marked as H4R0, H8R0, H24R0 and hypoxia reoxygenation group (H4R24, H8R24, H24R24. Mechanical injury model was developed by scratching neurons cultured in 20% ACM or ordinary medium to different degrees. Neu-rons in both medium were divided into normal control group, mild, moderate and severe injury groups. The 20% ACM was added 24 h before hypoxia/reoxygenation or mechanical injury. The morphology and survival of neurons were observed and counted by trypan blue staining. The concentration of NO, lactic dehydrogenase (LDH and membrane ATPase activity were detected by corresponding kits. Results: It was showed that 20% ACM can obviously promote the survival rate of hypoxia/reoxygenated neurons and scratched neurons as well. The morphology and num-ber of neurons exposed to hypoxia or scratch injury showed great difference between groups with or without ACM treatment. Compared with control group, the concentration of NO and LDH was much lower in hypoxic/reoxygenated neurons treated with 20% ACM, and the ATPase activity was higher. For the mechanical injury model, neurons with moderate injury also revealed a lower NO and LDH concen-tration than the control group. All the differences were sta-tistically significant (P<0.05. Conclusion: ACM can promote the survival and func-tional recovery of neurons following hypoxia or scratching to a certain degree. The mechanism may be associated with reducing the synthesis and release of NO and LDH as well as increasing the activity of membrane ATPase. Key words: Glial cell line

  15. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    Science.gov (United States)

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-03-02

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  16. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS?

    Science.gov (United States)

    Kim, Mi Kyoung; Park, Eun A; Kim, Hyung Joon; Choi, Won Yun; Cho, Jung Hyun; Lee, Woo Sik; Cha, Kwang Yul; Kim, You Shin; Lee, Dong Ryul; Yoon, Tae Ki

    2013-01-01

    Human pre-ovulatory follicular fluid (FF) contains a higher concentration of melatonin than serum. The aim of this study was to evaluate the effect of melatonin supplementation of culture medium on the clinical outcomes of an in-vitro maturation (IVM) IVF-embryo transfer programme for patients with polycystic ovarian syndrome (PCOS). Melatonin concentrations in the culture media of granulosa cells (GC) or cumulus-oocyte-complexes (COC) were measured and the clinical outcomes after using IVM media with or without melatonin were analysed. In the culture media of GC or COC, melatonin concentrations gradually increased. When human chorionic gonadotrophin priming protocols were used, implantation rates in the melatonin-supplemented group were higher than those of the non-supplemented control group (PPregnancy rates were also higher, although not significantly. The findings suggest that the addition of melatonin to IVM media may improve the cytoplasmic maturation of human immature oocytes and subsequent clinical outcomes. It is speculated that follicular melatonin may be released from luteinizing GC during late folliculogenesis and that melatonin supplementation may be used to improve the clinical outcomes of IVM IVF-embryo transfer. Melatonin is primarily produced by the pineal gland and regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. Interestingly, human pre-ovulatory follicular fluid contains a higher concentration of melatonin than serum. However, in contrast to animal studies, the direct role of melatonin on oocyte maturation in the human system has not yet been investigated. So, the aim of the study was to evaluate the effect of melatonin supplementation of culture medium on the clinical outcome of an in-vitro maturation (IVM) IVF-embryo transfer programme for PCOS patients. The melatonin concentrations in culture medium of granulosa cells (GC) or cumulus-oocyte-complexes (COC) were measured and the

  17. Optimization of Conditions for In Vitro Culture of the Microphallid Digenean Gynaecotyla adunca

    Directory of Open Access Journals (Sweden)

    Jenna West

    2014-01-01

    Full Text Available In vitro cultivation of digeneans would aid the development of effective treatments and studies of the biology of the parasites. The goal of this study was to optimize culture conditions for the trematode, Gynaecotyla adunca. Metacercariae of the parasite from fiddler crabs, Uca pugnax, excysted in trypsin, were incubated overnight to permit fertilization, and were cultured in different conditions to find those that resulted in maximum worm longevity and egg production. When cultured in media lacking serum, worms lived longer in Hanks balanced salt solution and Dulbecco’s Modified Eagle medium/F-12 (DME/F-12 than in RPMI-1640 but produced the most eggs in DME/F-12. Worm longevity and egg production increased when worms were grown in DME/F-12 supplemented with 20% chicken, horse, or newborn calf serum but the greatest number of eggs was deposited in cultures containing horse or chicken serum. Horse serum was chosen over chicken serum due to the formation of a precipitate in chicken serum. The optimal concentration of horse serum with respect to egg production ranged from 5 to 20%. Infectivity of eggs deposited by worms in culture was tested by feeding eggs to mud snails, Ilyanassa obsoleta. None of these snails produced G. adunca cercariae.

  18. Evidence of biogenic corrosion of titanium after exposure to a continuous culture of thiobacillus ferrooxidans grown in thiosulfate medium

    International Nuclear Information System (INIS)

    Horn, J M; Martin, S I; Masterson, B

    2000-01-01

    Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material coupons were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7

  19. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    Science.gov (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  20. Influence of embryo culture medium on incidence of ectopic pregnancy in in vitro fertilization.

    Science.gov (United States)

    Lin, Shengli; Li, Rong; Zheng, Xiaoying; Chi, Hongbin; Ren, Xiulian; Yang, Rui; Liu, Ping; Qiao, Jie

    2015-12-01

    To explore the effect of type of media used to culture embryos for IVF on the incidence of ectopic pregnancy (EP). Retrospective analysis. University-affiliated IVF center. The retrospective analysis involved 23,481 women who underwent IVF-ET cycles between 2011 and 2013. None. There was an association between EP and the culture medium. During 23,481 fresh transfer cycles, 364 patients were diagnosed with EP. The EP to clinical pregnancy rate was 3.01% in the G5 group, 3.89% in the G5 Plus group, and 4.04% in the Global group. The EP to clinical pregnancy rates were significantly higher in the G5 Plus and Global groups than in the G5 group. After adjusting for confounding factors, the incidence of EP was significantly associated with the G5 Plus and Global media. Our results showed that there is an association between incidence of EP and the culture medium. The rates of EP to clinical pregnancy were significantly higher in the G5 Plus and Global media than in the G5 medium. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Somatic embryogenesis on Musa AAAB, cv. FHIA-18, using liquids culture mediums

    Directory of Open Access Journals (Sweden)

    Luis A. Barranco

    2002-04-01

    Full Text Available Homogenous cell suspensions were iniciated from somatic embryos in the globular stage and the greatest volume of cell biomass on multiplying the suspensions at a density of 3.0% PCV. From the fifteenth day in culture medium for the formation of embryos, structures consisting of proembryos and somatic embryos in the globular stage started to form. With respect to the densities studied, the best results were obtained with 100 mgFW, where 1 871 SE.l-1 formed with a weight of 248 mgFW.l-1 after 30 days. With an initial density of 0.6 gFW in the culture medium for secondary multiplication, an increase of 42.9-fold the initial amount of fresh weight was obtained; after 60 days of culture 15 985 SE.l-1 were obtained. The greatest percentage of maturation was obtained with 400 mgFW with 70% of mature somatic embryos. The positive effect of Biobras-6 (brassinosteroid analogous was confirmed, with a concentration of 0.01 mg.l-1 the best germination percentages were obtained in liquid and semisolid culture medium. Embryo germination in temporaly inmersion (RITA was achieved with an inoculum density of 0.5 gFW for system with 85% germination. One thousand plants obtained from somatic embryos were taken to ex vitro environment, along with plants derived from conventional micropropagation (shoot tips to carry out studies on the possible presence of somaclonal variation. During the first cycle of production, the plants derived from the two methods in vitro culture showed differences with respect to the plants derived from corms in height, diameter and number of suckers. In the second production cycle, the plants from somatic embryos showed similar characteristics to the plants derived from shoot tip and corms with respect to the morphological parameters evaluated, with only 0.2% of the plants with phenotypic changes. Key Words: Banana, cellular density, germination, somaclonal variability, somatic embryo

  2. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture.

    Science.gov (United States)

    Kumar, Anup; Singh, Neera

    2016-03-01

    An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.

  3. In vitro plant regeneration of two cucumber (Cucumis sativum L. genotypes: Effects of explant types and culture medium

    Directory of Open Access Journals (Sweden)

    Grozeva Stanislava

    2014-01-01

    Full Text Available The effect of different phytohormone concentrations on callusogenesis and organogenesis in two cucumber genotypes were studied. It was established that the rate of plant regeneration depends on genotype, explant type and culture medium. Hypocotyls were found to be more responsive than cotyledons in morphogenesis. In vitro planlet-regenerants have been obtained in hypocotyls explants on culture medium with 1.0 and 2.0 mgL-1 BA for cultivar Gergana and in 1.0 and 3.0 mgL-1K-line 15B. Induction of regeneration in cotyledons were established only in cultivar Gergana on culture medium supplemented with 3.0 mgL-1 BA and in combination of 0.5 mgL-1IAA.

  4. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  5. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    Science.gov (United States)

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of BioFM liquid medium for culture of cerebrospinal fluid in tuberculous meningitis to identify Mycobacterium tuberculosis.

    Science.gov (United States)

    Kashyap, R S; Ramteke, S S; Gaherwar, H M; Deshpande, P S; Purohit, H J; Taori, G M; Daginawala, H

    2010-01-01

    The present study was designed to evaluate the sensitivity and specificity of liquid culture medium (BioFM broth) for the diagnosis of tuberculous meningitis (TBM) in cerebrospinal fluid (CSF). CSF samples from 200 patients (TBM group = 150 and non-TBM group = 50) were tested for culture of Mycobacterium tuberculosis in BioFM liquid culture medium. Out of 150 TBM cases, 120 were found to be culture positive, indicating a sensitivity of 80% in BioFM broth within 2-3 weeks of inoculation. Positive cultures were also observed for CSF from 32 (64%) out of 50 non-TBM patients in BioFM liquid culture medium within 4 days of sample inoculation. Therefore, according to our study, BioFM broth system yielded 80% sensitivity [95% confidence interval (CI): 67-93%] and 36% specificity (95% CI: 57-98%) for TBM diagnosis. Our results indicate that although BioFM broth allows the detection of positive cultures within a shorter time, it has a high potential for contamination or for the coexistence of M. tuberculosis and non-tuberculous meningitis (NTM). This coexistence may go undetected or potentially lead to erroneous reporting of results.

  7. Evaluation of BioFM liquid medium for culture of cerebrospinal fluid in tuberculous meningitis to identify Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Kashyap R

    2010-01-01

    Full Text Available The present study was designed to evaluate the sensitivity and specificity of liquid culture medium (BioFM broth for the diagnosis of tuberculous meningitis (TBM in cerebrospinal fluid (CSF. CSF samples from 200 patients (TBM group = 150 and non-TBM group = 50 were tested for culture of Mycobacterium tuberculosis in BioFM liquid culture medium. Out of 150 TBM cases, 120 were found to be culture positive, indicating a sensitivity of 80% in BioFM broth within 2-3 weeks of inoculation. Positive cultures were also observed for CSF from 32 (64% out of 50 non-TBM patients in BioFM liquid culture medium within 4 days of sample inoculation. Therefore, according to our study, BioFM broth system yielded 80% sensitivity [95% confidence interval (CI: 67-93%] and 36% specificity (95% CI: 57-98% for TBM diagnosis. Our results indicate that although BioFM broth allows the detection of positive cultures within a shorter time, it has a high potential for contamination or for the coexistence of M. tuberculosis and non-tuberculous meningitis (NTM. This coexistence may go undetected or potentially lead to erroneous reporting of results.

  8. Photoreactivation of thymine dimers in uv-irradiated human cells: unique dependence on culture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mortelmans, K; Friedberg, E C [Stanford Univ., Calif. (USA). Dept. of Pathology. Lab. of Experimental Oncology; Cleaver, J E; Thomas, G H [California Univ., San Francisco (USA). Lab. of Radiobiology; Paterson, M C; Smith, B P [Atomic Energy of Canada Ltd., Chalk River, Ontario. Biology and Health Physics Div. Chalk River Nuclear Labs.

    1977-09-01

    UV-irradiated human fibroblasts in tissue culture were exposed to photoreactivating light in an attempt to demonstrate a light-dependent loss of thymine dimers from the acid-insoluble fraction of the DNA. The only experimental conditions in which this phenomenon was observed was if the cells were grown for at least 10 days in Dulbecco's modified Eagle's minimum essential medium. Such cells lost a maximum of between 10 to 30% of the thymine dimers from their DNA during illumination for 1 h. When cells were grown in a variety of other media, this phenomenon was not observed. The present experiments do not discriminate between true enzymatic photoreactivation and a medium-dependent photosensitization phenomenon that is not enzymatic in nature.

  9. Implications in studies of environmental risk assessments: Does culture medium influence the results of toxicity tests of marine bacteria?

    Science.gov (United States)

    Díaz-García, Alejandra; Borrero-Santiago, Ana R; Riba, Inmaculada

    2018-04-14

    Two marine bacterial populations (Roseobacter sp. and Pseudomonas litoralis) were exposed to different concentrations of zinc (300, 625, 1250, 2000, 2500 and 5000 mg L -1 ) and cadmium (75, 250, 340, 500 and 1000 mg L -1 ) using two culture media (full nutrient Marine Broth 2216 "MB" and 1:10 (vol/vol) dilution with seawater of Marine Broth 2216 "MB SW "), in order to assess population responses depending on the culture medium and also potential adverse effects associated with these two metals. Different responses were found depending on the culture medium (Bacterial abundance (cells·mL -1 ), growth rates (μ, hours -1 ), and production of Extracellular Polysaccharides Substances (EPS) (μg glucose·cells -1 ). Results showed negative effects in both strains after the exposure to Zn treatments. Both strains showed highest metal sensitivity at low concentrations using both culture media. However, different results were found when exposing the bacterial populations to Cd treatments depending on the culture medium. Highest toxicity was observed using MB at low levels of Cd concentrations, whereas MB SW showed toxicity to bacteria at higher concentrations of Cd. Results not only showed adverse effects on Roseobacter sp. and Pseudomonas litoralis associated with the concentration of Zn and Cd, but also confirm that depending on the culture medium results can differ. This work suggests MB SW as an adequate culture medium to study metal toxicity bioassays in order to predict realistic effects on marine bacterial populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. EFFECT OF TREATED DOMESTIC WASTEWATER USED AS CULTURE MEDIUM ON THE GROWTH AND PRODUCTIVITY OF Chlamydomonas sp. STRAIN ISOLATED FROM LANDFILL LEACHATE

    Directory of Open Access Journals (Sweden)

    Fábio de Farias Neves

    2013-07-01

    Full Text Available Microalgae have been culturing to fix carbon and produce biofuels from the biomass. However, it is important to develop low cost strategies for microalgae production in orther to make it a viable alternative of renewable energy. The present research studied the effect of treated wastewater used as an alternative culture medium for growth and productivity of a Chlamydomonas sp. strain isolated from landfills leachate of a treatment pond located in Southern Brazil. Three culture media were evaluated, the control consisted of synthetic TAP medium, other, consisting of 50% TAP medium and 50% wastewater, and another consisting of 100% wastewater. The growth parameters do not have significant difference among the three culture media. Also, productivity do not have significant difference among the cultures with TAP medium and with 100% wastewater, resulting in dry weight values of 1,4±0,14g/L and 1,3±0,19g/L respectively. The culture with 50% TAP medium and 50% wastewater showed the highest productivity, showing an average dry weight value of 1,7±0,07g/L. The results indicate that treated wastewater can be used as an alternative culture medium for Chlamydomonas sp. strain without negative effects on growth and productivity, and possible leading to a decrease in production costs.

  11. Influence of serum extraction from the culture medium and of sublethal X-ray irradiation upon microvilli and invaginations of the membrane of Ehrlich ascites tumor cells in monolayer culture

    International Nuclear Information System (INIS)

    Laudenbach, G.; Pfab, R.; Hess, F.; Schachtschabel, D.O.

    1984-01-01

    In order to find out modifications of microvilli and invaginations, the cellular surfaces of Ehrlich ascites tumor cells in monolayer culture (basal medium of Eagle + 10% fetal calf serum) were investigated with the aid of electron-microscopic cross-sections. The tumor cells had been cultured without serum 24 hours prior to investigation or irradiated with 2 Gy. Morphometric evaluation after cell culture in a serum-free medium showed a reduced number of microvilli and a diminution of sections of microvilli. As already described before, a reduction of cell proliferation, of the microtubule-microfilament system, and of the endocytosis activity occurs under these serum-free conditions. The number of invaginations (related to a constant membrane part) was reduced by nearly 50% after serum extraction. Similarly to serum extraction, sublethal X-ray irradiation reduced the sections of microvilli, whereas the number of microvilli increased slightly. Contrary to the effect of serum extraction, the irradiated cells showed twice as many invaginations as the non-irradiated control cells. These differences in the surface structures are interpreted as a result of modified growth stimulations (+- serum) and radiogenic reparation processes. (orig.) [de

  12. Rabbit chondrocytes maintained in serum-free medium. I. Synthesis and secretion of hydrodynamically-small proteoglycans

    International Nuclear Information System (INIS)

    Malemud, C.J.; Papay, R.S.

    1986-01-01

    The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35 SO 4 in medium fraction dAl eluted as a retarded peak on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types

  13. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium.

    Science.gov (United States)

    Li, Ye; Cassone, Vincent M

    2015-09-01

    A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    Science.gov (United States)

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  15. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  16. Improved Survival and Initiation of Differentiation of Human Induced Pluripotent Stem Cells to Hepatocyte-Like Cells upon Culture in William's E Medium followed by Hepatocyte Differentiation Inducer Treatment.

    Directory of Open Access Journals (Sweden)

    Minoru Tomizawa

    Full Text Available Hepatocyte differentiation inducer (HDI lacks both glucose and arginine, but is supplemented with galactose and ornithine, and is added together with other reagents such as apoptosis inhibitor and oncostatin M. Although human induced pluripotent stem (iPS cells initiate hepatocyte differentiation, most die within 7 days. In this study, we investigated both HDI and conventional media for their potential to improve cell survival.201B7 iPS cells were cultured in conventional media. This consisted of three cycles of 5-day culture in William's E (WE medium, followed by a 2-day culture in HDI.Expression levels of α-feto protein (AFP were higher in cells cultured in WE and in Dulbecco's Modified Eagle's Medium/Nutrient F-12 Ham (DF12. 201B7 cells expressed the highest AFP and albumin (ALB when cultured in HDI for 2 days following 7-day culture in WE. After three cycles of 5-day culture in WE followed by 2 days in HDI, 201B7 cells expressed AFP and ALB 54 ± 2.3 (average ± standard deviation and 73 ± 15.1 times higher, respectively, than those cultured in ReproFF (feeder-free condition.201B7 cells survived culture in WE for 7 days followed HDI for 2 days. After three cycles of culture under these conditions, hepatocyte differentiation was enhanced, as evidenced by increased AFP and ALB expression.

  17. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions.

    Science.gov (United States)

    Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro

    2006-05-01

    Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as alpha-amylase (TAA) and beta-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture.

  18. Differential Effect of Medium on the Ratio of ICM/TE of Bovine Embryos in a Co-culture System

    Directory of Open Access Journals (Sweden)

    Mohsen Forouzanfar

    2010-01-01

    Full Text Available Background: This study was undertaken to investigate the efficiency of two differentembryo somatic cell co-culture conditions, tissue culture medium 199 (TCM199–vero cellsand Menezo B2 (B2-vero cells, for the in vitro developmental quantity and quality of bovineembryos.Materials and Methods: Bovine oocytes were allowed to mature and subsequently undergofertilization in vitro. Their presumptive zygotes were cultured in either TCM199 or B2 culturemedia in conjunction with vero cells for up to nine days. The culture media were refreshedevery two days and the proportion of embryos that cleaved and further developed to themorula and blastocyst (early, expand and hatched stages were recorded. Hatched blastocystsunderwent differential staining in order to determine the numbers of inner cell mass (ICMand tropho ectoderm (TE and total cell number (TCN.Results: Of the two groups, no significant difference was seen between the proportions ofthe presumptive zygotes cleaved, those which developed to 8-16 cells, morula and reacheddays 7or 8 blastocyst stage or hatched. However, the values for TCN and TE of the TCM199-vero embryos were significantly greater than those of B2-vero embryos. The values for ICM/TCN and ICM/TE were significantly greater in the B2-vero group versus the TCM199-verogroup.Conclusion: Both TCM199 and B2 culture media in conjunction with vero cells were ofthe same efficiency when used for in vitro development of bovine presumptive zygotes.However, TCM199 was superior in providing embryos with more embryo cell numbers,whereas B2 medium was superior in providing embryos with greater ICM/TE and ICM/TCN ratios.

  19. Effects of culture media conditions on production of eggs fertilized in vitro of embryos derived from ovary of high grade Hanwoo

    Directory of Open Access Journals (Sweden)

    Jun Young Lee

    2016-03-01

    Full Text Available Abstract Background This study was investigated the effects of culture media conditions on production of eggs fertilized in vitro of embryos from ovaries of high grade Korean native cow, Hanwoo. Methods The IVMD 101 and IVF 100 were used for in vitro maturation of selected Hanwoo oocytes and In vitro embryo culture after in vitro fertilization, respectively. The IVMD 101 and IVD 101 were used for in vitro culture and completely free of serum. Results The cleavage rates of 2-cell embryos in reference to Hanwoo oocytes were 86.7, 92.9 , and 90.1 % in the control group, IVDM101 medium and IVD101 medium, respectively which indicates that the IVDM101 medium and IVD101 medium may result favorable outcomes. The in vitro development rates of blastocysts were 12.4, 38.4 and 32.4 % in the control group, serum free IVMD101 medium and IVD101 medium, respectively. For hatched blastocysts, it was 5.3, 33.9, and 28.6 % in the control group, serum free IVMD101 medium and IVD101 medium, respectively. Hence, more favorable results were expected for the hatched blastocysts in which the IVMD101 medium and IVD101 medium were used than the control group. Average cell numbers of blastocysts were 128.3, 165.7, and 163.6 in the groups of TCM-199 + 10 % FBS medium, IVMD 101 medium, and IVD 101 medium, respectively which clearly show that the IVMD 101 and IVD 101 medium consequence significantly higher cell numbers compared to the control group (i.e., TCM-199 + 10 % FBS medium. Pregnancy rate after embryo transfer was 39.6 % when the serum free medium was used which is higher than that of the medium supplemented with serum (32.8 %. In addition, stillbirth rates were 4.9 % in the group of serum free medium whereas it was 13.6 % in the serum supplemented medium (13.6 %. Conclusions Taken altogether, serum free media, the IVMD 101 and IVD 101 represented more favorable results in the embryo development rate of embryos, cell numbers of blastocyst, and

  20. Culture medium modulates the behaviour of human dental pulp-derived cells: Technical Note

    Directory of Open Access Journals (Sweden)

    S Lopez-Cazaux

    2006-02-01

    Full Text Available In vitro approaches have extensively been developed to study reparative dentinogenesis. While dental pulp is a source of unidentified progenitors able to differentiate into odontoblast-like cells, we investigated the effect of two media; MEM (1.8mM Ca and 1mM Pi and RPMI 1640 (0.8mM Ca and 5mM Pi on the behaviour of human dental pulp cells. Our data indicate that MEM significantly increased cell proliferation and markedly enhanced the proportion of -smooth muscle actin positive cells, which represent a putative source of progenitors able to give rise to odontoblast-like cells. In addition, MEM strongly stimulated alkaline phosphatase activity and was found to induce expression of transcripts encoding dentin sialophosphoprotein, an odontoblastic marker, without affecting that of parathyroid hormone/parathyroid hormone related protein-receptor and osteonectin. In conclusion, these observations demonstrate that not only proliferation but also differentiation into odontoblast-like cells was induced by rich calcium and poor phosphate medium (MEM as compared to RPMI 1640. This study provides important data for the determination of the optimal culture conditions allowing odontoblast-like differentiation in human pulp cell culture.

  1. Culture of Chlorella ellipsoidea in different culture media

    Directory of Open Access Journals (Sweden)

    MM Mohshina

    2017-06-01

    Full Text Available An experiment of algal culture was conducted in natural light and temperature conditions at a balcony of a room at the 2nd floor of Fisheries Faculty Building facing the north. The experiment was done to evaluate the growth of Chlorella ellipsoidea in four different media, viz, medium I (inorganic, medium II (organic, whole pulse powder extract, medium III (organic, whole lentil powder extract and medium IV (organic, whole gram powder extract under natural environment conditions during January-June, 2015. Growth rates of the algal species in four different media were found not significantly different. The alga, C. ellipsoidea attained maximum cell density of 28.89×106 cell ml-1 in the 15th day in medium I, of 30.69×106 cell ml-1 in the 13th day in medium II, of 26.18×106 cell ml-1 in the 15th day in medium III and of 21.12×106 cell ml-1 in the 13th day in medium IV. The ranges of air temperature, water temperature and light intensity were 21°C to 38°C, 23°C to 36°C and 2.28×103to 9.60×103 Lux respectively during the culture period. The average sunshine period was 5.87±2.82 hrs. Total alkalinity, free CO2, pH , NO3-N and PO4-P of algal culture media I, II, III and IV were 128, 540, 554 and 322 mgL-1; 32, 162, 102, 70 mgL-1; 7.4, 8, 7.9 and 7.9; 180, 36.6, 62.4 and 150 mgL-1, and 25.2, 48.2, 42.4 and 45.6 mgL-1, respectively. According to ANOVA of cell densities of cultures of C. ellipsoidea under treatments are not significantly different (F=1.441077. It is clear that differences between them are not significant i.e. mean algal cell densities are more or less same as differences between treatments are less than 20%.

  2. Accumulation of 137Cs in trefoil (leaf and stem), ''Mitsuba'', Cryptotaenia japonica Hassk, immersed in hydroponic culture medium

    International Nuclear Information System (INIS)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki; Izumo, Yoshiro

    1998-01-01

    Accumulation of 137 Cs in trefoil (leaf and stem), ''Mitsuba'', Cryptotaenia japonica Hassk, with or without root was investigated to prepare higher radioactive plant in hydroponic culture medium (140-150 Bq/ml). It was found that 137 Cs concentration in plant tissue was increased with time, as high as 1.6 times of that in the culture medium after 4 days. On the other hand, 137 Cs concentration was affected by carrier element (Cs>6 ppm) and coexistent elements in the medium. Radioactivity of the plant after 4 days was shown to be sufficient for successive experiments. (author)

  3. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

    Science.gov (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie

    2012-03-01

    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling.

    Science.gov (United States)

    Balážová, Tereza; Makovcová, Jitka; Šedo, Ondrej; Slaný, Michal; Faldyna, Martin; Zdráhal, Zbyněk

    2014-04-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a simple reliable approach for rapid bacterial identification based on specific peptide/protein fingerprints. However, cell-wall characteristics of mycobacterial species, and their well known stability, complicate MALDI-TOF MS profiling analysis. In this study, we tested two recently published protocols for inactivation and disruption of mycobacteria, and we also examined the influence of different culture conditions (four culture media and five cultivation times) on mass spectral quality and the discriminatory power of the method. We found a significant influence of sample pretreatment method and culture medium on species identification and differentiation for a total of 10 strains belonging to Mycobacterium phlei and Mycobacterium smegmatis. Optimum culture conditions yielding the highest identification success rate against the BioTyper database (Bruker Daltonics) and permitting the possibility of automatic acquisition of mass spectra were found to be distinct for the two mycobacterial species examined. Similarly, individual changes in growth conditions had diverse effects on the two species. For these reasons, thorough control over cultivation conditions should always be employed to maximize the performance and discriminatory power of MALDI-TOF MS profiling, and cultivation conditions must be optimized separately for individual groups of mycobacterial species/strains. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice.

    Science.gov (United States)

    Choi, Jung Kyu; Agarwal, Pranay; He, Xiaoming

    2013-12-01

    The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle

  6. Efflux of inorganic substances from young barley roots. I. Efflux in water culture under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H; Kojima, S [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1977-09-01

    The efflux of elements from the roots of hydropomically grown young barley plants was studied. The effects of different mutrient compositions and pH values of the solutions was also studied using /sup 22/Na and /sup 45/Ca as the indexes. In all culture conditions, there was efflux of both elements. In two media with dilute hydrochloric acid and AlCl/sub 3/, respectively, the tendencies of Na and Ca efflux were similar in both media at first, but after 72 hr, the Na efflux in AlCl/sub 3/ decreased and that in dilute hydrochloric acid medium increased. The Ca efflux was high in AlCl/sub 3/ medium,however. The efflux of both Na and Ca was higher in the standard medium than in the media with some bases of high concentrations.

  7. Determination of the cause of the symptoms on yellow yam (Dioscorea cayenensis Lam.) leaf tissue and their eradication, enriching the culture medium and using techniques of meristem culture, thermo and chemotherapy on in vitro conditions

    International Nuclear Information System (INIS)

    Brenes Huertas, Mauricio

    2010-01-01

    Yams (Dioscorea spp) has been cultivated for exportation in Costa Rica, in North Huetar region. In vitro culture technique has been used for multiplying planting material for many advantages. However, cleaning of viruses that affect has been ineffective. Viruses such as: the potyvirus, potexvirus, cucumovirus . Methods like meristem culture, chemotherapy, thermotherapy and combinations of these have been used for the elimination of virus in plant species. The plants were evaluated in indexing assays, observing symptoms, serological methods and electron microscopy, among others. Other problems that have been affecting in vitro plant are deficient culture media in some nutrient. The presence of some abnormal characteristics in leaf tissue was determined whether have been caused by a virus or a nutritional deficiency in the culture medium. The presence of the virus has tried to find using ELISA and electron microscopy. Tests meristem culture, thermotherapy and chemotherapy have been made for the eradication of a possible virus; which have been assessed by observation of symptomatology and ELISA. The efficiency of the culture medium was evaluated to enrich it with nitrogen or excess iron. None of the suspected virus found in ELISA tests. Filaments are presumably viral particles were found through analysis of ultrastructure, as well as alterations in chloroplasts which indicated the presence of a pathogen or toxicity. Thermotherapy and chemotherapy with the concentration of 40 mg/L of ribavirin have been the most effective for the elimination of symptoms in virus eradication treatments. Assessments nutrient concentrations have shown that the differences between the various treatments used were undetectable. The symptoms presented were caused, according to the conclusions, by a virus which should preferably deal with thermotherapy. (author) [es

  8. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

    Science.gov (United States)

    Hirasawa, Kazuhiro; Moriya, Shota; Miyahara, Kana; Kazama, Hiromi; Hirota, Ayako; Takemura, Jun; Abe, Akihisa; Inazu, Masato; Hiramoto, Masaki; Tsukahara, Kiyoaki

    2016-01-01

    Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”. PMID

  9. Bioleaching of fly ash from municipal solid waste incineration using kitchen waste saccharified solution as culture medium

    International Nuclear Information System (INIS)

    Wei, S.; Juan, W.; Qunhui, W.

