WorldWideScience

Sample records for cultivated soybean glycine

  1. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  2. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  3. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  4. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  5. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  6. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  7. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  8. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress.

    Science.gov (United States)

    Zhu, Dan; Bai, Xi; Luo, Xiao; Chen, Qin; Cai, Hua; Ji, Wei; Zhu, Yanming

    2013-02-01

    Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.

  9. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  10. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  11. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  12. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  13. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  14. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  15. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  16. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  17. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  18. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  19. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  20. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  1. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  2. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  3. Replenishment of Cultivated Soybean Varietes Market (Glycine hispida Maxim, Moench..

    Directory of Open Access Journals (Sweden)

    О. І. Безручко

    2009-12-01

    Full Text Available There provided ways of using valuable protein crop, soybean, as well as its production worldwide growth rates during recent years, possibility and necessity of attaching to the crop a strategic importance in our State and the tasks and outlooks of soybeanrecourses generation. A complete description of new soybean varieties listed in the Register of Varieties Suitable for Dissemination in Ukraine has also been provided.

  4. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    Science.gov (United States)

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  5. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  6. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc. for Use in Ecological Risk Assessment of Insect Protected Soybean.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Goto

    Full Text Available Insect-protected soybean (Glycine max (L. Merr. was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc. is required as one aspect of the environmental risk assessment (ERA in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2% caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100% was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible.

  7. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker.

    NARCIS (Netherlands)

    Smaling, E.M.A.; Roscoe, R.; Lesschen, J.P.; Bouwman, A.F.; Comunello, E.

    2008-01-01

    Soybean (Glycine max) is a booming crop in Brazil. In 2004, the export value was equivalent to 10 billion US $, covering over 10% of total Brazilian exports. Three-quarters of total production leaves the country, mainly to China and the European Union (EU). Soybean cultivation in Brazil is expected

  8. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  9. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation

    Directory of Open Access Journals (Sweden)

    Heck Júlio X.

    2002-01-01

    Full Text Available In Brazil, a large amount of a fibrous residue is generated as result of soybean (Glycine max protein production. This material, which is rich in hemicellulose and cellulose, can be used in solid state cultivations for the production of valuable metabolites and enzymes. In this work, we studied the bioconversion of this residue by bacteria strains isolated from water and soil collected in the Amazon region. Five strains among 87 isolated bacteria selected for their ability to produce either celullases or xylanases were cultivated on the aforementioned residue. From strain BL62, identified as Bacillus subtilis, it was obtained a preparation showing the highest specific cellulase activity, 1.08 UI/mg protein within 24 hours of growth. Concerning xylanase, the isolate BL53, also identified as Bacillus subtilis, showed the highest specific activity for this enzyme, 5.19 UI/mg protein within 72 hours of cultivation. It has also been observed the production of proteases that were associated with the loss of cellulase and xylanase activities. These results indicated that the selected microorganisms, and the cultivation process, have great biotechnological potential.

  10. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  11. Interference of Selected Palmer Amaranth (Amaranthus palmeri Biotypes in Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Palmer amaranth (Amaranthus palmeri S. Wats. has become difficult to control in row crops due to selection for biotypes that are no longer controlled by acetolactate synthase inhibiting herbicides and/or glyphosate. Early season interference in soybean [Glycine max (L. Merr.] for 40 days after emergence by three glyphosate-resistant (GR and three glyphosate-susceptible (GS Palmer amaranth biotypes from Georgia and North Carolina was compared in the greenhouse. A field experiment over 2 years compared season-long interference of these biotypes in soybean. The six Palmer amaranth biotypes reduced soybean height similarly in the greenhouse but did not affect soybean height in the field. Reduction in soybean fresh weight and dry weight in the greenhouse; and soybean yield in the field varied by Palmer amaranth biotypes. Soybean yield was reduced 21% by Palmer amaranth at the established field density of 0.37 plant m−2. When Palmer amaranth biotypes were grouped by response to glyphosate, the GS group reduced fresh weight, dry weight, and yield of soybean more than the GR group. The results indicate a possible small competitive disadvantage associated with glyphosate resistance, but observed differences among biotypes might also be associated with characteristics within and among biotypes other than glyphosate resistance.

  12. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements

    NARCIS (Netherlands)

    Loureiro, M.D.; Kaschuk, G.; Alberton, O.; Hungria, M.

    2007-01-01

    In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of

  13. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  14. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  15. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  16. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Science.gov (United States)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  18. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  19. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  20. Characteristics of soybean sprout locally cultivated in the Jeonju region, used for Bibimbap and Kongnamul-gukbap

    Directory of Open Access Journals (Sweden)

    Young-Eun Lee

    2015-06-01

    Conclusion: Soybean sprouts cultivated using Chinese soybeans in Jeonju were better in the overall acceptability than those grown in other regions because the Jeonju product contained two to three times less amino acids, such as leucine, tyrosine, and phenylalanine, than the other regional products, which tasted bitter. The cultivating water may affect the free amino-acid content of soybean sprouts and their taste.

  1. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  2. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  3. Biodegradation of glyphosate in rhizospheric soil cultivated with Glycine max, Canavalia ensiformis e Stizolobium aterrimum Biodegradação de glyphosate em solo rizosférico de Glycine max, Canavalia ensiformis e Stizolobium aterrimum

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2009-01-01

    Full Text Available Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR, Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC, metabolic quotient (qCO2, and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.Avaliou-se neste trabalho a degradação de glyphosate em solo rizosférico proveniente do cultivo de Glycine max (soja var. BRS245-RR, Canavalia ensiformis e Stizolobium aterrimum. Para isso, após o cultivo, em vasos, das citadas espécies por 60 dias, coletaram-se amostras de solo, as quais foram acondicionadas em frascos e tratadas com 14C-glyphosate. Após 32 dias de incubação, foram determinados a taxa de desprendimento total de C-CO2, a biomassa microbiana (MBC, o quociente metabólico (qCO2 e a porcentagem de degradação do glyphosate radiomarcado liberado na forma de 14C-CO2. Verificou-se a maior massa de microrganismos associados à rizosfera em amostras de solo proveniente de vasos cultivados com a

  4. Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja Roots by RNA-seq

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2016-12-01

    Full Text Available Soil alkalinity is a major abiotic constraint to crop productivity and quality. Wild soybean (Glycine soja is considered to be more stress-tolerant than cultivated soybean (G. max, and has considerable genetic variation for increasing alkalinity tolerance of soybean. In this study, we analyzed the transcriptome profile in the roots of an alkalinity tolerant wild soybean variety N24852 at 12 and 24 h after 90 mM NaHCO3 stress by RNA-sequencing. Compared with the controls, a total of 449 differentially expressed genes (DEGs were identified, including 95 and 140 up-regulated genes, and 108 and 135 down-regulated genes at 12 and 24 h after NaHCO3 treatment, respectively. Quantitative RT-PCR analysis of 14 DEGs showed a high consistency with their expression profiles by RNA-sequencing. Gene Ontology (GO terms related to transcription factors and transporters were significantly enriched in the up-regulated genes at 12 and 24 h after NaHCO3 stress, respectively. Nuclear Factor Y subunit A (NF-YA transcription factors were enriched at 12 h after NaHCO3 stress, and high percentages of basic helix-loop-helix (bHLH, ethylene-responsive factor (ERF, Trihelix and zinc finger (C2H2, C3H transcription factors were found at both 12 and 24 h after NaHCO3 stress. Genes related to ion transporters such as ABC transporter, aluminum activated malate transporter (ALMT, glutamate receptor (GLR, nitrate transporter (NRT / proton dependent oligopeptide (POT family, and S-type anion channel (SLAH were enriched in up-regulated DEGs at 24 h after NaHCO3 treatment, implying their roles in maintaining ion homeostasis in soybean roots under alkalinity. KEGG pathway enrichment analysis showed phenylpropanoid biosynthesis and phenylalanine metabolism pathways might participate in soybean response to alkalinity. This study provides a foundation to further investigate the functions of NaHCO3 stress-responsive genes and the molecular basis of soybean tolerance to alkalinity.

  5. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  6. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  7. Characterization of type and genetic diversity among soybean cyst nematode differentiators

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2012-04-01

    Full Text Available The development of soybean cyst nematode, Heterodera glycines Ichinohe, resistant genotypes with high yields has been one of the objectives of soybean (Glycine max (L. Merrill breeding programs. The objective of this study was to characterize the pathotype of soybean cyst nematodes and analyze the genetic diversity of ten differentiator lines ('Lee 74', Peking, Pickett, PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, PI 548316 and 'Hartwig'. Inoculum was obtained from plants cultivated in field soil in Viçosa, state of Minas Gerais, Brazil. Thirty-four days after inoculating each plant with 4,000 eggs, the number of females, female index, total number of eggs, number of eggs per female, reproduction factor, plant height, number of nodes, fresh and dry matter weights were assessed. The differential lines were first grouped with Scott-Knott test. Subsequently, the genetic diversity was evaluated using dendrograms, graphic analysis and the Tocher grouping method. The inoculum of H. glycines obtained from NBSGBP-UFV was characterized as HG Type 0. The differentiating lines were divergent, and PI 89772, PI 437654, 'Hartwig' and 'Peking' had the greatest potential for use in breeding programs.

  8. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  9. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  10. Adaptability and stability of soybean genotypes in off-season cultivation.

    Science.gov (United States)

    Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T

    2015-08-14

    The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.

  11. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Vauclare, Pierre; Bligny, Richard; Gout, Elisabeth; Widmer, Francois

    2013-01-01

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13 C- and 31 P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  13. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    Science.gov (United States)

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  14. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  15. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana and soybean (glycine max

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Chaparro Acuña

    2012-03-01

    Full Text Available Physicochemical characteristics and functional properties of vitabosa flour (Mucuna deeringiana and soybean flour (Glycine max were determined. Oil absorption capacity was higher in vitabosa. Water absorption capacity was higher in soy and it was affected by the change in the ionic strength of the medium. Emulsifying Activity (EA decreased with increasing concentration of flour, while Emulsifying Stability (ES showed an increased. EA and ES of flours have more ionic strength in the range between 0.0 and 0.4 M, but it is reduced afterwards with the higher concentration of NaCl. Foaming stability varied with the concentration of flour solution reaching maximum values of 39 and 33% for vitabosa and soybean, respectively at 10% flour concentration.Vitabosa had the best foaming capacity (56% to 0.6 M compared with soybeans (47% to 0.4 M. Maximum capacity of gelation was observed in vitabosa at 10% flour concentration. Increases in ionic strength of the flour solution, at low salt concentrations (<0.4 M, improved the gelation of flours.

  16. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  17. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  18. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  19. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  20. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  1. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  2. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  3. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  4. Utilization of nitrogen by soybean (Glycine max) influenced by the addition of sugar cane bagasse

    International Nuclear Information System (INIS)

    Bonetti, R.; Saito, S.M.T.

    1982-01-01

    N 2 -fixation in soybean and soil-N and 15 N-urea utilization where studied in a glasshouse. Doses of fertilizer were 0, 40 and 80 kgN/ha added either to cultivated - or virgin soil, where sugar cane bagasse was also added (20 ton/ha). Non-nodulating soybean was used as a control to determine the absorption of the three N-sources: soil, fertilizer and N 2 -fixation. The N-immobilization effect caused by bagasse addition was observed even after a pre-incubation period of 40 days, being greater in the cultivated than in the soil without organic matter. Accumulations of N, P and S where also smaller in these plants. Additions of N were not sufficient to equal the values observed in soils without organic matter. Addition of 40 kgN/ha showed a sinergistic and positive effect on treatments that had N-immobilization, reinforcing the idea that starter doses of N are necessary for maximization of nodulation and N 2 -fixation in soybean, in soils with low N. N 2 -fixation contributed with mean values of 54% and 84% N, respectively, in the aerial part and pools in non-treated soil. When bagasse was added, the percentages of N 2 -fixed increased, however in smaller amounts, showing a necessity of different sources of N to increase the total N in plant. The greatest N 2 -fixation (48,6 kgN/ha) was found in the cultivated soil, where only bagasse had been added. (M.A.) [pt

  5. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    Science.gov (United States)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  6. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  7. Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L. and Millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Goudarz Ahmadvand

    2016-03-01

    Full Text Available Intercropping is considered for increasing and stability of yield in per unit. In order to study the effects of soybean (Glycine max L. and millet (Panicum miliaceum L. replacement intercropping on agronomic traits, diversity of weeds and soil biological activity, an experiment was conducted at the Research Station of Agricultural Faculty, of Bu-Ali Sina University, in 2014. The experiment was carried out as a randomized complete block design with three replications. The replacement intercropping series consisted of monoculture of soybean, monoculture of millet, 75% soybean+ 25% millet, 50% soybean+ 50% millet and 25% soybean+ 75% millet. The results showed that the highest seed yield of 219.8 and 171.9 gm-2 belonged to monoculture of soybean and monoculture of millet, respectively. Intercropping reduced maximum leaf area index of soybean and millet but leaf chlorophyll content of soybean and millet were increased. The highest number of pods per plant, number of seeds per plant in soybean and panicle number per plant in millet were obtained in 50S:50M ratio. Mean soil respiration rate in intercropping treatments was 4 and 8 % higher than the monoculture of soybean and millet, respectively. Intercropping patterns of 50S:50M and 25S:75M were successful in reducing weed plant density and diversity in comparison with soybean monoculture. Results showed that in all intercropping treatments, land equivalent ratio was more than one. Maximum value of land equivalent ratio (2.20 was achieved in 50S:50M treatment. Soybean and millet intercropping at different levels of replacement, didn’t have actual yield loss. Calculating the aggressivity showed that millet was more dominate than soybean. The maximum relative crowding coefficient of soybean was observed in 75S:25M, however that of millet was obtained in 25S:75M and 50S:50M intercroppings indicating that millet is more competitor than soybean.

  8. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    International Nuclear Information System (INIS)

    Yun Juan; Li Xihong; Fan Xuetong; Tang Yao; Xiao Yao; Wan Sen

    2012-01-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation. - Highlights: ► The objective of this study concerns the elimination of microbial load factors at different radiation dose (0.0, 1.0, 3.0, 5.0 and 10.0 kGy). ► Investigated the degradation of the gamma irradiation on the reduction of flatulence-causing. ► Indicated the effect of irradiation on the isoflavone and tocopherol contents of the soybeans. ► Evaluated the effect of the gamma irradiation on the sensory properties of soybeans.

  9. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.)

    OpenAIRE

    Mohammad Reza Mahmoodabadi; Abdol-majid Ronaghi; Mehdi Khayyat; Gholamreza Hadarbadi

    2009-01-01

      There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L.) was evaluat...

  10. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    Science.gov (United States)

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  11. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    Science.gov (United States)

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Grover Shannon, J; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil and high sucrose. In this study, an inter-specific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3x depth. Based on 91,342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4,070 bins). In addition to bin mapping, QTL analysis for protein, oil and sucrose was performed using 3,343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next generation sequencing technology enhanced mapping resolution (from 1325 Kb to 50 Kb). A total of 5, 9 and 4 QTLs were identified for protein, oil and sucrose content, respectively and some of the QTLs coincided with soybean domestication related genomic loci. The major QTL for protein and oil was mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL was identified on Chr. 8 (qSuc_08) and harbors putative genes involved in sugar transport. In addition, genome-wide association (GWAS) using 91,342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL based haplotype using whole genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts. - Highlights: ► Investigated the germination rate and the sprouts length after irradiation. ► Indicated the effect of irradiation on the antioxidants of the soybean sprouts. ► Evaluated the visual and olfactory quality of irradiated samples.

  13. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  14. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  15. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  16. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.

  17. Recovery Plan for Red Leaf Blotch of Soybean Caused by Phoma glycinicola

    Science.gov (United States)

    Red leaf blotch (RLB) of soybean is caused by the fungal pathogen Phoma glycinicola, formerly known in the plant pathology literature as Pyrenochaeta glycines, Dactuliophora glycines, and Dactuliochaeata glycines. The disease presently occurs in only a few African countries on soybean and a wild leg...

  18. Weed Control in Soybean (Glycine max)

    International Nuclear Information System (INIS)

    Kipkemoi, P.L.

    2002-01-01

    Weed Compete for limited growth factors with crop plants. This result in loss of crop vigour and hence reduces crop yields. A study was conducted in 1997 and 2001 to evaluate the use of herbicides and hand hoeing for weed control in soybeans. Crop establishment was by hand planting. The herbicides were applied using CP3 Knap sack sprayer calibrated to deliver a spray volume of 150l/ha. Hand weeding treatment were done as appropriate. The trial layout was randomised complete block design with four replications in both years. The tested herbicides did not satisfactorily control the weeds present at the experimental site in both years. Hand weeding on the other hand gave good control of the weeds which were reflected in high soybean yields. In these trials yields were negatively correlated with the number of weeds present. The tested herbicides alone appeared to be inadequate in controlling weeds in soybean. Compared with the weed-free treatment a single application of soil-applied or post-emergence herbicides did not control a broad spectrum of weeds and reduced soybean yields. It can also be inferred that soybean yield losses are minimised if they are kept weed free for at most 6 weeks after emergence

  19. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max).

    Science.gov (United States)

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Jiang, Guo-Liang

    2016-01-01

    Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the molecular mechanism underlying the trait and explore marker-based breeding approaches, we conducted a genome-wide association study in a population of 309 soybean germplasm accessions using 31,045 single nucleotide polymorphisms (SNPs), and estimated the prediction accuracy of genomic selection (GS) and marker-assisted selection (MAS) for SW. Twenty-two loci of minor effect associated with SW were identified, including hotspots on Gm04 and Gm19. The mixed model containing these loci explained 83.4% of phenotypic variation. Candidate genes with Arabidopsis orthologs conditioning SW were also proposed. The prediction accuracies of GS and MAS by cross-validation were 0.75-0.87 and 0.62-0.75, respectively, depending on the number of SNPs used and the size of training population. GS also outperformed MAS when the validation was performed using unrelated panels across a wide range of maturities, with an average prediction accuracy of 0.74 versus 0.53. This study convincingly demonstrated that soybean SW is controlled by numerous minor-effect loci. It greatly enhances our understanding of the genetic basis of SW in soybean and facilitates the identification of genes controlling the trait. It also suggests that GS holds promise for accelerating soybean breeding progress. The results are helpful for genetic improvement and genomic prediction of yield in soybean.