    2013-01-01

    Summary: Reduced sugar in saccharified solution from kitchen waste was used as the carbon source. Domesticated A. niger AS 3.879C , which can withstand 20% of kitchen waste, was used as the inoculum in the bioleaching process of municipal solid waste incineration fly ash. The effect of reduced sugar concentration, fly ash concentration, and medium volume on the heavy metal extraction and yield of fly ash as well as the optimum bioleaching conditions; the inoculation amount of AS 3 .879C 1% (v/v), reduced sugar concentration of 80 g/l, fly ash concentration of 20 g/l, medium volume of 200 ml, and the addition of fly ash (20 g/l) after culturing for 4 days at 30 degree C and 140 r/min were obtained. Under the optimum condition, the extraction yield of the seven tested heavy metals are in the order of Cd > Zn > Cu > Mn > Pb > Cr > Fe; the extraction yield of Cd and Zn reached 88.7% and 73.1% respectively. Fly ash satisfied the Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes (GB 18598-2001) after heavy metal extraction. (author)

  10. Adapting the Medium: Dynamics of Intermedial Adaptation in Contemporary Japanese Popular Visual Culture

    Directory of Open Access Journals (Sweden)

    Pusztai Beáta

    2015-08-01

    Full Text Available With respect to adaptation studies, contemporary Japanese popular culture signifies a unique case, as different types of media (be those textual, auditive, visual or audio-visual are tightly intertwined through the “recycling” of successful characters and stories. As a result, a neatly woven net of intermedial adaptations has been formed - the core of this complex system being the manga-anime-live-action film “adaptational triangle.” On the one hand, the paper addresses the interplay of the various factors by which the very existence of this network is made possible, such as the distinctive cultural attitude to “originality,” the structure of the comics, animation and film industries, and finally, the role of fictitious genealogies of both traditional and contemporary media in the negotiation of national identity. On the other hand, the essay also considers some of the most significant thematic, narrative, and stylistic effects this close interconnectedness has on the individual medium. Special attention is being paid to the nascent trend of merging the adaptive medium with that of the original story (viewing adaptation as integration, apparent in contemporary manga-based live- action comedies, as the extreme case of intermedial adaptation. That is, when the aim of the adaptational process is no longer the transposition of the story but the adaptation (i.e. the incorporation of the medium itself- elevating certain medium-specific devices into transmedial phenomena.

  11. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Mirdavoudi F

    2012-01-01

    Full Text Available Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

  12. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization

    OpenAIRE

    Jin, Muzi; Wu, Asga; Dorzhin, Sergei; Yue, Qunhua; Ma, Yuzhen; Liu, Dongjun

    2012-01-01

    Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts we...

  13. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions.

    Science.gov (United States)

    Navarrete, Fernando; De La Fuente, Leonardo

    2014-02-01

    The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.

  14. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  15. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk

    Directory of Open Access Journals (Sweden)

    Hung Yi Song

    2018-01-01

    Full Text Available γ-Aminobutyric acid (GABA, a nonprotein amino acid, is widely distributed in nature and fulfills several physiological functions. In this study, various lactic acid strains commonly used to produce fermented milk products were inoculated into adzuki bean milk for producing GABA. The high GABA producing strain was selected in further experiment to improve the GABA production utilizing culture medium optimization. The results demonstrated that adzuki bean milk inoculated with Lactobacillus rhamnosus GG increased GABA content from 0.05 mg/mL to 0.44 mg/mL after 36 hours of fermentation, which showed the greatest elevation in this study. Furthermore, the optimal cultural condition to adzuki bean milk inoculated with L. rhamnosus GG to improve the GABA content was performed using response surface methodology. The results showed that GABA content was dependent on the addition of galactose, monosodium glutamate, and pyridoxine with which the increasing ratios of GABA were 23–38%, 24–68%, and 8–36%, respectively. The optimal culture condition for GABA production of adzuki bean milk was found at the content of 1.44% galactose, 2.27% monosodium glutamate, and 0.20% pyridoxine. Under the optimal cultural condition, the amount of GABA produced in the fermented adzuki bean milk was 1.12 mg/mL, which was 22.4-fold higher than that of the unfermented adzuki bean milk (0.05 mg/100 mL. The results suggested that the optimized cultural condition of adzuki bean milk inoculated with L. rhamnosus GG can increase GABA content for consumers as a daily supplement as suggested.

  16. HepG2 cells develop signs of riboflavin deficiency within four days of culture in riboflavin-deficient medium*

    OpenAIRE

    Werner, Ricarda; Manthey, Karoline C.; Griffin, Jacob B.; Zempleni, Janos

    2005-01-01

    Flavin mononucleotide and flavin adenine dinucleotide are essential coenzymes in redox reactions. For example, flavin adenine dinucleotide is a coenzyme for both glutathione reductase and enzymes that mediate the oxidative folding of secretory proteins. Here we investigated short-term effects of moderately riboflavin-deficient culture medium on flavin-related responses in HepG2 hepatocarcinoma cells. Cells were cultured in riboflavin-deficient (3.1 nmol/L) medium for up to six days; controls ...

  17. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  18. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF.

    Science.gov (United States)

    Vergouw, Carlijn G; Kostelijk, E Hanna; Doejaaren, Els; Hompes, Peter G A; Lambalk, Cornelis B; Schats, Roel

    2012-09-01

    Does the type of medium used to culture fresh and frozen-thawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean birthweight adjusted for gestational age, gender and parity (z-scores) of singletons born after a fresh or frozen-thawed SET. Furthermore, we show that embryo freezing and thawing cycles may lead to a significantly higher mean birthweight. Animal studies have shown that culture media constituents are responsible for changes in birthweight of offspring. In human IVF, there is still little knowledge of the effect of medium type on birthweight. Until now, only a small number of commercially available culture media have been investigated (Vitrolife, Cook(®) Medical and IVF online medium). Our study adds new information: it has a larger population of singleton births compared with the previously published studies, it includes outcomes of other media types (HTF and Sage(®)), not previously analysed, and it includes data on frozen-thawed SETs. This study was a retrospective analysis of birthweights of singleton newborns after fresh (Day 3) or frozen-thawed (Day 5) SET cycles, using embryos cultured in either of two different types of commercially available culture media, between 2008 and 2011. Before January 2009, a single-step culture medium was used: human tubal fluid (HTF) with 4 mg/ml human serum albumin. From January 2009 onwards, a commercially available sequential medium was introduced: Sage(®), Quinn's advantage protein plus medium. Singletons born after a fresh SET (99 embryos cultured in HTF and 259 in Sage(®)) and singletons born after a frozen-thawed SET (32 embryos cultured in HTF only, 41 in HTF and Sage(®) and 86 in Sage(®) only) were analysed. Only patients using autologous gametes without the use of a gestational carrier were considered. Also excluded were (vanishing) twins, triplets

  19. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp.

    Science.gov (United States)

    Sopandi, T; Wardah, A; Surtiningsih, T; Suwandi, A; Smith, J J

    2013-03-01

    This research sought to determine optimal corn waste stream-based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497.03 ± 55.13 mg l(-1)) was obtained with a 21 : 1 C : N ratio, pH 5.5-6.0; yeast extract-, NH(4) NO(3)-, NaNO(3)-, MgSO(4) ·7H(2) O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25 °C, 60-70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2-9 stable. Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand. © 2012 The Society for Applied Microbiology.

  20. INNOVATIVE CULTURE IN SMALL AND MEDIUM ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Aluisio Broering Mambrini

    2011-10-01

    Full Text Available In the last two decades, innovation has been a key driver of economic growth. Innovation is closely related to creating value and generating wealth through successful service to consumer needs. Thus, it is not necessarily restricted to the use of new knowledge generated from research, but on the development of new products or services that are obtained with creative use of knowledge, new or already known. This study aimed to identify management practices that promote a culture of innovation in small and medium enterprises and analyze how they contribute to the innovative capacity of these companies. The research method was the multiple case study with six small and medium businesses that have at least one case of significant innovation in its history. The main results showed that amongst the practices are: a performance in highly specialized niches and deep focus on customer needs; b strong investment and incorporation of new knowledge outside the company (open innovation; c speed and agility in the absorption and deployment of new knowledge and technologies; d retention of employees; e acting as an integrator combining diverse knowledge and technologies; f the information management of the knowledge acquired by the company; g little concern to patent the technology; h flexibility and informal, fluid and open communication between employees of the company that promotes agility in management and i the management of partnerships across the value chain, including the functional areas.

  1. Inmates perception of the living conditions in a medium security ...

    African Journals Online (AJOL)

    Inmates perception of the living conditions in a medium security prison in North ... and adopted a number of International legal instruments to protect and guarantee ... Data analysis was done with Statistical Package for Social Sciences version ...

  2. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.

    Science.gov (United States)

    Ariana, Mehdi; Hamedi, Javad

    2017-08-20

    Nisin is a safe, approved and commercial bacteriocin that is produced by Lactococcus lactis subsp. lactis. Since lactate accumulation in fermentation medium reduces L. lactis growth and nisin production, Yarrowia lipolytica, a lactate consuming yeast and L. lactis subsp. lactis, were simultaneously cultured in a molasses based medium. Y. lipolytica is not able to consume sucrose as carbon source, but rather consumes lactate and hence decrease lactic acid titer by 10% in the medium. Lactic acid consumption, 15% increased pH value and stimulated L. lactis growth. In the mixed culture, nisin production and L. lactis growth were 50% and 49% higher than that of pure culture, respectively. Also the results showed that specific growth rate of L. lactis increased 4 times more than that of the pure culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Bicarbonate Plays a Critical Role in the Generation of Cytotoxicity during SIN-1 Decomposition in Culture Medium

    Directory of Open Access Journals (Sweden)

    Kyo Shirai

    2012-01-01

    Full Text Available 3-Morpholinosydnonimine (SIN-1 is used as a donor of peroxynitrite (ONOO− in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s in the medium, rather than ONOO−, exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.

  4. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-10-01

    Full Text Available Viable biomass production is a key determinant of suitability of antagonistic yeasts as potential biocontrol agents. This study investigated the effects of three metal ions (magnesium, ferrous, and zinc on biomass production and viability of the antagonistic yeast, Candida diversa. Using response surface methodology to optimize medium components, a maximum biomass was obtained, when the collective Mg2+, Fe2+, and Zn2+ concentrations were adjusted in a minimal mineral (MM medium. Compared with the unmodified MM, and three ion-deficient MM media, yeast cells cultured in the three ion-modified MM medium exhibited a lower level of cellular oxidative damage, and a higher level of antioxidant enzyme activity. A biocontrol assay indicated that C. diversa grown in the ion-modified MM exhibited the greatest level of control of gray mold on apple fruit. These results provide new information on culture medium optimization to grow yeast antagonists in order to improve biomass production and biocontrol efficacy.

  5. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    Science.gov (United States)

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Accumulation of {sup 137}Cs in trefoil (leaf and stem), ``Mitsuba``, Cryptotaenia japonica Hassk, immersed in hydroponic culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki [Saitama Institute of Public Health, Urawa (Japan); Izumo, Yoshiro

    1998-11-01

    Accumulation of {sup 137}Cs in trefoil (leaf and stem), ``Mitsuba``, Cryptotaenia japonica Hassk, with or without root was investigated to prepare higher radioactive plant in hydroponic culture medium (140-150 Bq/ml). It was found that {sup 137}Cs concentration in plant tissue was increased with time, as high as 1.6 times of that in the culture medium after 4 days. On the other hand, {sup 137}Cs concentration was affected by carrier element (Cs>6 ppm) and coexistent elements in the medium. Radioactivity of the plant after 4 days was shown to be sufficient for successive experiments. (author)

  8. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  9. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity

    Directory of Open Access Journals (Sweden)

    S. N. Kumar

    2015-10-01

    Full Text Available Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA, Luria broth (LB and Trypticase soy broth (TSB] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH, and incubation time on the production of antimicrobial compounds was studied on TSB + glucose + meat peptone and an initial pH of 7 and a temperature of 30°C for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances.

  10. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  11. A procedure for culturing rat neocortex explants in a serum-free nutrient medium

    NARCIS (Netherlands)

    Romijn, H. J.; de Jong, B. M.; Ruijter, J. M.

    1988-01-01

    A procedure is described for long-term culturing of rat neocortex explants in a serum-free growth medium. Slices spanning the entire cortical depth from pial to ventricular side are prepared from 6-day-old rat pups. After preincubation in Hanks' balanced salt solution with extra glucose, the

  12. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  13. [Development and Evaluation of a New Selective Culture Medium, KBM Anaero RS-GNR, for Detection of Anaerobic Gram Negative Rods].

    Science.gov (United States)

    Narita, Taeko; Kato, Kyohei; Hanaiwa, Hiroki; Harada, Tetsuhiro; Funashima, Yumiko; Akiwa, Makoto; Sekiguchi, Jun-Ichiro; Nagasawa, Zenzo; Umemura, Tsukuru

    2017-03-22

    The laboratory culture methods for isolating drug-resistant pathogens has been the gold standard in medical microbiology, and play pivotal roles in the overall management of infectious diseases. Recently, several reports have emphasized the development of antibiotics-resistance among anaerobic gram-negative rods, especially Genus Bacteroides and Prevotella . Therefore, a selective culture method to detect these pathogens is needed. We developed here the new selective culture medium, termed "KBM Anaero RS-GNR," for detecting anaerobic Gram-negative rods. Growth capability and selectivity of the agar medium were assessed by using the pure culture suspensions of more than 100 bacterial strains as well as the 13 samples experimentally contaminated with these bacterial strains. This new medium, "KBM Anaero RS-GNR," successfully showed the selective isolation of anaerobic Gram-negative rods. Compared with commercially available medium, "PV Brucella HK Agar, " which is also designed to detect anaerobic Gram-negative rods, there was no significant difference of the overall detection efficiency between two media. However, "KBM Anaero RS-GNR" showed superior to selectivity for anaerobic Gram-negative rods, especially from the samples contaminated with Candida species. Thus, the culture method using KBM Anaero RS-GNR is relevant for isolation of anaerobic Gram-negative rods especially from clinical specimens.

  14. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.

    Science.gov (United States)

    Tung, Yi-Ting; Lee, Bao-Hong; Liu, Chin-Feng; Pan, Tzu-Ming

    2011-01-01

    Gamma-aminobutyric acid (GABA) and angiotensin-converting enzyme inhibitor (ACEI) are compounds which can influence hypertension. The goal of this study is to optimize the culture condition for GABA and ACEI production by Lactobacillus plantarum NTU 102 fermented skim milk. In this study, we used 3-factor-3-level Box-Behnken design combining with response surface methodology, where the 3 factors represent the concentration of skim milk, the concentration of monosodium glutamate, and culture temperature. Best conditions for GABA and ACEI production differed. The results indicated that L. plantarum NTU 102 produced the highest combined levels of GABA and ACEI at 37 °C, in milk having 8% to 12% nonfat solids supplemented with 0.6% to 1% MSG. Agitation of the medium during fermentation had no effect on GABA or ACEI production but extended incubation (up to 6 d) increases levels of the bioactive compounds. L. plantarum NTU 102 fermented products may be a potential functional food source for regulating hypertension. © 2011 Institute of Food Technologists®

  15. Successful non-surgical deep uterine transfer of porcine morulae after 24 hour culture in a chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Emilio A Martinez

    Full Text Available Excellent fertility and prolificacy have been reported after non-surgical deep uterine transfers of fresh in vivo-derived porcine embryos. Unfortunately, when this technology is used with vitrified embryos, the reproductive performance of recipients is low. For this reason and because the embryos must be stored until they are transferred to the recipient farms, we evaluated the potential application of non-surgical deep uterine transfers with in vivo-derived morulae cultured for 24 h in liquid stage. In Experiment 1, two temperatures (25 °C and 37 °C and two media (one fully defined and one semi-defined were assessed. Morulae cultured in culture medium supplemented with bovine serum albumin and fetal calf serum at 38.5 °C in 5% CO2 in air were used as controls. Irrespective of medium, the embryo viability after 24 h of culture was negatively affected (P<0.05 at 25 °C but not at 37 °C compared with the controls. Embryo development was delayed in all experimental groups compared with the control group (P<0.001. Most of the embryos (95.7% cultured at 37 °C achieved the full or expanded blastocyst stage, and unlike the controls, none of them hatched at the end of culture. In Experiment 2, 785 morulae were cultured in the defined medium at 37 °C for 24 h, and the resulting blastocysts were transferred to the recipients (n = 24. Uncultured embryos collected at the blastocyst stage (n = 750 were directly transferred to the recipients and used as controls (n = 25. No differences in farrowing rates (91.7% and 92.0% or litter sizes (9.0 ± 0.6 and 9.4 ± 0.8 were observed between the groups. This study demonstrated, for the first time, that high reproductive performance can be achieved after non-surgical deep uterine transfers with short-term cultured morulae in a defined medium, which opens new possibilities for the sanitary, safe national and international trade of porcine embryos and the commercial use of embryo transfer in pigs.

  16. Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal

    Directory of Open Access Journals (Sweden)

    Krzysztof Makowski

    2017-07-01

    Full Text Available The aim of this work was to develop the composition of a medium for the cultivation of six microbial strains forming a deodorizing consortium: Pseudomonas fluorescens, Enterococcus faecium, Bacillus subtilis, Bacillus megaterium, Leuconostoc mesenteroides and Lactobacillus plantarum. The study focused on the optimization of a highly efficient culture medium composed of readily available components of plant origin to maximize microbial biomass yields, and to create a less expensive alternative to the commercial Tryptic Soy Broth medium (TSB. After preliminary efficiency screening of all tested media components, we selected four substrates for further optimization—soy protein concentrate (SPC, glucose or sucrose, and phosphate salts. The final concentrations of all components were fine-tuned using the Taguchi design for experiments according to an L9 array. Taguchi optimization led to formulation of a culture medium, which was approximately 5 times cheaper than TSB (depending on the components used. Consequently, microbial biomass yields were improved by up to 15-fold (1564%, depending on the strain. The results obtained in the laboratory experiments were then confirmed in pilot- (42 L and industrial- (300 L scale fermentation. Our results show that this method of using a parallel culture microbioreactor with the Taguchi approach can be recommended for optimization of culture media based on substrates of plant origin.

  17. Main factors in the formation of socio-cultural identity under the conditions of incomplete modernization (case study of the Republic of Bashkortostan

    Directory of Open Access Journals (Sweden)

    Al’fira Raisovna Mazhitova

    2014-05-01

    Full Text Available Modernization caused deep and extensive socio-cultural changes in the Russian society. According to the research conducted by the Centre for the Study of Social and Cultural Change of the Institute of Philosophy of the Russian Academy of Sciences, modernization processes in Russia are different on the national and regional levels. The republic studies show that indexes and phase values of modernization in the Republic of Bashkortostan are lower than in Russia as a whole. Like Russia, the Republic is now in the phase of mature primary modernization. With regard to secondary modernization, Russia has entered the phase of high medium development and Bashkortostan – a phase of medium medium development. The processes of integrated modernization in Russia are already at the medium medium level, in the Republic – at the low medium level. The secondary modernization leads to the formation of the society that is based on knowledge, and on information and communication systems. Combining the means of communication, radio, television and computer in a coherent system resulted in emergence of a single socio-cultural space. Modern people live in a world of signs and symbols, which largely determine their behavior. Since that time it is not only people that create signs and symbols, but, in a sense, it is the signs and symbols that form people. If modernization implies the transition from a traditional society to a modern information society, then in the field of culture it is the transition from a national culture to the global culture. Currently, mass culture is the major factor determining people’s way of life, outlook, habits and behavior. Such influence aligns the personality in a way, and forms an average individual. Recent years have seen the increase in the number of people advocating the preservation and development of national culture, traditions, folk crafts and the sense of uniqueness of the nation. The author is convinced that it is the

  18. [Optimization of cultural condition of genetic engineering strain for antibiotic peptide adenoregulin and research on its fed-batch cultivation].

    Science.gov (United States)

    Zhou, Yu-Xun; Cao, Wei; Wei, Dong-Zhi; Luo, Qing-Ping; Wang, Jin-Zhi

    2005-07-01

    33 amino acid antibiotic peptide adenoregulin (ADR), which were firstly isolated from the skin of South America arboreal frog Phyllomedusa bicolor, forms alpha-helix amphipathic structure in apolar medium and has a wide spectrum of antimicrobial activity and high potency of lytic ability. Adr gene was cloned in pET32a and transformed into Escherichia coli BL21(DE3) . The cultural and inductive conditions of E. coli BL21(DE3)/pET32a-adr have been optimized. The effect of three factors which were time point of induction, concentration of IPTG in the culture and time of induction on the expression level of Trx-ADR was investigated. The results indicated that the expression level was affected by the time point of induction most predominantly. 9 veriaties of media in which BL21 (DE3)/pET32a-adr was cultured and induced were tested to achieve high expression level of target protein. It was found that glucose in the medium played an important role in keeping stable and high expression level of Trx-ADR. The optimal inductive condition is as follows: the culture medium is 2 x YT + 0.5% glucose, the time point of induction is OD600 = 0.9, the final concentration of IPTG in the culture is 0.1 mmol/L and the induction time is 4 h. BL21 (DE3)/pET32a-adr was cultivated according to the strategy of constant pH at early stage and exponential feeding at later stage to obtain high cell density. During the entire fed-batch phase, by controlling the feeding of glucose, the specific growth rate of the culture was controlled at about 0.15 h(-1), the accumulation of acetic acid was controlled at low level (<2 g/L), but the plasmid stability could not be maintained well. At the end of the cultivation, 40% of the bacteria in the culture lost their plasmids. As a result, the expression level of the target protein declined dramatically, but 90% of Trx-ADR was in soluble form. The expressed fusion protein showed no antibacterial activity, while the native form of ADR lysed from Trx-ADR showed

  19. Dependence of synchronized bursting activity on medium stirring and the perfusion rate in a cultured network of neurons

    Science.gov (United States)

    Heo, Ryoun; Kim, Hyun; Lee, Kyoung J.

    2016-05-01

    A cultured network of neurons coupled with a multi-electrode-array (MEA) recording system has been a useful platform for investigating various issues in neuroscience and engineering. The neural activity supported by the system can be sensitive to environmental fluctuations, for example, in the medium's nutrient composition, ph, and temperature, and to mechanical disturbances, yet this issue has not been the subject. Especially, a normal practice in maintaining neuronal cell cultures involves an intermittent sequence of medium exchanges, typically at a time interval of a few days, and one such sudden medium exchange is unavoidably accompanied by many unintended disturbances. Here, based on a quantitative time-series analysis of synchronized bursting events, we explicitly demonstrate that such a medium exchange can, indeed, bring a huge change in the existing neural activity. Subsequently, we develop a medium perfusion-stirring system and an ideal protocol that can be used in conjunction with a MEA recording system, providing long-term stability. Specifically, we systematically evaluate the effects of medium stirring and perfusion rates. Unexpectedly, even some vigorous mechanical agitations do not have any impacts on neural activity. On the other hand, too much replenishment ( e.g., 1.8 ml/day for a 1.8-ml dish) of neurobasal medium results in an excitotoxicity.

  20. IVF culture medium affects post-natal weight in humans during the first 2 years of life.

    Science.gov (United States)

    Kleijkers, Sander H M; van Montfoort, Aafke P A; Smits, Luc J M; Viechtbauer, Wolfgang; Roseboom, Tessa J; Nelissen, Ewka C M; Coonen, Edith; Derhaag, Josien G; Bastings, Lobke; Schreurs, Inge E L; Evers, Johannes L H; Dumoulin, John C M

    2014-04-01

    Is post-natal growth during the first 2 years of life in IVF singletons affected by type of medium used for culturing human embryos during an IVF treatment? The in vitro culture of human embryos in medium from Cook resulted in singletons with a lower weight during the first 2 years of life compared with singletons born after embryo culture in medium from Vitrolife. In a previous study, we reported that type of medium used for culturing human IVF embryos during the first few days after fertilization until fresh embryo transfer significantly affects fetal growth and consequently birthweight of the resulting singletons. From July 2003 to December 2006, a total of 1432 IVF treatment cycles with fresh embryo transfer were randomly allocated to have all embryos cultured in medium from Vitrolife AB (n = 715) or from Cook (n = 717). Two years after delivery, questionnaires were sent to the parents of all children requesting data about weight, height and head circumference around 1, 2, 3, 4, 6, 7.5, 9, 11, 14, 18 and 24 months of age. These measurements were collected as part of the children's health programme at municipal infant welfare centres in the Netherlands by health professionals unaware of this study. Patients requiring donor oocytes or applying for PGD were excluded from the study. From the 294 live born singletons that fulfilled our inclusion criteria, 29 were lost to follow-up. The remaining 265 singletons (Cook group: 117, Vitrolife group: 148) were included in the analysis. Data analysis included linear regression, to compare cross-sectionally weight standard deviation score (SDS), height SDS and head circumference, and the first order Berkey-Reed model for a longitudinal analysis of the growth data. Singletons in the Vitrolife group were heavier during the first 2 years of life compared with singletons in the Cook group. Cross-sectional analyses showed that adjusted weight SDS differed between groups at 1 (0.35 ± 0.14, P = 0.010), 2 (0.39 ± 0.14, P = 0

  1. Organisational culture as a part in the development of open innovation - the perspective of small and medium-sized enterprises

    Directory of Open Access Journals (Sweden)

    Szymańska Katarzyna

    2016-05-01

    Full Text Available The ability to introduce various concepts and business models is nowadays a prerequisite of creating a competitive advantage. This is to a large extent closely linked to the ability of enterprises to create, implement and disseminate a variety of innovative solutions. Today the use of open innovation is a necessity. This applies not only to large organisations, but also to small and medium-sized enterprises. In order to implement open innovation, small and medium-sized enterprises need to effectively manage their own growth through the preparation of appropriate strategies and the development of a model that encompasses all changes, taking into account a number of factors related to the growth dynamics of this sector. It is understood that an appropriate organisational culture plays an important role in the implementation of innovation in the sector of small and medium-sized enterprises. There are many indications that a cultural mismatch and misunderstanding are the main reasons for major problems related to the low level of implementation of innovation by small and medium-sized enterprises. The aim of the paper is to outline the issue of the impact of organisational culture on the development of the concept of open innovation in the sector of small and medium-sized enterprises.

  2. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  3. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  4. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2018-01-01

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Using CR1aa versus KSOM as the culture medium for in vitro embryo production of cattle

    Directory of Open Access Journals (Sweden)

    Endang Triwulaninngsih

    2002-03-01

    Full Text Available This research has been conducted at the laboratory of in vitro fertilization in the Department of Animal Science University of Wisconsin, USA. These embryos can be used for improving genetic value of Indonesian cattle. Oocytes were matured in TCM- 199 medium (in 5% CO2 incubator and at 390C enriched with follicle stimulating hormone (FSH 10 μl/ml, oestradiol 17 β 1μl/ml and 10% Fetal Calf Serum (FCS. The oocytes were fertilized in vitro with motile sperm and incubation between sperm and oocytes in fertilization medium Tyroide Albumin Lactate Pyruvate (TALP for 20 hours. All zygotes were cultured in CR1aa (n=1549 medium versus modification of protein-free pottasium simplex optimized medium (KSOM (n=675 up to blastocyst stage and were fed FCS 5 μl/50 μl medium on day 6, as treatment A and B respectively. Data were analyzed by completely randomized design with SAS program. Percentages of cleavage, morula, blastocyst, expanded blastocyst, unfertilized and degenerated ova in this study were 91.4% vs 75.6 %; 75.6% vs 58.9%; 61.5% vs 38.5%; 31.2% vs 5.1%, 8.6% vs 24.4%, 15.7% vs 8% which were significantly different (P<0.01 for treatment CR1aa and KSOM respectively. Based on this study, CR1aa medium is better culture medium than KSOM for efficient in vitro production (IVP of bovine embryos.

  6. CHROMagar COL-APSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant Gram-negative pathogens

    DEFF Research Database (Denmark)

    Abdul Momin, Muhd Haziq F; Bean, David C; Hendriksen, Rene S.

    2017-01-01

    Purpose. A selective chromogenic culture medium for the laboratory isolation and differentiation of colistin resistant Acinetobacter, Pseudomonas, Stenotrophomonas and Enterobacteriaceae spp. (CHROMagar COL-APSE) was developed, evaluated and compared to an existing selective bacterial culture......-resistant non-fermentative bacteria (Acinetobacter, Pseudomonas and Stenotrophomonas). CHROMagar COL-APSE was also more sensitive in supporting the growth of Enterobacteriaceae with COL resistance associated with the carriage of mcr-1. Conclusion. CHROMagar COL-APSE is a sensitive and specific medium...

  7. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium.

    Science.gov (United States)

    Magro, Clinei D; Deon, Maitê C; De Rossi, Andreia; Reinehr, Christian O; Hemkemeier, Marcelo; Colla, Luciane M

    2012-01-01

    The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.