  20. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-08

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  1. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    Science.gov (United States)

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  2. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  3. Evaluation of the Protective Role of Glycine max Seed Extract (Soybean Oil) in Drug-Induced Nephrotoxicity in Experimental Rats.

    Science.gov (United States)

    Ramasamy, Anand; Jothivel, Nandhakumar; Das, Saibal; Swapna, A; Albert, Alice Padmini; Barnwal, Preeti; Babu, Dinesh

    2017-09-28

    This study was conducted to evaluate the nephroprotective effect of Glycine max seed extract (soybean oil) against gentamicin- and rifampicin-induced nephrotoxicity in Sprague-Dawley rats and to compare its effects with those of vitamin E, which has well-established antioxidant and nephroprotective effects. Sixty male Sprague-Dawley rats (body weight 150-210 g) were divided into 10 groups. The first five groups were treated for 14 consecutive days with normal saline (5 ml/kg, by mouth [p.o.]); gentamicin (80 mg/kg intraperitoneally [i.p.]); gentamicin (80 mg/kg, i.p.) + vitamin E (250 mg/kg p.o.); gentamicin (80 mg/kg i.p.) + soybean oil (2.5 ml/kg p.o.); and gentamicin (80 mg/kg, i.p.) + soybean oil (5 ml/kg p.o.), respectively. For the next five groups, the same group allocation was done, but gentamicin was replaced with rifampicin (1 g/kg i.p.). Various biomarkers for nephrotoxicity in serum and urine were evaluated along with histopathological examination of kidneys. Analysis of variance (ANOVA) was done following Tukey's multiple comparison test; p Soybean oil in both doses significantly (p Soybean oil also showed strong antioxidant effects, causing significant (p Soybean oil demonstrated good nephroprotective activity due to antioxidant effects.

  4. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  5. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek).

    Science.gov (United States)

    María Landete, José; Hernández, Teresa; Robredo, Sergio; Dueñas, Montserrat; de Las Rivas, Blanca; Estrella, Isabel; Muñoz, Rosario

    2015-03-01

    Mung beans (Vigna radiata [L] Wilczek) purchased from a Spanish company as "green soybeans", showed a different phenolic composition than yellow soybeans (Glycine max cv. Merit). Isoflavones were predominant in yellow soybeans, whereas they were completely absent in the green seeds on which flavanones were predominant. In order to enhance their health benefits, both types of bean were subjected to technological processes, such as soaking and fermentation. Soaking increased malonyl glucoside isoflavone extraction in yellow beans and produced an increase in apigenin derivatives in the green beans. Lactobacillus plantarum CECT 748 T fermentation produced an increase in the bioactivity of both beans since a conversion of glycosylated isoflavones into bioactive aglycones and an increase of the bioactive vitexin was observed in yellow and green beans, respectively. In spite of potential consumer confusion, since soybean and "green soybean" are different legumes, the health benefits of both beans were enhanced by lactic fermentation.

  6. Initial organic products of fixation of [13N]dinitrogen by root nodules of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Meeks, J.C.; Wolk, C.P.; Schilling, N.; Shaffer, P.W.; Avissar, Y.; Chien, W.S.

    1978-01-01

    When detached soybean Glycine max (L.) Merr. cv. Hark, nodules assimilate ( 13 N)N 2 , the initial organic product of fixation is glutamine; glutamate becomes more highly radioactive than glutamine within 1 minute; 13 N in alanine becomes detectable at 1 minute of fixation and increases rapidly between 1 and 2 minutes. After 15 minutes of fixation, the major 13 N-labeled organic products in both detached and attached nodules are glutamate and alanine, plus, in the case of attached nodules, an unidentified substance, whereas ( 13 N)glutamine comprises only a small fraction of organic 13 N, and very little 13 N is detected in asparagine. The fixation of ( 13 N)N 2 into organic products was inhibited more than 99 percent by C 2 H 2 (10 percent, v/v). The results support the idea that the glutamine synthetase-glutamate synthase pathway is the primary route for assimilation of fixed nitrogen in soybean nodules

  7. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  8. The influence of Lasius neoniger (Hymenoptera: Formicidae) on population growth and biomass of Aphis glycines (Hemiptera: Aphididae) in soybeans.

    Science.gov (United States)

    Schwartzberg, Ezra G; Johnson, D W; Brown, G C

    2010-12-01

    In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America

  9. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    Science.gov (United States)

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  10. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  11. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes

    Science.gov (United States)

    Two field trials were conducted in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop in a no-till soybean (Glycine max) planting to 1) reduce populations of plant-parasitic nematodes (i.e., the soybean cyst nematode, Heterodera glycines and lesion nematodes...

  12. Sulphur dioxide metabolism in soy-bean, Glycine max var. biloxi

    International Nuclear Information System (INIS)

    Garsed, S.G.; Read, D.J.

    1977-01-01

    First-trifoliate leaves of soybeans Glycine max (L.) Merr. were exposed to 35 SO 2 in the light or dark, and the chemical distribution of the radioactivity in the source leaves and in the remainder of the plant was determined after 1.5 and 24 h. Only 35 SO 4 2- was found in leachates in the light but substantial quantities of 35 SO 3 2- were present in the dark. Radioactivity was present in all fractions of the source leaves examined (insoluble, centrifuge pellet, soluble protein, chloroform-soluble and water-soluble). The main water-soluble compounds labelled were sulphate >glutathione >cysteine. Small quantities of sulphite were also recovered in the dark but not in the light. The ratio of soluble: insoluble radioactivity in the sink tissues was influenced more by leaf age than by light treatment. Sulphate, glutathione and cysteine were labelled in the petioles of the source leaves and 35 SO 4 2- was found in the nutrient solution after 1.5 h in both treatments. It is concluded that light is not necessary for the reduction of internal 35 SO 2 products. The results are discussed in relation to current knowledge of SO 2 metabolism. (author)

  13. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    Science.gov (United States)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in

  14. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans.

    Science.gov (United States)

    Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R

    2014-06-15

    This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  16. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    Science.gov (United States)

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  17. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  18. Evaluation of replacement intercropping of soybean (Glycine max L. with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. under weed infestation

    Directory of Open Access Journals (Sweden)

    M. Bagheri Shirvan

    2016-05-01

    Full Text Available In order to evaluate intercropping of soybean (Glycine max L. cv. JK with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. with weed interference, an experiment was performed in randomized complete block design with 12 treatments and three replications at a field located 10 km of Shirvan during year of 2011. The treatments were included 75% soybean: 25%sweet basil, 50%soybean: 50% sweet basil, 25% soybean: 75% sweet basil, 75% soybean: 25% borage, 50% soybean: 50% borage and 25% soybean: 75% borage under weed infestation, in addition sole cropping of plants under weed control and weed interference. Intercropped plants had more success in reduction of weed density and biomass compared to monoculture. Soybean50: sweet basil50, reduced the weed density by 47.95% and 52.9%, and reduced the weed biomass by 68.91% and 61.87% more than sweet basil and soybean pure stand, respectively. Investigation of dry matter accumulation showed that increasing of plant proportion in intercropping caused increasing of plant dry matter. The height of soybean and borage was increased in intercropping and weed interference, while the highest height of sweet basil was observed in monoculture at second harvest. Biological and economical yield of soybean in intercropping with sweet basil was higher than intercropping with borage. The highest harvest index was related to 50:50 soybean: sweet basil ratio. In this ratio, the harvest index increased 4.9% compared to soybean monoculture. Yield of sweet basil and borage decreased with increasing of soybean rows in intercropping. Based on area-time equivalent ratio, soybean 75% with sweet basil and borage 25% (based on borage seed yield had 3% and 4% advantage compared to monoculture.

  19. Effects of enhanced UVB on growth and yield of alfalfa (Medic ago Sativa L.) and soybean (Glycine max L.) under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.; Mohamad, A.

    1997-04-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author). 21 refs., 17 tabs

  20. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Directory of Open Access Journals (Sweden)

    Jie Qiu

    Full Text Available Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou and a wild line (Lanxi 1 collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1 no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2 besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3 high heterozygous rates (0.19-0.49 were observed in several semi-wild lines; and (4 over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  1. Contribution of pod borer pests to soybean crop production (case in Pondidaha, Konawe District, Southeast Sulawesi)

    Science.gov (United States)

    Rahayu, M.; Bande, LOS; Hasan, A.; Yuswana, A.; Rinambo, F.

    2018-02-01

    Soybean (Glycine max L.) is one of the most important crops which production continues to be improved in all areas of soybean cultivation centers in an effort to maintain the availability of soybean foods, including Southeast Sulawesi. The purpose of this study was to analyze the contribution of pod borer pests to soybean crop production. Methods of direct observation were made on observed variables, including species and population of pest pod borer, intensity, and crop production. The result that found four types of pod borer pests are Nezara viridula, Riptortus linearis, Etiella zinckenella, and Leptocorisa acuta, each with a different population and contribution to the intensity of pod damage. The result of path analysis showed that directly population of N. viridula (61.14) and E. zinckenella (66.44) gave positive contribution in increasing pod damage, by 0.332 and 0.502 respectively, while the negative contribution was shown by population of R. linearis and L. acuta. Damage of the pod causes increased production of low soybean is only about 0.202, therefore required appropriate control techniques to control pod borer pests populations in soybean crops.

  2. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    Science.gov (United States)

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  3. Selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in greenhouse

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-07-01

    Full Text Available An experiment on the selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in green house. The aim of the experiment the selection and potency of the Rhizobium strain to increase the growth of soybean. The experiment was carried out in green house condition in Microbiology Division, Research Center for Biology-LIPI with sterile sand medium. The research design was Completely Randomized Design with three replications for each treatment. The Rhizobium strains used were 1 W (isolated from bean, Vigna radiata, 2 W (isolated from soybean, 3 W (isolated from bean, 4 W (isolated from soybean, 5 W (isolated from soybean, 6 W (isolated from peanut, Arachis hypogaea, 7 W (isolated from peanut, 8 W (isolated from peanut, the controls were uninoculated with Rhizobium strain and without urea fertilizer (K1, uninoculated and with urea fertilizer equal 100 kg/ha (K2. The plants were harvested after 50 days, the variable of investigation were the dry weight of canopy, roots, nodules root, total plants, number of nodules and ‘symbiotic capacity”. The results showed that all of experiment plant which be inoculated with Rhizobium able to form nodule. Strain of 2 W (isolated from soybean has given the best effects on the growth of soybean.

  4. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  5. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  6. Changes in micronutrients, dry weight and plant growth of soybean ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... of soybean (Glycine max L. Merrill) cultivars under salt stress. Murat Tunçturk1* ... Salinity stress negatively affected soybean cultivars and the extent of ... INTRODUCTION. Soybean is a ..... A general approach. Science 210: ...

  7. Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis

    NARCIS (Netherlands)

    Mäkelä, Miia R; Bouzid, Ourdia; Ruiz-Robleto, J.; Post, Harm|info:eu-repo/dai/nl/341667374; Peng, Mao; Heck, Albert|info:eu-repo/dai/nl/105189332; Altelaar, Maarten|info:eu-repo/dai/nl/304833517; de Vries, Ronald P|info:eu-repo/dai/nl/186324960

    2017-01-01

    The coprophilic ascomycete fungus Podospora anserina was cultivated on three different plant biomasses, i.e. cotton seed hulls (CSH), soybean hulls (SBH) and acid-pretreated wheat straw (WS) for four days, and the potential of the produced enzyme mixtures was compared in the enzymatic

  8. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  9. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  10. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  11. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  12. Mutants obtained by chronic gamma irradiation of soybean [Glycine Max (l.) Merrill]varieties

    International Nuclear Information System (INIS)

    Hajos Novak, M; Korosi, F.; Sipos, T.; Hodosne Kotvics, G.

    2001-01-01

    Soybean [Glycine max (L.) Merrill] is a wonder crop, containing about 20% oil and 40% high quality protein, having multiple uses such as food, fodder and industrial products. In Hungary in he last few years there has been a renewed interest in improving protein and oil content of the soybean crop. Selection for oil and/or protein content from segregating populations, derived from induced mutagenesis or hybridization, is known to be effective. Orf and Helms (1994) emphasized, that to fulfill demands of both sellers and purchasers, combined selection for yield components, yield, oil and/or protein content has to be carried out. For this purpose mutant soybean germplasm s were developed by pedigree method from a Carpathian-Ukrainian (KA) further more a Vietnamese (VL40) local variety adapted to Hungarian environmental conditions by 100-300 Gy chronic gamma irradiation. A function index was introduced to evaluate the genetic variability for the quality parameters and the most important agronomic traits. Chronic gamma irradiation increased the genetic variability of the oil content in the KA and of the protein content in the VL40 germplasm. Function index predicted up to 28% oil content in the KA mutant germplasm. Plants with 24.1 and 23.6% oil content were selected from the 150 Gy and the 100 Gy populations in the M4 generation. In the M5, progenies of a superior plant with 23.6% oil content were homozygous for this characteristics, while progenies of a superior plant with 24.1% oil content were segregating. Year can cause +-2.0-2.5% differences in the oil content of the seeds. Oil content had a moderate negative correlation with 1000-seed weight in both of the above mentioned generations .Seed samples with the highest oil content were analysed for fatty acid composition using gas-liquid chromatography. Their linoleic acid content ranged from 51.8 to 55.0%. Unfortunately, in M5 the linolenic acid content was higher than in M4, varying between 7.9% and 9.3%. The 200 Gy

  13. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    Science.gov (United States)

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins.

  14. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    and genetic improvement were identified.CONCLUSIONS:Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes......BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  15. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  16. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    Science.gov (United States)

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  17. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  18. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  19. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max Using Association Mapping.

    Directory of Open Access Journals (Sweden)

    Zhangxiong Liu

    Full Text Available The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS was exploited to detect the quantitative trait loci (QTL for number of days to flowering (ETF, number of days from flowering to maturity (FTM, and number of days to maturity (ETM using 4032 single nucleotide polymorphism (SNP markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  20. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  1. Nitrogen rhizodeposition from soybean (Glycine max) and its impact on nutrient budgets in two contrasting environments of the Guinean savannah zone of Nigeria

    DEFF Research Database (Denmark)

    Laberge, G.; Franke, A. C.; Ambus, Per

    2009-01-01

    Nitrogen (N) rhizodeposition by grain legumes such as soybean is potentially a large but neglected source of N in cropping systems of Sub-Saharan Africa. Field studies were conducted to measure soybean N rhizodeposition in two environments of the Guinean savannah of Nigeria using 15N leaf labelling...... removed. If residues were left in the field or recycled as manure after being fed to steers, soybean cultivation led to positive N budgets of up to +95 kg N ha−1. The role and potential of grain legumes as N purveyors have been underestimated in the past by neglecting the N contained...... techniques. The first site was located in Ibadan in the humid derived savannah. The second site was in Zaria in the drier Northern Guinean savannah. Soybean N rhizodeposition in the top 0.30 m of soil varied from 7.5 kg ha−1 on a diseased crop in Ibadan to 33 kg ha−1 in Zaria. More than two-thirds of soybean...

  2. Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Edson Rodrigues-Filho

    2013-02-01

    Full Text Available This present work describes the application of liquid chromatograpy-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1, alternariol (2, 3'-hydroxyalternariol monomethyl ether (3, and alternariol monomethyl ether (4, were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max cell cultures as a model. EC50 values which range from 0.11 (±0.02 to 4.69 (±0.47 μM showed the high cytotoxicity of these compounds.

  3. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  4. Selection of progenitors for increase in oil content in soybean

    Directory of Open Access Journals (Sweden)

    Josiane Isabela da Silva Rodrigues

    Full Text Available ABSTRACT The low genetic diversity brings limitation to breeding, because genetically similar genotypes share alleles in common, causing little complementarity and low vigor due to the low levels of heterozygosity in crosses. The objective of this work was to analyze the oil content and genetic diversity of soybean genotypes (Glycine max (L. Merrill based on QTL regions of this trait for choice of progenitors for increase in oil content. Twenty-two genotypes with wide variation in oil content, including cultivars with high oil contents, were cultivated in different Brazilian conditions and the oil content of the grains was quantified by infrared spectrometry. Microsatellite markers selected based on QTL regions for oil content in soybean were analyzed to estimate the genetic diversity. In these studies, a wide variation in oil content (17.28-23.01% and a reasonable diversity among the genotypes were observed, being PI181544 the most divergent genotype, followed by Suprema. The genotypes PI371610/Suprema and Suprema/CD01RR8384 showed genetic distance and higher oil contents in the grains, while the cultivars Suprema and CD01RR8384 had the highest oil contents and proved to be little genetically related. These genotypes are promising progenitors for selection of high oil content in soybean.

  5. Gamma radiation effects on crude oil yield of some soybean seeds ...

    African Journals Online (AJOL)

    Abstract. Purpose: To investigate the crude oil yield of eight different varieties of soybean (Glycine max L.) seeds ... the health advantages of soybeans in both in vivo and in vitro experiments [2]. Therefore, plant breeding has gained importance especially soybean plants. ..... Ionizing radiation might affect the quality of oils.

  6. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates.

    Science.gov (United States)

    Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L

    2003-10-01

    The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.

  7. Transgenic soybeans and soybean protein analysis: an overview.

    Science.gov (United States)

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  8. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  9. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max–potato (Solanum tuberosum cropping system

    Directory of Open Access Journals (Sweden)

    Sushmita Munda

    2018-04-01

    Full Text Available Present study was conducted to assess role of phosphorus (P fertilization on economics, energy efficiency, P use indices and soil P balance in soybean [Glycine max (L. Merril]–potato (Solanum tuberosum L. cropping system during 2008–09 and 2009–10. Treatments in soybean as main plots consisted of two sources and two levels of phosphorus with or without biofertilizers [phosphorus solubilizing bacteria, PSB and arbuscular mycorrhizae, AM]. Three levels of P were applied to potato as subplots. System productivity was calculated in terms of soybean equivalent yield and found to be better with biofertilizers treated plots. When applied in combination with biofertilizers, 50% recommended dose of P (RDP as diammonium phosphate (DAP recorded B:C ratio at par with 100% RDP. Direct application of 100% RDP to potato resulted in significantly higher returns, enhancing the net returns. Application of biofertilizers alone increased the energy use efficiency over no biofertilizer application. Irrespective of source (DAP or rock phosphate treatments with biofertilizers had improved P use indices and apparent soil P balance even at 50% RDP. This indicates the role of biofertilizers in P solubilization and making it available to plant. Biofertilizers application can help cutting down the fertilizer P application in soybean–potato cropping system without any considerable reduction in yield and economic returns. Keywords: AM, B:C ratio, P use indices, PSB, Rock phosphate, Agronomic use efficiency

  10. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    Science.gov (United States)

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue

    Directory of Open Access Journals (Sweden)

    Chaline Caren Coghetto

    Full Text Available Abstract In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.

  12. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  13. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    Science.gov (United States)

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  14. Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest

    Directory of Open Access Journals (Sweden)

    Nurudeen ADEYEMI

    2017-06-01

    Full Text Available Variations in yield components and grain yield of arbuscular mycorrhizal fungi (AMF inoculated soybean varieties (Glycine max L. Merrill grown in CO2 enriched environment in the humid rainforest were tested.  A screen house trial was established with soybean varieties (‘TGx 1448-2E’, ‘TGx 1440-1E’ and ‘TGx 1740-2F’, AMF inoculation (with and without and CO2 enrichment (350±50 ppm and 550±50 ppm in open top chamber, arranged in completely randomised design, replicated three times. A field trial was also conducted; the treatments were arranged in a split-split plot configuration fitted into randomised complete block design. In the main plot the variant was CO2 enrichment, the sub-plot consisted of AMF inoculation (with and without, while the sub-sub plot consisted of soybean varieties, replicated three times. Both trials had significantly higher grain yield at elevated CO2 than ambient. This could be attributed to improved yield attributes, more spore count and root colonisation. In both trials, inoculated soybean had significantly higher dry pod weight than un-inoculated, which could suggest the increased grain yield observed on the field. AMF inoculated soybean varieties outperformed un-inoculated in both CO2 enriched and ambient concentrations. AMF inoculated soybean variety ‘TGx 1740-2F’ is most preferable in CO2 enriched environment, while variety ‘TGx 1448-2E’ had the most stable grain yield in all growth environments.

  15. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  16. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  17. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  18. Effect of soybean derivatives (glycine max) on thyroid of rats

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1977-01-01

    The effect of a Brazilian variety soybean and their comercial products on thyroid gland is studied. Soybean derivatives are tested in rats through acute experiments of 3 to 24 hours and semichronic experiments of 16 to 29 days. The autoclaved extract administered after 6 to 24 hours decreases the percentage of iodine ( 131 I) uptake. Semichronic experiments show that the factor found in soybean provokes both an increase or a reduction in percentage of iodine ( 131 I) uptake, depending ou the oeriod of action [pt

  19. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  20. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    Science.gov (United States)

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL -1 , whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL -1 , corresponding to a productivity of 1.46gL -1 h -1 . This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes.

    Directory of Open Access Journals (Sweden)

    Tiffany Langewisch

    Full Text Available In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L. Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.

  2. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  3. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  4. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  5. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  6. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation.

    Science.gov (United States)

    Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] constitute a large share of the annual total irrigated planted area in the central Great Plains. This study aimed to determine the effect of limited irrigation on grain yield, water use, and profitability of corn and soybean in comparison with ...

  7. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    Science.gov (United States)

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  8. Changes in the physiological activity of soybean (Glycine max L. Merr. under the influence of exogenous growth regulators

    Directory of Open Access Journals (Sweden)

    Anna Nowak

    2015-07-01

    Full Text Available In a two-year pot experiment (2008–2009 conducted at the Vegetation Hall, West Pomeranian University of Technology in Szczecin, we investigated the influence of exogenous growth regulators, i.e. indole-3-butyric acid (IBA and 6-benzylaminopurine (BAP and their mixture, on the activity of gas exchange and selected physiological features of soybeans (Glycine max L. Merr.. The experimental factors included the following Polish soybean cultivars: ‘Aldana’, ‘Progres’ and ‘Jutro’. During plant growth, CO2 assimilation (A, transpiration rate (E, stomatal conductance (gs, and substomatal CO2 concentration (ci were determined. Two soybean cultivars, i.e. ‘Jutro’ and ‘Progres’, showed a significant increase in the intensity of assimilation and transpiration after using all kinds of growth regulators as compared with the control plants. It was found that the ‘Jutro’ cultivar, after using a mixture of growth regulators (IBA + BAP, was characterized by the significantly highest CO2 assimilation (A and transpiration (E as well as the highest stomatal conductance (gs. The ‘Aldana’ cultivar, on the other hand, responded by a significant reduction in the transpiration rate, stomatal conductance and subsomatal CO2 concentration. The spraying of the plants with exogenous growth regulators had a significant influence on the increase in the number of stomata and stomatal pore length, mostly on the lower epidermis of the lamina. It was also found that plants from the ‘Jutro’ and ‘Aldana’ cultivars sprayed with IBA and IBA + BAP were characterized by the highest yield, as compared with the control plants. In the case of the ‘Jutro’ cultivar, after using the growth regulators, a positive correlation was observed between the assimilation and transpiration rates and the length of stomata, which in consequence produced increased yields.

  9. Spatial analysis of soybean canopy response to soybean cyst nematodes (Heterodera glycines) in eastern Arkansas: An approach to future precision agriculture technology application

    Science.gov (United States)

    Kulkarni, Subodh

    2008-10-01

    Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused

  10. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean

    NARCIS (Netherlands)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without

  11. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  12. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    International Nuclear Information System (INIS)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh

    2001-01-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray 60 Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55). Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect- orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  13. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh [Agricultural Genetics Institute (AGI), Hanoi (Viet Nam)

    2001-03-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray {sup 60}Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55))]. Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect-orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  14. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  15. Registration of N6001 soybean germplasm with enhanced yield derived from Japanese cultivar Suzuyutaka

    Science.gov (United States)

    The genetic base of U.S. soybean (Glycine max (L.) Merr.) is relatively narrow, with Chinese ancestors providing most of the genetic base. Japanese lines have made relatively small contributions, suggesting that incorporation of novel Japanese genetics into USA breeding populations may aid soybean ...

  16. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  17. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  18. 东北春大豆优质高产栽培技术%Soybean High Yield Cultivation Techniques in Northeast in Spring

    Institute of Scientific and Technical Information of China (English)

    马晓莉

    2014-01-01

    Soybean is an important crop widely planted in China, and Northeast China is one of the main planting areas of soybeans. In view of the natural conditions and cropping system of Northeast soybean producing areas, this article reviewed the high quality and high yield cultivation techniques of spring soybeans in the northeast China in terms of species selection, seed treatment, soil preparation, sow-ing, field management, pest control and harvesting.%大豆是我国广泛种植的重要农作物,东北地区是我国大豆主要栽培区之一。针对东北大豆产区的自然条件与耕作栽培制度,从品种选择、种子处理、播前整地、播种、田间管理、病虫害防治及收获几方面进行总结,探讨东北春大豆优质高产栽培技术。

  19. INFLUENCE OF SOWING SPEED ON SOYBEAN CULTIVATION

    Directory of Open Access Journals (Sweden)

    C. M. A. Tiesen

    2016-11-01

    Full Text Available Mato Grosso state is the largest producer of soybeans in the country, therefore is the focus of several studies and research in order to improve and increase the production. For an activity that reduces the movements on the field, the no-tillage is a great activity when it done properly. This study aimed to evaluate the influence of speed of sowing on soybean crop, with pneumatic system type for seed metering. The experiment was conducted at São Luiz Farm, in Sinop city, in the northern of Mato Grosso state. The experimental adopted was the randomized blocks design with four treatments and four replications. The seeding speeds studied were 3; 5; 7 and 9 km h-1. The variables evaluated were: initial plant population, longitudinal distribution and yield components. The data were submitted to variance and regression analysis. The speed of 3 km h-1 show the best performance for acceptable spacing, flawed, plant stand on the pre-established area, number of pods per plant, thousand grain mass and yield. The speeds rate used for sowing did not influence the establishment of soybean crop, but affected the beans productivity.

  20. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    Science.gov (United States)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  1. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  2. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  3. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  4. New Cyst Nematode, Heterodera sojae n. sp. (Nematoda: Heteroderidae) from Soybean in Korea.

    Science.gov (United States)

    Kang, Heonil; Eun, Geun; Ha, Jihye; Kim, Yongchul; Park, Namsook; Kim, Donggeun; Choi, Insoo

    2016-12-01

    A new soybean cyst nematode Heterodera sojae n. sp. was found from the roots of soybean plants in Korea. Cysts of H. sojae n. sp. appeared more round, shining, and darker than that of H. glycines . Morphologically, H. sojae n. sp. differed from H. glycines by fenestra length (23.5-54.2 µm vs. 30-70 µm), vulval silt length (9.0-24.4 µm vs. 43-60 µm), tail length of J2 (54.3-74.8 µm vs. 40-61 µm), and hyaline part of J2 (32.6-46.3 µm vs. 20-30 µm). It is distinguished from H. elachista by larger cyst (513.4-778.3 µm × 343.4-567.1 µm vs. 350-560 µm × 250-450 µm) and longer stylet length of J2 (23.8-25.3 µm vs. 17-19 µm). Molecular analysis of rRNA large subunit (LSU) D2-D3 segments and ITS gene sequence shows that H. sojae n. sp. is more close to rice cyst nematode H. elachista than H. glycines . Heterodera sojae n. sp. was widely distributed in Korea. It was found from soybean fields of all three provinces sampled.

  5. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.

    Science.gov (United States)

    Yoshimura, Yasuyuki; Matsuo, Kazuhito; Yasuda, Koji

    2006-01-01

    Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368 grains.cm(-2).day(-1), with the average value at 0.18 grains.cm(-2).day(-1), indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

  6. Bulk density of an alfisol under cultivation systems in a long-term experiment evaluated with gamma ray computed tomography

    International Nuclear Information System (INIS)

    Bamberg, Adilson Luis; Silva, Thiago Rech da; Pauletto, Eloy Antonio; Pinto, Luiz Fernando Spinelli; Lima, Ana Claudia Rodrigues de; Timm, Luis Carlos

    2009-01-01

    The sustainability of irrigated rice (Oryza sativa L.) in lowland soils is based on the use of crop rotation and succession, which are essential for the control of red and black rice. The effects on the soil properties deserve studies, particularly on soil compaction. The objective of this study was to identify compacted layers in an albaqualf under different cultivation and tillage systems, by evaluating the soil bulk density (Ds) with Gamma Ray Computed Tomography (TC). The analysis was carried out in a long-term experiment, from 1985 to 2004, at an experimental station of EMBRAPA Clima Temperado, Capao do Leao, RS, Brazil, in a random block design with seven treatments, with four replications (T1 - one year rice with conventional tillage followed by two years fallow; T2 - continuous rice under conventional tillage; T4 - rice and soybean (Glycine Max L.) rotation under conventional tillage; T5 - rice, soybean and corn (Zea maize L.) rotation under conventional tillage; T6 - rice under no-tillage in the summer in succession to rye-grass (Lolium multiflorum L.) in the winter; T7 - rice under no-tillage and soybean under conventional tillage rotation; T8 - control: uncultivated soil). The Gamma Ray Computed Tomography method did not identify compacted soil layers under no tillage rice in succession to rye-grass; two fallow years in the irrigated rice production system did not prevent the formation of a compacted layer at the soil surface; and in the rice, soybean and corn rotation under conventional tillage two compacted layers were identified (0.0 to 1.5 cm and 11 to 14 cm), indicating that they may restrict the agricultural production in this cultivation system on Albaqualf soils. (author)

  7. Globalizing land use transitions: the soybean acceleration

    DEFF Research Database (Denmark)

    Reenberg, Anette; Fenger, Nina Astrid

    2011-01-01

    into a leading player on the global scale. It takes point of departure in a land change science approach and employs the notions of underlying and proximate drivers and teleconnections to characterize the process of land use change in relation to the accelerating use of land for soybean cultivation.......This note presents the recent global development trends in soybean cultivation as derived from the FAO statistics. It focuses on the change over the course of the last thirty years, when significant new allocations of the global production have occurred, which have turned South America...

  8. Effects of N management on growth, N-2 fixation and yield of soybean

    NARCIS (Netherlands)

    Gan, YB; Stulen, [No Value; Posthumus, F; van Keulen, H; Kuiper, P

    Soybean (Glycine max) is one of the most important food and cash crops in China. Although soybean has the capacity to obtain a large proportion of its N from N-2 fixation, it is common farmer's practice to apply an N top dressing to maximize grain yield. A field experiment was conducted to study the

  9. Improvement of soybean variety 'Bragg' through mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P S; Prabhakar,; Tiwari, S P; Sandhu, J S [National Research Centre for Soybean, Indore (India)

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M{sub 2}, a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M{sub 2} and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T{sub 2}14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  10. Improvement of soybean variety 'Bragg' through mutagenesis

    International Nuclear Information System (INIS)

    Bhatnagar, P.S.; Prabhakar; Tiwari, S.P.; Sandhu, J.S.

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M 2 , a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M 2 and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T 2 14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  11. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Yu-Hui, Qiao; Van, Luo

    2010-01-01

    Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach....... Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional...

  12. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  13. Soybean Opportunity as Source of New Energy in Indonesia

    OpenAIRE

    Muchlish Adie, M; Krisnawati, Ayda

    2014-01-01

    These last few years, the name of soybeans soared as a source of biodiesel. Soy biodiesel is an alternative fuel produced from soybean oil. Soybean potential as an alternative renewable energy source because it is expected to have the highest energy content compared to other alternative fuels. Opportunities to develop biodiesel using soybean oil in Indonesia is quite large, considering the soybean is a commodity that is already known and widely cultivated almost in all over Indonesia. In addi...

  14. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  15. Optimization of soybean (glycine max L.) regeneration for korean cultivars

    International Nuclear Information System (INIS)

    Phat, P.; Rehman, S. U.; Ju, H. J.; Jung, H. I.

    2015-01-01

    Tissue culture could provide key insights into the development of transgenic plants, production of good cultivars and secondary metabolites, conservation of endangered plants, and safeguarding of germplasms. In this study, the effects of shoot induction media, explants, cultivars, and phytohormone concentrations on the regeneration efficiency of Korean soybean cultivars were evaluated. Restricted dormancy and poor germination may affect regeneration, depending on the type of germination medium or initiation of phytohormone treatment. Therefore, we analyzed the effects of different germination media containing plant growth regulators, i.e. 6-benzyladenine (BAP), gibberellic acid 3 (GA /sub 3/), and naphthalene acetic acid (NAA), prior to investigating the influences of explant types, media with or without vitamins, cultivars, and different phytohormones (BAP and GA3). A high frequency of germination was observed in Murashige and Skooge (MS) medium with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.25 mg L /sup -1/ GA /sub 3/. Cotyledonary node explants and Gamborg B5 with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.17 mg L /sup -1/ GA /sub 3/ in callus induction medium (CIM) and 1 mg L /sup -1/ BAP in shoot induction medium (SIM) were found to be the most efficient conditions for induction of soybean regeneration, both in callus development and shoot regeneration. Two Korean soybean cultivars, cv. Daepung and Nampung, showed similar development of shoot regeneration efficiency, but significantly different shoot induction times. Therefore, the protocol reported here may be used for further development of regeneration efficiency and can be employed for efficient transformation in soybeans. (author)

  16. Control of volunteer soybean plants in sunflower crop

    Directory of Open Access Journals (Sweden)

    Alexandre Magno Brighenti

    2015-09-01

    Full Text Available Sunflower (Helianthus annuus sown offseason, after soybean crop (Glycine max, is affected by the competition imposed by volunteer plants. Two experiments were carried out to evaluate the control of volunteer soybean plants in sunflower crops. The sulfentrazone herbicide (75 g ha-1, 100 g ha-1 and 250 g ha-1 causes phytotoxicity to sunflower immediately after application, however, plants recover, with no yield losses. These doses do not cause the total death of volunteer soybean plants, but temporarily paralyzes their growth, avoiding the competition with the sunflower crop. The glufosinate ammonium and ametryn herbicides are effective in controlling volunteer soybean plants, however, symptoms of phytotoxicity in the sunflower crop are high, reflecting in losses of dry weight biomass and crop yield. The other treatments do not provide satisfactory control of volunteer soybean plants and even reduce the sunflower dry weight biomass and yield.

  17. Sudden death syndrome of soybean in Argentina

    Science.gov (United States)

    Sudden death syndrome (SDS) is one of the most common and widely spread root disease affecting soybean [Glycine max (L.) Merr.] in Argentina where it is an economically important crop. This disease was first discovered in this country in 1992 in the Pampas Region, and the following year in Northwest...