  8. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, S.H.; Mantikou, E.; Slappendel, E.; Consten, D.; Echten-Arends, J. van; Wetzels, A.M.M.; Wely, M. van; Smits, L.J.; Montfoort, A.P. van; Repping, S.; Dumoulin, J.C.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: Does embryo culture medium influence pregnancy and perinatal outcome in IVF? SUMMARY ANSWER: Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. WHAT IS KNOWN ALREADY: A wide variety of culture media for human preimplantation embryos in

  9. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, Sander H. M.; Mantikou, Eleni; Slappendel, Els; Consten, Dimitri; van Echten-Arends, Jannie; Wetzels, Alex M.; van Wely, Madelon; Smits, Luc J. M.; van Montfoort, Aafke P. A.; Repping, Sjoerd; Dumoulin, John C. M.; Mastenbroek, Sebastiaan

    2016-01-01

    Does embryo culture medium influence pregnancy and perinatal outcome in IVF? Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which

  10. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF : a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, Sander H. M.; Mantikou, Eleni; Slappendel, Els; Consten, Dimitri; van Echten - Arends, Jannie; Wetzels, Alex M.; van Wely, Madelon; Smits, Luc J. M.; van Montfoort, Aafke P. A.; Repping, Sjoerd; Dumoulin, John C. M.; Mastenbroek, Sebastiaan

    2016-01-01

    Does embryo culture medium influence pregnancy and perinatal outcome in IVF? Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which

  11. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    Science.gov (United States)

    Idelevich, Evgeny A.; Grünastel, Barbara

    2016-01-01

    ABSTRACT Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption–ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. PMID:27795344

  12. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  13. Evaluation of a Chromogenic Culture Medium for Isolation of Clostridium difficile within 24 Hours ▿

    Science.gov (United States)

    Perry, John D.; Asir, Kerry; Halimi, Diane; Orenga, Sylvain; Dale, Joanne; Payne, Michelle; Carlton, Ruth; Evans, Jim; Gould, F. Kate

    2010-01-01

    Rapid and effective methods for the isolation of Clostridium difficile from stool samples are desirable to obtain isolates for typing or to facilitate accurate diagnosis of C. difficile-associated diarrhea. We report on the evaluation of a prototype chromogenic medium (ID C. difficile prototype [IDCd]) for isolation of C. difficile. The chromogenic medium was compared using (i) 368 untreated stool samples that were also inoculated onto CLO medium, (ii) 339 stool samples that were subjected to alcohol shock and also inoculated onto five distinct selective agars, and (iii) standardized suspensions of 10 C. difficile ribotypes (untreated and alcohol treated) that were also inoculated onto five distinct selective agars. Two hundred thirty-six isolates of C. difficile were recovered from 368 untreated stool samples, and all but 1 of these strains (99.6%) were recovered on IDCd within 24 h, whereas 74.6% of isolates were recovered on CLO medium after 48 h. Of 339 alcohol-treated stool samples cultured onto IDCd and five other selective agars, C. difficile was recovered from 218 samples using a combination of all media. The use of IDCd allowed recovery of 96.3% of isolates within 24 h, whereas 51 to 83% of isolates were recovered within 24 h using the five other media. Finally, when they were challenged with pure cultures, all 10 ribotypes of C. difficile generated higher colony counts on IDCd irrespective of alcohol pretreatment or duration of incubation. We conclude that IDCd is an effective medium for isolation of C. difficile from stool samples within 24 h. PMID:20739493

  14. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    Science.gov (United States)

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  15. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium

    International Nuclear Information System (INIS)

    Shen, A G; Peng, J; Su, L; Wang, X H; Hu, J M; Zhao, Q H; Yang, J

    2012-01-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF

  16. Preirradiation of medium induces a subsequent stimulation or inhibition of growth according to the physiological state in Synechococcus lividus in culture

    International Nuclear Information System (INIS)

    Conter, A.

    1987-01-01

    The proliferation of Synechococcus lividus cells grown in preirradiated medium was compared with the proliferation of cells grown in a shielded or freshly prepared medium. Aging of medium in a shielded chamber resulted in a slight inhibiting effect on growth in every phase of the cell cycle which was used. Preirradiation of medium resulted in a stimulation of growth observed on Day 7 in cultures inoculated with cells selected in the deceleration phase and an inhibition of growth in cultures inoculated with exponentially growing cells. Addition of catalase (100 U X ml-1) counteracted the stimulating effect but did not modify the inhibiting effect induced by preirradiated medium. Results demonstrated the indirect effect of low doses of irradiation, implying the presence of hydrogen peroxide in radiostimulation and other radioproducts in the inhibitory effect

  17. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF

    NARCIS (Netherlands)

    Vergouw, C.G.; Kostelijk, E.H.; Doejaaren, E.; Hompes, P.G.A.; Lambalk, C.B.; Schats, R.

    2012-01-01

    STUDY QUESTION Does the type of medium used to culture fresh and frozenthawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? SUMMARY ANSWER A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean

  18. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  19. Plasma generated in culture medium induces damages of HeLa cells due to flow phenomena

    Science.gov (United States)

    Sato, Yusuke; Sato, Takehiko; Yoshino, Daisuke

    2018-03-01

    Plasma in a liquid has been anticipated as an effective tool for medical applications, however, few reports have described cellular responses to plasma generated in a liquid similar to biological fluids. Herein we report the effects of plasma generated in a culture medium on HeLa cells. The plasma in the culture medium produced not only heat, shock waves, and reactive chemical species but also a jet flow with sub millimeter-sized bubbles. Cells exposed to the plasma exhibited detachment, morphological changes, and changes in the actin cytoskeletal structure. The experimental results suggest that wall shear stress over 160 Pa was generated on the surface of the cells by the plasma. It is one of the main factors that cause those cellular responses. We believe that our findings would provide valuable insight into advancements in medical applications of plasma in a liquid.

  20. Pedagogical Conditions of Future Philologists’ Research Culture Formation

    Directory of Open Access Journals (Sweden)

    Marina Trufkina

    2014-08-01

    Full Text Available The article deals with the problem of - the pedagogical conditions- and it discloses the give phenomenon. In the following work there are outlined three kinds of pedagogical conditions that determine the formation of the future philologist's research culture and it also gives their detailed analysis. The urgency of the paper is determined by progressive methods of contemporary higher education. The aim of the work is to analyse pedagogical conditions that contribute to the research culture formation. The outlook of our investigations is connected with the detailed analysis of the Ŗresearch cultureŗ phenomenon, its components and pedagogical conditions contributing to its development.

  1. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-09-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  2. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-02-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  3. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    f Mirdavoudi

    2012-05-01

    Full Text Available

    Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.

     

    Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.

     

    Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.

     

    Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

     

  4. Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Raya, Raúl R; Mozzi, Fernanda

    2015-10-01

    Mannitol is a natural polyol with multiple industrial applications. In this work, mannitol production by Lactobacillus reuteri CRL 1101 was studied at free- and controlled-pH (6.0-4.8) fermentations using a simplified culture medium containing yeast and beef extracts and sugarcane molasses. The activity of mannitol 2-dehydrogenase (MDH), the enzyme responsible for mannitol synthesis, was determined. The effect of the initial biomass concentration was further studied. Mannitol production (41.5 ± 1.1 g/l), volumetric productivity (Q Mtl 1.73 ± 0.05 g/l h), and yield (Y Mtl 105 ± 11 %) were maximum at pH 5.0 after 24 h while the highest MDH activity (1.66 ± 0.09 U/mg protein) was obtained at pH 6.0. No correlation between mannitol production and MDH activity was observed when varying the culture pH. The increase (up to 2000-fold) in the initial biomass concentration did not improve mannitol formation after 24 h although a 2-fold higher amount was produced at 8 h using 1 or 2 g cell dry weight/l comparing to the control (0.001 g cell dry weight/l). Finally, mannitol isolation under optimum fermentation conditions was achieved. The mannitol production obtained in this study is the highest reported so far by a wild-type L. reuteri strain and, more interestingly, using a simplified culture medium.

  5. A microPIXE investigation of the interaction of cells of Schizosaccharomyces pombe with the culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Rombouts, P.M.M. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Gomez-Morilla, I. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Cuenca, L. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Rodriguez, R. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Browton, M. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Wardell, N. [School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Underwood, B. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, N.F. [Fluids and Systems Research Centre, School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: k.kirkby@surrey.ac.uk

    2007-07-15

    Schizosaccharomyces pombe (S. pombe) is a eucaryotic cell type similar to mammalian cells but much more simple. As it also executes its cell cycle rapidly it is very useful for investigating basic processes in cells. In this paper we report a feasibility study of the applicability of microPIXE to investigate the interaction between S. pombe cells and the surrounding culture medium. Cells were cultured in various growth medium prior to preparation for analysis. 1 {mu}l drops of medium and cells were spotted onto polypropylene foils held in contact with a polished copper block previously cooled in liquid nitrogen. The samples were dehydrated by freeze-drying. Micro PIXE analysis was carried out with the IBC microbeam facility using a beam of 2.5 MeV protons focused to 1-2 {mu}m diameter. Initially no elemental contrast was observed between the cells and the medium, but by modifying the dilution of the cell suspension, the cells could be distinguished from the surrounding medium through an increased concentration of P and reduced concentration of Cl. The distribution of Na in the medium around the cells showed evidence of the action of the Na pump. Sporulation appears to be induced in the cells by adding Cu to the growth medium and the uptake of Cu by the cells could be clearly observed. This study shows that it is possible to analyse the mass transport of elements in and out of cells In the future this will enable concentration gradients to be analysed and allow the rate of production or consumption of individual cells to be calculated. By observing these patterns for individual cells (not populations) at various known points in the cell cycle, fundamental data can be derived.

  6. A microPIXE investigation of the interaction of cells of Schizosaccharomyces pombe with the culture medium

    International Nuclear Information System (INIS)

    Rombouts, P.M.M.; Gomez-Morilla, I.; Grime, G.W.; Webb, R.P.; Cuenca, L.; Rodriguez, R.; Browton, M.; Wardell, N.; Underwood, B.; Kirkby, N.F.; Kirkby, K.J.

    2007-01-01

    Schizosaccharomyces pombe (S. pombe) is a eucaryotic cell type similar to mammalian cells but much more simple. As it also executes its cell cycle rapidly it is very useful for investigating basic processes in cells. In this paper we report a feasibility study of the applicability of microPIXE to investigate the interaction between S. pombe cells and the surrounding culture medium. Cells were cultured in various growth medium prior to preparation for analysis. 1 μl drops of medium and cells were spotted onto polypropylene foils held in contact with a polished copper block previously cooled in liquid nitrogen. The samples were dehydrated by freeze-drying. Micro PIXE analysis was carried out with the IBC microbeam facility using a beam of 2.5 MeV protons focused to 1-2 μm diameter. Initially no elemental contrast was observed between the cells and the medium, but by modifying the dilution of the cell suspension, the cells could be distinguished from the surrounding medium through an increased concentration of P and reduced concentration of Cl. The distribution of Na in the medium around the cells showed evidence of the action of the Na pump. Sporulation appears to be induced in the cells by adding Cu to the growth medium and the uptake of Cu by the cells could be clearly observed. This study shows that it is possible to analyse the mass transport of elements in and out of cells In the future this will enable concentration gradients to be analysed and allow the rate of production or consumption of individual cells to be calculated. By observing these patterns for individual cells (not populations) at various known points in the cell cycle, fundamental data can be derived

  7. Emerging Culture of English-Medium Instruction in Korea: Experiences of Korean and International Students

    Science.gov (United States)

    Kim, Jeongyeon; Tatar, Bradley; Choi, Jinsook

    2014-01-01

    This study aims to contrastively examine Korean and international students' experiences of taking subject courses at a Korean university. Focusing on the viewpoints of the students, rather than central authorities, we attempt to reveal how language use and cultural factors are interpenetrated in the praxis of English-medium instruction (EMI). The…

  8. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Ilchmann, Anne; Krause, Maren; Heilmann, Monika; Burgdorf, Sven; Vieths, Stefan; Toda, Masako

    2012-05-01

    The aryl hydrocarbon receptor (AhR) plays a role in modulating dendritic cell (DC) immunity. Iscove's modified Dulbecco's medium (IMDM) contains higher amounts of AhR ligands than RPMI1640 medium. Here, we examined the influence of AhR ligand-containing medium on the maturation and T-cell stimulatory capacity of bone marrow-derived murine dendritic cells (BMDCs). BMDCs generated in IMDM (BMDCs/IMDM) expressed higher levels of co-stimulatory and MHC class II molecules, and lower levels of pattern-recognition receptors, especially toll-like receptor (TLR) 2, TLR4, and scavenger receptor class A (SR-A), compared to BMDCs generated in RPMI1640 medium (BMDCs/RPMI). Cytokine responses against ligands of TLRs and antigen uptake mediated by SR-A were remarkably reduced in BMDCs/IMDM, whereas the T-cell stimulatory capacity of the cells was enhanced, compared to BMDCs/RPMI. The enhanced maturation of BMDCs/IMDM was attenuated in the presence of an AhR antagonist, indicating involvement of AhR in the maturation. Interestingly, BMDCs/IMDM induced Th2 and Th17 differentiation at low and high concentrations of antigen respectively, when co-cultured with CD4(+) T-cells from antigen-specific T-cell receptor transgenic mice. In contrast, BMDCs/RPMI induced Th1 differentiation predominantly in the co-culture. Taken together, optimal selection of medium seems necessary when studying BMDCs, depending on the target receptors on the cell surface of DCs and type of helper T-cells for the co-culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems

    Science.gov (United States)

    Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.

    2016-01-01

    Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816

  10. Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium

    Science.gov (United States)

    Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.

    2017-09-01

    In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction

  11. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    Science.gov (United States)

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  12. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization

    DEFF Research Database (Denmark)

    Ziebe, Søren; Loft, Anne; Povlsen, Betina B

    2013-01-01

    To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR).......To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR)....

  13. In vitro propagation of Morus alba L. in semisolid culture medium.

    Directory of Open Access Journals (Sweden)

    Enrique Salas Barbosa

    2005-04-01

    Full Text Available Apical buds as explants were used with the objective to propagate in vitro mulberry plants in semisolid MS culture medium suplemented with 6-BAP and KIN in their establishment and, with different combinations of 6-BAP with ANA in the multiplication phase. In vitro plants were evaluated during the acclimatization phase. It is necessary to supplement the basal MS culture media with 0.5 mg.l-1 of 6-BAP to induce the sprouting and, 0.5 mg.l-1 of 6-BAP and 0.5 mg.l-1 of ANA to multiply the mulberry by nodal segments. In the acclimatization phase a 95% of survival, 30.2 cm of height, 9.8 leaves and 2.02 g.plant-1 of dry mass was observed. In vitro propagation of mulberry was achieved as an alternative for plants production. Key words: acclimatization, apical buds, establishment, explant, shooting

  14. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions

    Directory of Open Access Journals (Sweden)

    Yafeng Gou

    2015-09-01

    Full Text Available A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China using Jerusalem artichoke power (JAP as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by 60Co γ-irradiation. A genetically stable mutant (designated E12 was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12.

  16. Cultivation and irradiation of human fibroblasts in a medium enriched with platelet lysate for obtaining feeder layer in epidermal cell culture

    International Nuclear Information System (INIS)

    Yoshito, Daniele

    2011-01-01

    For over 30 years, the use of culture medium, enriched with bovine serum, and murines fibroblasts, with the rate of proliferation controlled by irradiation or by share anticarcinogenic drugs, has been playing successfully its role in assisting in the development of keratinocytes in culture, for clinical purposes. However, currently there is a growing concern about the possibility of transmitting prions and animals viruses to transplanted patients. Taking into account this concern, the present work aims to cultivate human fibroblasts in a medium enriched with human platelets lysate and determine the irradiation dose of these cells, for obtaining feeder layer in epidermal cell culture. For carrying out the proposed objective, platelets lysis has standardized, this lysate was used for human fibroblasts cultivation and the irradiation dose enough to inhibit its duplication was evaluated. Human keratinocytes were cultivated in these feeder layers, in culture medium enriched with the lysate. With these results we conclude that the 10% platelets lysate promoted a better adhesion and proliferation of human fibroblasts and in all dose levels tested (60 to 300 Gy), these had their mitotic activity inactivated by ionizing irradiation, being that the feeder layers obtained with doses from 70 to 150 Gy were those that provided the best development of keratinocytes in medium containing 2.5% of human platelet lysate. Therefore, it was possible to standardize both the cultivation of human fibroblasts as its inactivation for use as feeder layer in culture of keratinocytes, so as to eliminate xenobiotics components. (author)

  17. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    Science.gov (United States)

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Effect of medium replenishment or composition on [3H] thymidine incorporation in uv-irradiated CHO-K1 cells

    International Nuclear Information System (INIS)

    Newman, C.N.; Miller, J.H.

    1985-03-01

    Because culture medium contains uv-absorbing material, it is usually removed just before uv-irradiation of tissue culture monolayers. However, medium removal and replenishment with fresh medium alone (sham-irradiation) causes up to a 10-fold reduction in the rate of [ 3 H]TdR incorporation in CHO-K1 cells which persists for several hours. This reduction, which is much smaller ( 3 H]TdR pulse-label in conditioned (spent) and in fresh medium; TdR in the former is converted by cells to thymine. When responses of uv-irradiated cells are normalized to responses of corresponding sham-irradiated cultures, considerable variation is observed in replicate experiments because fresh medium appears to induce transient metabolic imbalances in irradiated cells which are not readily controlled. This problem can, in part, be circumvented by replenishing treated cultures with the original spent medium; however, the presence of CdR in the growth medium still causes an anomalous 2-3-fold greater uv-induced reduction in [ 3 H]TdR incorporation than is observed in the absence of CdR. 17 refs., 3 figs., 1 tab

  19. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT.

    Science.gov (United States)

    Kleijkers, Sander H M; Mantikou, Eleni; Slappendel, Els; Consten, Dimitri; van Echten-Arends, Jannie; Wetzels, Alex M; van Wely, Madelon; Smits, Luc J M; van Montfoort, Aafke P A; Repping, Sjoerd; Dumoulin, John C M; Mastenbroek, Sebastiaan

    2016-10-01

    Does embryo culture medium influence pregnancy and perinatal outcome in IVF? Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which medium is best in terms of clinical outcomes. Furthermore, it has been suggested that the culture medium used for the in vitro culture of embryos affects birthweight, but this has never been demonstrated by large randomized trials. We conducted a multicenter, double-blind RCT comparing the use of HTF and G5 embryo culture media in IVF. Between July 2010 and May 2012, 836 couples (419 in the HTF group and 417 in the G5 group) were included. The allocated medium (1:1 allocation) was used in all treatment cycles a couple received within 1 year after randomization, including possible transfers with frozen-thawed embryos. The primary outcome was live birth rate. Couples that were scheduled for an IVF or an ICSI treatment at one of the six participating centers in the Netherlands or their affiliated clinics. The live birth rate was higher, albeit nonsignificantly, in couples assigned to G5 than in couples assigned to HTF (44.1% (184/417) versus 37.9% (159/419); RR: 1.2; 95% confidence interval (CI): 0.99-1.37; P = 0.08). Number of utilizable embryos per cycle (2.8 ± 2.3 versus 2.3 ± 1.8; P culture media on perinatal outcome remains to be determined. Embryo culture media used in IVF affect not only treatment efficacy but also perinatal outcome. This suggests that the millions of human embryos that are cultured in vitro each year are sensitive to their environment. These findings should lead to increased awareness, mechanistic studies and legislative adaptations to protect IVF offspring during the first few days of their existence. This project was partly funded by The NutsOhra foundation (Grant 1203-061) and March of Dimes (Grant 6-FY13-153). The authors declare no conflict of

  20. Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes

    Science.gov (United States)

    Rodriguez, Alexander; Osma, Johann F.; Alméciga-Díaz, Carlos J.; Sánchez, Oscar F.

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametes pubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69±0.28 U mg-1 of protein for the crude extract, and 0.08±0.001 and 2.86±0.05 U mg-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct. PMID:24019936

  1. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Science.gov (United States)

    Gonzalez, Juan C; Medina, Sandra C; Rodriguez, Alexander; Osma, Johann F; Alméciga-Díaz, Carlos J; Sánchez, Oscar F

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1) of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1) of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  2. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    Directory of Open Access Journals (Sweden)

    Juan C Gonzalez

    Full Text Available Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM, and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1 and 60 kDa (Lac2. Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1 of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  3. In vitro propagation of Stevia rebaudina plants using multiple shoot culture.

    Science.gov (United States)

    Nepovím, A; Vanek, T

    1998-12-01

    A multiple shoot culture was induced from nodal segments on MS medium containing half concentration of macroelements, 1% sucrose, and supplemented with NAA (0.01 mg/l). A bioreactor with hormone-free MS medium (300 ml) was inoculated with 1.5 g of the multiple shoot culture and cultivated for a month. The cultivating process of the multiple shoot culture in the bioreactor and the transfer into ex vitro conditions took about 8-9 weeks and produced approx. 600 new seedlings, that could be transferred from greenhouse to field conditions.

  4. The natural selection of organizational and safety culture within a small to medium sized enterprise (SME).

    Science.gov (United States)

    Brooks, Benjamin

    2008-01-01

    Small to Medium Sized Enterprises (SMEs) form the majority of Australian businesses. This study uses ethnographic research methods to describe the organizational culture of a small furniture-manufacturing business in southern Australia. Results show a range of cultural assumptions variously 'embedded' within the enterprise. In line with memetics - Richard Dawkin's cultural application of Charles Darwin's theory of Evolution by Natural Selection, the author suggests that these assumptions compete to be replicated and retained within the organization. The author suggests that dominant assumptions are naturally selected, and that the selection can be better understood by considering the cultural assumptions in reference to Darwin's original principles and Frederik Barth's anthropological framework of knowledge. The results are discussed with reference to safety systems, negative cultural elements called Cultural Safety Viruses, and how our understanding of this particular organizational culture might be used to build resistance to these viruses.

  5. Culture conditions for the production of a tannase of Aspergillus ...

    African Journals Online (AJOL)

    This fungus produced tannase in a fermentation medium M containing tannic acid as the only carbon source. Time course of enzyme synthesis by the fungus showed that the enzyme production followed logarithmic growth phase with maximum enzyme yield being obtained after 6 days corresponding to the culture pH of 3.8.

  6. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  7. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization

    International Nuclear Information System (INIS)

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-01-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mg_x,Ca_y)(PO_4)_z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg–Gd and Mg–Ag alloys; and pure magnesium as well as Mg–4Y–3RE as a reference. - Highlights: • Contamination of DMEM by microorganisms increases the degradation rate of Mg. • Mg and its alloys show passivation during long term immersion tests in DMEM. • The use of a control sample position is essential to assess H_2 evolution in DMEM.

  8. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  9. Banana peel culture as an indigenous medium for easy identification of late-sporulation human fungal pathogens.

    Science.gov (United States)

    Kindo, A J; Tupaki-Sreepurna, A; Yuvaraj, M

    2016-01-01

    Fungi are increasing in incidence as human pathogens and newer and rarer species are continuously being encountered. Identifying these species from growth on regular culture media may be challenging due to the absence of typical features. An indigenous and cheap medium, similar to the natural substrate of these fungi, was standardised in our laboratory as an aid to species identification in a conventional laboratory setting. Ripe banana peel pieces, sterilised in an autoclave at 121°C temperature and 15 lbs pressure for 15 min promoted good growth of hyphae and pycnidia or acervuli in coelomycetes, flabelliform and medusoid fruiting bodies of basidiomycetes and fruit bodies such as cleistothecium in ascomycetes. The growth from the primary isolation medium was taken and inoculated onto the pieces of double-autoclaved ripe banana peel pieces in a sterile glass Petri dish with some moisture (sprinkles of sterile distilled water). A few sterile coverslips were placed randomly inside the Petri dish for the growing fungus to stick on to it. The plates were kept at room temperature and left undisturbed for 15-20 days. At a time, one coverslip was taken out and placed on a slide with lactophenol cotton blue and focused under the microscope to look for fruit bodies. Lasiodiplodia theobromae, Macrophomina phaseolina, Nigrospora sphaerica, Chaetomium murorum, Nattrassia mangiferae and Schizophyllum commune were identified by characteristic features from growth on banana peel culture. Banana peel culture is a cheap and effective medium resembling the natural substrate of fungi and is useful for promoting characteristic reproductive structures that aid identification.

  10. Effects of Lactobacillus plantarum Strain OLL2712 Culture Conditions on the Anti-inflammatory Activities for Murine Immune Cells and Obese and Type 2 Diabetic Mice.

    Science.gov (United States)

    Toshimitsu, T; Ozaki, S; Mochizuki, J; Furuichi, K; Asami, Y

    2017-04-01

    Studies on the health-promoting effects of lactic acid bacteria (LAB) are numerous, but few provide examples of the relationship between LAB function and culture conditions. We verified the effect of differences in culture conditions on Lactobacillus plantarum OLL2712 functionality; this strain exhibits anti-inflammatory activity and preventive effects against metabolic disorders. We measured interleukin-10 (IL-10) and IL-12 production in murine immune cells treated with OLL2712 cells prepared under various culture conditions. The results showed that the IL-10-inducing activities of OLL2712 cells on murine immune cells differed dramatically between OLL2712 groups at different culture phases and using different culture medium components, temperatures, and neutralizing pHs. In particular, exponential-phase cells had much more IL-10-inducing activity than stationary-phase cells. We confirmed that the Toll-like receptor 2 (TLR2) stimulation activity of OLL2712 cells depended on culture conditions in conjunction with IL-10-inducing activity. We also demonstrated functional differences by culture phases in vivo ; OLL2712 cells at exponential phase had more anti-inflammatory activity and anti-metabolic-disorder effects on obese and diabetic mice than those by their stationary-phase counterparts. These results suggest that culture conditions affect the functionality of anti-inflammatory LAB. IMPORTANCE While previous studies demonstrated that culture conditions affected the immunomodulatory properties of lactic acid bacteria (LAB), few have comprehensively investigated the relationship between culture conditions and LAB functionality. In this study, we demonstrated several culture conditions of Lactobacillus plantarum OLL2712 for higher anti-inflammatory activity. We also showed that culture conditions concretely influenced the health-promoting functions of OLL2712 in vivo , particularly against metabolic disorders. Further, we characterized a novel mechanism by which

  11. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro.

    Science.gov (United States)

    Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H

    2015-05-19

    Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.

  12. The Effect of Fermentation Time with Probiotic Bacteria on Organic Fertilizer as Daphnia magna Cultured Medium towards Nutrient Quality, Biomass Production and Growth Performance Enhancement

    Science.gov (United States)

    Endar Herawati, Vivi; Agung Nugroho, Ristiawan; Pinandoyo; Darmanto, YS; Hutabarat, Johannes

    2018-02-01

    The nutrient quality and growth performance of D. magna are highly depend on the organic fertilizer which is used in its culture medium. The objective of this study was to identify the best fermentation time by using probiotic bacteria on organic fertilizer as mass culture medium to improve its nutrient quality, biomass production, and growth performance. This study was conducted using completely randomized experimental design with five treatments and three repetitions. Organic fertilizers used cultured medium with chicken manure, rejected bread and tofu waste fermented by probiotic bacteria then cultured for 0, 7, 14, 21 and 28 days. The results showed that medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population density and nutrient content of D. magna those are 233,980 ind/L for population density; 134.60 grams for biomass production, 0.574% specific growth rate; 68.06% protein content and 6.91% fat. The highest fatty acid profile is 4.83% linoleic and 3.54% linolenic acid. The highest essential amino acid is 53.94 ppm lysine. In general, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna life. The conclusion of this research is medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population and nutrient content of D. magna.

  13. Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile.

    Science.gov (United States)

    Deamici, Kricelle Mosquera; Santos, Lucielen Oliveira; Costa, Jorge Alberto Vieira

    2018-02-01

    This study aimed at evaluating whether a magnetic field (MF) affects the growth of Spirulina sp. when applied to it at different exposure times in indoor and outdoor culture systems. The effects of MF on chlorophyll content, medium consumption and protein profile were also investigated. In raceway tanks, a 25 mT MF was applied for 24 h or for 1 h d -1 . MF for 24 h to outdoor assays increased biomass concentration and chlorophyll-a content besides altering the protein profile. Outdoor Spirulina growth was higher (∼3.65 g L -1 ) than the growth found in indoor assays (∼1.80 g L -1 ), while nitrogen and phosphorus consumption was not enhanced by the application of MF. This is the first study that investigated the influence of MF on outdoor microalga assays, and the results showed that MF affected the metabolism of Spirulina cultured in raceways, especially when it was grown outdoors in uncontrolled environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium.

    Science.gov (United States)

    Kenters, Nikki; Henderson, Gemma; Jeyanathan, Jeyamalar; Kittelmann, Sandra; Janssen, Peter H

    2011-01-01

    A new anaerobic medium that mimics the salts composition of rumen fluid was used in conjunction with a dilution method of liquid culture to isolate fermentative bacteria from the rumen of a grass-fed sheep. The aim was to inoculate a large number of culture tubes each with a mean of 97% sequence identity to genes of uncultured bacteria detected in various gastrointestinal environments. This strategy has therefore allowed us to cultivate many novel rumen bacteria, opening the way to overcoming the lack of cultures of many of the groups detected using cultivation-independent methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  16. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  17. Effects of different culture conditions (photoautotrophic ...

    African Journals Online (AJOL)

    Effects of different culture conditions (photoautotrophic, photomixotrophic) and the auxin indole-butyric acid on the in vitro acclimatization of papaya ( Carica papaya L. var. Red Maradol) plants using zeolite as support.

  18. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  19. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  20. Determination better culture medium in the establishment phase for the in vitro propagation of banana (Musa paradisiaca L

    Directory of Open Access Journals (Sweden)

    Ancasi-Espejo Ruth Gabriela

    2016-08-01

    Full Text Available This research was conducted at the Laboratory of Plant Biotechnology of the Department of Biological and Natural Sciences of the Amazonian University of Pando, in 2014. The aim of the study was to determine better culture medium in the establishment phase for propagation in vitro banana (Musa paradisiaca L., 20 were selected and characterized mother plants NTRCA (New Technology Research Center Amazonia. A completely random design (CRD with three different culture media was used. The culture media were M1 Murashige and Skoog (MS was supplemented with ascorbic acid 100 mg/L and L-cysteine 2 ml /L, M2 Murashige and Skoog (MS was supplemented charcoal 2 g/L, M3 Murashige and Skoog (MS supplement-ed with ascorbic acid 100 mg/L and cítrico100 mg/L acid. The variables evaluated were: The survival of the former Plantes, where contamination and oxidation was observed. The results showed that in the first phase of establishment, the best answer for the survival of the former Plantes banana (Musa paradisiaca, was with the culture medium 3, where a lower degree of oxidation (0.26 and pollution for all explants was obtained was 28%.

  1. An experimental strategy validated to design cost-effective culture media based on response surface methodology.

    Science.gov (United States)

    Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H

    2017-07-03

    For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.

  2. Restoration of longitudinal laser tomography target image from inhomogeneous medium degradation under common conditions.

    Science.gov (United States)

    Yi, WenJun; Wang, Ping; Fu, MeiCheng; Tan, JiChun; Zhu, Jubo; Li, XiuJian

    2017-07-10

    In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

  3. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.

    Science.gov (United States)

    Bolea, E; Jiménez-Lamana, J; Laborda, F; Abad-Álvaro, I; Bladé, C; Arola, L; Castillo, J R

    2014-03-07

    A methodology based on Asymmetric Flow Field-Flow Fractionation (AsFlFFF) coupled with UV-Vis absorption spectrometry and ICP mass spectrometry (ICPMS) has been developed and applied to the study of silver nanoparticles (AgNPs) and dissolved species of silver in culture media and cells used in cytotoxicity tests. The effect of a nano-silver based product (protein stabilized silver nanoparticles ca. 15 nm average diameter) on human hepatoma (HepG2) cell viability has been studied. UV-Vis absorption spectrometry provided information about the nature (organic vs. nanoparticle) of the eluted species, whereas the silver was monitored by ICPMS. A shift towards larger hydrodynamic diameters was observed in the AgNPs after a 24 hour incubation period in the culture medium, which suggests a "protein corona" effect. Silver(I) associated with proteins present in the culture medium has also been detected, as a consequence of the oxidation process experimented by the AgNPs. However, the Ag(I) released into the culture medium did not justify the toxicity levels observed. AgNPs associated with the cultured HepG2 cells were also identified by AsFlFFF, after applying a solubilisation process based on the use of tetramethylammonium hydroxide (TMAH) and Triton X-100. These results have been confirmed by transmission electronic microscopy (TEM) analysis of the fractions collected from the AsFlFFF. The effect of AgNPs on HepG2 cells has been compared to that caused by silver(I) as AgNO3 under the same conditions. The determination of the total content of silver in the cells confirms that a much larger mass of silver as AgNPs with respect to AgNO3 (16 to 1) is needed to observe a similar toxicity.

  4. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  5. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains.

    Science.gov (United States)

    Zajšek, Katja; Goršek, Andreja; Kolar, Mitja

    2013-08-15

    The influence of fermentation temperature, agitation rate, and additions of carbon sources, nitrogen sources, vitamins and minerals on production of kefiran by kefir grains lactic acid bacteria was studied in a series of experiments. The main aim of the work was to increase the exopolysaccharide (EPS) production where customised milk was used as fermentation medium. It was proved that the controlling of culturing conditions and the modifying of fermentation medium conditions (i.e., carbon, nitrogen, mineral sources and vitamins) can dramatically enhance the production of the EPS. The temperature and agitation rate were critical for kefiran production during the 24 h cultivation of grains; our optimised conditions being 25°C and 80 rpm, respectively. In addition, when optimising the effects of additional nutrition, it was found that 5% (w/v) lactose, 0.1% (w/v) thiamine, and 0.1% (w/v) FeCl3 led to the maximal production of EPS. The results indicate that nutrients can be utilised to improve the production of EPS and that good kefir grains growth does not appear to be a determining factor for a high production yield of EPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry.

    Science.gov (United States)

    Pan, Lei; Chen, Junhui; Shen, Huihui; He, Xiuping; Li, Guangjiu; Song, Xincheng; Zhou, Deshan; Sun, Chengjun

    2017-09-30

    Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP) in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography-high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima ( P. lima ), and the proposed method achieved satisfactory recoveries (94.80%-100.58%) and repeatability (relative standard deviation ≤9.27%). Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on) were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima . The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9-34.0 and 15.2-27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70-79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  7. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype.

    Science.gov (United States)

    Huang, Chen; Zhang, Jing; Ao, Mingxin; Li, Ying; Zhang, Chun; Xu, Yonggen; Li, Xuemin; Wang, Wei

    2012-02-01

    Recent studies have suggested that bone marrow-derived mesenchymal stem cells (BMMSCs) are capable of retinal tissue-specific differentiation but not retinal pigment epithelium (RPE) cell-specific differentiation. Photoreceptor outer segments (POS) contribute to RPE development and maturation. However, there has been no standard culture system that fosters the differentiation of BMMSCs into mature RPE cells in vitro. In this study, we investigated if the soluble factors from RPE cells and POS could differentiate BMMSCs into cells having a phenotype characteristic of RPE cells. Rat BMMSCs were separately co-cultured with RPE cells, or they were exposed to either control medium, RPE cell-conditioned medium (RPECM), POS, or a combination of RPECM and POS (RPECM-POS). After 7 days, the cells were analyzed for morphology and the expression of RPE markers (cytokeratin 8, CRALBP, and RPE65) to assess the RPE differentiation. Significantly higher pigment accumulation and increased protein expression of the three markers were seen in cells cultured in RPECM-POS than in other treated cultures. Furthermore, the RPECM-POS-treated cultures displayed ultrastructural features typical of RPE cells, expressed RPE cell functional proteins, and had the capability to phagocytose POS. Together, theses results suggest the combination of RPECM and POS stimulate BMMSCs differentiation toward a functional RPE phenotype. Our results provide the foundation for a new route to RPE regenerative therapy involving BMMSCs. Future work isolating the active agent in RPECM and POS would be useful in therapies for RPE diseases or in developing appropriately pre-differentiated BMMSCs for tissue-engineered RPE reconstruction. Copyright © 2011 Wiley Periodicals, Inc.

  8. Development of a versatile high-temperature short-time (HTST) pasteurization device for small-scale processing of cell culture medium formulations.

    Science.gov (United States)

    Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2018-07-01

    The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.

  9. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... resulted in acetate, CO2, and acetoin replacing formate and ethanol as end products. Under microaerobic conditions, growth came to a gradual halt, although more than 60% of the glucose was still left. A decline in growth was not observed during microaerobic cultivation when acetate was added to the medium...

  10. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses.

    Science.gov (United States)

    Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-09-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2

  11. Evaluation of different conditions and culture media for the recovery of Aeromonas spp. from water and shellfish samples.

    Science.gov (United States)

    Latif-Eugenín, F; Beaz-Hidalgo, R; Figueras, M J

    2016-09-01

    To perform a comparative study for determining the optimum culture method (direct plating or enrichment) and medium (ampicillin dextrin agar (ADA), starch ampicillin agar (SAA), bile salts irgasan brilliant green modified (BIBG-m)) for recovering Aeromonas species from water and shellfish samples. By direct culture, Aeromonas was detected in 65% (13/20) of the water samples and in 54·5% (6/11) of the shellfish samples. However, when a pre-enrichment step was included, the number of positive water samples increased to 75% (15/20) and the ones of shellfish to 90·1% (10/11). The enriched culture significantly favoured (P culture medium for detecting Aeromonas from water was ADA. However, no differences were observed in the case of shellfish samples (P > 0·05). Isolation of Aeromonas media from water was favoured (P culture method and medium used influenced the recovery of some Aeromonas species from water and shellfish samples. This fact should be considered in future prevalence studies to avoid overestimating the above mentioned Aeromonas species. © 2016 The Society for Applied Microbiology.

  12. Effects of exogenous growth regulators on cell suspension culture of yin-hong grape (vitis vinifera l.) and establishment of the optimum medium

    International Nuclear Information System (INIS)

    Chao, Y.; Feng, J.C.; Yan, W.Y.; Xiao, Y.; Jun, Y.Y

    2015-01-01

    Callus induced by stem of Yin-hong grape (Vitis vinifera L.) was used as materials and B5 medium as basic medium. The major growth parameters of cell suspension cultures with various levels of 1-Naphthaleneacetic acid (NAA) and 6-Benzyl aminopurine (6-BA) were investigated to provide a basis for the optimum medium of suspension cell cultures of Yin-hong grape regarding cell number, packed cell volume (PCV), dry cell weight (DCW), cell viability, and morphology. All data were analysed by of two-way analysis of variance (ANOVA). Results showed that the treatment of 6-BA and NAA would effect the cell growth dynamics, probably causing logarithmic phase in advance at higher levels of 6-BA. Different concentration of 6-BA and NAA had significant effects on cells number, PCV, DCW and viability (p<0.05), while no-significant effect was observed on the cells morphology. The optimum medium for suspension cell cultures of Yin-hong grape was identified as B5+1.5 mg/L6-BA+1.5 mg/LNAA+ 250 mg/L casein hydrolysate + 30 g/L sucrose. With the optimum medium, the maximum number of suspension cells after the logarithmic growth phase was 34.78 * 108 / mL, the highest cell viability reached 86.45%.; DCW reached 3.84 g/L and PCV reached 0.092 mL/mL after eight days cultivating. (author)

  13. Low versus high volume of culture medium during embryo transfer: a randomized clinical trial.

    Science.gov (United States)

    Sigalos, George Α; Michalopoulos, Yannis; Kastoras, Athanasios G; Triantafyllidou, Olga; Vlahos, Nikos F

    2018-04-01

    The aim of this prospective randomized control trial was to evaluate if the use of two different volumes (20-25 vs 40-45 μl) of media used for embryo transfer affects the clinical outcomes in fresh in vitro fertilization (IVF) cycles. In total, 236 patients were randomized in two groups, i.e., "low volume" group (n = 118) transferring the embryos with 20-25 μl of medium and "high volume" group (n = 118) transferring the embryos with 40-45 μl of medium. The clinical pregnancy, implantation, and ongoing pregnancy rates were compared between the two groups. No statistically significant differences were observed in clinical pregnancy (46.8 vs 54.3%, p = 0.27), implantation (23.7 vs 27.8%, p = 0.30), and ongoing pregnancy (33.3 vs 40.0%, p = 0.31) rates between low and high volume group, respectively. Higher volume of culture medium to load the embryo into the catheter during embryo transfer does not influence the clinical outcome in fresh IVF cycles. NCT03350646.

  14. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  15. Effects of Low Dose Gamma Radiation on the Formation of Shikonon Derivatives in Callus Cultures of Lithospermum erythrorhizon

    International Nuclear Information System (INIS)

    Hwang, H.Y.; Lee, Y.B.; Kim, J.S.

    2003-01-01

    The effects of low dosage r-radiation on the cell growth and the formation of shikonin derivatives were investigated in callus cultures of Lithospermum erythrorhizon under different medium and light conditions. Gamma radiation significantly affected the cell growth and formation of shikonin derivatives, depending on the culture conditions. In the cell cultures grown on M09 medium, 2 Gy and 16 /Gy of r-radiation increased the calli growth and the formation of shikonin derivatives, respectively under 16 hr day light condition

  16. Cultural Characteristics of Shimizuomyces paradoxus Collected from Korea

    OpenAIRE

    Sung, Gi-Ho; Shrestha, Bhushan; Park, Ki-Byung; Sung, Jae-Mo

    2010-01-01

    This study investigated the cultural characteristics of Shimizuomyces paradoxus in different nutritional and environmental conditions. The highest mycelial growth was observed in Schizophyllum (mushroom) genetics complete medium plus yeast extract agar medium, and the optimal temperature and pH were 25? and pH 8.0, respectively. The optimal carbon and nitrogen sources were 1% dextrose and 1% peptone in agar. However, in liquid culture the highest dry mycelium weight was found for the potato d...

  17. Resource efficiency and culture--workplace training for small and medium-sized enterprises.

    Science.gov (United States)

    Bliesner, Anna; Liedtke, Christa; Rohn, Holger

    2014-05-15

    Although there are already some qualification offers available for enterprises to support resource efficiency innovations, the high potentials that can be identified especially for small and medium sized enterprises (SMEs) have not been activated until now. As successful change lies in the hands of humans, the main aim of vocational education has to be the promotion of organisational and cultural changes in the enterprises. As there is already a small but increasing number of enterprises that perform very well in resource efficiency innovations one question arises: What are typical characteristics of those enterprises? Leaning on a good-practice approach, the project "ResourceCulture" is going to prove or falsify the hypothesis that enterprises being successful with resource efficiency innovations have a specific culture of trust, which substantially contributes to innovation processes, or even initially enables them. Detailed empirical field research will light up which correlations between resource efficiency, innovation and cultures of trust can be found and will offer important aspects for the improvement of management instruments and qualification concepts for workplace training. The project seizes qualification needs that were likewise mentioned by enterprises and consultants, regarding the implementation of resource efficiency. This article - based on first empirical field research results - derives preliminary indications for the design of the qualification module for the target groups resource efficiency consultants and managers. On this basis and in order to implement "ResourceCulture" conceptual and methodological starting points for workplace training are outlined. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry

    Science.gov (United States)

    Pan, Lei; Chen, Junhui; Shen, Huihui; He, Xiuping; Li, Guangjiu; Song, Xincheng; Zhou, Deshan; Sun, Chengjun

    2017-01-01

    Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP) in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography–high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima), and the proposed method achieved satisfactory recoveries (94.80%–100.58%) and repeatability (relative standard deviation ≤9.27%). Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on) were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9–34.0 and 15.2–27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70–79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae. PMID:28974018

  19. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2017-09-01

    Full Text Available Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography–high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima, and the proposed method achieved satisfactory recoveries (94.80%–100.58% and repeatability (relative standard deviation ≤9.27%. Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9–34.0 and 15.2–27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70–79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  20. Tissue culture of three species of Laurencia complex

    Science.gov (United States)

    Shen, Songdong; Wu, Xunjian; Yan, Binlun; He, Lihong

    2010-05-01

    To establish a micropropagation system of three Laurencia complex species ( Laurencia okamurai, Laurencia tristicha, and Chondrophycus undulatus) by tissue culture techniques, we studied the regeneration characteristics and optimal culture conditions of axenic algal fragments cultured on solid medium and in liquid medium. Regeneration structures were observed and counted regularly under a reverse microscope to investigate the regeneration process, polarity and optimal illumination, and temperature and salinity levels. The results show that in most cultures of the three species, we obtained bud regeneration on solidified medium with 0.5% agar and in liquid medium. Rhizoid-like regeneration was filamentous and developed from the lower cut surface of fragments in L. okamurai, but was discoid and developed from the apical back side of bud regeneration in L. tristicha and C. undulatus. Regeneration polarity was localized to the apical part of algal fronds in all three species, and on fragments cut from the basal part of algae buds could develop from both the upper and the lower cut surfaces. Buds could develop from both the medullary and the cortical portions in L. okamurai and C. undulatus, while in L. tristicha, buds only emerged from the cortex. The optimal culture conditions for L. okamurai were 4 500 lx, 20°C and 35 (salinity); for C. undulatus, 4 500 lx, 20°C and 30; and for L. tristicha, 4 500 lx, 25°C and 30.

  1. Children’s picturebook on sexual educationas a cultural and political medium

    Directory of Open Access Journals (Sweden)

    Małgorzata Cackowska

    2011-11-01

    Full Text Available In my article I deal with a social construction of meanings of picturebooks’ content and form in Poland and abroad, so also with what kinds of discourses and ideologies determine the conditions of picturebooks’ production in societies under analysis. For the analysis I have chosen picturebooks which deal with sexual education. The methodology applied in the research consists mostly of content analysis and critical discourse analysis. The research is a part of a bigger collaborative project called “Discursive construction of subjectivity” financed by Ministry of Science and Higher Education in Poland, grant no. N 10702632/3637, and conducted at the University of Gdansk. I present, basing on the empirical material, the critique of the dominant discourse in Poland which is powerful in the production of picturebooks, which is based on the conservative ideology and social and sexual roles defined in stereotypical, hierarchical and heterosexual terms. In this aura discourses based on liberal or radical ideologies are marginalized.The results show the knowledge/power relations, symptoms of symbolic violence in exemplified discourses and explain to what practices of ideological and political control the subject is exposed. In this context a picturebook is seen as a meaningful cultural and political medium, within the content and form of which various (possible ideologies and conceptions of the child are included to or excluded from social environment, what can occur as a real issue for educational theory and practice.

  2. Selective versus non-selective culture medium for group B streptococcus detection in pregnancies complicated by preterm labor or preterm-premature rupture of membranes

    Directory of Open Access Journals (Sweden)

    Marcelo Luís Nomura

    Full Text Available The objective of this study was to identify group B streptococcus (GBS colonization rates and compare detection efficiency of selective versus non-selective culture media and anorectal versus vaginal cultures in women with preterm labor and preterm-premature rupture of membranes (PROM. A prospective cohort study of 203 women was performed. Two vaginal and two anorectal samples from each woman were collected using sterile swabs. Two swabs (one anorectal and one vaginal were placed separately in Stuart transport media and cultured in blood-agar plates for 48 hours; the other two swabs were inoculated separately in Todd-Hewitt selective media for 24 hours and then subcultured in blood-agar plates. Final GBS identification was made by the CAMP test. A hundred thrity-two cultures out of 812 were positive. The maternal colonization rate was 27.6%. Colonization rates were 30% for preterm PROM and 25.2% for preterm labor. Todd-Hewitt selective medium detected 87.5% and non-selective medium 60.7% GBS-positive women. Vaginal samples and anorectal samples had the same detection rate of 80.3%. Anorectal selective cultures detected 75% of carriers; 39% of GBS-positive women were detected only in selective medium. A combined vaginal-anorectal selective culture is appropriate for GBS screening in this population, minimizing laboratory costs.

  3. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  4. Statistical optimization of culture conditions for the production of enniatins H, I, and MK1688 by Fusarium oxysporum KFCC 11363P.

    Science.gov (United States)

    Lee, Hee-Seok; Kang, Jea-Wook; Kim, Byung Hee; Park, Sang-Gyu; Lee, Chan

    2011-03-01

    The aim of this study was to optimize the culture conditions for the production of biological cyclic hexadepsipeptides (enniatins H, I and MK1688) from Fusarium oxysporum KFCC 11363P. Tests of 10 complete or chemically defined liquid culture media revealed that Fusarium defined medium was the best for the production of enniatins (produced amounts: enniatin H, 185.4 mg/L; enniatin I, 349.1mg/L; enniatin MK1688, 541.1mg/L; and total enniatins, 1075.6 mg/L). On the eighth day after inoculation, the maximal production of enniatins was observed at 25°C in Fusarium defined medium. The optimal carbon and nitrogen sources for producing biological cyclic hexadepsipeptides (enniatins H, I, and MK1688) were sucrose and NaNO(3), respectively, and their optimal concentrations were determined by the principle of response surface methodology. It was confirmed that using the optimized growth medium compositions increased the amounts of enniatins H, I, and MK1688, and total enniatins produced to 695.2, 882.4, 824.8, and 2398.5mg/L, respectively. These findings will assist in formulating microbiological media useful for enniatin research. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections.

    Science.gov (United States)

    Sharma, Megha; Gautam, Vikas; Mahajan, Monika; Rana, Sudesh; Majumdar, Manasi; Ray, Pallab

    2017-10-01

    Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC) system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5%) bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  6. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  7. Optimization of culture conditions of Streptomyces rochei (MTCC ...

    African Journals Online (AJOL)

    Fermentation and culture conditions were studied in shaken-flask culture to induce the production of greater amounts of antimicrobial metabolites by Streptomyces rochei (10109). Antimicrobial metabolite production started after 48 h incubation and reached its optimum level at 20% inoculum size at 120 h, at which point the ...

  8. Induction of mitosis in the cultured rabbit lens initiated by the addition of insulin to medium KEI-4

    Energy Technology Data Exchange (ETDEWEB)

    Reddan, J R; Unakar, N J; Harding, C V; Bagchi, M; Saldana, G

    1975-01-01

    The epithelium of lenses cultured in KEI-4, a completely defined medium formulated with specific reference to the biochemistry and physiology of the rabbit lens, exhibits a pattern of cell division similar to that noted for the organ in situ. Initial fluctuations in mitotic activity occurred in the area of the germinative zone during the first 24 hr of culture. Mitosis decreased at 1 hr, was extremely low at 3 hr and returned to values comparable for lens in vivo by 22 hr. The precipitous drop in mitosis noted at 3 hr is in part attributable to the isolation of the lens from adjoining tissue. The addition of insulin to KEI-4 triggers a parasynchronous burst of DNA synthesis throughout the central lens epithelium. The activation requires the intact hormone; neither proinsulin nor the A and/or B chains of insulin, nor glucagon nor zinc chloride can initiate mitosis. The gamma-globulin-rich fraction of rabbit serum can also stimulate mitosis. The addition of dibutyryl adenosine 3':5' cyclic monophosphate (DBeAMP) plus theophylline to KEI-4-insulin inhibits mitosis and prevents the cells from entering the synthetic phase of the cell cycle. Theophylline alone or DBeAMP alone brings about a 90 percent reduction in the insulin-induced mitotic responses. Lenses exposed to insulin show a marked increase in RNA synthesis and also exhibit an increased binding of tritiated actinomycin D at 1 and 3 hr of culture relative to KEI-4 controls. The hormone apparently activates the genome including those genes governing cell division. The system is amenable for long-term culture of the mammalian lens and since the constituents of the medium are known it should be possible to determine the factor(s) in the medium which, in conjunction with insulin, are needed for the induction of cell division.

  9. Addressing the instability of DNA nanostructures in tissue culture.

    Science.gov (United States)

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  10. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos.

    Science.gov (United States)

    Arias, María E; Ross, Pablo J; Felmer, Ricardo N

    2013-01-01

    Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (Pculture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  11. Development of a new mouse palate organ culture system and effect of X-irradiation on palatogenesis

    International Nuclear Information System (INIS)

    Hiranuma, Hiroko; Jikko, Akitoshi; Maeda, Takashi; Furukawa, Souhei

    1999-01-01

    On the basis of an already established suspension system of organ culture for mouse palate explants, we developed a new culture system, which has several advantages over the previous methods. We used a 48-well culture plate in which the explants can be cultured individually, and only 300 μl of medium is needed for each well. In order to optimize the culture results, we systematically studied the influence of main ''culture conditions'' such as tilt degree of the culturing palate, rotation speed, and addition of ascorbic acid to the medium. This system allows culturing of palates from day 13.5 of gestation to day 16.5 under serum-free conditions using a chemically defined medium, which resulted in 78% of the palates growing fused. Utilizing this culture system, the direct effect of X-irradiation on palataogesis was analyzed. A 4 Gy dose of X-irradiation was administrated at the beginning of culture period. The incidence of palatal fusion was not significantly different from that of the non-irradiated group. (author)

  12. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Wenk, M.

    1993-09-01

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  13. Bromelain enzyme from pineapple: in vitro activity study under different micropropagation conditions.

    Science.gov (United States)

    Vilanova Neta, Jaci Lima; da Silva Lédo, Ana; Lima, Aloisio André Bonfim; Santana, José Carlos Curvelo; Leite, Nadjma Souza; Ruzene, Denise Santos; Silva, Daniel Pereira; de Souza, Roberto Rodrigues

    2012-09-01

    The aim of this work was to evaluate the activity of bromelain in pineapple plants (Ananas comosus var. Comosus), Pérola cultivar, produced in vitro in different culture conditions. This enzyme, besides its pharmacological effects, is also employed in food industries, such as breweries and meat processing. In this work, the enzymatic activity was evaluated in the tissues of leaves and stems of plants grown in culture medium without plant growth regulator. The most significant levels of bromelain were observed in leaf tissue after 4 months of culture in vitro in medium with a filter paper bridge, followed by medium gelled by the agar. The results of this study, regarding the different structures of the pineapple (leaves and stems) in vitro showed that the activity of bromelain varied depending on the culture conditions, the time and structure of which was quantified, ensuring a viable strategy in the production of seedlings with high levels of bromelain in subsequent phases of micropropagation.

  14. Effect of Culture Conditions and Gamma Rays on Chitosan Production from Shrimp Shells by Certain Isolated Fungi

    International Nuclear Information System (INIS)

    Abd EI-Aziz, A.B.; Swialam, H.M.; Abd EI -Aziz, A.H.

    2009-01-01

    The obtained chitosan from shrimp shells waste used in the present work is compared with a standard chitosan. Six strains of the isolated fungi had the ability to attack the chitin namely: Candida tropicalis, Zygosaccharomyces rouxii, Candida guilliermondii, Trichoderma viride, Penicillium chrysogenum and Aspergillus niger. Z. rouxii and A. niger were the most active strains for decomposing chitin. The best culture conditions for chitosan production by the selected strains differed from one to another. Highest yield of chitosan was obtained after 96 h of incubation by A. niger (40.00 mg/g) in the basal medium followed by P. chrysogenum (38.20 mg/g). Optimum ph for chitosan production by C. tropicalis, Z. rouxii and T. viride was found to be 5.5, while ph 6.0 was the best for A. niger and C. guilliermondii. Meanwhile ph 5.0 was preferable for P. chrysogenllm. Regarding the carbon source, fructose as a sole carbon source in the medium was the best one for A. niger (92.58 mg/g) and T. viride (85.78 mg/g). C. tropicalis and Z. rouxii showed the highest chitosan production in the presence of sucrose (66.00 and 60.00 mg/g), whereas xylose was the best carbon for P. chrysogenum (62.50 mg/g). The selected strains were also differing in their nitrogen source requiring for production of chitosan. The present work confirmed that chitosan production by microorganisms is strongly dependent on the ph of the culture medium. The present data show that exposing the selected fungal strains to very low dose levels of gamma ray enhanced their productivity of chitosan and dry weight. The best environmental conditions of temperature degree, ph value and colloidal chitin concentration on chitinase activity produced by Z. rouxii were 30 degree C, 5.5 and 2% respectively, while they were 30 degree C, 6.0 and 1.5% for chitinase produced by A. niger in the same manner respectively

  15. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses

    NARCIS (Netherlands)

    Schwarzer, Caroline; Esteves, Telma Cristina; Arau´zo-Bravo, Marcos J.; le Gac, Severine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-01-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? ... Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the

  16. Effects of x-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Myser, W.C.; Hink, W.F.

    1975-01-01

    Cultured Trichoplusia ni cells in exponential growth were administered x-ray doses of 10,000 R and then subcultured. The untreated cell population began exponential growth within a few hours after subculture, eventually reaching stationary growth phase 96 hr later at a cell density of 2.08 x 10 6 cells/ml, whereas the irradiated cell population did not change for 24 hr after irradiation and then began exponential growth at a rate similar to that of control cells, also reaching stationary phase at 96 hr, but at a cell density of 0.93 x 10 6 cells/ml, which is less than half the maximum density of controls. From 24 to 96 hr after treatment, the x-irradiated cells were characterized by an increased consumption of oxygen that was nearly twice the amount utilized by control cells. The pH of the cell growth medium increases over 96 hr from 6.3 to 6.6 for irradiated as well as for untreated cultures, but since the number of x-rayed cells is less than half the number of untreated cells, the pH increase, per cell, of medium from irradiated cultures is about twice that of medium from control cultures

  17. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Ahmadian Baghbaderani, Behnam; Tian, Xinghui; Scotty Cadet, Jean; Shah, Kevan; Walde, Amy; Tran, Huan; Kovarcik, Don Paul; Clarke, Diana; Fellner, Thomas

    2016-01-01

    Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control variability. Here we describe the development of a robust, defined and xeno-free hPSC medium that supports reliable propagation of hPSCs and generation of human induced pluripotent stem cells (hiPSCs) from multiple somatic cell types; long-term serial subculturing of hPSCs with every-other-day (EOD) medium replacement; and banking fully characterized hPSCs. The hPSCs cultured in this medium for over 40 passages are genetically stable, retain high expression levels of the pluripotency markers TRA-1-60, TRA-1-81, Oct-3/4 and SSEA-4, and readily differentiate into ectoderm, mesoderm and endoderm. Importantly, the medium plays an integral role in establishing a cGMP-compliant process for the manufacturing of hiPSCs that can be used for generation of clinically relevant cell types for cell replacement therapy applications.

  18. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT embryos

    Directory of Open Access Journals (Sweden)

    María E Arias

    2013-01-01

    Full Text Available Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively. No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01 in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28% compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively. Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA. Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  19. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    Science.gov (United States)

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  20. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  1. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  2. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity.

    Science.gov (United States)

    Manning, J S; Collins, J K

    1979-01-01

    The stability of type 2 dengue virus to exposure to a variety of laboratory conditions was determined. Suckling mouse brain passage virus was adapted for growth in BHK-21 cells, and plaque assays were performed using a tragacanth gum overlay. A three- to fourfold increase in plaque size could be obtained if monolayers were subconfluent at time of inoculation. Incubation of virus for 24 h at 37 degrees C, pH 6.5, or in buffer containing 1 mM ethylenediaminetetraacetate considerably reduced virus infectivity as compared with virus incubated for the same period at 4 degrees C, pH 8.0, or in buffer with or without 1 mM CaCl2 and 1 mM MgCl2. Multiple freezing and thawing of virus tissue culture medium containing 10% fetal calf serum did not reduce virus infectivity. Images PMID:41848

  3. Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from Orthosiphon stamineus Benth, by incorporation of host plant extract in culture medium.