  18. Comparative phytochemical profiling of different soybean (Glycine max (L. Merr genotypes using GC–MS

    Directory of Open Access Journals (Sweden)

    Salem S. Alghamdi

    2018-01-01

    Full Text Available This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L. Merr genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5, ketones (13, alcohols (5, carboxylic acids (7, esters (13, alkanes (2, heterocyclic compounds (19, phenolic compound (9, sugar moiety (7 ether (4 and amide (3, one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1 had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

  19. Soybean Opportunity as Source of New Energy in Indonesia

    Directory of Open Access Journals (Sweden)

    M. Muchlish Adie

    2014-02-01

    Full Text Available These last few years, the name of soybeans soared as a source of biodiesel. Soy biodiesel is an alternative fuel produced from soybean oil. Soybean potential as an alternative renewable energy source because it is expected to have the highest energy content compared to other alternative fuels. Opportunities to develop biodiesel using soybean oil in Indonesia is quite large, considering the soybean is a commodity that is already known and widely cultivated almost in all over Indonesia. In addition, the use of soybean for biofuel feedstock is expected to motivate farmers to cultivate soybeans, so their use is not limited to non-energy raw materials. Soybean varieties that have a high oil content as well as high yield is a source of major biodiesel feedstock. From 73 soybean varieties that have been released in Indonesia, has an average oil content of 18%. Varieties with high oil content can be used as raw material for biodiesel. Research on the use of soy as an ingredient of energy crops (biodiesel have been carried out. In fact, soybean oil is the vegetable oil feedstock for most of the biodiesel being produced in the United States today. With the potential for soybean crops in Indonesia, both in terms of availability of land and varieties, the use of soybean oil for biofuel development in Indonesia is the flagship prospective materials for bio fuel substitute than other plants in the future.

  20. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  1. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mahmoodabadi

    2009-04-01

    Full Text Available   There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L. was evaluated. Treatments consisted on factorial combination of three levels of zeolite (0, 2 and 5 g kg-1 and three levels of cadmium (0, 10 and 50 mg kg-1. Cadmium application significantly decreased shoot and root dry weight while its concentration in plant parts was increased. In addition, cadmium application decreased number and dry weight of nodules, and N, K, and Mn concentrations. On the other hand, zeolite application markedly increased number and dry weight of nodules and N, P, K concentrations in shoot, Mn and Cu concentrations in shoot and root. The results from the present study can be used for predicting the efficiency of zeolite application for the remediation of contaminated soils.

  2. Processing soybeans of different origins : response of a Chinese and a western pig breed to dietary inclusion

    NARCIS (Netherlands)

    Qin, G.

    1996-01-01


    Soybeans (Glycine max) have high nutritional value for domestic animals, due to their protein and energy contents. The feeding effects of full-fat soybeans for non-ruminant and immature ruminant animals, however, are limited by the presence of some antinutritional

  3. Use of chemical flocculation and nested PCR for Heterodera glycines detection in DNA extracts from field soils with low population densities

    Science.gov (United States)

    The soybean cyst nematode (SCN) Heterodera glycines is a major pathogen of soybean world-wide. Distinction between SCN and other members of H. schachtii sensu stricto group based on morphology is a tedious task. A molecular assay was developed to detect SCN in field soils with low population densiti...

  4. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  5. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-08-01

    Full Text Available The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr., GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD. Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  6. First report of new phytoplasma diseases associated with soybean, sweet pepper, and passion fruit in Costa Rica

    Science.gov (United States)

    A new soybean disease outbreak occurred in 2002 in a soybean (Glycine max) plantation in Alajuela Province, Costa Rica. Symptoms in the affected plants included general stunting, little leaf, formation of excessive buds, and aborted seed pods. Another two diseases occurred in sweet pepper (Capsicum ...

  7. Effect of fertilization and soil treatment on the soybean nodulation

    International Nuclear Information System (INIS)

    Abdel aziz, H.A.

    1993-01-01

    Soybean (Glycine max L. ) is one of the most important leguminosae crops all over the world. It is considered one of the most important protein sources for human and animals. During the last 20 years, soybean was introduced to Egypt, however the nodulation of soybean under field conditions remains a problem because the egyptian soils were void of soybean rhizobia. Since soybean is a leguminosae crop, symbiosis with root - nodule R hizobium might play a significant role in the management of its production . Nevertheless, soybean suffers from poor nodulation in egypt, hence nitrogenase fertilization for legume is a logical practice. Soybean can utilize both soil -N or applied N and symbiotically fixed atmospheric nitrogen under normal field condition. The fixation of atmospheric N by the legume/Rhizobium symbiosis is an integrated process in which the host plant ( macrosymbiont) supplies the bacterium (microsymbiont) with energy and the bacterium supplies the plant with reduced N. figs.,172 refs

  8. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    Science.gov (United States)

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and

  9. Application of self-organising maps towards segmentation of soybean samples by determination of amino acids concentration.

    Science.gov (United States)

    Silva, Lívia Ramazzoti Chanan; Angilelli, Karina Gomes; Cremasco, Hágata; Romagnoli, Érica Signori; Galão, Olívio Fernandes; Borsato, Dionisio; Moraes, Larissa Alexandra Cardoso; Mandarino, José Marcos Gontijo

    2016-09-01

    Soybeans are widely used both for human nutrition and animal feed, since they are an important source of protein, and they also provide components such as phytosterols, isoflavones, and amino acids. In this study, were determined the concentrations of the amino acids lysine, histidine, arginine, asparagine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine present in 14 samples of conventional soybeans and 6 transgenic, cultivated in two cities of the state of Paraná, Londrina and Ponta Grossa. The results were tabulated and presented to a self-organising map for segmentation according planting regions and conventional or transgenic varieties. A network with 7000 training epochs and a 10 × 10 topology was used, and it proved appropriate in the segmentation of the samples using the data analysed. The weight maps provided by the network, showed that all the amino acids were important in targeting the samples, especially isoleucine. Three clusters were formed, one with only Ponta Grossa samples (including transgenic (PGT) and common (PGC)), a second group with Londrina transgenic (LT) samples and the third with Londrina common (LC) samples. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Induced mutations for disease resistance and other agronomic characteristics in bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill)

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.; Alberini, J.; Peixoto, T.C.

    1988-01-01

    The present research project aims to induce mutations with resistance to Xanthomonas phaseoli (common blight) and golden mosaic virus (GMV) in bean and resistance to Phakopsora pachyrhizi (rust) and Brazilian bud blight in soybean. At the same time, other mutant types of interest were selected. Gamma rays and ethyl methane-sulphonate (EMS) were generally utilized as mutagenic agents and seeds of several cultivars from both crops were treated. The selection was made at the M 2 or M 3 generation, utilizing progeny or mixtures of seeds from bulk. Screening was carried out in the field, greenhouse or insectary (according to the disease). Priority was given to GMV in bean and about 235,850 plants were observed in the field and 67,500 in the insectary. Only one plant showing mild GMV symptoms was obtained. However, owing to negative pleiotropic effects, this mutant could not be used. Concerning the other diseases, there are some selected plants that still require better observation before reporting that progress has been made. With regard to other mutant types, earliness was obtained in soybean and a bush variety and an earlier mutant was selected in bean. This mutant has already been utilized by breeders in cross-breeding and is being multiplied to be experimentally utilized by farmers under special conditions of cultivation. In soybean, preliminary yield trials are under way, and include some of the early mutants obtained. (author). 26 refs, 20 tabs

  11. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  12. Nodulin gene expression during soybean (Glycine max) nodule development.

    NARCIS (Netherlands)

    Gloudemans, T.; Vries, de S.; Bussink, H.J.; Malik, N.S.A.; Franssen, H.; Louwerse, J.; Bisseling, T.

    1987-01-01

    In vitro translation products of total RNA isolated from soybean nodules at successive stages of nodule development were analyzed by two-dimensional gel electrophoresis. In that way the occurrence of over 20 mRNAs specifically transcribed from nodulin genes was detected. The nodulin genes could be

  13. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  14. Soybean (Glycine max) oil bodies and their associated phytochemicals.

    Science.gov (United States)

    Fisk, Ian D; Gray, David A

    2011-01-01

    Soybean oil bodies were isolated from 3 cultivars (Ustie, K98, and Elena) and the occurrence of 2 classes of phytochemicals (tocopherol isoforms and isoflavones) and strength of their association with isolated oil bodies was evaluated. Tocopherol is shown to be closely associated with soybean oil bodies; δ-tocopherol demonstrated a significantly greater association with oil bodies over other tocopherol isoforms. Isoflavones do not show a significant physical association with oil bodies, although there is some indication of a passive association of the more hydrophobic aglycones during oil body isolation. Oil bodies are small droplets of oil that are stored as energy reserves in the seeds of oil seeds, and have the potential to be used as future food ingredients. If oil body suspensions are commercialized on a large scale, knowledge of the association of phytochemicals with oil bodies will be valuable in deciding species of preference and predicting shelf life and nutritional value. © 2011 Institute of Food Technologists®

  15. Inheritance and molecular mapping of an allele providing resistance to Cowpea mild mottle virus-like symptoms in soybean

    Science.gov (United States)

    Damage to soybean [Glycine max (L.) Merr.] from Cowpea mild mottle virus-like (CPMMV-L) symptoms (family: Betaflexiviridae, genus: Carlavirus) has been of increasing concern in Argentina, Brazil, Mexico, and Puerto Rico. Soybean cultivars and lines differing in their reaction to the virus have been ...

  16. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  17. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  18. Estudo de competição inter e intraespecífica envolvendo Glycine max (L. Merril e Cyperus rotundus (L., em condições de casa de vegetação Inter and intraspecific competitions studies in Glycine max (L. merril and Cyperus rotundus L., in greenhouse conditions

    Directory of Open Access Journals (Sweden)

    R.A. Pitelli

    1983-12-01

    Full Text Available O presente experimento teve por objetivo estudar os efeitos da competição inter e intraespecífica envolvendo Glycine max (L. Merril e Cyperus rotundus L. sobre as características das plantas e acúmulos de N, P, K, Ca e Mg pelas espécies envolvidas. Para tanto, estipulou-se um tratamento em que se desenvolveram três plantas de Glycine max e outro em que se desenvolveram 3 tubérculos de Cyperus rotundus por vaso. Para estudar os efeitos da competição intraespecífica, em dois outros tratamentos dobraram-se as populações por vaso. No estudo da competição interespecífica permitiu-se o desenvolvimento de três plantas de Glycine max e de três tubérculos de Cyperus rotundus num mesmo vaso. De uma maneira geral, pôde-se observar que principalmente devido às diferenças no hábito de crescimento das duas espécies, a expressão da competição inter e intraespecífica, em cada uma delas, assume aspectos distintos. No caso de Cyperus rotundus, o efeito do dobro da densidade pôde ser compensado, em parte, pela maior produção de manifestações epígeas e de tubérculos, aliados ao maior desenvolvimento dos tubérculos na menor densidade de plantio. No caso da competição interespecífica, os resultados sugerem um efeito decisivo do sombreamento de Leguminosae sobre o comportamento da Cyperaceae. Os padrões de efeitos da competição pelos nutrientes foi determinado também pelas diferenças no recrutamento dos elementos do solo pelas espécies envolvidas.Inter and intraspecific competition studies envolving Glycine max (L. Merril and Cyperus rotundus L. were performed by measuring the effects on the growth and accumulation of N, P, K, Ca and Mg in the plants. The standard number of the plants per pot was three. In the interspecific competition plots three shoots of purple nutsedge and three plants of soybeans were cultivated per pot. In the intraspecific competition studies six shoots or plants per pot of C. rotundus or G. max were

  19. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  20. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    Science.gov (United States)

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  1. Structural studies on the development of soybean rust (Phakopsora pachyrhizi Syd.) in susceptible soybean leaves

    International Nuclear Information System (INIS)

    Koch, E.; Ebrahim-Nesbat, F.; Hoppe, H.H.

    1983-01-01

    Where soybeans are cultivated in the tropics, soybean rust may cause heavy crop losses. Resistance found so far was only of local and temporary value. More substantial breeding efforts are needed, but these may require a better understanding of the pathogen's biology and evolutionary capacity, the infection process and the host-pathogen relationships. The report deals with the infection process and the development of the fungus in a susceptible host variety. (author)

  2. A New Race (X12) of Soybean Cyst Nematode in China.

    Science.gov (United States)

    Lian, Yun; Guo, Jianqiu; Li, Haichao; Wu, Yongkang; Wei, He; Wang, Jinshe; Li, Jinying; Lu, Weiguo

    2017-09-01

    The soybean cyst nematode (SCN), Heterodera glycines , is a serious economic threat to soybean-producing regions worldwide. A new SCN population (called race X12) was detected in Shanxi province, China. Race X12 could reproduce on all the indicator lines of both race and Heterodera glycines (HG) type tests. The average number of females on Lee68 (susceptible control) was 171.40 with the lowest Female Index (FI) 61.31 on PI88788 and the highest FI 117.32 on Pickett in the race test. The average number of females on Lee68 was 323.17 with the lowest FI 44.18 on PI88788 and the highest FI 97.83 on PI548316 in the HG type test. ZDD2315 and ZDD24656 are elite resistant germplasms in China. ZDD2315 is highly resistant to race 4, the strongest infection race in the 16 races with FI 1.51 while being highly sensitive to race X12 with FI 64.32. ZDD24656, a variety derived from PI437654 and ZDD2315, is highly resistant to race 1 and race 2. ZDD24656 is highly sensitive to race X12 with FI 99.12. Morphological and molecular studies of J2 and cysts confirmed the population as the SCN H. glycines . This is a new SCN race with stronger virulence than that of race 4 and is a potential threat to soybean production in China.

  3. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  4. Intercrop performance of different varieties of soybean (Glycine Max ...

    African Journals Online (AJOL)

    ONOS

    2010-12-13

    Dec 13, 2010 ... (TGX 1894-3E, medium maturing variety), gave the highest grain yield of Soybean and fresh tuber yield of cassava at 12MAP,. Key words: ... basic component of cropping systems in many areas of south eastern Nigeria. ... and aquatic environment, increased soil acidity and highly selective transport or ...

  5. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  6. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  7. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  8. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  9. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  10. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  11. Electronic tongue system to evaluate flavor of soybean (Glycine Max (L. Merrill genotypes

    Directory of Open Access Journals (Sweden)

    Sandra Maria Zoldan

    2014-10-01

    Full Text Available An electronic tongue system was tested as a fast and efficient analytical tool for flavor evaluation of soybean genotypes. Grain samples of 25 soybean lines were analyzed using 0.25 g of milled samples added to 100 mL of distilled water and mixing for one minute on a magnetic stirrer. An aliquot (50 mL from the filtered liquid was used for the analysis on a pre-fixed frequency of 1 kHz and alternate tension of 50 mV. Two analyses were conducted in a complete randomized design with three replicates. Electrical response (capacitance of eight polymeric chemical sensors used to analyze the soybean lines were submitted to Principal Component Analysis (PCA. In the spatial distribution of the PCA graphic, the lines close to each other were similar, while the distant ones showed different characteristics. The electronic tongue system was efficient in discriminating flavor of soybean lines.

  12. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  13. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) is the major oilseed crop in the world and is a main source of oil and high-quality protein for both humans and animals worldwide. Plant diseases inflict heavy losses on soybean yield that negatively impact the US economy. Implicit in the high economic value of this ...

  14. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  15. Analysis of resource use efficiency among soybean ( Glycine max ...

    African Journals Online (AJOL)

    Also, 87.5% of the farmers were in their active age, and 81.7% utilized their personal saving as a major source of finance for production. The result of the production function analysis indicated that 87.21% of the variation in the output of soybean is explained for by the independent variables. Resource-use efficiency ...

  16. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  17. The soybean and mungbean improvement programs at AVRDC

    International Nuclear Information System (INIS)

    Shanmugasundaram, S.; Ahn, G.S.

    1983-01-01

    At the Asian Vegetable Research and Development Center (AVRDC) Soybean, Glycine max (L.) Merr. and mungbean, Vigna radiata (L.) Wilczek are included in the Legume Program for improvement. Germplasm collection in soybean and mungbean are 9,524 and 5,108 respectively. Developing improved selections with early, uniform maturity, high yield, wide adaptability and resistance to diseases and insects are the major breeding objectives for the tropics and subtropics. Genetic diversity and genetic resources are available in the germplasm for most of the desired traits both in soybean as well as mungbean. However, for traits such as soybean rust resistance in soybean and resistance to insects in mungbean are rare. Limited amount of radiation breeding is being employed in cooperation with Korean Atomic Energy Agency to obtain desirable genes in both species. A number of AVRDC identified accessions and breeding lines are being used by the national programs to develop improved cultivars. AVRDC developed breeding selections have been released as new cultivars in Costa Rica, Fiji, Korea, India, Indonesia, Malaysia and Taiwan. (author)

  18. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  19. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    Science.gov (United States)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  20. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    Science.gov (United States)

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  1. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    Science.gov (United States)

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  2. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    Science.gov (United States)

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  3. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  4. Soybean (Glycine max L. Response to Fungicides in the Absence of Disease Pressure

    Directory of Open Access Journals (Sweden)

    W. James Grichar

    2013-01-01

    Full Text Available Field studies were conducted during the 2010 and 2011 growing seasons along the Texas Upper Gulf Coast region to study the effects of fungicides on soybean disease development and to evaluate the response of four soybean cultivars to prothioconazole plus trifloxystrobin and pyraclostrobin. In neither year did any soybean diseases develop enough to be an issue. Only NKS 51-T8 responded to a fungicide treatment in 2010 while HBK 5025 responded in 2011. Prothioconazole plus trifloxystrobin increased NKS 51-T8 yield by 23% in 2010 while in 2011 the yield of HBK 5025 was increased 14% over the unsprayed check. No yield response was noted with pyraclostrobin on any soybean cultivar. Only prothioconazole + trifloxystrobin applied to either NKS 51-T8 or DP5335 in 2010 resulted in a net increase in dollars per hectare over the unsprayed check of the respective cultivar. In 2011, under extremely dry conditions, all fungicides with the exception of prothioconazole + trifloxystrobin applied to HBK 5025 resulted in a net decrease in returns over the unsprayed check.

  5. Effects of gamma ray irradiation on early growth of soybean (Glycine mac (L). Merrill)

    International Nuclear Information System (INIS)

    Lilik Harsanti; Yulidar

    2015-01-01

    Increase my in domestic soybean production is one of the government's program to reduce dependence on imported soybeans and soybean efforts to achieve self-sufficiency in 2015. An experiment has been conducted to study the effects of gamma ray irradiation of of 60 Cobalt on early growth of soybean seed. Variety Denna 2 varieties have been irradiated by gamma rays with 0 Gy, 200 Gy, 300 Gy, 400 Gy doses, and then planted in green house on Ps Jumat PAIR-BATAN. Plant growth from each doses is proved to be varied. From germination viability on the third day, the highest percentage of seedling with leaves is on 100 Gy dose (73.75%), and 7, 14 and 21 day the lowest is on dose 400 Gy. (author)

  6. Energy issues affecting corn/soybean systems: Challenges for sustainable production

    Science.gov (United States)

    Quantifying energy issues associated with agricultural systems, even for a simple two-crop corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) rotation, is not a simple task. It becomes even more complicated if the goal is to include all aspects of sustainability (i.e., economic, environmental, ...

  7. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  8. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Science.gov (United States)

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  9. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  10. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    on account of its exceptional food value. Nowadays of planted area, it comes fifth after wheat, rice, maize and barley. World soya production is twice as great as that of all other grain legumes. It is a legume able to fix the atmospheric nitrogen it needs for growth through the agency of specific (Rhisobium japonicum) bacteria (Haberlandt 1878, Kurnik et al. 1987, Bódis et al. 1988). Soya is an exelent preparatory crop. It improves soil structure, it leaves considerable residues of nitrogen for the following crop (Walter et al. 1970, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995): it is a first-class entry for winter wheat. It is harvested in good time to allow cultivations for winter wheat and also leaves the ground in good condition for direct drilling. It is a good break crop in cereal rotations, limiting the build-up of fungal diseases. Soya is a reliable crop, tolerant of temporary water excess, more tolerant of cold than sorghum at shooting and flowering and it is more drought resistant than maize. Soya is demanding crop and responds well to physical and chemical soil improvement. The grain of present-day varieties contains on average 40-43 % protein and 21 % oil in dry matter. The various uses for soybeans can be summarised thus: a; whole grain, ground or unground after cooking, for human and animal foods, b; oil in human nutrition, c; special oilseed cakes for human diet (low-fat flour) and on a larger scale, for animal nutrition as a complement to forages and cereals. In the subject of much soybean research has been to find means of improving yields (Norman 1963, Walter et al. 1970, Caldwell 1973, Hinson and Hartwig 1977, Mengel and Kirkby 1982, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995). Among the means for yield improvement fertilizers (nitrogen) occupy a prime position. The nitrogen is indispensable to the plant, being a yield and an essential constituent of amino acids, proteins and nucleic acids (Fauconnier 1986). Soya uses some 300

  11. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.).

    Science.gov (United States)

    Murakami, Masaharu; Ae, Noriharu

    2009-03-15

    Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1molL(-1) HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1molL(-1) HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions.

  12. Efeito do cultivo da soja na dinâmica da população bacteriana, em solos de cerrado Effects of soybean cultivation on the bacterial population dynamics in cerrado soils

    Directory of Open Access Journals (Sweden)

    JOÃO CARLOS PEREIRA

    2000-06-01

    Full Text Available Este trabalho teve por objetivo avaliar a influência do cultivo da soja sobre a dinâmica da população bacteriana, em dois solos de Cerrado do Estado de São Paulo, originalmente cobertos com Paspalum notatum (em Barretos e Brachiaria decumbens (em S��o Carlos. Nesses solos, a densidade da população de bactérias em geral variou de 398,1 x 10³ a 467,7 x 10³ e de 123 x 10³ a 218,8 x 10³ ufc (unidades formadoras de colônias/g de solo seco, respectivamente. O cultivo da soja, em ambos os solos, resultou em incrementos variados nos números de ufc/g de solo seco da população de bactérias em geral, das resistentes aos antibióticos estreptomicina e cloranfenicol, e de actinomicetos. A população de actinomicetos ocorreu no solo principalmente como esporos, e as variações das relações esporos/hifas entre os solos não-rizosférico e rizosférico não foram significativas. Os resultados evidenciam que o cultivo da soja influenciou de forma diferenciada a população desses solos.The effect of soybean cultivation on the population dynamics of the bacterial community was evaluated in two "Cerrado" soils of São Paulo State, Brazil. The experimental areas, in the vicinities of the cities of São Carlos and Barretos, were previously cultivated, respectively, with Paspalum notatum and Brachiaria decumbens. The bacterial population densities in these soils varied from 398.1 x 10³ to 467.7 x 10³ cfu (colony forming units and from 123 x 10³ to 218.8 x 10³ cfu/g of dried soil, respectively, in São Carlos and Barretos soils. Soybean cultivation in both soils resulted in increments in the total bacterial population density, in the actinomycetes population, and in the bacterial population resistant to the antibiotics streptomycin and chloramphenicol. Actinomycetes were present in these soils mainly as spores. Soybean cultivation did not alter the actinomycetes spores/hyphae ratio when comparing rhizospheric and non-rhizospheric soils

  13. CULTIVAR RELEASE-BRS 217 Flora: Early-maturing soybean cultivar

    Directory of Open Access Journals (Sweden)

    Plínio Itamar de Mello de Souza

    2008-01-01

    Full Text Available The soybean (Glycine max L. Merr. cultivar BRS 217 Flora was developed by Embrapa and released forproduction in the states of Goiás, Minas Gerais, Bahia, Mato Grosso and the Distrito Federal, Brazil. It is resistant to stemcanker, frog-eye leaf spot, bacterial pustule, and partially resistant to powdery mildew.

  14. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Directory of Open Access Journals (Sweden)

    Thiago J Nakayama

    Full Text Available Soybean (Glycine max is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic or total (anoxic oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790, unknown protein related to N-terminal protein myristoylation (Glyma06g03430, protein suppressor of phyA-105 (Glyma06g37080, and fibrillin (Glyma10g32620. RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980 indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements, and CRT/DREs (C-repeat/dehydration-responsive elements frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression

  15. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Science.gov (United States)

    Nakayama, Thiago J; Rodrigues, Fabiana A; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B C; Santiago, Thaís R; Formighieri, Eduardo F; Basso, Marcos F; Farias, José R B; Emygdio, Beatriz M; de Oliveira, Ana C B; Campos, Ângela D; Borém, Aluízio; Harmon, Frank G; Mertz-Henning, Liliane M; Nepomuceno, Alexandre L

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA

  16. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  17. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi

    2017-12-01

    Full Text Available Introduction Soybean (Glycin max L. is one of the most important oilseed crops in the world. It can provide oil and vegetable protein suitable for feeding humans as well as animals. The productivity Increasing of this crop in Iran has been the subject of continuous investigation over the past few years. It is well known that adequate water supply is considered as a very important factor to affect the accumulation of dry matter in the plant as well as vegetative growth of most crops. Irrigation is an important factor affecting soybean growth and yield and its related components. Exposing soybean plants to soil moisture stress at any phase of its life cycle may lead to a detrimental effect on growth, yield and its components. The methanol spraying can lead to increase in yield, expediting in maturity and reduction in drought stress impacts and water requirement of crops. Material and Methods The experiment was conducted as split plots based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture of Moghan, Iran, in 2011. Treatments included three levels of drought stress as follows irrigation after, 40 (control, 55 and 70 percentage of available soil moisture depletion as main plots, and four levels of methanol spraying including 0 (control, 7, 21 and 35 volumetric percentage as sub plots. The studied traits were included plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents. Statistical analysis was carried out using SAS version 9.1 software. Significant difference was set at p ≤ 0.05 by using Duncan’s multiple range test. Results and Discussion The results showed that the plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents as well as number of leaf per plant significantly affected by drought stress and methanol

  18. High Quality and High Yield Cultivation Technologies of Summer Soybean%夏大豆优质高产栽培技术

    Institute of Scientific and Technical Information of China (English)

    张智

    2014-01-01

    介绍了夏大豆优质高产栽培技术,主要包括种子选择及处理、播种、田间管理、肥水运筹、病虫草害防治等内容,以供种植户参考。%High yield cultivation technologies of summer soybean were introduced,including selection and treatment of seeds,sowing,field management,application of fertilizer and water,pest and disease control etc.,so as to provide reference for growers.

  19. SEED VIGOR TESTING OF SOME DOMESTIC SOYBEAN CULTIVARS (Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Luka Andrić

    2004-12-01

    Full Text Available Seed ageing is an important cause of low vigor and bad field emergence, especially in adverse seedbed conditions. Therefore, in this investigation, soybean seed vigor was tested by four laboratory tests (germination energy GE, standard germination SG, cold test CT, electrical conductivity EC and in field trial, as well (early planting dates Epd and optimal planting dates Opd. The soybean seed of 5 cultivars from Agricultural Institute Osijek, produced in the 3 years (1999., 2000., 2001. was used in the investigation. The seed was stored in a warehouse conditions for 6, 18 or 30 months prior to testing. Tested soybean seed showed significant differences in seed vigor influenced by seed age, seed treatment with fungicide (Vitavax 200 FF, cultivar and planting date. High quality seed with GE and SG over 85%,performed quite well in both planting dates, as well as seeds with the CT over 70% or with EC under 42 μScm-1g-1. On the contrary, considering seed with reduced vigor there is a very great possibility of reduced FE especially in Epd. However, seed treatment with fungicide and sowing in optimal seedbed conditions can significantly contribute to improvement of soybean seed performance and stand establishment. Correlation analyses showed that all tested seed vigor parameters were significantly connected (sign. level 99%. At early planting, the strongest correlation was established between the field emergence and CT (untreated seed, r=0.949** and for treated seed r=0.951** whereas in optimal planting date was between the field emergence and SG (for untreated seed r=0. 938** and for treated seed r=0.942**. Laboratory seed health testing showed significant differences in fungal disease intensity influenced by fungicide seed treatment, cultivar and seed age. Total seed infection and infection with Fusarium spp. was adversely correlated with all vigor parameters. All tested vigor parameters of soybean seed had influence on grain yield indirectly by

  20. 135 - 146 Effect of Different Levels of Soybean /Glycine Max

    African Journals Online (AJOL)

    USER

    sheep were blocked into six blocks of four animals based on initial body weight and ... sheep on natural pasture hay supplemented with 375 g/day soybean meal .... sheep were made to fast for 12 hours and slaughtered ...... Swedish University of Agricultural sciences. ... Synthesis of working papers, Soil Science Bulletin.

  1. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  2. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  3. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  4. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  5. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    Science.gov (United States)

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  6. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil.

    Science.gov (United States)

    Caetano, Jordana Moura; Tessarolo, Geiziane; de Oliveira, Guilherme; Souza, Kelly da Silva E; Diniz-Filho, José Alexandre Felizola; Nabout, João Carlos

    2018-01-01

    The impacts of global climate change have been a worldwide concern for several research areas, including those dealing with resources essential to human well being, such as agriculture, which directly impact economic activities and food security. Here we evaluate the relative effect of climate (as indicated by the Ecological Niche Model-ENM) and agricultural technology on actual soybean productivity in Brazilian municipalities and estimate the future geographic distribution of soybeans using a novel statistical approach allowing the evaluation of partial coefficients in a non-stationary (Geographically Weighted Regression; GWR) model. We found that technology was more important than climate in explaining soybean productivity in Brazil. However, some municipalities are more dependent on environmental suitability (mainly in Southern Brazil). The future environmental suitability for soybean cultivation tends to decrease by up 50% in the central region of Brazil. Meanwhile, southern-most Brazil will have more favourable conditions, with an increase of ca. 25% in environmental suitability. Considering that opening new areas for cultivation can degrade environmental quality, we suggest that, in the face of climate change impacts on soybean cultivation, the Brazilian government and producers must invest in breeding programmes and more general ecosystem-based strategies for adaptation to climate change, including the development of varieties tolerant to climate stress, and strategies to increase productivity and reduce costs (social and environmental).

  7. KARAKTER FENOTIP KEDELAI (Glycine max (L. Merr. HASIL POLIPLOIDISASI DENGAN KOLKISIN

    Directory of Open Access Journals (Sweden)

    Irma Nofitahesti

    2016-12-01

    Full Text Available Abstract - Soybean (Glycine max (L. Merr is one of the most important food commodity to fulfill the protein necessity in Indonesia. Although Indonesia has many prime soybean seeds, it cannot fulfill the whole need of soybean and always rely on soybean import. This problem can be solved by increasing the quality and productivity of prime soybean seed by polyploidization with colchicine. This research aimed to study ploidy level and phenotype characters of Anjasmoro soybean which was induced by colchicine. The phenotype characters in this research were stomata size, plant height, total pod in one plant, total seed in one plant, weight of 100 seeds, flowering time, and ripening time of soybean. The ploidy level was analyzed with flow cytometry methode. The data was analyzed with one way ANOVA and Duncan test in SPSS 22 program. The result of this research showed that Anjasmoro soybean did not successfully induced by colchicine using concentration 0.01%, 0.02%, 0.025%, 0.05%, 0.075%, 0.1%, 0.15%, 0.2%, and 0.25% with duration of treatment 6, 8, 10, 12, 16, 18, and 24 hours. The treatment with colchicine concentration 0.01% and 0.02% with duration of treatment 10 hours effected the increasing of stomata size, the plant height, and the weight of 100 seeds.Key words : Soybean, polyploidization, colchicine, phenotypeAbstrak - Kedelai (Glycine max (L. Merr merupakan salah satu komoditas pangan penting sebagai sumber protein nabati yang kebutuhannya selalu mengalami peningkatan di Indonesia. Meskipun saat ini Indonesia memiliki banyak varietas kedelai unggul, namun Indonesia masih belum mampu mencukupi kebutuhan kedelai nasional sehingga terus bergantung pada impor kedelai. Permasalahan ini dapat diatasi dengan meningkatkan kualitas dan produktivitas varietas kedelai unggul yang sudah ada melalui teknik poliploidisasi dengan kolkisin. Penelitian ini bertujuan untuk mengetahui derajat ploidi dan karakter fenotip pada kedelai Anjasmoro yang diinduksi dengan

  8. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  9. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  10. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    Institute of Scientific and Technical Information of China (English)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  11. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  12. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Science.gov (United States)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  13. Registration of Wyandot × PI 567301B soybean recombinant inbred line population

    Science.gov (United States)

    A soybean [Glycine max (L.) Merr] mapping population (Reg. No., SNL MAP) consisting of 357 F7-derived recombinant inbred lines (RILs) was jointly developed by the USDA-Agricultural Research Service and the Ohio Agricultural Research and Development Center (OARDC) in Wooster, OH. The population was ...

  14. APPEARANCE OF GEMA AND BURANGRANG SUPERIOR SOYBEAN BANTARWARU VILLAGE, GANTAR DISTRICT, INDRAMAYU

    Directory of Open Access Journals (Sweden)

    Tri Hastini

    2014-01-01

    Full Text Available Soybean is one of important food crop useful as feedstock of tofu and tempe, soy souce and other product. Domestic soybean production is still very low compared with the soybean needs. The amount of soybean import volume was greater than domestic production. New varieties implementation is one of the technology to increase production. Gema and Burangrang are soybean new varieties with high yield, however have not known by the farmers. Through farmer demfarm, the two varieties are introduced to the farmers. The cultivation done by no-tillage cultivation technology, certified seed, Rhizobium seed treatment, cow manure application, drainage, and by row spacing 40 cm × 15 cm. The agronomic characters observed are plant height, number of pods per plant, number of filled pods per plant, number of unfilled pod per plant, number of productive branches, yield and productivity of Gema and Burangrang. Data was analyzed using non-parametric statistica Mann-Whitney, and description statistica for yield. The result showed that Burangrang more superior than Gema in number of pod per plant, number of filled pods per plant and productivity.

  15. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    worldwide importance as food and market crop. This is mainly because of its high ... The application of inorganic P fertilizers is one of the possibilities for addressing the problem of low P availability. However ...... Soybean Research Conference held in Foz do Iguassu, Brazil, 1-5 March, 2004. Tong, X.J., X. Yan, Y.G. Lu, ...

  16. Irrigation, Planting Date And Intra-Row Spacing Effects On Soybean Grown Under Dry Farming Systems

    OpenAIRE

    Ismail, A. M. A. [احمد محمد علي اسماعيل; Khalifa, F. M.

    1987-01-01

    Two soybean cultivars (Glycine maxima (L) Merr.) differing in maturity period, leaf size and stem height were sown five times at fortnight intervals during the rainy season at four intra—row spacings under supplementary irrigation at one site and under rainfed conditions at another site in the central rainlands of Sudan. Cultivars responded differently to the system of production. Sowing date and moisture availability were the main factors controlling soybean production. The late maturing cul...