    Science.gov (United States)

    Yenn, Tong Woei; Lee, Chong Chai; Ibrahim, Darah; Zakaria, Latiffah

    2012-08-01

    This study examined the effect of host extract in the culture medium on anti-candidal activity of Phomopsis sp. ED2, previously isolated from the medicinal herb Orthosiphon stamineus Benth. Interestingly, upon addition of aqueous host extract to the culture medium, the ethyl acetate extract prepared from fermentative broth exhibited moderate anti-candidal activity in a disc diffusion assay. The minimal inhibitory concentration of this extract was 62.5 μg/ml and it only exhibited fungistatic activity against C. albicans. In the time-kill study, a 50% growth reduction of C. albicans was observed at 31.4 h for extract from the culture incorporating host extract. In the bioautography assay, only one single spot (Rf 0.59) developed from the extract exhibited anti-candidal activity. A spot with the a similar Rf was not detected for the crude extract from YES broth without host extract. This indicated that the terpenoid anti-candidal compound was only produced when the host extract was introduced into the medium. The study concluded that the incorporation of aqueous extract of the host plant into the culture medium significantly enhanced the anti-candidal activity of Phomopsis sp. ED2.

  4. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    Science.gov (United States)

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.

  5. Radioadaptive response to the medium-mediated bystander induction of DNA strand breaks in HeLa cells

    International Nuclear Information System (INIS)

    Ikushima, T.; Okuyama, M.

    2003-01-01

    Full text: Numerous investigators have reported two cellular responses of importance at low doses that have a potential impact on the risk estimation of ionizing radiation. The radioadaptive response confers resistance to a subsequent dose by a low priming dose, while the bystander effect exaggerates the effect of small doses. The present study was conducted to examine the interaction of the radioadaptive response with the bystander effect in HeLa cells. The culture was irradiated with 0.5 to 8 Gy of 140 kVp X-rays and one hour later, the medium was taken, passed through a filter and transferred to the parallel culture of non-irradiated HeLa cells as non-targeted cells. After incubation for 30 min, the induced DNA damage was analyzed by the single cell gel-electrophoresis assay under alkaline or neutral conditions. The treatments resulted in a dose-dependent increase in tail moment under either conditions, indicating the induction of DNA single- and double-strand breaks. The clonogenic survival of non-irradiated cells was also reduced after they were cultured in the medium that was taken from irradiated cultures. Any change was not observed when the medium alone was irradiated. These results give the disputed evidence that certain genotoxic factor(s) released from irradiated cells into the culture medium can induce DNA strand breaks leading to cell death. It is also suggested that physical contact between irradiated and non-irradiated cells may not be required for the bystander effect. In adapted cells that were pre-exposed to 5 cGy of X-rays and cultured for 4 h beforehand, the yield of DNA strand breaks induced by X-rayed medium was reduced by about 50 %. The results, in conjunction with our early finding (Ikushima et al., 1996) suggest that the radioadaptive response resulting from such a low dose may diminish the bystander effect through an enhanced DNA repair function

  6. Growth and consumption of L-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains.

    Science.gov (United States)

    Bravo-Ferrada, Bárbara Mercedes; Hollmann, Axel; Brizuela, Natalia; La Hens, Danay Valdés; Tymczyszyn, Elizabeth; Semorile, Liliana

    2016-09-01

    Five Oenococcus oeni strains, selected from spontaneous malolactic fermentation (MLF) of Patagonic Pinot noir wine, were assessed for their use as MLF starter cultures. After the individual evaluation of tolerance to some stress conditions, usually found in wine (pH, ethanol, SO2, and lysozyme), the behavior of the strains was analyzed in MLO broth with 14 % ethanol and pH 3.5 in order to test for the synergistic effect of high ethanol level and low pH and, finally, in a wine-like medium. Although the five strains were able to grow in MLO broth under low pH and/or high ethanol, they must be acclimated to grow in a wine-like medium. Additionally, glycosidase and tannase activities were evaluated, showing differences among the strains. The potential of the strains to ferment citrate was tested and two of the five strains showed the ability to metabolize this substrate. We did not detect the presence of genes encoding histidine, tyrosine descarboxylase, and putrescine carbamoyltransferase. All the strains tested exhibited good growth capacity and ability to consume L-malic acid in a wine-like medium after cell acclimation, and each of them showed a particular enzyme profile, which might confer different organoleptic properties to the wine.

  7. Experimental determination of the boundary condition for diffuse photons in a homogeneous turbid medium

    International Nuclear Information System (INIS)

    Everitt, David L.; Zhu, Tuo; Zhu, H.-M.; Zhu, X. D.

    2000-01-01

    We present a simple experimental method that permits an empirical determination of the effective boundary condition and the extrapolated end point for the diffuse photon density in a homogeneous turbid medium. (c) 2000 Optical Society of America

  8. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  9. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  10. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  11. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...... to facilitate technology change processes that lead to improved working conditions. The research based project described here has developed a special homepage that explains how this might be achieved. The homepage is targeted at working life professionals. The homepage presents theoretical explanations...... of the concept of organizational culture, a model for analysis and several practical case stories. This paper explains how the project tries to reach a broad spectrum of professionals in order to facilitate their use of a cultural perspective. It also discusses the ethical consequences of the cultural...

  12. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Iñigo, E-mail: inigo.marco@mtm.kuleuven.be [Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, 3001 Leuven (Belgium); Feyerabend, Frank; Willumeit-Römer, Regine [Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str., 1, 21502 Geesthacht (Germany); Van der Biest, Omer [Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, 3001 Leuven (Belgium)

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mg{sub x},Ca{sub y})(PO{sub 4}){sub z}. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg–Gd and Mg–Ag alloys; and pure magnesium as well as Mg–4Y–3RE as a reference. - Highlights: • Contamination of DMEM by microorganisms increases the degradation rate of Mg. • Mg and its alloys show passivation during long term immersion tests in DMEM. • The use of a control sample position is essential to assess H{sub 2} evolution in DMEM.

  13. Immunohistochemistry Evaluation of TGF-β1, SOX-9, Type II Collagen and Aggrecan in Cartilage Lesions Treated with Conditioned Medium of Umbilical Cord Mesencyhmal Stem Cells in Wistar Mice (Rattus novergicus

    Directory of Open Access Journals (Sweden)

    Bintang Soetjahjo

    2018-01-01

    Full Text Available Currently, umbilical cord mesenchymal stem cells have the potential to be used as treatment options for any cartilage lesion. This research aimed to evaluate the effects of conditioned medium from umbilical cord mesenchymal stem cells (UC-MSC on damaged cartilage through the expression of proteins TGF-β1, SOX-9, type II collagen and aggrecan, which are known to be related to chondrogenesis. UC-MSC were isolated from 19-days-pregnant Wistar mice and were cultured using the standard procedure to obtain 80% confluence. Subsequently, the culture was confirmed through a microscopic examination that was driven to be an embryoid body to obtain a pre-condition medium. This research utilized 3-month-old male Wistar mice and was categorized into 6 groups (3 control and 3 treatment groups. Each animal had surgery performed to create a femur condyle cartilage defect. The treatment groups were administered a dose of stem cells at 1 mL/kg. Next, immunohistochemical (IHC staining was performed to examine the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the 2nd, 3rd, and 4th month of evaluation. The results were analyzed statistically using ANOVA test. For each of the treatment groups, there was increased expression (p < 0.05 in all proteins TGF-β1, SOX-9, type II collagen and aggrecan when compared with control groups at the 2nd, 3rd, and 4th month of evaluation. Pre-conditioned medium from UC-MSC potentially increases the expression of TGF-β1, SOX-9, type II collagen and aggrecan in the damaged cartilage of Wistar mice.

  14. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?

    Science.gov (United States)

    Ledur, Pítia Flores; Onzi, Giovana Ravizzoni; Zong, Hui; Lenz, Guido

    2017-09-15

    In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo . Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that "mis-cultured" glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.

  15. Solutions to academic failure: The cognitive and cultural realities ofEnglish as the medium of instruction among black learners

    Directory of Open Access Journals (Sweden)

    R. Gamaroff

    2013-02-01

    Full Text Available In South Africa, black learners who are speakers of Bantu languages have to use a second language, namely English, as the medium of instruction from Std 3 onwards. The differences between English language-culture and Bantu languages-culture(s have generated a host of problems (and pseudo-problems?, where the main problem is academic failure. Three solutions to academic failure are discussed in the light of cultural and cognitive factors in multicultural education: 1. The use of the mother tongue as the exclusive medium of instruction 2. Critical Language Study (CLS and People's English 3. The separation of high ability learners from limited ability learners in the teaching situation. It is emphasised that culture is closely connected to a symbolic system, and thus an understanding of cognitive processes in academic learning requires an understanding of culture, and vice versa. Ultimately, of primary importance in academic study are the cognitive underpinnings of Cognitive Academic Language Proficiency (CALP developed in the first language. In Suid-Afrika word swart leerders wie se moedertaal een van die Afrika tale is, tans vanaf st. 3 in 'n tweede taal, naamlik Engels, onderrig. As gevolg van die verskille tussen die Engelse taalkultuur en die taalkulture van die A.frika tale het daar 'n groot aantal probleme (en pseudoprobleme? ontstaan, waarvan akademiese mislukking die belangrikste is. Drie oplossings vir hierdie akademiese mislukking word bespreek aan die hand van kulturele en kognitiewe faktore in multikulturele onderwys: 1. Die gebruik van die moedertaal as eksklusiewe medium van onderrig 2. "Critical Language Study" (CLS en "People's English" 3. Die afsonderlike hantering van hoogsbegaafde en minder begaafde leerlinge. Dit moet beklemtoon word dat kultuur nouverwant is aan 'n simbolesisteem. Gevolglik is 'n be grip van die kognitiewe prosesse betrokke by akademiese leer 'n voorvereiste vir 'n be grip van kultuur, en omgekeerd. Vera

  16. Production of betalaines by Myrtillocactus cell cultures. Passage from heterotrophic state to autotrophic state with Asparagus cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bulard, C; Mary, J; Chaumont, D; Gudin, C

    1982-11-01

    Myrtillocactus tissue cultures are grown from the epicotyl of young plantlets. With an appropriate growing medium it is possible, after transfer of fragments of these cultures to a liquid environment, to obtain dissociation and proliferation of cells. The production of betalaic pigments is induced in solid surroundings by adjustement of the growing medium composition and can be maintained in a liquid environment. The multiplication of pigmented cells in suspension may thus be obtained. The conversion of Asparagus cell suspensions from the heterotrophic state (use of lactose as source of carbon) to the autotrophic state (carbon supplied by CO/sub 2/) is obtained by a gradual reduction in the sugar concentration of the medium combined with a rise in the CO/sub 2/ content of the gas mixture atmosphere injected into the cultivator. The passage to the autotrophic state of a Myrtillocactus suspension would enable the production conditions of a metabolite (Betalaine) to be studied by micro-algae culture techniques.

  17. Optimized conditions for primary culture of pituitary cells from the Atlantic cod (Gadus morhua). The importance of osmolality, pCO₂, and pH.

    Science.gov (United States)

    Hodne, Kjetil; von Krogh, Kristine; Weltzien, Finn-Arne; Sand, Olav; Haug, Trude M

    2012-09-01

    Protocols for primary cultures of teleost cells are commonly only moderately adjusted from similar protocols for mammalian cells, the main adjustment often being of temperature. Because aquatic habitats are in general colder than mammalian body temperatures and teleosts have gills in direct contact with water, pH and buffer capacity of blood and extracellular fluid are different in fish and mammals. Plasma osmolality is generally higher in marine teleosts than in mammals. Using Atlantic cod (Gadus morhua) as a model, we have optimized these physiological parameters to maintain primary pituitary cells in culture for an extended period without loosing key properties. L-15 medium with adjusted osmolality, adapted to low pCO(2) (3.8mm Hg) and temperature (12°C), and with pH 7.85, maintained the cells in a physiologically sounder state than traditional culture medium, significantly improving cell viability compared to the initial protocol. In the optimized culture medium, resting membrane potential and response to releasing hormone were stable for at least two weeks, and the proportion of cells firing action potentials during spawning season was about seven times higher than in the original culture medium. The cells were moderately more viable when the modified medium was supplemented with newborn calf serum or artificial serum substitute. Compared to serum-free L-15 medium, expression of key genes (lhb, fshb, and gnrhr2a) was better maintained in medium containing SSR, whereas NCS tended to decrease the expression level. Although serum-free medium is adequate for many applications, serum supplement may be preferable for experiments dependent on membrane integrity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  19. Continuous culture apparatus and methodology

    International Nuclear Information System (INIS)

    Conway, H.L.

    1975-01-01

    At present, we are investigating the sorption of potentially toxic trace elements by phytoplankton under controlled laboratory conditions. Continuous culture techniques were used to study the mechanism of the sorption of the trace elements by unialgal diatom populations and the factors influencing this sorption. Continuous culture methodology has been used extensively to study bacterial kinetics. It is an excellent technique for obtaining a known physiological state of phytoplankton populations. An automated method for the synthesis of continuous culture medium for use in these experiments is described

  20. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections

    Directory of Open Access Journals (Sweden)

    Megha Sharma

    2017-01-01

    Full Text Available Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5% bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  1. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    Science.gov (United States)

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Amniocar as a proliferative medium for mesenchymal cells

    Directory of Open Access Journals (Sweden)

    V. V. Chestkov

    2014-01-01

    Full Text Available Objectives. To develop the Amniocar nutrient medium that contains fetal calf serum (FCS and growth factors cocktail for mass cultivation of human fibroblasts. To study proliferative activity of the medium on cultures of HUVEC cells of mesenchymal origin and mesenchymal stromal cells, as well as on cell culture of human amniotic fluid.Materials and methods. Determination of the rate of accumulation of the cellular mass and cell morphology in the course of cultivation of cells of various histogenesis in the Amniocar medium and nutrient medium that contains 10 % of FCS.Results. It has been demonstrated that the Amniocar medium is prevalent as compared to the standard DMEM medium with 10 % of FCS by 2 to 5 times for cultivation of skin fibroblasts, HUVEC, and mesenchymal stem cells. The Amniocar medium increased the quantity of endothelial cells that enter mitosis and maintained the culture of HUVEC cells with prolonged passaging in vitro. Clonal cultivation of human amniotic fluid cells in the Amniocar medium secured development of colonies of both fibroblast and epithelial type.Conclusions. Proliferative Amniocar medium is efficient for mass cultivation of various cells of mesenchymal origin and can be used for diagnostic purposes in medical genetics, oncology, etc.

  3. Online games as a medium of cultural communication: An ethnographic study of socio-technical transformation

    OpenAIRE

    Chee, Florence

    2012-01-01

    This dissertation explores the place and meaning of online games in everyday life. In South Korea, online games are a prominent part of popular culture and this medium has come under public criticism for various societal ills, such as Internet addiction and a hopeless dependence upon online games. Humanistic accounts of Information-Communication Technology (ICT) usage are still a minority body of research. All too often, studies of engagement with technology reduce questions to their basic va...

  4. Non-invasive optical detection of glucose in cell culture nutrient medium

    Science.gov (United States)

    Cote, Gerald L.

    1993-01-01

    The objective of the proposed research was to begin the development of a non-invasive optical sensor for measuring glucose concentration in the output medium of cell cultures grown in a unique NASA bioreactor referred to as an integrated rotating-wall vessel (IRWV). The input, a bovine serum based nutrient media, has a known glucose concentration. The cells within the bioreactor digest a portion of the glucose. Thus, the non-invasive optical sensor is needed to monitor the decrease in glucose due to cellular consumption since the critical parameters for sustained cellular productivity are glucose and pH. Previous glucose sensing techniques have used chemical reactions to quantify the glucose concentration. Chemical reactions, however, cannot provide for continuous, real time, non-invasive measurement as is required in this application. Our effort while in the fellowship program was focused on the design, optical setup, and testing of one bench top prototype non-invasive optical sensor using a mid-infrared absorption spectroscopy technique. Glucose has a fundamental vibrational absorption peak in the mid-infrared wavelength range at 9.6 micron. Preliminary absorption data using a CO2 laser were collected at this wavelength for water based glucose solutions at different concentrations and one bovine serum based nutrient medium (GTSF) with added glucose. The results showed near linear absorption responses for the glucose-in-water data with resolutions as high at 108 mg/dl and as low as 10 mg/dl. The nutrient medium had a resolution of 291 mg/dl. The variability of the results was due mainly to thermal and polarization drifts of the laser while the decrease in sensitivity to glucose in the nutrient medium was expected due to the increase in the number of confounders present in the nutrient medium. A multispectral approach needs to be used to compensate for these confounders. The CO2 laser used for these studies was wavelength tunable (9.2 to 10.8 micrometers), however

  5. Screening of culture condition for xylanase production by ...

    African Journals Online (AJOL)

    The study demonstrated not only the importance of the nature of the substrate in obtaining a system resistant to catabolic repression, but also the importance of the culture conditions for biosynthesis of this enzyme. T. viride showed a high potential for xylanase production under the conditions presented in these assays.

  6. CHROMagar COL-APSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant Gram-negative pathogens

    DEFF Research Database (Denmark)

    Abdul Momin, Muhd Haziq F; Bean, David C; Hendriksen, Rene S.

    2017-01-01

    medium (SuperPolymyxin). Methodology. The medium was challenged with 84 isolates, including polymyxin B (POL B)-susceptible and -resistant type strains and colistin (COL)-resistant organisms recovered from human and animal samples. Susceptibility to COL and POL B was determined by agar dilution and broth...... microtitre dilution. The lower limit for the detection of COL-resistant organisms was also calculated for both CHROMagar COL-APSE and SuperPolymyxin media. The ability to isolate and correctly differentiate COL-resistant organisms within mixed cultures was also assessed and compared using both media. Results...

  7. Development of a low cost medium for Tetraselmis sp. growth and biochemical profile improvement

    Directory of Open Access Journals (Sweden)

    Catarina Rosado Correia

    2014-06-01

    Full Text Available In aquaculture, food quality improvement – especially microalgae – is mandatory. Despite having many applications in this industry, few genera of microalgae are actively used and exploited, mainly because of its lack of requirements, such as digestibility, size and lack of toxicity. Tetraselmis sp. is one of the most commonly used microalgae on aquaculture. Despite their nutritional profile, this is a highly demanding industry that requires constant improvement concerning cost production and productivity, and a biochemical profile for end usage. Improvements can be achieved through culture condition manipulation, changing, for instance, culture media’s composition. In order to achieve better biochemical profiles, productivity and lower production costs, three mediums were tested – NutriBloom [NB] (commercial medium used at Necton’s facilities, Simplex [S] (no addition of iron or any micronutrient and Sea Mineral Solution [SMS], and Tetraselmis’s level of protein, carbohydrates, total lipid and PUFA’s profile were controlled at logarithmic and stationary phase, using classical techniques, according to Lowry (1951, Dubois (1956, Bligh and Dyer (1959 and Lepage & Roy (1986. SMS revealed better results than the others, achieving higher cell numbers, productivity and less duplication time. In logarithmic phase, this medium also had the higher lipid and PUFAs percentage. S medium showed higher protein content. In stationary phase, NB medium presented more proteins, lipid and sugars. S medium had better PUFAs percentage. Differences between micronutrient concentrations explain the verified variations in microalgae’s biochemical profile, developing a low-cost medium for Tetraselmis sp. culture.

  8. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.

    Science.gov (United States)

    Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng

    2011-10-01

    The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.

  9. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    Science.gov (United States)

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  10. Electromechanical and elastic probing of bacteria in a cell culture medium

    International Nuclear Information System (INIS)

    Thompson, G L; Reukov, V V; Vertegel, A A; Nikiforov, M P; Jesse, S; Kalinin, S V

    2012-01-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of bacteria of different types in pure water. Here, the BEPFM method is performed for the first time on physiologically relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria in DPBS are demonstrated. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media. (paper)

  11. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells

    International Nuclear Information System (INIS)

    Liu Yanxia; Song Zhihua; Zhao Yang; Qin Han; Cai Jun; Zhang Hong; Yu Tianxin; Jiang Siming; Wang Guangwen; Ding Mingxiao; Deng Hongkui

    2006-01-01

    Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs

  12. A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions.

    Science.gov (United States)

    Tyne, William; Lofts, Stephen; Spurgeon, David J; Jurkschat, Kerstin; Svendsen, Claus

    2013-08-01

    A new toxicity test medium for Caenorhabditis elegans is presented. The test solution is designed to provide a better representation of natural soil pore water conditions than currently available test media. The medium has a composition that can readily be modified to allow for studies of the influences of a range of environmentally relevant parameters on nematode biology and toxicology. Tests conducted in the new medium confirmed that nematodes' reproduction was possible at a range of solution pH levels, offering the potential to conduct toxicity studies under a variety of conditions. A test to establish silver nanoparticle and dissolved silver nitrate toxicity, a study type not feasible in M9 or agar media due to precipitation and nanoparticle agglomeration, indicated lower silver nanoparticle (median effective concentration [EC50] of 6.5 mg Ag/L) than silver nitrate (EC50 0.28 mg Ag/L) toxicity. Characterization identified stable nanoparticle behavior in the new test medium. Copyright © 2013 SETAC.

  13. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse.

    Science.gov (United States)

    Dos Santos, Raquel Rezende; Araújo, Ofélia de Queiroz Fernandes; de Medeiros, José Luiz; Chaloub, Ricardo Moreira

    2016-03-01

    The feasibility of sugarcane vinasse as supplement in growth medium of Spirulina maxima was investigated. The cell was cultivated under autotrophic (no vinasse, 70 μmol photons m(-2) s(-1)), heterotrophic (no light, culture medium supplemented with vinasse at 0.1% v/v and 1.0% v/v) and mixotrophic conditions (70 μmol photons m(-2) s(-1), vinasse at 0.1% v/v and 1.0% v/v). These preliminary results suggested a cyclic two-stage cultivation - CTSC, with autotrophic condition during light phase of the photoperiod (12 h, 70-200 μmol photons m(-2) s(-1)) and heterotrophic condition during dark phase (12h, 3.0% v/v vinasse). The adopted CTSC strategy consisted in three cycles with 75% withdrawal of suspension and reposition of medium containing 3.0% v/v vinasse, separated by autotrophic rest periods of few days between cycles. Results show an increase of biomass concentration between 0.495 g L(-1) and 0.609 g L(-1) at the 7th day of each cycle and high protein content (between 74.3% and 77.3% w/w). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food.

    Science.gov (United States)

    Lim, Hee Seon; Cha, In-Tae; Roh, Seong Woon; Shin, Hae-Hun; Seo, Myung-Ji

    2017-03-28

    This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

  15. The population abundance, distribution pattern and culture studies ...

    African Journals Online (AJOL)

    In order to understand the better background information about the importance of culture condition in the optimal growth of microalgal strains, experimental setup were designed using modified Walne's and Guillard f/2 medium. Studies were also carried out to understand the relation between the growth conditions and ...

  16. A differential medium for the enumeration of the spoilage yeast Zygosaccharomyces bailii in wine.

    Science.gov (United States)

    Schuller, D; Côrte-Real, M; Leão, C

    2000-11-01

    A collection of yeasts, isolated mostly from spoiled wines, was used in order to develop a differential medium for Zygosaccharomyces bailii. The 118 selected strains of 21 species differed in their origin and resistance to preservatives and belonged to the genera Pichia, Torulaspora, Dekkera, Debaryomyces, Saccharomycodes, Issatchenkia, Kluyveromyces, Kloeckera, Lodderomyces, Schizosaccharomyces, Rhodotorula, Saccharomyces, and Zygosaccharomyces. The design of the culture medium was based on the different ability of the various yeast species to grow in a mineral medium with glucose and formic acid (mixed-substrate medium) as the only carbon and energy sources and supplemented with an acid-base indicator. By manipulating the concentration of the acid and the sugar it was possible to select conditions where only Z. bailii strains gave rise to alkalinization, associated with a color change of the medium (positive response). The final composition of the mixed medium was adjusted as a compromise between the percentage of recovery and selectivity for Z. bailii. This was accomplished by the use of pure or mixed cultures of the yeast strains and applying the membrane filtration methodology. The microbiological analysis of two samples of contaminated Vinho Verde showed that the new medium can be considered as a differential medium to distinguish Z. bailii from other contaminating yeasts, having potential application in the microbiological control of wines and probably other beverages and foods.

  17. Formation of the Regional System of Small and Medium Enterprises in the Current Economic Conditions

    Directory of Open Access Journals (Sweden)

    Sergey Aleksandrovich Korobov

    2016-10-01

    Full Text Available In connection with the growing importance of small and medium enterprises as a crucial element of innovation-oriented economy, the implementation of measures to support and promote small and medium enterprises at the regional level should be based on rational development of existing regional authorities’ resources. Therefore, for the development and adoption of effective (rational decisions in management development of small and medium business, it is important to use the cognitive tools of analysis – modern technologies of system analysis. The article assesses the government measures on the formation of a regional system of development of small and medium enterprises using 4 author’s criteria; provides a cognitive map of the interaction of resources at their development in the process of formation of regional system of development of small and medium enterprises; presents the algorithm of formation of regional system of small and medium business development. The study is based on comprehensive and comparative analysis of the state measures for formation of regional system of small and medium enterprises development in the context of the resource-oriented approach, graphical analysis in the framework of cognitive modeling causal relationships between existing regional authorities, resources, and stages of formation of regional system of development of small and medium enterprises in modern economic conditions, represented in the form of an algorithm. The author comes to the conclusion that the tools of cognitive analysis can be successfully applied in the formation of a regional system of development of small and medium enterprises, as they allow to provide the maximum socio-economic efficiency of harnessing the region’s resources.

  18. Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture

    Directory of Open Access Journals (Sweden)

    Urszula Adamczyk-Rogozińska

    2014-01-01

    Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.

  19. Metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium; Renzoku baiyo baichichu ni okeru ryusan`en kangen no taisha to tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Seo, M. [Hokkaido University, Sapporo (Japan)

    1997-08-25

    Investigations were made on metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium. Sulfate-reducing bacteria were cultured for 50 days by supplying the culturing medium prepared to a prescribed chemical composition (containing Fe {sup 2+} at 0.01 mol/kg) at a rate of 10 cm {sup 3}/h, and drawing them out at the same rate. Test carbon steel pieces were immersed into this culturing medium. As a result, the following matters were clarified: the number of bacteria is maintained at more than 10 {sup 10}/cm{sup 3} after several days since inauguration of the immersion, with the bacteria stably producing H2S and FeS until the culturing is finished; comma-shaped bacteria which move actively and rod-shaped bacteria which do not move very actively exist in the culturing medium; a black film has been produced on surface of the test pieces throughout the culturing period, and satin-like corrosion was found underneath the surface; and weight increase of this film and weight decrease of the lower layer progress as the time lapses (the weight decrease of the lower layer has reached 40 mg/cm{sup 2} in 50 days). 28 refs., 8 figs., 1 tab.

  20. Local Roots, Global aspirations: Impact of culture on work environment and organizational culture in Malaysian Small and Medium Enterprises in the Information Technology Sector

    Directory of Open Access Journals (Sweden)

    Saxena Vandana

    2017-01-01

    Full Text Available This paper investigates the role of culture in hiring, team formations and workplace interactions in Malaysian small and medium enterprises (SME in the Information and Communication Technology (ICT sector. This research used the case study approach, with multimethod data collecting instruments like observation, interviews, and analysis of the data available on the websites of the two ICT SMEs under study. The participants selected for the study were the owners, managers and senior employees of both firms. While both firms operated in similar fields, the workforce of one consisted largely of Malaysian employees, while that of second company consisted largely of foreigners. The findings revealed a considerable bias and preference towards cultural homogeneity.

  1. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  2. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components?

    Science.gov (United States)

    Tosar, Juan Pablo; Cayota, Alfonso; Eitan, Erez; Halushka, Marc K; Witwer, Kenneth W

    2017-01-01

    In a recently published study, Anna Krichevsky and colleagues raise the important question of whether results of in vitro extracellular RNA (exRNA) studies, including extracellular vesicle (EV) investigations, are confounded by the presence of RNA in cell culture medium components such as foetal bovine serum (FBS). The answer, according to their data, is a resounding "yes". Even after lengthy ultracentrifugation to remove bovine EVs from FBS, the majority of exRNA in FBS remained. Although technical factors may affect the degree of depletion, residual EVs and exRNA in FBS could influence the conclusions of in vitro studies: certainly, for secreted RNA, and possibly also for cell-associated RNA. In this commentary, we critically examine some of the literature in this field, including a recent study from some of the authors of this piece, in light of the Wei et al. study and explore how cell culture-derived RNAs may affect what we think we know about EV RNAs. These findings hold particular consequence as the field moves towards a deeper understanding of EV-RNA associations and potential functions.

  3. Early embryo development in a sequential versus single medium: a randomized study

    Directory of Open Access Journals (Sweden)

    D'Hooghe Thomas M

    2010-07-01

    Full Text Available Abstract Background The success of in vitro fertilization techniques is defined by multiple factors including embryo culture conditions, related to the composition of the culture medium. In view of the lack of solid scientific data and in view of the current general belief that sequential media are superior to single media, the aim of this randomized study was to compare the embryo quality in two types of culture media. Methods In this study, the embryo quality on day 3 was measured as primary outcome. In total, 147 patients younger than 36 years treated with IVF/ICSI during the first or second cycle were included in this study. Embryos were randomly cultured in a sequential (group A or a single medium (group B to compare the embryo quality on day 1, day 2 and day 3. The embryo quality was compared in both groups using a Chi-square test with a significance level of 0.05. Results At day 1, the percentage of embryos with a cytoplasmic halo was higher in group B (46% than in group A (32%. At day 2, number of blastomeres, degree of fragmentation and the percentage of unequally sized blastomeres were higher in group B than in group A. At day 3, a higher percentage of embryos had a higher number of blastomeres and unequally sized blastomeres in group B. The number of good quality embryos (GQE was comparable in both groups. The embryo utilization rate was higher in group B (56% compared to group A (49%. Conclusions Although, no significant difference in the number of GQE was found in both media, the utilization rate was significantly higher when the embryos were cultured in the single medium compared to the sequential medium. The results of this study have a possible positive effect on the cumulative cryo-augmented pregnancy rate. Trial registration number NCT01094314

  4. Response of an algal consortium to diesel under varying culture conditions.

    Science.gov (United States)

    Chavan, Anal; Mukherji, Suparna

    2010-03-01

    A diesel-tolerant sessile freshwater algal consortium obtained from the vicinity of Powai Lake (Mumbai, India) was cultured in the laboratory. The presence of diesel in batch cultures enhanced the maximum specific growth rate of the algal consortium. With decrease in light-dark (L:D) cycle from 20:4 to 4:20 h, the chlorophyll-a levels decreased; however, the removal of diesel was found to be maximum at L:D of 18:6 h with 37.6% degradation over and above controls. In addition to growth in the form of green clumps, white floating biomass was found surrounding the diesel droplets on the surface. This culture predominated at the least L:D ratio of 4:20 h. Studies confirmed the ability of the floating organisms to grow heterotrophically in the dark utilizing diesel as carbon source and also in the presence of light in a medium devoid of organic carbon sources.

  5. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.; Hassanizadeh, S. M.

    2012-01-01

    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate

  6. Study on recycling of waste rubbers as medium components for hydroponic culture of rose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kuk; Lee, Hyung-Gyu; Jeong, Byoung-Ryong; Hwang, Seung-Jae [Gyeongsang National Univ., Kumi(Korea)

    2000-06-30

    Recently, the efficient disposal of the waste rubber is necessary due to increasing amount of the waste rubbers. In this paper, method of recycling waste rubbers as components of medium for hydroponic rose culture was suggested. We investigated growth of rose, and macro- and micro-elements, pH and EC of the media amended with waste rubber. In the beginning of culture, stress symptoms such as thin brittle stem and incipient wilting were observed, but they disappeared in a few weeks. Concentration of Zn{sup 2+} in media at flowering increased in proportion to contents of waste tire in the media. pH of media at flowering were in the range of 5.70 to 6.35. Rose growth in all media, except in waste rock wool mixed with EPDM powder at 9:3 ratio, was normal and equivalent to the control in terms of stem length, number of stems harvested and fresh weight. (author). 10 refs., 5 tabs., 4 figs.

  7. Statistical optimization of cultural conditions by response surface ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Full Length Research Paper. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel ... Phenol is a hydrocarbon compound that is highly toxic, ... Microorganism.

  8. Effect of Zn and Mg in tricalcium phosphate and in culture medium on apoptosis and actin ring formation of mature osteoclasts

    International Nuclear Information System (INIS)

    Li Xia; Ito, Atsuo; Sogo, Yu; Senda, Koji; Yamazaki, Atsushi

    2008-01-01

    This study investigated the resorptive activity of osteoclasts on tricalcium phosphate (TCP), zinc-containing tricalcium phosphate (ZnTCP) and magnesium-containing tricalcium phosphate (MgTCP) ceramics in different Zn- or Mg-containing culture media. On the TCP ceramic, an increase in Zn ions in the culture medium within the range between 0.3 and 6.8 ppm significantly induced an increase in osteoclast apoptosis and a decrease in actin ring formation. However, even a high level of Mg ions up to 100 ppm in the culture medium was unlikely to induce an increase in osteoclast apoptosis. Mg ions in the MgTCP ceramics have no effect on osteoclast apoptosis and actin ring formation. There was almost no significant difference in osteoclast apoptosis and actin ring formation between ZnTCP and MgTCP ceramics which have the same solubility and dissolution rates. It is indicated that only an increase in Zn level outside resorption lacuna has an inhibitory effect on osteoclast resorption and that an increase in Zn level inside resorption lacuna could not influence the osteoclast activity.

  9. Application of a modified culture medium for the simultaneous counting of molds and yeasts and detection of aflatoxigenic strains of Aspergillus flavus and Aspergillus parasiticus.

    Science.gov (United States)

    Jaimez, J; Fente, C A; Franco, C M; Cepeda, A; Vázquez, B I

    2003-02-01

    Molds and yeasts from 91 samples of feed and raw materials used in feed formulation were enumerated on a new culture medium to which a beta cyclodextrin (beta-W7M 1.8-cyclodextrin) had been added. This medium was compared with other media normally used in laboratories for the routine analysis of fungi, such as Sabouraud agar, malt agar supplemented with 2% dextrose, and potato dextrose agar. When a t test for paired data (0.05 significance level, 95% confidence interval) was applied, no statistically significant differences between the results obtained with the new culture medium and those obtained with the other media used to enumerate molds and yeasts were found. For the evaluation of contamination due to aflatoxin for all of the samples, Sabouraud agar and yeast extract agar, both supplemented with 0.3% beta-W7M 1.8-cyclodextrin, and APA (aflatoxin-producing ability) medium were used. Aflatoxin was detected in 21% of the feed samples and in 23% of the raw-material samples analyzed, with maximal amounts of 2.8 and 6.0 microg of aflatoxin B1 per kg, respectively, being detected. In any case, the aflatoxin contents found exceeded the legally stipulated limits. The t test for paired data (0.05 significance level, 95% confidence interval) did not show statistically significant differences between the results obtained with the different culture media used for the detection of aflatoxins. The advantage of the new medium developed (Sabouraud agar with 0.3% beta-W7M 1.8-cyclodextrin) is that it allows simultaneous fungal enumeration and determination (under UV light) of the presence of aflatoxin-producing strains without prior isolation and culture procedures involving expensive and/or complex specific media and thus saves work, time, and money.

  10. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration

    NARCIS (Netherlands)

    Adam, Aziza A. A.; van Wenum, Martien; van der Mark, Vincent A.; Jongejan, Aldo; Moerland, Perry D.; Houtkooper, Riekelt H.; Wanders, Ronald J. A.; Oude Elferink, Ronald P.; Chamuleau, Robert A. F. M.; Hoekstra, Ruurdtje

    2017-01-01

    Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we

  11. Culture Compound Effects on the Production of Hyaluronidase Enzyme through Bacillus

    Directory of Open Access Journals (Sweden)

    Soleimani Darjagh M

    2011-08-01

    Full Text Available Background and Objectives: Today, hyaluronidase enzyme has a wide application in medicine, pharmaceutics, histoegineering, oncology and ophthalmology. Its therapeutical significance is based upon the breakage of hyaluronan, resulting in increasing the level of membranous permeability, decreasing viscosity index and facilitating the spread of injected liquids. In fact, hyaluronidase causes a huge increase in the absorption of some injected drugs like antibiotics improving the efficiency of any local anesthetics. Today, producing this kind of enzyme through microorganisms has attracted considerableattention. Considering that BHI broth culture is an expensive medium and cannot be used as an economical medium for industrial production of the enzyme, designing a synthetic culture medium has been considered in order to keep its production within the limit of BHI (7.4unit/ml in an economical manner.Methods: The isolate G8 (obtained from the soil of Behesht Zahra district in Tehran was used as a nativestrain and producer of the enzyme .G8 is a kind of aerobic soporiferous bacillus.In addition mall compounds contained in the culture were recognized and their concentrations were measured through Taguchi design method. The amount of produced enzyme was measured by carbazole method.Results: According to Taguchi design method, culture medium containing fructose (5g/l yeast extract (15g/l, ammonium chloride (10g/l with a rotational speed (250rpm was condition to produce the enzyme through G8. The amount of produced enzyme was very significant in such condition (8.04unit/ml.Conclusion: The obtained results from the study can be used to design any suitable industrial culture media and to determine the best physicochemical condition (aeration for economical production of hyaluronidase through G8.

  12. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium

    Science.gov (United States)

    Smith, D. L.; Krikorian, A. D.

    1989-01-01

    Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and

  13. Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Hadi

    2014-01-01

    Full Text Available The potential production of carboxymethylcellulase (CMCase by Aspergillus hortai in liquid state fermentation was studied. Cultural and nutritional factors affecting CMC production were also investigated in order to optimize the fermentation conditions for the maximization of production. The obtained results revealed that, the maximum CMCase production (0.23 U/ml was achieved after 96 h in a liquid medium (PH7 inoculated with 10% v/v, at temperature 37 °C, containing (g L−1 CMC, 5.0; yeast extract, 0.1; (NH4SO4, 0.5; KH2PO4, 10.0; MgSO4·7H2O, 0.1 and NaCl, 0.2. and the activity remained almost stable between pH 6 and 7. The highest CMCase activity (1.18 U/ml was obtained at a lactose concentration of 5.0 g L-1.

  14. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium Accurate and noninvasive embryos screening during IVF

    Science.gov (United States)

    Shen, A. G.; Peng, J.; Zhao, Q. H.; Su, L.; Wang, X. H.; Hu, J. M.; Yang, J.

    2012-04-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF.

  15. Quantitative transient GUS expression in J-104 rice calli through manipulation of in vitro culture conditions.

    Directory of Open Access Journals (Sweden)

    Maylin Pérez Bernal

    2009-10-01

    This paper purposes suitable conditions for callus induction and co-cultivation with Agrobacterium tumefaciens of J-104 rice cultivar. It was evaluated the effect of different concentrations of 2.4-D and agar, and the inclusion of L-proline and L-glutamine in callus culture medium. The use of 2.5 mg/L 2.4-D and 0.8% agar allowed the highest percentage of embryogenic calli. Callus formation was improved considerably with 500 mg/L of L-proline and L-glutamine in the culture medium. Different factors were studied throughout co-cultivation of calli with A. tumefaciens: inoculation time, co-cultivation temperature, concentration of acetosyringone and co-cultivation period. Transient GUS expression was quantified by fluorometry in all co-cultivated calli. The best results were obtained with the following conditions: 10 min as inoculation time, 100µM acetosyringone in co-cultivation medium, temperature of 20ºC, and 3 days as co-cultivation period. Key words: Agar; callus; co-cultivation; fluorometric GUS activity. Resumen Se describen las condiciones óptimas para la callogénesis y cocultivo de callos con Agrobacterium tume-faciens de la variedad de arroz J-104. Se determinó el efecto de diferentes concentraciones de 2.4-D, agar y de L-prolina y L-glutamina en el medio de cultivo de callos. El uso de 2,5 mg/L de 2.4-D y 0,8% de agar permitió lograr el porcentaje más alto de callos embriogénicos. La formación de callos fue mejorada considerablemente con la adición de 500 mg/L de L-prolina e igual concentración de L-glutamina en el medio de cultivo. Se estudiaron diferentes factores en el cocultivo de los callos con A. tumefaciens: tiempo de inoculación, concentración de acetosiringona, temperatura y tiempo de cocultivo. Para comparar el efecto de cada factor sobre la expresión GUS se cuantificó la actividad transitoria mediante fluorimetría. Los valores más altos de actividad fluorimétrica fueron obtenidos con las siguientes condiciones: 10 min de

  16. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  17. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks.

    Science.gov (United States)

    Mehta, Mohina; Ram, Raja; Bhattacharya, Amita

    2014-07-01

    The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125.

  18. Organizational Culture and Open Innovation Performance in Small and Medium-sized Enterprises (SMEs in Poland

    Directory of Open Access Journals (Sweden)

    Mazur Jolanta

    2016-09-01

    Full Text Available This study investigates the links between organizational culture, the use of open innovation sources and the performance of SMEs. The main hypothesis of the study is that a special type of organizational culture (termed innovative culture, which fosters creativity, learning and inter-employee cooperation – will correspond with a greater scope of open innovation sources and higher levels of innovative, operational and financial performance. The study was based on a representative CATI survey of 473 SMEs operating in manufacturing and services industries in Poland. Our statistical analysis relied on building and testing structural equation model with the AMOS software. The findings confirmed a positive association between innovative culture and the scope of open sources of innovation. However, innovative culture had no direct effect on the percentage of sales from new and modified products, which is often used as a metric of innovativeness, but did show a positive influence on an index of operational performance and ROI. Such statistical patterns suggest that fostering innovative culture is beneficial to a company, though probably not through an increased number of product innovations, but rather via process, administrative and marketing innovations, as well as other gains in efficiency attained due to more streamlined employee cooperation and knowledge exchange. The study adds to the existing body of knowledge in management science by providing a better understanding of mechanisms underlying innovative culture’s impacts on open innovation practices and metrics of operational and financial performance in the context of small and medium enterprises.

  19. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu......We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level...

  20. Recurrent somatic embryogenesis in long-term cultures of Gentiana lutea L. as a source for synthetic seed production for medium-term preservation

    Directory of Open Access Journals (Sweden)

    Holobiuc Irina

    2012-01-01

    Full Text Available Our aim was to establish an efficient and reproducible system for producing synthetic seeds from recurrent somatic embryogenesis in long-term cultures of Gentiana lutea L. This species is a vulnerable medicinal plant, protected both at the national and international levels, and is included in different Red Lists and Books. In vitro culture, as an alternative to classical methods of preservation, allows for the cyclic multiplication of plant material and short-, medium- and long-term preservation of tissue collections. Biotechnological approaches allow for maintenance of the plant material in a confined space and protection against biotic and abiotic factors. Somatic embryogenesis (SE is the most efficient way to regenerate plants, ensuring material for preservation and fundamental research. In our experiment, recurrent somatic embryogenesis was developed in long-term cultures in the presence of sugar alcohols (mannitol, sorbitol and in the absence of growth factors. This process proceeded at a high rate, with adventive somatic embryos being generated in a continuous process, followed by maturation, germination and development into plants. To follow the somatic embryogenesis process, histological samples were made. We used these embryogenic cultures for synthetic seed production and medium-term conservation. The viability of somatic embryos after moderate osmotic stress treatment was tested using TTC. Our methodology relied on the induction of somatic embryogenesis in the presence of auxins in the first cycle of in vitro cultures, long-term high embryogenic culture maintenance in the presence of sugar alcohols and synthetic seed production.

  1. Determination of the synthesis of uptake of α2-macroglobulin by cultured human glioma cells

    International Nuclear Information System (INIS)

    Druskova, E.; Bizik, J.; Grofova, M.

    1994-01-01

    Using immunological techniques, the synthesis of α 2 -macroglobulin was studied in established cell lines derived from human glioblastomas multiform. α 2 -Macroglobulin was detected in cytoplasm and in the culture medium of the analyzed cell lines. Radioimmunoprecipitation, revealed a protein with Mr corresponding to α 2 -macroglobulin in the medium conditioned by U-118MG and U-343MG cells. On the other hand, using immunoblot analysis, α 2 -macroglobulin was detected in all of the analyzed lines. In immunofluorescence test, α 2 -macroglobulin was determined also in all four cell lines, but with different staining pattern. Conditioned culture medium of U-536MG cells with the lowest level of α 2 -macroglobulin exerted the lowest mitogenic activity for human fibroblasts. (author)

  2. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    OpenAIRE

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured ...

  3. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.

    2012-01-01

    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate the influence of initial conditions on the dynamics of the process. In this study, using dynamic pore-network modeling, we simulated capillary rise in a porous medium for different initial saturations (and consequently initial capillary pressures). Furthermore, the effect of hydraulic connectivity of the wetting phase in corners on the height and velocity of the wetting front was studied. Our simulation results show that there is a trade-off between capillary forces and trapping due to snap-off, which leads to a nonlinear dependence of wetting front velocity on initial saturation at the pore scale. This analysis may provide a possible answer to the experimental observations in the literature showing a non-monotonic dependency between initial saturation and the macroscopic front velocity. © Soil Science Society of America.

  4. Bone culture research

    Science.gov (United States)

    Partridge, Nicola C.

    1993-01-01

    The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed.

  5. Mass culture of mountain Ginseng roots using rare earth elements in bioreactor cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Jin; Kim, Chang Hyun; Kim, Ha Lim [Chonnam National University, Gwangju (Korea, Republic of)

    2010-01-15

    An adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) was used in this experiments. Various concentration of lanthanide were tested to find out optimal conditions for biomass and ginsenoside contents in mountain ginseng roots. The MS basal medium with 100 {mu}g/L lanthanide created the most optimum condition for growth of adventitious roots of mountain ginseng. Batch culture with 100 {mu}g/L lanthanide and 0.5 g (F.W) inoculation volume produced maximum final biomass of 1.89 g(F.W/flask) within 4 weeks. However, lanthanide was not effect the ginsenoside contents in adventitious roots of mountain ginseng. In bioreactors, 3.23 g F.W./L of biomass were obtained when 100 {mu}g/L lanthanide were added to the MS basal medium at 26 .deg. C

  6. Use of rotifers for the maintenance of monoalgal mass cultures of Spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, S.A.; Richmond, A.

    1987-01-01

    Zooplankton was successfully used for the biological control of unicellular algal contaminants in Spirulina mass cultures even under conditions adverse to the growth of Spirulina (maximal winter daily temperature of approximately 10 degrees C and very low bicarbonate concentration). Brachionus plicatilis (Rotifera) was the most successful species of zooplankton used. The interrelationships between Spirulina, green unicellular contaminant, and B. plicatilis were studied under various conditions. Two species of unicellular contaminant were used; Monoraphidium minutum was isolated from local cultures and Chlorella vulgaris, obtained from contaminated Spirulina cultures in Israel. The rotifer B. plicatilis successfully controlled the population size of both contaminants whether they were introduced in a single addition or as a daily dose. The biological control of the unicellular contaminants allows Spirulina to be cultured in a medium low in bicarbonate, thereby reducing the cost of the medium and increasing the quantity of CO2 that may be freely absorbed from the atmosphere at the optimal pH for Spirulina cultivation. (Refs. 9).

  7. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    Science.gov (United States)

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    Science.gov (United States)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  9. Bovine babesiosis: Cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium.

    Science.gov (United States)

    Rojas-Martínez, Carmen; Rodríguez-Vivas, Roger Iván; Millán, Julio Vicente Figueroa; Bautista-Garfias, Carlos Ramón; Castañeda-Arriola, Roberto Omar; Lira-Amaya, José Juan; Urióstegui, Patricia Vargas; Carrasco, Juan José Ojeda; Martínez, Jesús Antonio Álvarez

    2018-04-01

    An attenuated live vaccine containing Babesia bovis and B. bigemina cultured in vitro with a serum-free medium was assessed for its clinical protection conferred of naïve cattle, under natural tick-challenge in a high endemicity zone to Babesia spp. Three groups of six animals were treated as follows: group I (GI) received a vaccine derived from parasites cultured with a free-serum medium; group II (GII) were immunized with the standard vaccine, with parasites cultured in a medium supplemented with 40% (v/v) bovine serum; and a control group (GIII) inoculated with non-infected bovine erythrocytes. Inocula were administered by IM route. Experimental animals were kept during 23days after vaccination in a cattle farm free of ticks and Babesia spp. Thereafter, cattle were moved to a high endemicity farm for natural exposure to Babesia spp. transmitted by Rhipicephalus microplus ticks. Protection against clinical babesiosis was observed in bovines belonging to GI (100%) and GII (83.33%), while the control animals (GIII) were not protected, and showed severe clinical signs, closely related to babesiosis, were observed for at least three consecutive days during the challenge. These were fever, anemia, which were measured simultaneously, and circulating parasites were detected by optic light microscopy. All cattle showed B. bovis and B. bigemina in stained blood films during the challenge; B. bovis antibody titers were higher than those to B. bigemina in GI and GII, and lower titers were determined in GIII. The protective capacity of the vaccine derived from B. bovis and B. bigemina cultured in vitro in a serum-free medium was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  11. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM-Mediated Protection of Ischemic Brain.

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lin

    Full Text Available The protective value of neuron-derived conditioned medium (NCM in cerebral ischemia and the underlying mechanism(s responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO animal model, we discovered that ischemia/reperfusion (I/R-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.

  12. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells.

    Directory of Open Access Journals (Sweden)

    Kristiina Rajala

    2010-04-01

    Full Text Available The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.Here, we report the development of a fully defined xeno-free medium (RegES, capable of supporting the expansion of human embryonic stem cells (hESC, induced pluripotent stem cells (iPSC and adipose stem cells (ASC. We describe the use of the xeno-free medium in the derivation and long-term (>80 passages culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS, while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific

  13. Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis.

    Science.gov (United States)

    Robinson, Ainsley M; Sakkal, Samy; Park, Anthony; Jovanovska, Valentina; Payne, Natalie; Carbone, Simona E; Miller, Sarah; Bornstein, Joel C; Bernard, Claude; Boyd, Richard; Nurgali, Kulmira

    2014-12-01

    Damage to the enteric nervous system (ENS) associated with intestinal inflammation may underlie persistent alterations to gut functions, suggesting that enteric neurons are viable targets for novel therapies. Mesenchymal stem cells (MSCs) offer therapeutic benefits for attenuation of neurodegenerative diseases by homing to areas of inflammation and exhibiting neuroprotective, anti-inflammatory, and immunomodulatory properties. In culture, MSCs release soluble bioactive factors promoting neuronal survival and suppressing inflammation suggesting that MSC-conditioned medium (CM) provides essential factors to repair damaged tissues. We investigated whether MSC and CM treatments administered by enema attenuate 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-induced enteric neuropathy and motility dysfunction in the guinea pig colon. Guinea pigs were randomly assigned to experimental groups and received a single application of TNBS (30 mg/kg) followed by 1 × 10(6) human bone marrow-derived MSCs, 300 μl CM, or 300 μl unconditioned medium 3 h later. After 7 days, the effect of these treatments on enteric neurons was assessed by histological, immunohistochemical, and motility analyses. MSC and CM treatments prevented inflammation-associated weight loss and gross morphological damage in the colon; decreased the quantity of immune infiltrate in the colonic wall (P ChAT, and nNOS immunoreactivity (P < 0.05); and alleviated inflammation-induced colonic dysmotility (contraction speed; P < 0.001, contractions/min; P < 0.05). These results provide strong evidence that both MSC and CM treatments can effectively prevent damage to the ENS and alleviate gut dysfunction caused by TNBS-induced colitis. Copyright © 2014 the American Physiological Society.

  14. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    Science.gov (United States)

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  15. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  16. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    Science.gov (United States)

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Attempts at establishing the culture conditions for Lemna minor L.

    Directory of Open Access Journals (Sweden)

    M. Krzychowska

    2015-01-01

    Full Text Available The influence of the concentration, composition and pH of the substrate as well as of light intensity on the growth and vegetative propagation of Lemna minor L. was investigated. The media of Hutner, Hoagland and Pirson and Seidel were used. At first the experiments were carried out under unsterile conditions. Later sterilized duckweed was cultured in aseptic conditions. The dry matter was determined. Surface area increment and an increase in the number of fronds were evaluated by the planimetric method. For total protein determination in Lemna minor L. from unsterile and sterile cultures Lowry's method was used.

  18. Radiobiological application of atomic force microscopy. Analysis on human chromosomes in culture medium

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Kinjo, Yasuhito

    1995-01-01

    We have proposed a 'Heterogeneous Chromatin Target Model' on the regulating mechanisms involved in chromosome mutation due to ionizing radiations. The heterogeneity of chromatin is derived from the highly condensed organization of chromatin segments that consist of hypersensitive and fragile sites in the fluctuating assembly of nucleosome clusters (superbeads). The above consideration is going to be subjected to a new experimental approach applying the atomic force microscope (AFM), one of the most promising members of a family of scanning probe microscope (SPM). The AFM can be operated in liquid as well as in air. A living specimen can be examined without any preparative procedures (for instance, fixation, staining, vecuum evaporation and so on). Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. In the present report, the mitotic metaphase chromosomes released from living cells (human lymphocytes RPMI) were spread on the clean surface of distilled water filled in a trough. The spread surface film, in which the chromosomes were embedded, was picked up and adhered tightly on a specimen substrate made of silicon. The whole-mounted chromosome were submerged in a solution of culture medium and observed within a liquid immersion cell for AFM. We used an AFM system, SPA-300 made by Seiko Instruments. The particulate chromatin segments of nucleosome clusters (superbeads) were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (author)

  19. Effects of transfer of embryos independently cultured in essential and sequential culture media on pregnancy rates in assisted reproduction cycles.

    Science.gov (United States)

    Geber, Selmo; Bossi, Renata; Guimarães, Fernando; Valle, Marcello; Sampaio, Marcos

    2012-10-01

    Several culture media are available to be used in ART. However it is uncertain whether embryos would preferably benefit from one type of medium or the association of different media. We performed this study to evaluate the impact of simultaneous transfer of embryos independently cultured in two distinct culture media, on pregnancy outcome. A total of 722 couples who underwent infertility treatment were sequentially allocated into three groups: those who had half of the embryos individually cultured in MEM and the other half cultured in sequential media (MEM + Seq Group) (n = 243); those who had all embryos cultured only in sequential medium (Seq Group) (n = 239); and those who had all embryos cultured only in MEM (MEM Group) (n = 240). The pregnancy rate was higher in the MEM + Seq group (51.8 %) than the Seq group (36.7 %) (p < 0.001). However the pregnancy rate observed in the MEM group was similar to the others (44.2 %). When a logistic regression test was applied it demonstrated that the number of transferred embryos did not interfere in the pregnancy rates. Our results suggests that offering different culture conditions for sibling embryos with subsequent transfer of embryos that were kept in distinct culture media, might increase pregnancy rates in assisted reproduction cycles.

  20. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium – Identification of the responsible medium components

    Directory of Open Access Journals (Sweden)

    Pless-Petig Gesine

    2012-10-01

    Full Text Available Abstract Background In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Results Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199. Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM, a high concentration of inorganic phosphate (5.6 mM, and glucose (11.1 mM; i.e. concentrations as in RPMI 1640 evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. Conclusion These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.

  1. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  2. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    Science.gov (United States)

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  3. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum.

    Science.gov (United States)

    da Rosa-Garzon, Nathália Gonsales; Laure, Hélen Julie; Souza-Motta, Cristina Maria de; Rosa, José César; Cabral, Hamilton

    2017-08-09

    Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.

  4. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  5. Establishment of Cell Suspension Culture and Plant Regeneration in Abrus precatorius L., a Rare Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Mohammad Serajur RAHMAN

    2012-02-01

    Full Text Available A new protocol has been developed for cell culture and in vitro regeneration of Abrus precatorius that holds enormous potentiality for preparation of medicines. In vitro grown calli were cultured in Murashige and Skoog (MS liquid media in agitated condition fortified with 0.5 mg/l 6-Benzylaminopurine. Growth curve of cells revealed that the cells continued to grow until 12 days of culture and got the highest peak from day 6-8. Isolated cell was found to produce highest 8.2% calli when suspended on MS medium supplemented with 0.5 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. Callus derived from single cell produced highest number of embryo (25-28% cultured on MS medium fortified with 2.0 mg/l 6-Benzylaminopurine and 0.2 mg/l 1-Naphthaleneacetic acid. The bipolar embryos were selected and optimum shoot formation was recorded on MS medium supplemented with 2.0 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. The optimum root induction was noticed in MS medium supplemented with 1.0 mg/l 3-Indolebutyric acid. Rooted plantlets were successfully transferred to potting soil and acclimatized to outdoor conditions.

  6. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium

    International Nuclear Information System (INIS)

    Jamesh, Mohammed Ibrahim; Wu, Guosong; Zhao, Ying; Jin, Weihong; McKenzie, David R.; Bilek, Marcela M.M.; Chu, Paul K.

    2014-01-01

    Highlights: • Dual Zr and N plasma ion implantation are conducted on WE43Mg alloy. • Zr and N implanted WE43 (ZrN-WE43) enhanced corrosion resistance in cell culture medium. • ZrN-WE43 enhanced corrosion resistance in simulated body fluid (SBF). • ZrN-WE43 shows near capacitive impedance spectra in cell culture medium. • Calcium phosphate is formed on the corrosion product. - Abstract: The effects of dual Zr and N plasma immersion ion implantation (PIII) on the corrosion behavior of WE43Mg alloy are evaluated in simulated body fluid (SBF) and cell culture medium (cDMEM). Zr and N PIII improves the corrosion resistance of WE43 which exhibits smaller i corr , larger R 1 and R 2 , smaller CPE 2 , and larger phase angle maxima in SBF and cDMEM. The Zr and N PIII WE43 samples exhibit 12-folds decrease in i corr in SBF and 71-folds decrease in i corr with near capacitive EIS in cDMEM. Analysis of the corrosion products reveals calcium phosphate

  7. Adding of ascorbic acid to the culture medium influences the antioxidant status and some biochemical parameters in the hen granulosa cells.

    Science.gov (United States)

    Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V

    2015-07-01

    The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (pascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.

  8. Selective medium for aerobic incubation of Campylobacter

    Science.gov (United States)

    Studies were conducted on the formulation of a selective medium that could be used to isolate Campylobacter from mixed bacterial cultures using aerobic incubation. A non-selective, basal broth medium was prepared and supplemented with Bolton, Cefex, or Skirrow antibiotic mixtures. The ability of pur...

  9. Effect of the temperature and the culture medium on the productivity of two generations of dihybrid crosses in Drosophila melanogaster Efecto de la temperatura y del medio de cultivo en la productividad de dos generaciones hijas de un cruce Dihibrido en Drosophila melanogaster

    OpenAIRE

    Campos Héctor Aníbal; Balbín Alejandro; Chica Claudia; Rojas Yesika

    2000-01-01

    In the present study we analize the productivity of the dihybrid cross +//+ e//e x vg//vg +//+ and its reciprocal, carried on up to the second generation under different environmental conditions: two culture media (maize and banana) and two temperatures (23 and 26ºC). The differences were shown to be statistically significantfor the temperature in the first generation, the culture medium and the parental line in the second generation. At a general level, the significant factors were the tempe...

  10. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    Science.gov (United States)

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  11. Culture Compound Effects on the Production of Hyaluronidase Enzyme through Bacillus

    Directory of Open Access Journals (Sweden)

    F Zohrab

    2012-05-01

    Full Text Available

    Background and Objectives: Today, hyaluronidase enzyme has a wide application in medicine, pharmaceutics, histoegineering,  oncology and ophthalmology. Its therapeutical significance is based upon the breakage of hyaluronan, resulting in increasing the level of membranous permeability, decreasing viscosity index and facilitating the spread of injected liquids. In fact, hyaluronidase causes a huge increase in the absorption of some injected drugs like antibiotics improving the efficiency of any local anesthetics. Today, producing this kind of enzyme through microorganisms has attracted considerableattention. Considering that BHI broth culture is an expensive medium and cannot be used as an economical medium for industrial production of the enzyme, designing a synthetic culture medium has been considered in order to keep its production within the limit of BHI (7.4unit/ml in an economical manner.