  17. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight

    Institute of Scientific and Technical Information of China (English)

    Xiang Lu; Yong-Cai Lai; Wei-Guang Du; Wei-Qun Man; Shou-Yi Chen; Jin-Song Zhang; Qing Xiong; Tong Cheng; Qing-Tian Li; Xin-Lei Liu; Ying-Dong Bi; Wei Li; Wan-Ke Zhang; Biao Ma

    2017-01-01

    Cultivated soybeans may lose some useful genetic loci during domestication.Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits.In this study,through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44,and mapping of quantitative trait loci for seed weight,we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size.PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes.We found that PP2C-1 is associated with GmBZR1,a soybean ortholog of Arabidopsis BZR1,one of key transcription factors in brassinosteroid (BR) signaling,and facilitate accumulation of dephosphorylated GmBZR1.In contrast,the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function.Moreover,we showed that GmBZR1 could promote seed weight/size in transgenic plants.Through analysis of cultivated soybean accessions,we found that 40% of the examined accessions do not have the PP2C-1 allele,suggesting that these accessions can be improved by introduction of this allele.Taken together,our study identifies an elite allele PP2C-1,which can enhance seed weight and/or size in soybean,and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.

  18. Induced mutation for the improvement of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Asencion, A.B.; Lapade, A.G.; Grafia, A.O.; Barrida, A.C.; Veluz, A.M.; Marbella, L.J.

    2004-01-01

    A study on the use of gamma radiation in the induction of mutations in eight varieties of soybean was conducted. The radiosensitivity of the seeds of both local and introduced soybean varieties was determined. The effects of gamma radiation in the M1 generation were evaluated. Percentage germination was not affected by doses of 200 and 250 Gy gamma radiation in all the eight soybean varieties. No significant differences in seedling height were observed at 200 Gy and the control except for the 250 Gy in BPI-Sy4, PSB-Sy4 and PSB-Sy5. In the Vietnamese varieties, significant differences in seedling height were obtained in doses of 200, 250 Gy and the control except for the variety AKO 6. There was significant difference in plant height of mature plants between the control and treatment dose of 250 Gy in varieties DT 95 and AKO 6. Likewise, significant differences in mature plant height were noted between the control and those at 250 Gy in local varieties BPI-Sy4, PSB-Sy5 and NSIC-Sy8. The number of days to flower was not affected by gamma radiation in both the local and introduced varieties. There were significant differences in the number of pods per plant between the control and a low dose of 200 Gy in Vietnamese variety DT 96 and the local varieties PSB-Sy4, PSB-Sy5 and NSIC-Sy8. The 3 types of chlorophyll mutation induced by gamma rays in the local varieties were: chlorina, striatia,and spotted yellow. Only chlorina mutant was induced in the introduced varieties. Desirable mutants that are early and high yielding were selected. Results of the drought tolerance tests indicated that the number of days to flowering of the control and 8 varieties was not affected by the duration of irrigation withdrawals 20,30,40 and 50 days after planting. Significant differences in seed weight among the different varieties were noted only in 20 and 30 day irrigation withdrawal treatment. When the effects of the different treatments were analyzed on a per variety bases, some of the

  19. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  20. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  1. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  2. Apex simulation: environmental benefits of agroforestry and grass buffers for corn-soybean watersheds

    Science.gov (United States)

    The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...

  3. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  4. The effects of water stress on the chemical composition of soybean ...

    African Journals Online (AJOL)

    The response of soybean [Glycine max (L) Merrill] cv. Akiyoshi to three moisture levels at three growth stages was investigated in a glasshouse experiment. Percent leaf nitrogen was reduced by water deficit at late flowering and early podding but increased after rewatering. This parameter was not affected by water deficit at ...

  5. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading.

    Science.gov (United States)

    Liu, Jiang; Yang, Cai-qiong; Zhang, Qing; Lou, Ying; Wu, Hai-jun; Deng, Jun-cai; Yang, Feng; Yang, Wen-yu

    2016-09-15

    The profiles of isoflavone and fatty acids constitute important quality traits in soybean seeds, for making soy-based functional food products, due to their important contributions to the flavor and nutritional value of these products. In general, the composition of these constituents in raw soybeans is affected by cultivation factors, such as sunlight; however, the relationship of the isoflavone and fatty acid profiles with cultivation factors is not well understood. This study evaluated the isoflavone and fatty acid profiles in soybeans grown under a maize-soybean relay strip intercropping system with different row spacings, and with changes in the photosynthetic active radiation (PAR) transmittance. The effects of PAR on the isoflavone and fatty acid contents were found to be quadratic. Appropriate intercropping shading may reduce the bitterness of soybeans caused by soy aglycone and could improve their fatty acid composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water absorption, cooking properties and cell structure of gamma irradiated soybeans

    International Nuclear Information System (INIS)

    Kang, I.J.; Byun, M.W.

    1996-01-01

    Gamma irradiation was applied to soybean(Glycine max.), Hwangkeum, at dose levels of 0, 5, 10 and 20 kGy to improve the physical properties of soybeans. The time to reach a fixed moisture content was reduced depending on the increment of soaking temperatures and applied irradiation dose levels. Irradiation at 5~20 kGy resulted in reduction in soaking time of the soybeans by about 3~6 hrs at soaking temperature of 20°. The degree of cooking of soybeans in boiling water was determined by measuring the maximum cutting force of cotyledon. The cutting force to reach complete cooking was about 145g/g. Irradiation at 5~20 kGy resulted in a reduction of cooking time of soybeans by 55~75% as compared to the nonirradiated soybean. In electron microscopic observation of seed coat inner, the parenchyma of nonirradiated soybean showed tight fibrillar structure, whereas that of irradiated soybeans showed loosened and deformed structure. The microstructure of compressed cells and cotyledon epidermis was also deformed by gamma irradiation. In subcellular structure of cotyledon, the roundness of protein body was deformed and changed to spike shape at 20 kGy. Also, the size of lipid body decreased as the irradiation dose levels increased

  7. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  8. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  9. Effect of the ingestion of soybeans derivatives (Glycine max) on rat thyroid

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1978-01-01

    Soybean derivatives were tested in rat through acute experiments of 3 to 24 hours and two semichronic experiments of 16 and 29 days. The acute essay were realized with Total Extract (TEs) obtained from Defated Soybean Flour by precipitation in an aqueous medium and posteriorly in acetone. The percentage of iodine ( 131 I) uptake by 100 gr. of rat was decreased by the Total Autoclaved Extract administered by gastric tube after 6 and 24 hours. The Total Extract, without previous autoclaving showed effect on the gland after 6 hours and lost its activity 24 hours after its administration. TEs obtained from Comercial Soybean Products as: Proteic Concentrate, Tosted Flour and Milk also provoked a decrease in percentage of iodine ( 131 I) uptake after 24 hours by 100 gr. of rat. The semichronic experiments were realized with Soybean fraction products, which were incorporated to experimental diet. The first of 16 days, showed a reduction in percentage of iodide ( 131 I) uptake by 10mg of thyroid and an increase of the triiodothyronine-binding capacity of rat serm. In the second of 29 days an increase was observed in the percentage of iodine ( 131 I) uptake by 10mg of thyroid, caused by the factor in study and no alteration of seric hormones. The thyroid hormones and their precursors were also assayed and an increase of monoiodotyrosine (MIT), triiodothyronine (T3) and thyroxine (T4) was noted, as well as a decrease of diiodotyrosine (DIT) and inorganic iodine. An increase in the MIT/DIT ratio and decrease in T 3 /T 4 ratio, were observed. In preliminary physicochemical tests, the fraction sephadex G-25 showed a positive reaction for ninhidrin, Molish and flavenoids [pt

  10. Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere.

    Science.gov (United States)

    Sibponkrung, Surachat; Kondo, Takahiko; Tanaka, Kosei; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung; Yoshida, Ken-Ichi

    2017-11-30

    Bacillus velezensis strain S141 is a plant growth-promoting rhizobacterium isolated from soybean ( Glycine max ) rhizosphere that enhances soybean growth, nodulation, and N 2 fixation efficiency by coinoculation with Bradyrhizobium diazoefficiens USDA110. The S141 genome was identified to comprise a 3,974,582-bp-long circular DNA sequence encoding at least 3,817 proteins. Copyright © 2017 Sibponkrung et al.

  11. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    Science.gov (United States)

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  13. Polygenic Inheritance of Canopy Wilting in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may l...

  14. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  15. 関東地域の現地水田転換畑ほ場におけるダイズへの地下水位制御システム(FOEAS)と不耕起狭畦栽培の導入効果

    OpenAIRE

    島田, 信二; 前川, 富也; 濱口, 秀生; 若杉, 晃介; 藤森, 新作

    2017-01-01

    We attempted to clarify the effects of water table control by farm-oriented enhancement for aquatic system (FOEAS) and non-tillage cultivation on seedingefficiency, growth, yield, and seed component of soybean (Glycine max (L.) Merrill) grown on farmer’s fields in Tsukuba, Ibaraki.The experiment was performed for five years (2007- 2011) by using three cultivation methods: control field using conventional rotary seeding (CC), FOEAS field with conventional rotary seeding (FC), and FOEAS field w...

  16. Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River

    NARCIS (Netherlands)

    Li, Y.H.; Zhang, C.; Smulders, M.J.M.; Li, W.; Ma, Y.S.; Xu, Qu; Chang, R.Z.; Qiu, Li-Juan

    2013-01-01

    Soybean (Glycine max) was domesticated in China from its wild progenitor G. soja. The geographic region of domestication is, however, not exactly known. Here we employed the directional evolution of SSR (microsatellite) repeats (which mutate preferentially into longer alleles) to analyze the

  17. Study of the Quantitative and Qualitative Traits of Four Soybean (Glycine max L. Cultivars under Different Sowing Dates in Shahrekord Region

    Directory of Open Access Journals (Sweden)

    H. Gharakhani Beni

    2011-05-01

    Full Text Available To study the effect of sowing date on quantitave and qualitative traits of soybean in Shahrekord region, an experiment was performed as split plot based on randomized complete blocks design with four replications at Agricultural and Natural Resources Research Centre of Chaharmahal-va-Bakhtiari, Shahrekord, in 2008. Four sowing dates (May 5, May 20, June 4 and June 19 and four varieties (M9, M7, L17 and Williams were selected as main and sub plots, respectively. Results showed that maximum number of pods per plant, seeds per plant and biological yield were observed for M9 cultivar at 20 May sowing date. This sowing date had also the highest seed weight, oil percent and biological yield comared to other dates. The maximum protein percent was observed in June 4 (37.6% and June 19 (38.4% sowing dates. There was no significant difference between cultivars for oil and protein percent. There was no significant difference between three planting dates of May 5, May 20 and June 4 for seed yield. But minimum seed yield belonged to June 19 sowing date. In general, the M9 cultivar, with 2896.1 kg/ha seed yield, and then M7 cultivar with 2597.7 kg/ha seed yield, are recommendable as suitable soybean cultivars for cultivation in Shahrekord region.

  18. Alternative substrates for higher mushrooms mycelia cultivation

    Directory of Open Access Journals (Sweden)

    TETIANA KRUPODOROVA

    2015-12-01

    Full Text Available Cultivation of 29 species of higher mushroom mycelia on alternative substrates – wastes of Ukrainian oil-fat industry, has been investigated. The amount of mushroom mycelia obtaining on 12 investigated substrates varied significantly, from 1.0 g/L to 22.9 g/L on the 14th day of cultivation. The superficial cultivation adopted in this study allows for easy to choose appropriate medium (substrate for mycelia production. Alternative substrates (compared to glucose-peptone-yeast medium were selected for all studied species, from soybean cake – most suitable for the mycelial growth of 24 species, to walnut cake − suitable only for 2 species. The utilization of substrates has been evaluated by biological efficiency. The best index of biological efficiency varied from 19.0% to 41.6% depending on the mushroom species. It was established high biological efficiency of mycelia cultivation on substrates: wheat seed cake – Pleurotus djamor, Lyophyllum shimeji, Crinipellis schevczenkovi, Phellinus igniarius, Spongipellis litschaueri; oat seed cake – Ganoderma applanatum and G. lucidum; soybean cake – Hohenbuehelia myxotricha, Trametes versicolor, Morchella esculenta, Cordyceps sinensis, C. militaris, and Agrocybe aegerita; rape seed cake – Auriporia aurea; camelina seed cake – Fomes fomentarius. The cultivation of these species are perspective as a biotechnological process of agricultural wastes converted into mycelia, which could be used in different forms of products with therapeutic action: powder or tablets nutraceuticals or ingredients for functional foods.

  19. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    Science.gov (United States)

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  20. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Naringenin inhibits the growth and stimulates the lignification of soybean root

    Directory of Open Access Journals (Sweden)

    Graciene de Souza Bido

    2010-06-01

    Full Text Available The flavanone naringenin, an intermediate in flavonoid biosynthesis, was tested for its effect on root growth, phenylalanine ammonia-lyase (PAL and peroxidase (POD activities, as well as phenolic compounds and lignin contents in soybean (Glycine max L. Merrill seedlings. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0, with or without 0.1 to 0.4 mM naringenin in a growth chamber (25°C, 12-h photoperiod, irradiance of 280 µmol m-2 s-1 for 24 h. Inhibitory effects on root growth (length, weight, cell viability, PAL and soluble POD activities were detected after naringenin treatments. These effects were associated with stimulatory activity of the cell wall-bound POD followed by an increase in the lignin contents, suggesting that naringenin-induced inhibition in soybean roots could be due to the lignification process.Os efeitos de naringenina, um intermediário da biossíntese de flavonóides, foram avaliados sobre o crescimento das raízes, as atividades da fenilalanina amônia liase (PAL e peroxidases, bem como sobre os teores de compostos fenólicos e de lignina em plântulas de soja (Glycine max L. Merrill. Plântulas de três dias foram cultivadas em solução nutritiva de Hoagland, meia-força (pH 6,0, contendo ou não, naringenina 0,1 a 0,4 mM, em uma câmara de germinação (25°C, fotoperíodo de 12 h, 280 µmol m-2 s-1 durante 24 h. Efeitos inibitórios no crescimento das raízes (comprimento, massa e viabilidade celular e nas atividades da PAL e POD solúvel foram constatados após os tratamentos com naringenina. Estes efeitos foram associados com atividade estimulatória da POD ligada à parede celular, seguido por aumento nos teores de lignina, sugerindo que a inibição do crescimento das raízes pode ser devido ao processo de lignificação.

  2. Search for Nodulation and Nodule Development-related cystatin genes in the genome of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Songli Yuan

    2016-10-01

    Full Text Available Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97~245 amino acid residues, different isoelectric points (pI and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS - specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16 was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to

  3. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  4. Effects of spent engine oil contamination on soybean (Glycine max L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Research Farm to determine the effect of spent auto-engine oil on soil and soybean ... importance and diverse domestic usage, nevertheless, ... 3 % equivalent to 0, 10, 000, 20,000 and 30,000 mg ... moisture content to obtain the yield. ... (Table 1) revealed that the texture of the ..... cowpea in two contrasting soil types from.

  5. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, Pablo J. [Grupo Materiales Polimericos, INIFTA - Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (UNLP-CONICET), Diag. 113 y 64, CC 16 Suc 4, 1900 La Plata (Argentina); Porta, Atilio A. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina); Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)], E-mail: aporta@quimica.unlp.edu.ar; Ronco, Alicia E. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)

    2008-11-15

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas.

  6. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    International Nuclear Information System (INIS)

    Peruzzo, Pablo J.; Porta, Atilio A.; Ronco, Alicia E.

    2008-01-01

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas

  7. Mycorrhizal association in soybean and weeds in competition

    Directory of Open Access Journals (Sweden)

    Cíntia Maria Teixeira Fialho

    2016-04-01

    Full Text Available The purpose of this study was to evaluate the effects of mycorrhizal association on the interference of Bidens pilosa, Urochloa decumbens and Eleusine indica on soybean culture in two conditions: a plants competing without contact with roots of another species; b with contact between roots. At 60 days after planting, growth, nutrient accumulation and mycorrhizal colonization of soybean and weeds were evaluated. The contact between roots of soybean plant and weed species increased the negative interference effects for both species, with less growth and nutrient accumulation. With the individualization of roots, higher competition occurred for soil resources up to 60 days of coexistence between species. In competition with soybean, Bidens pilosa and Urochloa decumbens stood out in accumulation of most nutrients without differing from when cultivated in monocultivation. The increase of the soybean mycorrhizal colonization was 53, 40 and 33% when in competition with Urochloa decumbens, Eleusine indica and Bidens pilosa species, respectively. A positive interaction occurred for soybean mycorrhizal colonization and competing plants irrespective of weed species or root contact.

  8. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  9. Laboratory evaluations of Lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidoptera:Noctuidae) larvae

    Science.gov (United States)

    Two anthranilic diamide insecticides, chlorantraniliprole and cyantraniliprole, were evaluated as soybean, Glycine max L., seed treatments for control of fall armyworm, Spodoptera frugiperda (J. E. Smith). Bioassays were conducted using 2nd instar larvae and plants from both field and greenhouse gr...

  10. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins

    2008-01-01

    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  11. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  12. Weed competition with soybean in no-tillage agroforestry and sole-crop systems in subtropical Brazil

    Science.gov (United States)

    Weed competition on soybean [Glycine max (L.) Merr.] growth and yield was expected to be different when managed in an agroforestry system as compared with solecropping without trees. Therefore agronomic practices to control weeds might need to be modified in agroforestry systems. We analyzed weed co...

  13. Review on resistance to soybean mosaic virus in soybean%大豆抗大豆花叶病毒研究进展

    Institute of Scientific and Technical Information of China (English)

    王大刚; 智海剑; 张磊

    2013-01-01

    Soybean mosaic virus disease caused by soybean mosaic virus (SMV) is the major virus disease worldwide in soybean (Glycine max (L.) Merr.),resulting in substantial yield losses and significant seed quality deterioration.This paper reviewed the research advances on resistance to SMV in soybean,which includes screening of resistant germplasm,studying on inheritance of resistance,fine mapping and marker-assisted selection of resistance genes,and some resistant candidate genes to SMV in soybeans.Future research directions of SMV resistance are proposed.The summary of related study could assist molecular breeding and functional analysis of resistance genes to SMV in soybean.%由大豆花叶病毒(soybean mosaic virus,SMV)引起的大豆花叶病毒病是一种世界性大豆病害,严重地影响了大豆的产量和品质.本文介绍了国内外大豆抗SMV的最新研究进展,主要包括:抗源筛选、抗性遗传、抗性基因的精细定位和分子标记辅助选择以及大豆对SMV候选抗性基因的研究等,并对该领域的研究进行了初步展望,以期为大豆抗SMV分子育种和抗性候选基因的功能研究提供参考.

  14. Microbial community analysis of field-grown soybeans with different nodulation phenotypes.

    Science.gov (United States)

    Ikeda, Seishi; Rallos, Lynn Esther E; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-09-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.

  15. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    Science.gov (United States)

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybean roots. Fusarium solani was stably associated with nodulated (Nod+ and Nod++) roots and less abundant in Nod− soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod−, Nod+, or Nod++). The analysis of root samples indicated that the microbial community in Nod− soybeans was more similar to that in Nod++ soybeans than to that in Nod+ soybeans. PMID:18658280

  16. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    Science.gov (United States)

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  17. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    Science.gov (United States)

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  18. Effect of soybean supplementation on the memory of alprazolam-induced amnesic mice

    Directory of Open Access Journals (Sweden)

    Nitin Bansal

    2010-01-01

    Full Text Available Soybean, Glycine max (L. Merr. (Leguminoseae, is known as golden bean. It contains vegetable protein, oligosaccharide, dietary fiber, vitamins, isoflavones and minerals. Earlier studies have demonstrated a cholesterol lowering, skin protective, antitumour, antidiabetic and antioxidative potential of soybean. Soy isoflavones are also utilized as estrogen replacement therapy in postmenopausal women. The present study was undertaken to investigate the effect of soybean on memory of mice when consumed along with diet. Soybean was administered chronically for 60 consecutive days as three soybean diets viz. Soy2, Soy5, Soy10. These diet contains soybean in normal diet at concentration of 2%, 5%, 10% w/w respectively. Passive avoidance paradigm and elevated plus maze served as exteroceptive behavioral models for testing memory. Alprazolam (0.5 mg/kg; i.p. induced amnesia served as interoceptive behavioral model. The administration of soybean significantly reversed alprazolam-induced amnesia in a dose-dependent manner as indicated by the increased step down latency of mice using passive avoidance paradigm and increased transfer latency using elevated plus maze. Theses results suggest that consumption of soybean in diet may not only improve memory but also reverse the memory deficits, owing to its multifarious activities. It would be worthwhile to explore the potential of this nutrient in the management of Alzheimer′s disease.

  19. Enhancement of soybean (Glycine max L.) growth by bio-fertilizers of Nostoc muscorum and Nostoc rivulare

    International Nuclear Information System (INIS)

    Sholkamy, E.N.; Komy, H.M.E.

    2015-01-01

    In the present study the nitrogenase activity of Nostoc muscorum and Nostoc rivulare was evaluated in vitro; the test showed that Nostoc muscorum and Nostoc rivulare have the ability to fix nitrogen. In a pot experiment under field conditions, the results of the present study showed that inoculation of the soybean plant with Nostoc muscorum and Nostoc rivulare, either alone or in combination with N-fertilizer at 50 and 100 kg N/ha, caused a significant increase in the growth of these plants, as reflected in plant height, leaf area, weight of plant as well as the legume weight of soybeans. The combination of biofertilization and N-fertilization, especially at 100 kg N/ha, had more effect on both the growth of soybeans and nitrogenase activity compared to biofertilization alone. Nostoc muscorum and Nostoc rivulare are a promising biofertilizers for achieving an efficient association between N2 fixing cyanobacteria and soybeans; and thus enhancement of the growth. (author)

  20. 不同大豆品种生理特性及产量的比较研究%Comparative Study of Different Soybean ( Glycine max) Varieties' Physiological Characteristics and Yield

    Institute of Scientific and Technical Information of China (English)

    章彦俊; 常宝; 董建新

    2012-01-01

    [目的]比较研究不同大豆(Glycine max)品种各生育期生理特性及产量,筛选出适合于河北张家口地区种植的高产品种,采用各种调控措施,实现大豆高产优质生产.[方法]14个供试大豆品种分别为东北地区引种的长农18、绥农14、长农16、吉农24、黑农38、吉农15、吉育47、吉农6、吉林30、吉农23、吉农1号、吉农12、吉农14和206.测定苗期、结英期、鼓粒期和成熟期株高、叶面积指数、叶绿素含量,并统计产量,并分析4个时期株高、叶面积指数、叶绿素含量与产量的相关性.[结果]吉林30的产量最高,达到16.839 kg/小区,206次之,为13.989.kg/小区.不同大豆品种叶面积指数在结英期和鼓粒期与产量的相关系数较大,在鼓粒期达到显著或极显著正相关;结英期和鼓粒期的叶绿素含量与产量呈显著或极显著正相关;鼓粒期的株高与产量呈显著正相关.[结论]该研究筛选出了适合于张家口地区种植的高产品种吉林30和206,同时阐明了不同生理生化指标和产量的关系,为栽培技术的合理利用及生态育种指标的有效选择提供了理论依据.%[Objective] The purpose was to comparatively study different soybean varieties' physiological characteristics and yield during ever-y growth period, screen high yield soybean varieties suit for planting in Zhangjiakou Region of Hebei, and realize its high yield and good quality production by all kings of controlling measures. [Method] Fourteen soybeans introduced from Northeast Region were Changnong18, Sui nong14 , Changnong16, Jinong 24, heinong38, Jinong 15, JiYu 47, Jinong6, Jilin 30, Jinong 23, Jinong 1, Jinong 12, Jinong 14 and 206 respectively. Plant height, leaf area index, chlorophyll content at seedling stage, pod setting stage, seed filling stage and mature stage were determined and yield was counted, then their corelation were analyzed. [Method] In fourteen soybeans, Jilin 30' s yield was the

  1. Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Santos, L.S.; Catharino, R.R.; Eberlin, M.N.; Tsai, S.M.

    2006-01-01

    The crude methanolic extracts of a single bean from samples of organic, natural or genetically modified (GM) soybeans [Glycine max. (Merrill) L.] were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS). These extracts, containing the most polar natural products of soybeans (free aglycones, monoglucosides, diglucosides and esters including isoflavones and flavones) provide characteristic fingerprinting mass spectra owing to different proportions or sets of components. Spectra distinctiveness is confirmed by chemometric multivariate analysis of the ESIMS data, which place the three-types of beans into well-defined groups. When ESI-MS is applied, these polar components constitute therefore unique chemotaxonomic markers able to provide fast soybean typification. (author)

  2. Influence of Agricultural Practices on Biotic Production Potential and Climate Regulation Potential. A Case Study for Life Cycle Assessment of Soybean (Glycine max in Argentina

    Directory of Open Access Journals (Sweden)

    Roxana Piastrellini

    2015-04-01

    Full Text Available The aim of this study is to determine the impact potential of land use on biotic production and climate regulation in the agricultural phase of a product, taking into account the varied soil and crop management. Land occupation and transformation impacts of soybean production in Argentina for different agricultural systems are evaluated. The results indicate that the magnitude of occupation and transformation impacts is considerably reduced by implementing no-tillage instead of conventional tillage. Nevertheless, the methodologies adopted are unable to show any of the expected differences between rainfed or irrigation systems, crop sequences and delays in seed-planting, due to failures in the specific characterization factors. On the other hand, an uncertainty is demonstrated by the results associated with the choice of regeneration time corresponding to the different ecoregions over which soybean cultivation extends across the country. One of the recommendations that comes to the fore is to consider in the characterization factors increments in the soil organic carbon stock and in the mineralization rates, associated with the presence of the preceding crop and the greater availability of water in the soil of irrigated systems.

  3. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  4. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    Science.gov (United States)

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  5. The Effect of using Quail Litter Biochar on Soybean (Glycine max L. Merr. Production Efecto del uso de Biocarbón de Lecho de Codorniz en la Producción de Soya (Glycine max L. Merr.

    Directory of Open Access Journals (Sweden)

    Tawadchai Suppadit

    2012-06-01

    Full Text Available Biochars can be used as soil amendments for improving soil properties and crop yield. The objective of this research was to study the plant growth, yield, yield components, and seed quality, including nutrients and heavy metals (Pb, Cd, and Hg, in the soybean plant (Glycine max L. Merr. and soil. The experiment was conducted from September 2010 to January 2011 in a greenhouse located in the Dan Khun Thot District, Nakhon Ratchasima Province, Thailand. The research comprised six treatments with four replicates in a completely randomized design. Quail litter biochar (QLB at rates of 0, 24.6, 49.2, 73.8, 98.4 and 123 g per pot mixture were provided to soybean cv. Chiang Mai 60. The results showed that QLB could be used as a soil fertility improvement and amendment for soybean production with an optimum rate of 98.4 g per pot mixture, which gave the best performance in terms of the number of nodes, height, DM accumulation, total yield, and seed quality. After the experiment, the nutrient contents in the soil increased as the QLB content increased, but the heavy metal residues in the leaves and seeds did not change. However, QLB at levels higher than 98.4 g per pot mixture is not advisable because QLB is alkaline in nature, which may affect soil pH.El biocarbón puede usarse como enmienda para mejorar las propiedades del suelo y el rendimiento del cultivo. El objetivo de esta investigación fue el estudio del crecimiento de la planta, rendimiento y sus características, así como la calidad de semilla, incluyéndose el estudio de nutrientes y metales pesados (Pb, Cd y Hg en la planta de soya (Glycine max L. Merr. y el suelo. La experimentación se realizó en condiciones de invernadero en el distrito de Dan Khun Thot, provincia de Nakhon Ratchasima, Tailandia, entre septiembre del 2010 y enero del 2011. La investigación constó de seis tratamientos con cuatro repeticiones en un diseño completamente al azar. Se administró biocarbón de lecho de

  6. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    OpenAIRE

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybe...

  7. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  8. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  9. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Science.gov (United States)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  10. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W

    2009-03-01

    Full Text Available Abstract Background A single Glycine max (soybean genotype (Peking reacts differently to two different populations of Heterodera glycines (soybean cyst nematode within the first twelve hours of infection during resistant (R and susceptible (S reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix® soybean GeneChip® were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2 prior to their infection of Peking. Other analyses focused on the infective L2 at 12hours post infection (i-L212h, and the infective sedentary stages at 3days post infection (i-L23d and 8days post infection (i-L2/L38d. Results Differential expression and false discovery rate (FDR analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8 identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and β-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein. Conclusion These analyses identify a genetic expression signature for these two populations both prior to and subsequently

  11. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats.

    Science.gov (United States)

    Byun, Jae Soon; Han, Young Sun; Lee, Sang Sun

    2010-04-01

    Soy isoflavones have been reported to decrease the risk of atherosclerosis in postmenopausal women. However, the effects of dietary consumption of soybean have not been explored. In this study, we evaluated the effects of consuming yellow soybeans, black soybeans (Glycine max), or sword beans (Canavalia gladiate) on lipid and oxidative stress levels in an ovariectomized rat model. Forty-seven nine-week-old female rats were ovariectomized, randomly divided into four groups, and fed one of the following diets for 10 weeks: a diet supplemented with casein (NC, n = 12), a diet supplemented with yellow soybean (YS, n = 12), a diet supplemented with black soybean (BS, n = 12), or a diet supplemented with sword bean (SB, n = 11). Plasma triglyceride (TG) levels in the BS and SB groups were significantly lower than that in the NC group. Notably, the BS group had significantly lower plasma total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels than the other groups. Hepatic total lipid levels were significantly lower in the YS and SB groups, and cholesterol levels were significantly lower in the SB group than in the NC group. Superoxide dismutase (SOD) and catalase (CAT) activities were significantly higher in the groups fed beans compared to the NC group. Hepatic thiobarbituric acid reactive substances (TBARS) levels were also significantly lower in the BS and SB groups than the NC group. In conclusion, our results suggest that consumption of various types of beans may inhibit oxidative stress in postmenopausal women by increasing antioxidant activity and improving lipid profiles. Notably, intake of black soybean resulted in the greatest improvement in risk factors associated with cardiovascular disease.

  12. The Effectiveness of Biofertilizer on Plant Growth Soyb Ea N “Edam Am E” (Glycin Max)

    OpenAIRE

    Sudiarti, Diah

    2017-01-01

    This study aimed at determining the effectiveness of biofertilizer with different concentrations on plant growth of soybean “edamame” (glycin max). Biofertilizer in this study consists of microbial consortia (lactobacillus, pseudomonas, bacillus, saccharomyces, rhizobium, azotobacter, azospirillum, and cellulomonas). The treatment consists of 3 biofertilizer concentrations (25%, 50%, dan 75%), as well as the negative control and positive control (100% chemical fertilizer equivalent 5g/plant)....

  13. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; MacDonald, Margaret H; Kabir, Sara; Youssef, Reham M; Hosseini, Parsa; Brewer, Eric

    2013-05-01

    During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.

  14. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  15. Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans

    Science.gov (United States)

    Zong, Yunbing; Yao, Shengkun; Crawford, Gary W.; Fang, Hui; Lang, Jianfeng; Fan, Jiadong; Sun, Zhibin; Liu, Yang; Zhang, Jianhua; Duan, Xiulan; Zhou, Guangzhao; Xiao, Tiqiao; Luan, Fengshi; Wang, Qing; Chen, Xuexiang; Jiang, Huaidong

    2017-02-01

    When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P.

  16. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  17. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    Science.gov (United States)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  18. Successive Cultivation of Soybean/Corn Intercropped with Urochloa brizantha topdressed with Nitrogen

    Directory of Open Access Journals (Sweden)

    Danilo Gomes Fortes

    2016-01-01

    Full Text Available ABSTRACT Corn intercropped with Urochloa brizantha (Syn, Brachiaria brizantha has been indicated as a suitable alternative management practice for rational land use in crop-livestock production systems in the Cerrado region of Brazil. An experiment was carried out in Maracaju, MS, Brazil to evaluate the effect of sequences of soybean/second-crop corn systems intercropped with Urochloa brizantha and the effects of forms of nitrogen on soil chemical and physical properties. A randomized block experimental design was used with four replications; treatments were in a 2 × 4 factorial arrangement with two systems of crop management: second-crop corn intercropped with Urochloa brizantha, and monoculture of second crop corn; and four forms of topdressing N: urea, urea + ammonium sulfate, ammonium sulfate, and no N supply. The following chemical properties were evaluated: soil organic matter and exchangeable K contents, cation exchange capacity, base saturation, and K saturation; as well as the physical properties: soil bulk density and aggregate stability. Crop residue cover and agronomic traits of soybean were also assessed. Intercropping induced significant differences in crop residue cover, plant height, soybean yield, stand, 100-seed weight, soil organic matter, exchangeable K, and K saturation in the exchange complex. There was no significant effect of the crop sequences on soil bulk density and mean weight and geometric mean diameter of water-stable aggregates. No significant effect of forms of N was observed on any chemical or physical properties, or on those related to soybean development.

  19. Residualidad del ácido sulfúrico aplicado como enmienda, y calculado de acuerdo con la CIC y con la suma de bases, sobre la estabilidad de los agregados en dos suelos salino-sódicos de la zona de Palmaseca, Valle del Cauca Residualidad del acido sulfúrico aplicado como enmienda, y calculado de acuerdo con la c 1c y con la suma de bases, sobre la estabilidad de los agregados en dos suelos salino-sódicos de la zona de palma seca, Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Charry Calle Jairo

    1988-12-01

    Full Text Available Los dos suelos salino-sódicos se cultivaron sucesivamente con algodón (Gossypium hirsutum var. Gossica P-21, soya (Glycine max var. ICA- Tunía y fríjol (Phaseolus vulgaris var. ICA- Gualí. La estabilidad de los agregados para los suelos, tratamientos y cultivos, se comparó calculando el área localizada debajo de cada una de las curvas aditivas porcentuales de los agregados, entre los parámetros menor de 025 mm y 0.42-0.84 mm.Residuality of sulfuric acid applied as amendment and calculated according to CEC and Sum of Exchangeable Bases (Ca, Mg, Na and K on the aggregate stability of two saline-sodic soils from Palmaseca zone , Cauca Valley, successively cultivated in cotton (Gossypium hirsutum var. Gossica P- 211. soybean (Glycine max var. ICA Tunía and bean (Phaseolus vulgaris var. ICA-Gualí was studied. The aggregate stability for two soils, treatments and crops, was compared by calculating the area located below each one of the accumulative percentage curves of aggregates, between less than 025 mm and 0.42-084 mm parameters. The results showed: A percent increase up to 56% in the aggregate stability of both soils, in treatments calculated according to CEC cultivated in soybean, and Sum of Exchangeable Bases cultivated in bean. The characteristic roots do not have a pronounced effect on aggregation. The initial and final chemical analysis of soils cultivated in cotton, bean and soybean showed in general, a 90 to 98% reductions of levels of sulphate, exchangeable sodium and exchangeable sodium percentage.

  20. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host.

    Science.gov (United States)

    Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang

    2018-06-01

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Effects of particle size and heating time on thiobarbituric acid (TBA) test of soybean powder.

    Science.gov (United States)

    Lee, Youn-Ju; Yoon, Won-Byong

    2013-06-01

    Effects of particle size and heating time during TBA test on the thiobarbituric acid reactive substance (TBARS) of soybean (Glycine Max) powder were studied. Effects of processing variables involved in the pulverization of soybean, such as the temperature of soybean powder, the oxygen level in the vessel, and the pulverisation time, were investigated. The temperature of the soybean powder and the oxygen level had no significant influence on the TBARS (pTBA test significantly affected the TBARS. Change of TBARS during heating was well described by the fractional conversion first order kinetics model. A diffusion model was introduced to quantify the effect of particle size on TBARS. The major finding of this study was that the TBA test to estimate the level of the lipid oxidation directly from powders should consider the heating time and the mean particle sizes of the sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Mutation breeding in soybean

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.