     

    Methods: The isolate G8 (obtained from the soil of Behesht Zahra district in Tehran was used as a nativestrain and producer of the enzyme .G8 is a kind of aerobic soporiferous bacillus.In addition mall compounds contained in the culture were recognized and their concentrations were measured through Taguchi design method. The amount of produced enzyme was measured by carbazole method.

     

    Results: According to Taguchi design method, culture medium containing fructose (5g/l yeast extract (15g/l, ammonium chloride (10g/l with a rotational speed (250rpm was condition to produce the enzyme through G8. The amount of produced enzyme was very significant in such condition (8.04unit/ml.

     

    Conclusion: The obtained results from the study can be used to design any suitable industrial culture media and to determine the best physicochemical condition (aeration for economical

  12. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  13. Cell culture medium improvement by rigorous shuffling of components using media blending.

    Science.gov (United States)

    Jordan, Martin; Voisard, Damien; Berthoud, Antoine; Tercier, Laetitia; Kleuser, Beate; Baer, Gianni; Broly, Hervé

    2013-01-01

    A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.

  14. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1.

    Science.gov (United States)

    Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M

    2012-06-01

    Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.

  15. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  16. The down-regulation of the mitogenic fibrinogen receptor (MFR) in serum-containing medium does not occur in defined medium.

    Science.gov (United States)

    Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J

    1990-02-01

    Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.

  17. Comparison of the rate of uptake and biologic effects of retinol added to human keratinocytes either directly to the culture medium or bound to serum retinol-binding protein

    International Nuclear Information System (INIS)

    Hodam, J.R.; St Hilaire, P.; Creek, K.E.

    1991-01-01

    Retinol circulates in the plasma bound to retinol-binding protein (RBP), but the mechanism by which retinol is transferred from RBP to target cells is not known. To study retinol delivery, human keratinocytes (HKc) were incubated with [3H]retinol added directly to the culture medium or bound to RBP and the uptake of [3H]retinol was determined at various times. During the first hour of incubation, the rate of [3H]retinol accumulation by HKc was about 40 times greater when the vitamin was added directly to the media rather than bound to RBP. Although maximal uptake of [3H]retinol added directly to the culture medium occurred at 3 h, the uptake of [3H]retinol from RBP was linear with time for at least 72 h. By 57 h, cell-associated [3H]retinol was the same whether it was added directly to the culture medium or bound to RBP. Excess unlabeled retinol or pretreatment of HKc with retinol had no effect on the uptake of [3H]retinol added directly to the culture medium or bound to RBP. Apo- but not holo-RBP was capable of competing with HKc for the uptake of [3H]retinol from RBP. No specific or saturable binding of 125I-labeled RBP to HKc cultured in the absence or the presence of retinol was found. The dose response of retinol inhibition of cholesterol sulfate synthesis and phorbol ester-induced ornithine decarboxylase activity or retinol modulation of keratin expression was the same whether the retinol was delivered to HKc bound to RBP or added directly to the medium. Our data support a mechanism for retinol delivery from RBP to HKc that does not involve cell-surface RBP receptors but instead suggest that the vitamin is first slowly released from RBP and then becomes cell-associated from the aqueous phase. This mechanism is consistent with the finding that HKc respond identically to retinol whether or not it is delivered to them bound to RBP

  18. Pulp fruit added to culture medium for in vitro orchid developmentPolpa de frutos adicionada ao meio de cultivo no crescimento in vitro de orquídea

    Directory of Open Access Journals (Sweden)

    Gilberto Rostirolla Batista de Souza

    2013-06-01

    Full Text Available As an additive in in vitro culture media, fruits have a great potential for facilitating economical orchid production because of lower technology requirements and the ease of obtaining raw materials to formulate culture media. We studied the in vitro growth of Cattleya bicolor Lindl. grown in a simplified culture medium supplemented with different kinds of fruit pulp. The experimental design was completely randomised, with eight seedlings per replication and ten replications per treatment, for a total of 80 seedlings per treatment. The culture medium was made using 150 g L -1 of pulp (without peel or seed from the following fruits: ripe Santa Cruz tomatoes (Solanum lycopersicum L., dwarf bananas (Musa cavendishii L. of intermediate ripeness, light green chayote (Sechium edule (Jacq. Sw, ripe papaya (Carica papaya L. or green coconut (Cocos nucifera L..The treatment control was MS 50 %. The treatments and the control were kept in a growth chamber for seven months before evaluating seedling survival percentage, shoot height, number of leaves, rooting percentage, root number, root length and dry masses of shoot and roots. The highest percentages of seedling survival were obtained using MS 50 %, banana and coconut medium. The seedling survival and rooting percentages illustrate that it is possible to emphasise the culture medium MS 50% and the culture medium supplemented with coconut on the most traditional culture medium with banana or tomato pulp. For the in vitro development of Cattleya bicolor Lindl., a simplified culture medium supplemented with coconut pulp is the most suitable for use as an alternative to MS 50%. A simplified culture medium supplemented with papaya pulp is not recommended for the in vitro development of Cattleya bicolor Lindl. Os frutos apresentam potencial para serem utilizados na elaboração de meios de cultivo para facilitar a produção de orquídeas em pequenas propriedades, contribuindo para a rentabilidade do cultivo

  19. An efficient method for the establishment of cell suspension cultures in potato (Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Sajid, Z.A.

    2016-01-01

    Cell suspension cultures offers an In vitro system that can be used as a tool for various studies involving mutant selection, mass propagation, protoplast isolation, gene transfer and selection of cell-lines which are resistant to various biotic or abiotic stresses. Research work on the development of cell suspension cultures was carried out to establish the most efficient method in Potato (cv. Desiree). Healthy, well-proliferating tissues from different types of callus cultures (compact, friable, embryogenic or non-embryogenic) were inoculated on various media combinations, i.e., MS, MS2 or AA liquid medium containing 18.09 micro M 2, 4-D. A fixed quantity (0.5-1.0 g) of callus tissue from 60-day-old callus cultures was transferred to 10-25 ml of liquid medium in 100 ml Erlenmeyer flask. Cultures were placed on an orbital shaker and agitated at different speeds (75, 100 or 125 rpm) under 16-h photoperiod at 25 ± 2 degree C. Medium was changed after every 3 days and fractionated tissue was filtered after every 6 days through sterile mesh (100-800 micro m) to develop a cell-line by transferring resulting suspension to fresh medium under the same conditions. Results indicated that eight-week-old translucent, friable, off-white callus cultures were an excellent starting material for the initiation of homogeneous cell suspension cultures as compared to other tested sources. Of the three tested media (MS, MS2 or AA medium containing 18.09 micro M 2, 4-D), MS2 was found to be a better medium for the initiation of cell suspension cultures. Cell suspension cultures, placed in 16-h photoperiod at 25 ± 2 degree C and agitated at 120 rpm using a gyratory shaker showed excellent results. Several other factors influencing quick establishment of cell suspension cultures in this cultivar are also discussed in this communication. (author)

  20. Optimizing culture medium for debittering constitutive enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-08-02

    Aug 2, 2010 ... naringinase on different matrices has been studied by many researchers (Busto et ... 10 g/L in the base medium compared to naringin control. Nitrogen ... Fermentation experiments were carried out in shaking flask for 5 days at 28°C with initial pH 6.0. † Values ..... fujikuroi mycelium in fluidized bioreactors.

  1. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  2. Development of a chemically defined medium for studying foodborne bacterial-fungal interactions

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Vogensen, Finn Kvist

    2015-01-01

    judged by ultra-performance liquid chromatography/mass spectrometry) a chemically defined interaction medium (CDIM) was developed. The medium supported growth of antifungal cultures such as Lactobacillus paracasei and Propionibacterium freudenreichii, as well as spoilage moulds and yeasts isolated from...... fermented milk products. Both strong and weak antifungal interactions observed in milk could be reproduced in CDIM. The medium seems suitable for studying antifungal activity of bacterial cultures....

  3. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  4. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  5. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.

    Science.gov (United States)

    Irons, Robin F; Cahill, Kevin W; Rattigan, Deviney A; Marcotte, Joseph H; Fromer, Marc W; Chang, Shaohua; Zhang, Ping; Behling, Eric M; Behling, Kathryn C; Caputo, Francis J

    2018-05-09

    The purpose of our study was to investigate the effect of adipose-derived stem cells (ASCs), endothelial-differentiated ASCs (EC/ASCs), and various conditioned media (CM) on wound healing in a diabetic swine model. We hypothesized that ASC-based therapies would accelerate wound healing. Diabetes was induced in four Yorkshire swine through intravenous injection of streptozotocin. ASCs were harvested from flank fat and cultured in either M199 or EGM-2 medium. A duplicate series of seven full-thickness dorsal wounds were surgically created on each swine. The wounds in the cellular treatment group underwent injection of low-dose or high-dose ASCs or EC/ASCs on day 0, with a repeat injection of one half of the initial dose on day 15. Wounds assigned to the topical CM therapy were covered with 2 mL of either serum-free M199 primed by ASCs or human umbilical vein endothelial cells every 3 days. Wounds were assessed at day 0, 10, 15, 20, and 28. The swine were sacrificed on day 28. ImageJ software was used to evaluate the percentage of wound healing. The wounded skin underwent histologic, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay examinations to evaluate markers of angiogenesis and inflammation. We found an increase in the percentage of wound closure rates in cell-based treatments and topical therapies at various points compared with the untreated control wounds (P swine model. Enhanced angiogenesis and immunomodulation might be key contributors to this process. The purpose of the present study was to translate the known beneficial effects of adipose-derived stem cells and associated conditioned medium therapy on diabetic wound healing to a large animal model. We demonstrated that stem cell and conditioned medium therapy significantly accelerate gross wound healing in diabetic swine, with data suggesting this might result from a decreased inflammatory response and increased angiogenesis. Copyright © 2018 Society for

  6. Application of Statistical Design to the Optimization of Culture Medium for Prodigiosin Production by Serratia marcescens SWML08

    OpenAIRE

    Venil, C. K.; Lakshmanaperumalsamy, P.

    2009-01-01

    Combination of Plackett – Burman design (PBD) and Box – Behnken design (BBD) were applied for optimization of different factors for prodigiosin production by Serratia marcescens SWML08. Among 11 factors, incubation temperature, and supplement of (NH4)2PO4 and trace salts into the culture medium were selected due to significant positive effect on prodigiosin yield. Box - Behnken design, a response surface methodology, was used for further optimization of these selected factors for better pro...

  7. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model

    NARCIS (Netherlands)

    Gawlitta, D.; Boonen, K.J.M.; Oomens, C.W.J.; Baaijens, F.P.T.; Bouten, C.V.C.

    2008-01-01

    The influence of differentiation medium (DM) components on C2C12 murine myoblast differentiation has only been studied in monolayer cultures. Serum-free formulations have been applied that omit the use of sera with unknown composition. The goal of the present study was to compare the influence of

  8. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

    Science.gov (United States)

    Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi

    2017-09-01

    Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    Science.gov (United States)

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness

  10. Influence of the incubation conditions on culture media to optimize primary isolation of Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    Cássia Yumi Ikuta

    2016-11-01

    Full Text Available The isolation of Mycobacterium bovis is critical to a surveillance system for bovine tuberculosis based on detection of lesions in abattoirs. Thus, four solid culture media and three incubation conditions were investigated to elucidate which combination overcomes the others by assessing growth, time to the first appearance of colonies and their number. Ninety-seven samples of granulomatous lesions were submitted to the decontamination procedure by 1-hexadecylpyridinium chloride at 0.75% w/v, and inoculated on two egg-based media, Stonebrink’s (ST and Löwenstein-Jensen’s with sodium pyruvate (LJp, and two agar-based media, tuberculosis blood agar (B83 and Middlebrook 7H11 medium (7H11. Each medium was incubated at 37°C for 90 days in three incubation conditions: in air, in air containing 10% carbon dioxide (CO2, and in air in slopes closed with burned hydrophobic cotton and subsequently plugged with a cork to create a microaerophilic atmosphere. The colonies appeared faster and in higher number when incubated in air containing 10% CO2 (p < 0.01, independent of media. B83 showed a faster growth and detected more isolates at 30 days of incubation, when compared to ST (0.0178, LJp (p < 0.0001 and 7H11 (p < 0.0001, though there was no difference between B83, ST and LJp at 60 and 90 days of incubation. 7H11 presented the lowest number of isolates (p < 0.0001 and a longer period for the appearance of the first colony (p < 0.001. According to our findings, the concomitant use of ST and B83 media incubated in air containing 10% CO2 increases the isolation of M. bovis in a shorter period of time, which improves bovine tuberculosis diagnosis.

  11. Development of bovine embryos cultured in CR1aa and IVD101 media using different oxygen tensions and culture systems.

    Science.gov (United States)

    Somfai, Tamás; Inaba, Yasushi; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Shuji; Konishi, Kazuyuki; Nagai, Takashi; Imai, Kei

    2010-12-01

    The aim of the present study was to optimise the culture conditions for the in vitro production of bovine embryos. The development of in vitro fertilised bovine oocytes in CR1aa supplemented with 5% calf serum and IVD101 culture media were compared using traditional microdrops and Well of the Well (WOW) culture systems either under 5% or 20% oxygen tension. After 7 days of culture, a significantly higher blastocyst formation rate was obtained for embryos cultured in CR1aa medium compared to those cultured in IVD101, irrespective of O2 tensions and culture systems. The blastocyst formation in IVD101 was suppressed under 20% O2 compared to 5% O2 . Despite their similar total cell numbers, higher rates of inner cell mass (ICM) cells were observed in blastocysts developed in IVD101 medium than in those developed in CR1aa, irrespective of O2 tensions. There was no significant difference in blastocyst formation, total, ICM and trophectoderm (TE) cell numbers between embryos obtained by microdrop and WOW culture systems irrespective of the culture media and O2 tensions used. In conclusion, CR1aa resulted in higher blastocyst formation rates irrespective of O2 tension, whereas IVD101 supported blastocyst formation only under low O2 levels but enhanced the proliferation of ICM cells.

  12. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions

    International Nuclear Information System (INIS)

    Vasconcelos, R.B.; Salles, L.P.; Silva, I. Oliveira e; Gulart, L.V.M.; Souza, D.K.; Torres, F.A.G.; Bocca, A.L.; Silva, A.A.M. Rosa e

    2013-01-01

    Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E 2 ) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P 4 ) and E 2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P 4 throughout the culture period; however, P 4 concentration was significantly higher in NDM. In both media, E 2 concentration was increased at 24 h, followed by a decrease at 48 h. The E 2 :P 4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E 2 :P 4 ratio in FWS cultures

  13. Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture

    DEFF Research Database (Denmark)

    Guertin, Pierre A; Hounsgaard, Jørn

    2006-01-01

    cord of adult turtles maintainable for several weeks in culture conditions. N-methyl-D-aspartate (NMDA)-induced-tetrodotoxin (TTX)-resistant voltage oscillations in motoneurons were approximately 10 times faster in culture than in acute preparations. Oscillations in culture were abolished by NMDA...

  14. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    Science.gov (United States)

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular

  15. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  16. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium.

    Science.gov (United States)

    Juarez Del Valle, Marianela; Laiño, Jonathan Emiliano; Savoy de Giori, Graciela; LeBlanc, Jean Guy

    2017-03-01

    Riboflavin (vitamin B 2 ) is one of the B-group water-soluble vitamins and is essential for energy metabolism of the cell. The aim of this study was to determine factors that affect riboflavin production by Lactobacillus (L.) plantarum CRL 725 grown in a semi defined medium and evaluate the expression of its rib genes. The factors found to enhance riboflavin production in this medium were incubation at 30 °C, and the addition of specific medium constituents, such as casamino acids (10 g L -1 ), guanosine (0.04 g L -1 ), and sucrose as carbon source (20 g L -1 ). In these conditions, higher riboflavin concentrations were directly associated with significant increases in the expression of ribA, ribB, and ribC genes. The culture conditions defined in this work and its application to a roseoflavin resistant mutant of L. plantarum allowed for a sixfold increase in riboflavin concentrations in our semi-defined medium which were also significantly higher than those obtained previously using the same strain to ferment soymilk. These conditions should thus be evaluated to increase vitamin production in fermented foods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of the mycelium growth conditions on the production of amylolytic, proteolytic and pectinolytic enzymes by Aspergillus niger C

    Energy Technology Data Exchange (ETDEWEB)

    Fiedurek, J.; Ilczuk, Z.; Lobarzewski, J. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Mikrobiologii i Biochemii)

    1989-01-01

    Various nitrogen and carbon sources, as well as natural products, were examined as inducers of the production of amylases, proteases and pectinases by A. niger C. A. niger C grown on wheat bran extract medium provided culture supernatants with the highest enzymatic activities. Some culture conditions, e.g. pH, medium temperature and time period of cultivation, were optimalized to improve the growth and enzyme biosynthesis by A. niger C. (orig.).

  18. Bile culture

    Science.gov (United States)

    Culture - bile ... is placed in a special dish called a culture medium to see if bacteria, viruses, or fungi ... Chernecky CC, Berger BJ. Body fluid - anaerobic culture. In: ... . 6th ed. St Louis, MO: Elsevier Saunders; 2013:225-226. Kim AY, ...

  19. How do culture media influence in vitro perivascular cell behavior?

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  20. Study on growth condition of Trichoderma mutants

    International Nuclear Information System (INIS)

    Chen Jian'ai; Xiao Min; Wang Weiming; Chen Weijing; Sun Yongtang

    2002-01-01

    Some Trichoderma mutants were cultured under different conditions 4 strains, T5, T0803, T1010, T1003 were selected with different mediums and every medium was mixed with fungicide of 40 ppm. The fungicides were procymidone + chlorothalonil, maneb and phosethyl-Al. The pH of medium were 5, 6, 7 and 8, respectively. The growing temperatures were 15, 20, 25 and 30 degree C, respectively. After the hypha growing for some days under natural high temperature, they were put in low temperature for producing spores. The growing times for these hypha were 3,4,5 and 6 days, respectively. All dates were analyzed on statistics with the orthogonal array and ranges (R) were different with different factor and levels (R = 40.4, 42.4, 48.0, 62.8, 107.0). The results showed that the strain was the most influent condition (R = 107.0) and the changed temperature time from high to low was the least influent condition (R = 40.4). Each factor variance was significant and A 3 b 4 C 2 D 1 E 3 was the optimum combined condition, under which T1010 grew more quickly and produced the most spores

  1. Appendix A: The components of the culture media.

    Science.gov (United States)

    Loyola-Vargas, Víctor M

    2012-01-01

    The success in the technology and application of plant tissue culture is greatly influenced by the nature of the culture medium used. A better understanding of the nutritional requirements of cultured cells and tissues can help to choose the most appropriate culture medium for the explant used. It is also important to pay attention to a number of inaccuracies and errors which have appeared in several widely used plant tissue culture basal medium formulations.

  2. In vitro conservation of Piper aduncum and Piper hispidinervum under slow-growth conditions

    Directory of Open Access Journals (Sweden)

    Tatiane Loureiro da Silva

    2011-04-01

    Full Text Available The objective of this work was to evaluate in vitro storage of Piper aduncum and P. hispidinervum under slow-growth conditions. Shoots were stored at low temperatures (10, 20 and 25°C, and the culture medium was supplemented with osmotic agents (sucrose and mannitol - at 1, 2 and 3% and abiscisic acid - ABA (0, 0.5, 1.0, 2.0 and 3.0 mg L-1. After six-months of storage, shoots were evaluated for survival and regrowth. Low temperature at 20ºC was effective for the in vitro conservation of P. aduncum and P. hispidinervum shoots. In vitro cultures maintained at 20ºC on MS medium showed 100% survival with slow-growth shoots. The presence of mannitol or ABA, in the culture medium, negatively affected shoot growth, which is evidenced by the low rate of recovered shoots.

  3. Transformation of Corporate Culture in Conditions of Transition to Knowledge Economics

    Science.gov (United States)

    Korsakova, Tatiana V.; Chelnokova, Elena A.; Kaznacheeva, Svetlana N.; Bicheva, Irena B.; Lazutina, Antonina L.; Perova, Tatyana V.

    2016-01-01

    This article is devoted to the problem of corporate culture transformations which are conditioned by changes in social-economic situation. The modern paradigm of knowledge management is assumed to become the main value for forming a new vision of corporate culture. The starting point for transformations can be found in the actual corporate culture…

  4. Birthweight distribution in ART singletons resulting from embryo culture in two different culture media compared with the national population

    DEFF Research Database (Denmark)

    Lemmen, Josephine Gabriela; Pinborg, Anja; Rasmussen, S

    2014-01-01

    IS KNOWN ALREADY: Studies on human ART singletons have reported a difference in birthweight in singletons following IVF culture in different culture media. However, other studies comparing different culture media have not shown any significant differences in birthweight. STUDY DESIGN, SIZE, DURATION......: This study was a retrospective comparison of birthweights in IVF/ICSI singletons conceived after fresh embryo transfer following embryo culture in Cook or Medicult medium and in a national cohort of naturally conceived singletons in nulliparous women. The study compares four independent groups consisting...... of singletons in nulliparous women from Cook-d2: 2-day culture in Cook medium at Rigshospitalet (n = 974), Medicult-d2: 2-day culture in Medicult EmbryoAssist medium at Rigshospitalet (n = 147), Medicult-d3: 3-day culture in Medicult EmbryoAssist medium with and without added GM-CSF (n = 204), and DK...

  5. Irradiated murine fibroblasts as feeder layer used in human cell culture

    International Nuclear Information System (INIS)

    Almeida, Tiago L.; Klingbeil, Fatima G.; Yoshito, Daniele; Caproni, Priscila; Mathor, Monica B.; Herson, Marisa R.

    2007-01-01

    In 1975, Rheinwald and Green published an in vitro model for keratinocyte cell cultures in which the use of murine fibroblasts, as a feeder layer was introduced. These cells are modified fibroblasts, which presence render keratinocyte cells to remain proliferative for longer periods of time. This optimization of culture outputs has allowed for several clinical applications of confluent keratinocyte cultures as skin substitutes or wound dressings in situations such as post burn extensive skin loss, loss of oral mucosa, and other skin disorders. Nevertheless, proliferation of fibroblast in co-culture with keratinocytes must be controlled by anti-proliferative measures such as irradiation; at the same time, keratinocytes require specific nutrients in the culture medium, which may interfere with the fibroblast feeder layer viability. Therefore, the thorough understanding of the impact of different issues such as culture media composition, irradiation dose and pre-plating storage conditions of irradiated fibroblast to be used as feeder layer in these co-culture systems is important. In this work, changes as far as viability and proliferative rates of irradiated fibroblasts in culture were evaluated in relation to the type of culture medium used, dose of gamma radiation exposure, storage and timing of cell plating post irradiation. Results indicate that the type of culture medium used and time-lag between irradiation, refrigeration and plating of irradiated cells do not have significant impact in culture outcomes. However, the dose of gamma radiation administered to the cells may influence the final quality of these cells if to be used as a feeder layer. (author)

  6. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats.

    Science.gov (United States)

    Matsuzaki, Hirokazu; Shimizu, Yuta; Iwata, Naohiro; Kamiuchi, Shinya; Suzuki, Fumiko; Iizuka, Hiroshi; Hibino, Yasuhide; Okazaki, Mari

    2013-12-26

    Ganoderma lucidum is a popular medicinal mushroom used for promoting health and longevity in Asian countries. Previously, we reported that a water-soluble extract from a culture medium of Ganoderma lucidum mycelia (MAK) exerts antioxidative and cerebroprotective effects against ischemia-reperfusion injury in vivo. Here, we evaluated the antidepressant and anxiolytic activities of MAK in rats. MAK (0.3 or 1 g/kg, p.o.) was administered in the experimental animals 60 min before the forced swimming, open-field, elevated plus-maze, contextual fear-conditioning, and head twitch tests. Additionally, the mechanisms involved in the antidepressant-like action of MAK were investigated by the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP)- or 5-HT2A agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI)-induced head twitch responses. Treatment with MAK (1 g/kg) exhibited antidepressant-like effects in the forced swimming test, attenuated freezing behavior in the contextual fear-conditioning test, and decreased the number of head twitches induced by DOI, but not with 5-HTP. No significant response was observed in locomotion or anxiety-like behavior, when the animals were evaluated in the open-field or elevated plus-maze test, respectively. These data suggest that MAK has antidepressant-like potential, which is most likely due to the antagonism of 5-HT2A receptors, and possesses anxiolytic-like effects toward memory-dependent and/or stress-induced anxiety in rats.

  7. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    Science.gov (United States)

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production.

    Science.gov (United States)

    Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M

    2014-06-01

    The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  10. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    Science.gov (United States)

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  11. Effects of Cultivating Conditions on the Water Soluble Polysaccharides Content of Ganoderma lucidum Mycelium in Submerged Flask Culture

    Science.gov (United States)

    Rosyida, V. T.; Hayati, S. N.; Apriyana, W.; Darsih, C.; Hernawan; Poeloengasih, C. D.

    2017-12-01

    The carcinostatic substance in Ganoderma lucidum (Fr.) Karst (Polyporaceae) is a water soluble polysaccharides (WSP) which might be useful in immunotherapy. Attempt to produce effective substances from cultured mycelia is important to carry out since solid cultivation is a time consuming and quality fluctuating. The effects of cultivating conditions on the water soluble polysaccharides content of G. Lucidum mycelium were investigated in submerged flask cultures. Culture from fruiting bodies was maintained on potato dextrose-agar slope. Slopes were inoculated and incubated at 30°C for 7 days, and stored at 4°C. The flask experiments were performed in 100 ml erlenmeyer flasks containing 20 ml of the sterilized media. Actively growing mycelia (1 piece, 5 mm X 5 mm) from a newly prepared slant culture (about 7 days incubation at 30°C) were inoculated into the flask. The pH was measured and adjusted to the desired value by addition of either 4 M HCl or 2.5 M NaOH. Incubation temperature were 20, 25, and 30°C. At the end of inoculation period (14 days) mycelium consisting of individual pellets was harvested and wash for the analysis. WSP content was analysed using phenol-sulfuric acid method. The optimal initial pH for metabolite production would depend on the culture medium. Generally, high values of pH, such as 9, negatively affect both cell growth and WSP production. The optimum temperature range for the high G. lucidum mycelium and WSP production were found to be 25 - 30 °C at pH values 5 - 7 in both of media.

  12. Modification of growth medium of mixed-culture species of microalgae isolated from southern java coastal region

    Directory of Open Access Journals (Sweden)

    Sudibyo Hanifrahmawan

    2018-01-01

    Full Text Available Globally, there is growing interest in microalgae as production organisms. Microalgae contain lipids (oil, proteins and carbohydrates (sugars, and, especially marine algae have been used as food and feed for centuries. Recently, production cost reduction related to the supply of growth nutrients is necessary to make it profitable. Therefore, utilization of molasses, a byproduct of sugar production, as the natural carbon, macronutrients, and micronutrients sources can be helpful. The analysis showed that the content of sucrose, glucose, fructose, potassium, zinc, and magnesium was 68.4% w/w, 18.5% w/w, and 13.1% w/w, 5.5% w/w, 3.91 ppm, and 1,370 ppm respectively. This work aimed to determine the effect of molasses addition to the physio-chemical properties of multi-culture species of microalgae isolated from southern Java coastal region in Indonesia grown under mixotrophic culture. The cultivation in this work used medium which was self-formulated by the authors consisting of NaNO3 (5 mL/L, H3BO3 (1 mL/L, EDTA (1 mL/L, N2H2PO4 (5 mL/L, FeSO4 (1 mL/L, MgSO4 (1 mL/L, NaCl (1 mL/L, micronutrients (1 mL/L, vitamin B1 (1 mL/L, and vitamin B12 (1 mL/L in 500 mL of water. The medium will be treated to have molasses concentration of 0.05% v/v, 0.15% v/v, 0.25% v/v, 0.35% v/v, and 0.45% v/v.

  13. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Medium optimization for protopectinase production by batch culture ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-11

    Nov 11, 2011 ... Optimization of medium compositions for protopectinase production by ... food industry, pharmacy and cosmetic manufacture due to ... energy intensive and industrial wastes (Iglesias and ... group of enzymes, which produce the enzymatic ... development time and overall costs (Pan et al., 2008; Ren.

  15. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    . Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells...... derived in one condition can be reprogrammed to another developmental state merely by adaptation to another culture condition....

  16. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    Science.gov (United States)

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  17. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, R.B. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Salles, L.P. [Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Silva, I. Oliveira e; Gulart, L.V.M. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Souza, D.K. [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Faculdade de Ceilândia, Universidade de Brasília, Ceilândia, DF (Brazil); Torres, F.A.G. [Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Bocca, A.L. [Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil); Silva, A.A.M. Rosa e [Laboratório de Biotecnologia da Reprodução, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF (Brazil)

    2013-08-16

    Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E{sub 2}) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P{sub 4}) and E{sub 2} concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P{sub 4} throughout the culture period; however, P{sub 4} concentration was significantly higher in NDM. In both media, E{sub 2} concentration was increased at 24 h, followed by a decrease at 48 h. The E{sub 2}:P{sub 4} ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E{sub 2}:P{sub 4} ratio in FWS cultures.

  18. Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kishino

    Full Text Available Recently, induced pluripotent stem cells (iPSCs were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

  19. Influence of Different Growth Conditions on the Kefir Grains Production, used in the Kefiran Synthesis

    Directory of Open Access Journals (Sweden)

    Carmen Rodica Pop

    2014-11-01

    Full Text Available The purpose of this study was to optimize the kefir grains biomass production, using milk as culture media. The kefir grains were cultured at different changed conditions (temperature, time, shaker rotating speed, culture media supplemented to evaluate their effects. Results showed that optimal culture conditions were using the organic skim milk, incubated at 25°C for 24 hours with a rotation rate of 125 rpm. According to results, the growth rate was 38.9 g/L for 24 h, at 25°C using the organic milk - OSM, 36.87 g/L during 24 hours, optimal time for propagation process gave 37.93 g/L kefir grains biomass when the effect of temperature level was tested. The homogenization of medium with shaker rotating induced a greater growth rate, it was obtained 38.9 g/L for 24 h, at 25°C using rotation rate at 125 rpm. The growing medium (conventional milk supplemented with different minerals and vitamins may lead to improve the growth conditions of kefir grains biomass. The optimization of the growth environment is very important for achieving the maximum production of kefir grains biomass, substrate necessary to obtain the polysaccharide kefiran

  20. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    International Nuclear Information System (INIS)

    Eberbeck, D; Zirpel, P; Trahms, L; Kettering, M; Hilger, I; Bergemann, C

    2010-01-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  1. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    Science.gov (United States)

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  2. Tissue culture of black pepper (piper nigrum l.) in Pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Naz, S.; Nazir, H.; Shinwari, Z.K.

    2011-01-01

    Black pepper (Piper nigrum L.) the 'King of Spices' is a universal table condiment. It is extensively used in Pakistani cuisines and herbal medicines and imported in bulk from neighboring countries. The black pepper vine is generally cultivated by seed because other vegetative propagation methods are slow and time consuming. Therefore the tissue culture technique is considered more efficient and reliable method for rapid and mass propagation of this economically important plant. The present study was initiated to develop protocol for micro-propagation of black pepper vine. The stem, leaf and shoot tip explants from mature vine were cultured on MS medium supplemented with different concentrations of plant growth regulators (2,4-D, BA, IBA). Best callus was produced on MS medium with 1.5 mg/l BA by shoot tip explant. Shoot regeneration was excellent on MS medium with 0.5 mg/l BA. The plantlets formed were rooted best on 1.5 mg/l IBA. The rooted plants were transplanted in soil medium and acclimatized in growth room. The plants raised were test planted under the local conditions of Hattar. (author)

  3. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  4. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  5. Effects of the pH/pCO2 control method in the growth medium of phytoplankton

    Science.gov (United States)

    Shi, D.; Xu, Y.; Morel, F. M. M.

    2009-02-01

    To study the effects of ocean acidification on the physiology of phytoplankton requires that the key chemical parameters of the growth medium, pCO2, pH and Ω (the saturation state of calcium carbonate) be carefully controlled. This is made difficult by the interdependence of these parameters. Moreover, in growing batch cultures of phytoplankton, the fixation of CO2, the uptake of nutrients and, for coccolithophores, the precipitation of calcite all change the inorganic carbon and acid-base chemistry of the medium. For example, absent pH-buffering or CO2 bubbling, a sizeable decrease in pCO2 occurs at a biomass concentration as low as 50 μM C in non-calcifying cultures. Even in cultures where pCO2 or pH is maintained constant, other chemical parameters change substantially at high cell densities. The quantification of these changes is facilitated by the use of buffer capacities. Experimentally we observe that all methods of adjustment of pCO2/pH can be used, the choice of one or the other depending on the specifics of the experiments. The mechanical effect of bubbling of cultures seems to induce more variable results than other methods of pCO2/pH control. While highly convenient, the addition of pH buffers to the medium induces changes in trace metal availability and cannot be used under trace metal-limiting conditions.

  6. Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium

    Energy Technology Data Exchange (ETDEWEB)

    Adham, N.Z. [National Research Centre, Cairo (Egypt). Products Dept.

    2002-08-01

    Natural oils with high unsaturated fatty acids content when added at concentrations of 2% and 4% (v/v) to beet molasses (BM) medium caused a considerable increase in citric acid yield from Aspergillus niger. The fermentation capacities were also examined for production of citric acid using BM-oil media under different fermentation conditions. Maximum citric acid yield was achieved in surface culture in the presence of 4% olive oil after 12 days incubation. (author)

  7. Effect of transplantation of olfactory ensheathing cell conditioned medium induced bone marrow stromal cells on rats with spinal cord injury

    Science.gov (United States)

    Feng, Linjie; Gan, Hongquan; Zhao, Wenguo; Liu, Yingjie

    2017-01-01

    Spinal cord injury is a serious threat to human health and various techniques have been deployed to ameliorate or cure its effects. Stem cells transplantation is one of the promising methods. The primary aim of the present study was to investigate the effect of the transplantation of olfactory ensheathing cell (OEC) conditioned medium-induced bone marrow stromal cells (BMSCs) on spinal cord injury. Rat spinal cord compression injury animal models were generated, and the rats divided into the following three groups: Group A, (control) Dulbecco's modified Eagle's medium-treated group; group B, normal BMSC-treated group; group C, OEC conditioned medium-induced BMSC-treated group. The animals were sacrificed at 2, 4 and 8 weeks following transplantation for hematoxylin and eosin staining, and fluorescence staining of neurofilament protein, growth associated protein-43 and neuron-specific nuclear protein. The cavity area of the spinal cord injury was significantly reduced at 2 and 4 weeks following transplantation in group C, and a significant difference between the Basso, Beattie and Bresnahan score in group C and groups A and B was observed. Regenerated nerve fibers were observed in groups B and C; however, a greater number of regenerated nerve fibers were observed in group C. BMSCs induced by OEC conditioned medium survived in vivo, significantly reduced the cavity area of spinal cord injury, promoted nerve fiber regeneration following spinal cord injury and facilitated recovery of motor function. The present study demonstrated a novel method to repair spinal cord injury by using induced BMSCs, with satisfactory results. PMID:28656221

  8. Effect of culture medium on polymer production and temperature on recovery of polymer produced from newly identified Rhyzopus oryzae ST29

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2008-04-01

    Full Text Available Thermotolerant fungal isolate ST29 was identified by observing on cell morphology and molecular technique based on internal transcribed spacer (ITS gene to be Rhizopus oryzae. Among four culture media tested, the strain exhibited the highest growth in yeast malt extract (YM medium (4.87 g/l, followed by Sabouraud dextrose broth (SDB (4.25 g/l, potato dextrose broth (PDB (4.10 g/l and palm oil mill effluent (POME (3.29 g/l, respectively, after 4 days cultivation at 45oC. However, the strain was found to produce polymer only in POME medium at 45oC, but not in the three synthetic media tested. Effect of temperature on separation of the biopolymer produced by this fungal strain was studied by incubating the culture broth in water bath with temperatures in the range of room temperature to 70oC. The biopolymer was recovered by filtration, centrifugation, and precipitation by adding 4 volumes of 95% ethanol, then freeze-drying. These temperatures therefore had no influence on the biopolymer yields (5.58-5.78 g/l or on biomass yields (2.90-3.29 g/l.

  9. Synergism of diabetic and inflammatory culture conditions on reactivity of isolated small arteries

    DEFF Research Database (Denmark)

    Blædel, Martin Mads; Boonen, Harrie C.M.; Sams Nielsen, Anette

    Background: Cardiovascular disease (CVD) is the manifestation of atherosclerosis, which has been linked to obesity, the metabolic syndrome (MS) and overt type 2 diabetes (T2DM). Vascular dysfunction has been proposed to precede atherosclerosis, and in addition, a correlation between vascular...... isolated from 8 week old male SD rats were cultured for 21 hours in Endothelial Basal Medium (EBM-2) in petri dishes and in the absence or presence of either 30 mM D-glucose, 100 nM insulin, 100 ng/mL TNFa or any combination of these. Contractile reactivity of normalised arteries was then determined...... by wire myography as a response to cumulatively increasing concentrations of noradrenaline (NA). Results: 21 hour culture of isolated mesenteric arteries significantly reduced the arteries maximal high potassium-induced contractile reactivity and increased the contractility to noradrenaline slightly...

  10. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  11. Simple method for culture of peripheral blood lymphocytes of Testudinidae.

    Science.gov (United States)

    Silva, T L; Silva, M I A; Venancio, L P R; Zago, C E S; Moscheta, V A G; Lima, A V B; Vizotto, L D; Santos, J R; Bonini-Domingos, C R; Azeredo-Oliveira, M T V

    2011-12-06

    We developed and optimized a simple, efficient and inexpensive method for in vitro culture of peripheral blood lymphocytes from the Brazilian tortoise Chelonoidis carbonaria (Testudinidae), testing various parameters, including culture medium, mitogen concentration, mitotic index, culture volume, incubation time, and mitotic arrest. Peripheral blood samples were obtained from the costal vein of four couples. The conditions that gave a good mitotic index were lymphocytes cultured at 37°C in minimum essential medium (7.5 mL), with phytohemagglutinin as a mitogen (0.375 mL), plus streptomycin/penicillin (0.1 mL), and an incubation period of 72 h. Mitotic arrest was induced by 2-h exposure to colchicine (0.1 mL), 70 h after establishing the culture. After mitotic arrest, the cells were hypotonized with 0.075 M KCl for 2 h and fixed with methanol/acetic acid (3:1). The non-banded mitotic chromosomes were visualized by Giemsa staining. The diploid chromosome number of C. carbonaria was found to be 52 in females and males, and sex chromosomes were not observed. We were able to culture peripheral blood lymphocytes of a Brazilian tortoise in vitro, for the preparation of mitotic chromosomes.

  12. Language Personality in the Conditions of Cross-Cultural Communication: Case-Study Experience

    Science.gov (United States)

    Davidovitch, Nitza; Khyhniak, Kateryna

    2018-01-01

    The article is devoted to the problem of identification of a language personality's traits under conditions of cross-cultural communication. It is shown that effective cross-cultural communication is revised under globalization and increasingly intensive social interactions. The results of the authors' research prove that it is possible to develop…

  13. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    Directory of Open Access Journals (Sweden)

    D. A. Castilla Casadiego

    2016-01-01

    Full Text Available The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3 and 4,7,10-hexadecatrienoic acid (omega-6 from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6 and cis-11-eicosenoic acid (omega-9 were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  14. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis

    Science.gov (United States)

    T. W. Jeffries

    1981-01-01

    Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.

  15. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.

    Science.gov (United States)

    Nikodinovic, Jasmina; Kenny, Shane T; Babu, Ramesh P; Woods, Trevor; Blau, Werner J; O'Connor, Kevin E

    2008-09-01

    Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.

  16. Spinal cord neuronotrophic factors (SCNTFs): I. Bioassay of schwannoma and other conditioned media.

    Science.gov (United States)

    Longo, F M; Manthorpe, M; Varon, S

    1982-02-01

    We present a procedure for the dissociation and growth in serum-free defined culture medium of 4-day chick embryo lumbar spinal cord (LC4) neurons. LC4 neurons will not survive for even 24 h without the addition of trophic supplements (putative spinal cord neuronotrophic factors, SCNTFs). Serum-free medium conditioned over chick embryo heart and skeletal muscle, mouse Schwann and rat RN22 Schwannoma cell cultures were found to contain SCNTF activity which could be quantitated using a convenient neuronal survival bioassay. RN22 conditioned medium also contains polyornithine-binding neurite promoting factors (PNPFs) which can be physically separated from SCNTF. When SCNTF and PNPF were presented to LC4 neurons individually or in combination (i) SCNTF, but not PNPF, supported neuronal survival whereas (ii) PNPF, but not SCNTF, induced neurite production. When LC4 neurons were grown in SCNTF alone, nearly all of them exhibited a flattened, circular, 'fried-egg' morphology. The subsequent addition of PNPF caused these cells to extend long neurites with characteristic terminal growth-cone-like structures.

  17. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    Science.gov (United States)

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons

  18. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART.

    Science.gov (United States)

    Tevkin, S; Lokshin, V; Shishimorova, M; Polumiskov, V

    2014-10-01

    The application in IVF practice of modern techniques can improve positive outcome of each cycle in the assisted reproductive technology (ART) programs and the effectiveness of treatment as a whole. There are embryos in the female reproductive tract in physiological medium which contain various cytokines and growth factors. It plays an important role in the regulation of normal embryonic development, improve implantation and subsequently optimizing the development of the fetus and the placenta. Granulocyte macrophage colony-stimulating factor (GM-CSF is one of the cytokines playing an important role in reproductive function. Addition of recombinant GM-CSF to the culture medium can makes closer human embryos culture to in vivo conditions and improve the efficacy ART cycles. The analysis of culture embryos in EmbryoGen medium has shown that fertilization rate embryo culture and transfer to patients with previous unsuccessful attempts increases clinical pregnancy rate compared to the control group 39.1 versus 27.8%, respectively. It is noted that the implantation rate (on 7 weeks' gestation) and progressive clinical pregnancy rate (on 12 weeks' gestation) were significantly higher in group embryos culture in EmbryoGen medium compared to standard combination of medium (ISM1+VA), and were 20.4 and 17.4% versus 11.6 and 9.1%, respectively.

  19. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    Science.gov (United States)

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.

  20. Methodology for monitoring gold nanoparticles and dissolved gold species in culture medium and cells used for nanotoxicity tests by liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    López-Sanz, Sara; Fariñas, Nuria Rodríguez; Vargas, Rosario Serrano; Martín-Doimeadios, Rosa Del Carmen Rodríguez; Ríos, Ángel

    2017-03-01

    An analytical methodology based on coupling reversed-phase liquid chromatography (HPLC) to an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the characterization and identification of gold nanoparticles (AuNPs) and gold dissolved species (Au 3+ ) in culture medium (Dulbecco's Modified Eagle Medium, DMEM) and HeLa cells (a human cervical adenocarcinoma cell line) used in nanotoxicity tests. The influence of the culture medium was also studied and the method applied for nanotoxicity tests. It was also observed that AuNPs can undergo an oxidation process in the supernatants and only a small amount of AuNPs and dissolved Au 3+ was associated with cells. To evaluate the biological impact of AuNPs, a classical viability assay onto HeLa cells was performed using cellular media DMEM in the presence of increasing dosage of 10nm AuNPs. The results showed that 10nm AuNPs exhibit a slight toxic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Culture of Desmodesmus communis (E.Hegewald E.Hegewald and Its Determination of the Biochemical Properties

    Directory of Open Access Journals (Sweden)

    Rıza Akgül

    2017-04-01

    Full Text Available In this study, culture medium and growth conditions were detected for Desmodesmus communis (E. Hegewald E. Hegewald (Sphaeropleales with KF470792 Accession Number that isolated from Thrace inland water (Bahçedere Stream, Tekirdağ, Turkey and determined by molecular taxonomy techniques. The microalgae was cultured under detected conditions (nutrients, pH, temperature, light density and aeration and when the culture was reached to stationary phase microalgae biomass was harvested for biochemical analysis. Total protein, total lipid, fatty acid and amino acid compositions, vitamin E amounts and variety were detected. Cell density was 9.76x105 colony/ml; dry biomass was 0.762 g/l; chlorophyll-a was 13.3 mg/l in BG11 culture medium (7.5 pH, 24±2ºC, 500 ml/min. aeration. According to biochemical analysis; total protein amount was 42.59% (dw/w; total lipid amount was 5.23% (dw/w and vitamin E amount was 3694.24 µg/glipid. The most abundant fatty acid was linolenic acid (35.18%; amino acid was glutamic acid (46.9 mg/g.

  2. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Mee-Hae Kim

    2017-10-01

    Full Text Available In cell manufacturing, the establishment of a fully automated, microfluidic, cell culture system that can be used for long-term cell cultures, as well as for process optimization is highly desirable. This study reports the development of a novel chip bioreactor system that can be used for automated long-term maturation cultures of retinal pigment epithelial (RPE cells. The system consists of an incubation unit, a medium supply unit, a culture observation unit, and a control unit. In the incubation unit, the chip contains a closed culture vessel (2.5 mm diameter, working volume 9.1 μL, which can be set to 37 °C and 5% CO2, and uses a gas-permeable resin (poly- dimethylsiloxane as the vessel wall. RPE cells were seeded at 5.0 × 104 cells/cm2 and the medium was changed every day by introducing fresh medium using the medium supply unit. Culture solutions were stored either in the refrigerator or the freezer, and fresh medium was prepared before any medium change by warming to 37 °C and mixing. Automated culture was allowed to continue for 30 days to allow maturation of the RPE cells. This chip culture system allows for the long-term, bubble-free, culture of RPE cells, while also being able to observe cells in order to elucidate their cell morphology or show the presence of tight junctions. This culture system, along with an integrated on-line monitoring system, can therefore be applied to long-term cultures of RPE cells, and should contribute to process control in RPE cell manufacturing.

  3. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    Directory of Open Access Journals (Sweden)

    A. Bakrudeen Ali Ahmed

    2012-01-01

    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  4. Growth and accumulation of flavan-3-ol in Camellia sinensis through callus culture and suspension culture method

    Directory of Open Access Journals (Sweden)

    Sutini Sutini

    2017-02-01

    Full Text Available This study was aimed to assess flavan-3-ol biomass in C. sinensis through callus cultures and suspension cultures derived from leaf explants. Callus initiation of both cultures were using Murashige and Skoog medium were enriched with plant growth regulators Naphtha-lene Acetic Acid 3.0 mg/L and kinetin 2.0 mg/L. The procedures in this study were: (1 callus initiation by cutting the leaves of C. sinen-sis shoots then planted on Murashige and Skoog medium that were enriched with plant growth regulators, (2 sub callus culture on fresh medium that enriched with the same growth regulators, (3 suspension culture initiation of liquid callus, (4 growth examination of callus and suspension cultures in week 12, (5 examination of qualitative-quantitative content of flavan-3-olin suspension cultures at week 4. The results show that suspension cultures contain biomass flavan-3-ol that increase in the same manner of the increase of callus age and weight

  5. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung.

    Science.gov (United States)

    Kirchner, Sebastian; Fothergill, Joanne L; Wright, Elli A; James, Chloe E; Mowat, Eilidh; Winstanley, Craig

    2012-06-05

    There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much

  6. Aminopeptidases in Mycelium and Growth Medium of Streptomyces rimosus Strains

    Directory of Open Access Journals (Sweden)

    Jasminka Špoljarić

    2009-01-01

    Full Text Available Aminopeptidases (APs of the same substrate specificities have been detected in the mycelia and culture filtrate of Streptomyces rimosus. To compare extracellular and intracellular prolyl, leucyl and arginyl AP, dynamics of their biosynthesis, excretion and localization were analyzed during submerged cultivation of two S. rimosus strains, T55 and ZGL3, in several media. AP activity in mycelia reached maximum in the stationary phase, and decreased to different extent at a later stage. The accumulation of APs, except prolyl aminopeptidase (ProAP, in the culture filtrate followed the growth of bacteria and decreased later on, when peptide-richer medium was used. When S. rimosus was grown in glucose-richer medium, the accumulation of APs in the medium started at the late log phase and continued to the end of cultivation, due to cell lysis. The combined addition of calcium and ammonium salts to tryptone soy broth increased the AP activity in S. rimosus ZGL3 culture filtrates up to two times. The AP intracellular activity was significantly higher compared to its intercellular activity (2 to 24 times. Mycelium/medium AP activity ratio decreased with the age of the culture, its change being dependent on the S. rimosus strain, growth medium composition and AP specificity. Leucyl AP (LeuAP was the most prone to be released from the mycelium, suggesting that part of the enzyme could be excreted by active transport. Determination of AP distribution within cell compartments has confirmed that the three APs are intracellular enzymes residing in cytosol, but also suggested their partial association with cytoplasmic membrane.

  7. Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture.

    Science.gov (United States)

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2017-08-07

    The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase ( p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.

  8. Suppression of multiple bioactivities of interleukin-1 and interleukin-2 production by U937 conditioned medium

    International Nuclear Information System (INIS)

    Wiblin, R.T.; Edmonds, K.; Ellner, J.J.

    1986-01-01

    The human macrophage-like cell line U937 spontaneously produces a factor which blocks interleukin-1 (IL-1) activity for mouse thymocytes but not mitosis of T-lymphoblastoid cells. The authors examined the effects of U937 conditioned medium (CM) on other IL-1 activities and on interleukin-2 (IL-2) production. U937 was cultured at 5 x 10 6 /ml in RPMI-1640 at 37 0 C for 5 days. The resulting CM inhibited the mitogenic response of C3H/HeJ mouse thymocytes to an IL-1 standard, with an inhibitory of activity of 6.64 U/ml (1 U = reciprocal dilution producing 50% inhibition of maximal response). Similarly, CM inhibited (10.12 U/ml) the fibroblast stimulation promoter activity of IL-1. The effect of CM on IL-2 production was assessed in a direct assay in which IL-2 production by γ-irradiated (12,000 rads) MLA-144 lymphosarcoma cells was assayed as 3 H-thymidine incorporation in CTLL-20 cells. The suppressive activity of CM was 4.95 U/ml; CM did not interfere with the response of CTLL-20 to IL-2. These studies establish that U937 produces factors with multiple, related biological activities; U937 CM blocks IL-2 dependent (thymocyte mitogenesis) and IL-2 independent (fibroblast proliferation) IL-1 activities and interferes with production of, but not response to, IL-2. U937 is an excellent model to study growth inhibitory properties of mononuclear phagocytes

  9. [Comparison of two types of cell cultures for preparation of sTNFRII-gAD fusion protein].

    Science.gov (United States)

    Huang, Shigao; Yin, Yuting; Xiong, Chunhui; Wang, Caihong; Lü, Jianxin; Gao, Jimin

    2013-01-01

    In this study we used two types of cell cultures, i.e., anchorage-dependent basket and full suspension batch cultures of sTNFRII-gAD-expressing CHO cells in the CelliGen 310 bioreactor (7.5 L) to compare their yields in order to optimize the culturing conditions for efficient expression of sTNFRII-gAD fusion protein consisting of soluble tumor necrosis factor receptor II and globular domain of adiponectin. The anchorage-dependent basket culture was performed in 4L 10% serum-containing medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 3 days, and then switched to 4 L serum-free LK021 medium to continue the culture for 4 days. The full suspension batch culture was carried out in the 4 L serum-free LK021 medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 7 days. The culturing conditions were monitored in real-time to maintain pH and dissolved oxygen stability through the whole process. The supernatants were collected by centrifuge, and the protein was concentrated through Pellicon flow ultrafiltration system and then purified by DEAE anion exchange. The results showed that the yields of sTNFRII-gAD fusion protein were 8.0 mg/L with 95% purity and 7.5 mg/L with 98% purity in the anchorage-dependent basket and the full suspension batch cultures, respectively. The study provided the framework for the pilot production of sTNFRII-gAD fusion protein.

  10. 21 CFR 866.2330 - Enriched culture medium.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture... solid biological materials intended for medical purposes to cultivate and identify fastidious...

  11. Evaluation of the technical condition of medium-sized boilers

    Directory of Open Access Journals (Sweden)

    Lošák Pavel

    2018-01-01

    Full Text Available The recent trend in the steam and electricity production has been both to increase the efficiency of the facility and to keep tightening legislation concerning emission limits. The lifetime of energy equipment is greatly influenced by the operating temperature, pressure and operating characteristics. The new conditions lead the operator to more often changes of these parameters, which has negative influence to the facility in terms of service life. Precise knowledge of the facility being operated and the ability to predict the residual life of its key parts in time is therefore necessary. A new methodology for determining the residual life and evaluating problematic situations of medium size boilers was developed at Brno University of Technology. Its approaches and advantages will be presented in this paper. The methodology provides the user with approaches for the lifetime evaluation of an equipment as a whole, based on detailed knowledge of the equipment being investigated and the ongoing damage. Additionally, if the equipment is continuously evaluated, it is possible to extend the inspection interval or to achieve a significantly higher lifetime of the entire equipment, thereby reducing the economic cost. If defined criteria are met, the methodology also allows inclusion of FEM and CFD simulations for achieving higher relevance of the results.

  12. Optimization of induction, subculture conditions, and growth kinetics of Angelica sinensis (Oliv.) Diels callus.

    Science.gov (United States)

    Huang, Bing; Han, Lijuan; Li, Shaomei; Yan, Chunyan

    2015-01-01

    Angelica sinensis (Oliv.) Diels is an important traditional Chinese medicine, and the medicinal position is its root. This perennial herb grows vigorously only in specific areas and the environment. Tissue culture induction of callus and plant regeneration is an important and effective way to obtain large scale cultures of A. sinensis. The objective was to optimize the inductive, subculture conditions, and growth kinetics of A. sinensis. Tissue culture conditions for A. sinensis were optimized using leaves and petioles (types I and II) as explants source. Murashige and Skoog (MS) and H media supplemented with 30 g/L sucrose, 7.5 g/L agar, and varying concentrations of plant growth regulators were used for callus induction. In addition, four different basal media supplemented with 1.0 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D), 0.2 mg/L 6-benzyladenine (BA) and 30 g/L sucrose were optimized for callus subculture. Finally, growth kinetics of A. sinensis cultured on different subculture media was investigated based on callus properties, including fresh weight, dry weight, medium pH, callus relative fresh weight growth, callus relative growth rate (CRGR), and sucrose content. MS medium supplemented with 5 mg/L α-naphthaleneacetic acid, 0.5 mg/L BA, 0.7 mg/L 2,4-D, 30 g/L sucrose and 7.5 g/L agar resulted in optimal callus induction in A. sinensis while petiole I was found as the best plant organ for callus induction. The B5 medium supplemented with 1.0 mg/L 2,4-D, 0.2 mg/L BA and 30 g/L sucrose displayed the best results in A. sinensis callus subculture assays. The optimized conditions could be one of the most potent methods for large-scale tissue culture of A. sinensis.

  13. 21 CFR 866.2360 - Selective culture medium.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture... solid biological materials intended for medical purposes to cultivate and identify certain pathogenic...

  14. 21 CFR 866.2300 - Multipurpose culture medium.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2300 Multipurpose culture... several types of pathogenic microorganisms without the need of additional nutritional supplements. Test...

  15. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy.

    Science.gov (United States)

    Nelissen, Ewka C M; Van Montfoort, Aafke P A; Smits, Luc J M; Menheere, Paul P C A; Evers, Johannes L H; Coonen, Edith; Derhaag, Josien G; Peeters, Louis L; Coumans, Audrey B; Dumoulin, John C M

    2013-08-01

    When does a difference in human intrauterine growth of singletons conceived after IVF and embryo culture in two different culture media appear? Differences in fetal development after culture of embryos in one of two IVF media were apparent as early as the second trimester of pregnancy. Abnormal fetal growth patterns are a major risk factor for the development of chronic diseases in adult life. Previously, we have shown that the medium used for culturing embryos during the first few days after fertilization significantly affects the birthweight of the resulting human singletons. The exact onset of this growth difference was unknown. In this retrospective cohort study, all 294 singleton live births after fresh embryo transfer in the period July 2003 to December 2006 were included. These embryos originated from IVF treatments that were part of a previously described clinical trial. Embryos were allocated to culture in either Vitrolife or Cook commercially available sequential culture media. We analysed ultrasound examinations at 8 (n = 290), 12 (n = 83) and 20 weeks' (n = 206) gestation and used first-trimester serum markers [pregnancy-associated plasma protein-A (PAPP-A) and free β-hCG]. Differences between study groups were tested by the Student's t-test, χ(2) test or Fisher's exact test, and linear multivariable regression analysis to adjust for possible confounders (for example, parity, gestational age at the time of ultrasound and fetal gender). A total of 294 singleton pregnancies (Vitrolife group nVL = 168, Cook group: nC = 126) from 294 couples were included. At 8 weeks' gestation, there was no difference between crown-rump length-based and ovum retrieval-based gestational age (ΔGA) (nVL = 163, nC = 122, adjusted mean difference, -0.04 days, P = 0.84). A total of 83 women underwent first-trimester screening at 12 weeks' gestation (nVL = 45, nC = 38). ΔGA, nuchal translucency (multiples of median, MoM) and PAPP-A (MoM) did not differ between the study

  16. PENGARUH PEMBERIAN MIKROBA EFEKTIF PRODUKTIF PLUS (MEP+ PADA MEDIUM BUDIDAYA IKAN NILA YANG DIBERI PAKAN FERMENTATIF TERHADAP KEPADATAN BAKTERI ASAM LAKTAT

    Directory of Open Access Journals (Sweden)

    Nita Wulandari

    2014-03-01

    Full Text Available Microbes Effective Productive Plus (MEP+ in fish culture has role as probiotics and decomposer. Application of MEP+ is done by adding MEP+ on culture medium of Tilapia and fish feed. Fish feed is fermentative feed with addition of different concentration of cassava peel flour. The aim of this research were to find out the influence of MEP+ administration in culture medium and in fermentative feed with addition cassava peel flour on the increasing density of lactic acid bacteria in culture medium and find out the highest density of lactic acid bacteria. The research was done experimentally, used Complete Randomized Design with treatment of MEP+ administration in culture medium with fermentative feed cassava peel flour addition of 25%, 50%, 75% and without MEP+ administration on culture medium with fermentative feed cassava peel flour addition of 25%. The data obtained were analyzed using a variety analysis. The result showed that MEP+ administration on culture medium and in fermentative feed cassava peel flour addition did not influence the increasing density of lactic acid bacteria and total density of lactic acid bacteria in culture medium was not different inter treatment.

  17. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  18. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    Science.gov (United States)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  19. Selection of optimum conditions of medium acidity and aeration for submerget cultivation of Bacillus thuringiensis and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    O. A. Dregval

    2010-06-01

    Full Text Available The paper deals with the influence of medium pH and aeration rate on growth and sporulation of Bacillus thuringiensis and Вeauveria bassiana, which are main constituents of the complex microbial insecticide. It was established optimal medium pH for B. thuringiensis – 6.0 and for В. bassiana – 6.0–7.0. The maximum productivity of the studied microorganisms was observed in the same range of aeration – 7– 14 mmol O2/l/h. The selected conditions of cultivation are necessary for the production of complex biological insecticide based on the association of B. thuringiensis and B. bassiana.

  20. 21 CFR 866.2320 - Differential culture medium.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2320 Differential culture... occurred. Test results aid in the diagnosis of disease and also provide epidemiological information on...