    1983-01-01

    In Indonesia, soybean is one of the important crop after rice. It is generally cultivated in the lowlands and rarely in the highlands. Seeds of soybean variety ORBA were treated with various doses of fast neutrons, gamma rays, EMS and NaN 3 with the aims of studying the mutagen effects in M-1 and M-2 generations and also to select mutants adapted to highland conditions. D-50 doses for gamma rays, fast neutrons and EMS were around 23 krad, 2,300 rad, 0.3%, respectively. Much higher chlorophyll mutation frequency was observed in EMS treatment of 0.3%. Seven mutants were shorter and four early mutants matured from 4 to 20 days earlier than the control plants. Two early mutants were quite adaptable in both the low and highlands and produced better yields than the parental material. (author)

  3. Effect of sheep manure and phosphorus application on growth, yield, and N2 - fixation of inoculated soybean (Glycine max (L.) Merr) grown on Syrian arid soils using the 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Al-Ain, F.; Al-Shamma'a, M.

    2003-10-01

    A field experiment was carried out in Syrian arid soils at Deir Al-Hajar research station to study the effect of different rates of sheep manure (0, 20, and 40 ton/ha) and levels of P- fertilizer (0, 40 and 80 kg P 2 O 5 /ha) on dry matter production and N 2 fixation by Soybean [(Glycine max) (SB171 variety)], of which seeds were inoculated by Bradyrhizobium japonicum-FA3 bacterial. Sorghum bicolor L. was employed as a reference crop ti evaluate N 2 -fixation using the 15 N-isotope dilution technique. In general, results indicated that, a positive effects were found to adding Sheep Manure or P-fertilizer on D.M production in different plants parts of soybean (shoots, roots, pods). This effect was more pronounced when adding sheep manure and phosphorus together especially under the optimum M40P80 treatment. Quantity of N-fixed by Soybean responds positively to sole application of Sheep Manure or P-fertilizer. Moreover, the optimum combined treatment showed significant increases in the quantity of nitrogen derived from the atmosphere (Qndfa), which were (3.29, 25.54, 53.49 kg N/ha) in roots, shoots, and pods respectively. P-fertilization resulted in a significant increase in the percentage of nitrogen use efficiency (NUE) with increasing phosphorus levels added to Sorghum plants; However, an adverse effect was noticed for the NUE when using sheep manure solely or in combination with P-fertilizer. (author)

  4. Gamma-ray induction of a mutant soybean [Glycine max (L.) Merrill] line lacking all seed lipoxygenases

    International Nuclear Information System (INIS)

    Hajika, Makita; Suda, Ikuo; Sakai, Shinji; Takahashi, Masakazu

    1997-01-01

    Induction of a soybean line lacking all isozymes of seed lipoxygenase was attempted using γ-radiation and of 1,813 seeds in M 3 generation, only one was identified as a seed lacking all the isozymes by SDS-PAGE. This line did not present any physiological abnormality over 10 generations or more (M 4 -M 14 ) and no significant influence of the enzyme on the agricultural traits was observed during the performance test in fields. In the resistance test against insect pests, significant differences were not found among the varieties and the lines tested. These results suggest that deletion of all lipoxygenase isozymes would not affect the soybean production in practice. The lipoxygenase activity was not detected in the leaves as well as the seeds of this line, suggesting that this enzyme are not indispensable for the soybean growth. The validity of this line in food processing fields was examined through determining the levels of hexanal production and DETBA. This line was found able to improve the taste of soybean cookies and use in combination with other materials as flour, egg, etc. because the line has no lipoxygenase activity. (M.N.)

  5. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    Science.gov (United States)

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  6. Potential production and growth analysis of local variety and Americana variety of soybean (Glycine max (L) Merril)

    International Nuclear Information System (INIS)

    Sumakud, M.Y.M.A.

    2000-01-01

    Soybean needs high radiation intensity for photosynthesis process; therefore 100 percent of the sunlight are needed. Due to increasing the soybean production, the environment factor such as climate, soil and management are needed. One of the environment factor that influence the growth and dry matter production is radiation. This research done was to see the potential production of local variety and Americana variety by observing the total radiation absorption, temperature, rainfall and humidity. Therefore the objective of this research was to know the potential production in tropic area in soybean. If the production is mainly determined by the high growth rate or the length of phase linear or both of them also by the efficiency of radiation that received by the plant. The method of this research was carried out by using completed randomized design, with three replications. The result showed that the growth and the production of soybean are determined by growth rate (Cm) and the length of growth linear (tm). Dry matter of soybean is determined by growth rate instead of the length of growth linear, for efficiency of radiation are not significant. Pod formation is determined by the growth rate, content of pods is determined by the length of linear growth

  7. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  8. Oxyradical accumulation and rapid deterioration of soybean seeds due to field weathering.

    Science.gov (United States)

    Yadav, Sanjeev; Bhatia, V S; Guruprasad, K N

    2006-02-01

    The effect of field weathering on oxyradical accumulation and subsequent changes were studied in the seeds of soybean [Glycine max (L.) Merr.] cv. JS 71-05. Electron spin resonance (ESR) quantification of oxyradical revealed that field weathering plays an important role in acceleration of their accumulation. One week of weathering increased the accumulation of oxyradicals to almost 2-fold and triggered the deteriorative cascade, by enhancing the lipid peroxidation and membrane perturbation, leading to cell death in seed tissues and poor germinability and vigour of soybean seeds. Thus, the weather conditions at the time of physiological maturity to harvesting of crop are very crucial and the field weathering plays a critical role for the maintenance of seed quality.

  9. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    Science.gov (United States)

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. Published by Elsevier Ltd.

  10. Evaluating effect of biofertilizer on nodulation and soybean (Glycine max L plants growth characteristics under water deficit stress of seed

    Directory of Open Access Journals (Sweden)

    M. Tajik Khaveh

    2016-05-01

    Full Text Available In order to evaluate the effects of biofertilizer on soybean (Glycine max L. seed vigor that produced under water deficit condition and related traits, an experiment was conducted in a factorial layout based of complete randomized block design with four replications at the research greenhouse of Aboureihan campus- Tehran University, Iran. Experimental treatments were include biofertilizer (seed inoculation with Bradyrhizobium japonicum, co-inoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens, co-inoculation with Bradyrhizobium japonicum and Glomus mosseae, Cultivar (Zalta Zalha and Clark×Hobbit line and water deficit stress [irrigation plants after 50 (normal irrigation, 100 (medium stress, 150 (sever stress mm evaporation from pan class A, in parents field]. Results showed that the water deficit stress had negative effects on seed quality and seedling emergence percentage, mean daily seedling emergence, root, leaf and shoot dry weight, number of nodule were decreased. ZaltaZalha cultivar had higher shoot dry weight and number of leaf compared with other cultivars. Applications of biofertilzer was effective on stem diameter, root, leaf and shoot dry weight, number of leaf and nodule and those attributes increased by co-inoculation of Bradyrhizobium japonicum and Glomus mosseae. Also, use of biofertilizer in stress levels was effective on stem dry weight. Stem dry weight was increased by Co-inoculation of cultivar seeds with Bradyrhizobium japonicum and Glomus mosseae.

  11. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  12. Distribution of the long-horned beetle, Dectes texanus, in soybeans of Missouri, Western Tennessee, Mississippi, and Arkansas.

    Science.gov (United States)

    Tindall, Kelly V; Stewart, Scott; Musser, Fred; Lorenz, Gus; Bailey, Wayne; House, Jeff; Henry, Robert; Hastings, Don; Wallace, Milus; Fothergill, Kent

    2010-01-01

    The long-horned beetle, Dectes texanus LeConte (Coleoptera: Cerambycidae), is a stem-boring pest of soybeans, Glycine max (L.) Merrill (Fabales: Fabaceae). Soybean stems and stubble were collected from 131 counties in Arkansas, Mississippi, Missouri, and Tennessee and dissected to determine D. texanus infestation rates. All states sampled had D. texanus present in soybeans. Data from Tennessee and Arkansas showed sample infestations of D. texanus averaging nearly 40%. Samples from Missouri revealed higher infestation in the twelve southeastern counties compared to the rest of the state. Data from Mississippi suggested that D. texanus is not as problematic there as in Arkansas, Missouri, and Tennessee. Infestation rates from individual fields varied greatly (0-100%) within states. In Tennessee, second crop soybeans (i.e. soybeans planted following winter wheat) had lower infestations than full season soybeans. A map of pest distribution is presented that documents the extent of the problem, provides a baseline from which changes can be measured, contributes data for emergency registration of pesticides for specific geographic regions, and provides useful information for extension personnel, crop scouts, and growers.

  13. Identification and colonization of endophytic fungi from soybean (Glycine max (L. Merril under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2006-09-01

    Full Text Available A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L. Merril plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L. Merril. provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegeta

  14. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  15. Radiation balance in a soybean ecosystem in the Amazon Balanço de radiação em ecossistema de soja na Amazônia

    Directory of Open Access Journals (Sweden)

    Paulo Jorge de Oliveira Ponte de Souza

    2010-12-01

    Full Text Available The continuous advance of the agricultural border in the Amazon has been worrying the scientific community due to the possible environmental impacts caused by this change in land use. The present work evaluated the behavior of the radiation balance components over the soybean crop (Glycine Max (L. Merryl in an Amazon area of continuous advance of the agricultural border. The radiation components were continuously monitored during the soybean cycle in 2006 and 2007 in an area of 200 ha. The soybean cultivation in the Amazon presented an abrupt change in the radiation balance components, with the consequent reduction in the energy available to the environment due to the increase in the surface reflection. There was a significant contribution of the diffuse radiation component in the soybean interception during cloudy conditions, even under incomplete canopy covering. Moreover, after the canopy closure, a similar interaction between soybean and solar radiation occurs, regardless of the cloud condition.O avanço da fronteira agrícola na Amazônia, da forma como vem sendo realizado, tem deixado a comunidade cada vez mais preocupada ante os possíveis impactos ambientais decorrentes desta mudança no uso da terra, devido à grande importância que a Amazônia representa para o clima global. Neste trabalho avaliaram-se os componentes do balanço de radiação à superfície, ao longo do ciclo da soja (Glycine Max (L. Merryl, em uma área de avanço da fronteira agrícola na Amazônia. Os componentes do balanço de radiação foram monitorados continuamente durante o ciclo da soja, em 2006 e 2007, em uma área de 200 ha de extensão. O monocultivo da soja na Amazônia apresentou uma contínua mudança nos componentes do balanço de radiação, tendo como consequência uma redução na energia disponível para o ambiente devido o aumento na reflexão da superfície. Observou-se uma importante contribuição da radiação solar difusa na intercepta

  16. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  17. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  18. Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

    Directory of Open Access Journals (Sweden)

    S. Polyorach

    2016-09-01

    Full Text Available The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle (410±10 kg were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a, potential degradability (a+b and effective degradability of dry matter (EDDM linearly (p<0.01 increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b and rate of degradation (c. In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.

  19. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  20. Soybean Yield along the Texas Gulf Coast during Periods of Variable Rainfall as Influenced by Soybean Cultivar and Planting Date

    Directory of Open Access Journals (Sweden)

    W. J. Grichar

    2011-01-01

    Full Text Available Soybeans (Glycine max can be planted along the upper Texas Gulf Coast from mid-March through May to take advantage of early season rains and to complete harvest before hurricane season and fall rains become a problem. When average to above average rainfall was received in May through July, yields were greater with the early April to mid-April planting; however, under high rainfall conditions throughout the season, the mid-April to early May planting produced the highest yields, with yields of over 4000 kg/ha. When rainfall was below normal, late March to early April plantings produced the greatest yields. When rainfall was above average, soybeans took longer to reach harvestability regardless of cultivar or plant dates, while under drought conditions the interval between planting and harvest was reduced. However, when planting was delayed, there was a greater risk of detrimental late-season effects from southern green stink bug (Nezara viridula or the brown stink bug (Euschistus heros.

  1. Low Lactose Milk Production of Soybean by Fermentation Technique Using Rhizopus oligosporus

    Directory of Open Access Journals (Sweden)

    Farid Salahudin

    2013-06-01

    Full Text Available Milk is an important food for baby that contains lactose. Normally, a baby could produce lactase enzyme that digest lactose, but in the diarrhea case lactose could not be digested. So, Low Lactose Milk is needed. Low Lactose Milk usually produced from rice or almonds that have low protein. Soybean (Glycine max is the commodity with rich of protein and also contains raffinose and stachyose, which can lead flatulence. Raffinose and stachyose could be reduced by Rhizopus oryzae at tempe process from lamtoro beans.  So the aim in this research is to know the optimum time of soybean fermentation with R. oryzae to reduce stachyiose  and raffinose. The research was done with innoculation of R. oryzae isolate in the soybeans fermentation for 72 hours. N index, raffinose and stachyose level was tested. The result shows that optimum fermentation time is 48 hour and using 5% skim milk as filler.

  2. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  3. Wheat (Triticum aestivum L. Cultivar Selection Affects Double-Crop and Relay-Intercrop Soybean (Glycine max L. Response on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2010-01-01

    Full Text Available Field research (2003–2005 evaluated the effect of wheat row spacing (19 and 38 cm and cultivar on double-cropped (DC soybean response, 38-cm wheat on relay-intercrop (RI response, and wheat cultivar selection on gross margins of these cropping systems. Narrow-row wheat increased grain yield 460 kg ha−1, light interception (LI 7%, and leaf area index (LAI 0.5 compared to wide rows, but did not affect DC soybean yield. High yielding wheat (P25R37 with greater LI and LAI produced lower (330 kg ha−1 soybean yields in an RI system than a low yielding cultivar (Ernie. Gross margins were $267 ha−1 greater when P25R37 was RI with H431 Intellicoat (ITC soybean compared to Ernie. Gross margins were similar for monocrop H431 non-coated (NC or ITC soybean, P25R37 in 19- or 38-cm rows with DC H431 NC soybean, and P25R37 in 38-cm rows with RI H431 ITC soybean in the absence of an early fall frost.

  4. Effects of fluoride on mitochondrial activity in higher plants. [Glycine max, Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J E; Miller, G W

    1974-01-01

    The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cm. Hawkeye) with 9-12 ..mu..g x m/sup -3/ HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). 40 references, 1 figure, 5 tables.

  5. MDA and Histologic Profile of Pancreatic Diabetic-Rats Model Administered With Extract of Glycine max (L. Merr.

    Directory of Open Access Journals (Sweden)

    Luh Putu Gina

    2016-03-01

    Full Text Available Diabetes Mellitus is characterized by leveling up glucose in human blood and affects increasing of free radicals in body as well as leading to cellular oxidative stress. Experimentally, this condition is able to be characterized by increasing malondialdehyde (MDA level in cell and histological changing in pancreas appearance. Consumption of antioxidant substances was reported able to reduce the MDA quantity as free radicals. Black soybean or Glycine max (L Merr. was reported contains important antioxidant agents such as anthocyanin and isoflavone. This paper discloses recent investigation on application of black soybean water extract to reduce the MDA level on diabetes mellitus-rat model induced by STZ (DM and also reports the pancreas histological changing of the DM rats. Investigation revealed that black soybean water extract significantly affect decreasing of MDA level by 4.9%, 27.1% and 45.7% in three different doses theraphy (500, 750, and 1000 mg/kg BW. Histologically, it also clearly indicates repairing of pancreas tissue of the DM rats.

  6. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  7. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  8. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  9. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  11. Morphological study on the gamma radiation effect on soybean (Glycine max Merr)

    International Nuclear Information System (INIS)

    Nurtjahjo.

    1976-01-01

    Soybean seeds of 1 3 4 5 var. were irradiated with 0, 10, 15, and 20 Krad, of gamma rays. The result of these treatment are as follows: (1) At treatment within 10 Krad of gamma rays, some of the plant growth changed from determinate type to indeterminate type. (2) The treatment within 15 and 20 Krad of gamma rays results in four different kinds of leaf size and shape. (author)

  12. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).

    Science.gov (United States)

    Koriyama, Takako; Sato, Yoko; Iijima, Kumiko; Kasai, Midori

    2017-07-01

    The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state. © 2017 Institute of Food Technologists®.

  13. No-till Organic Soybean Production Following a Fall-planted Rye Cover Crop

    OpenAIRE

    Porter, Paul; Feyereisen, Gary; De Bruin, Jason; Johnson, Gregg

    2005-01-01

    The conventional corn-soybean rotation in the United States (USA) is a leaky system with respect to nitrate-nitrogen (nitrate-N), in part because these crops grow only five months of the year. Ecosystem functioning can be improved with the use of an appropriate fall-planted cover crop, but this practice is not common. Organic soybean production in the USA typically relies on delayed planting, crop rotation, intensive harrowing and interrow cultivation for weed control. Research on timing of ...

  14. Genetically modified soybean plants and their ecosystem

    Directory of Open Access Journals (Sweden)

    Milošević Mirjana B.

    2004-01-01

    Full Text Available Transgenic plants are developed by introgressing new genes using methods of molecular genetics and genetic engineering. The presence of these genes in plant genome is identified on the basis of specific oligonucleotides primers, and the use of PCR (Polymerase Chain Reaction and DNA fragments multiplication. Genetically modified plants such as soybean constitute a newly created bioenergetic potential whose gene expression can cause disturbance of the biological balance ecosystem, soil structure and soil microbiological activity. Genetically modified plants may acquire monogenic or polygenic traits causing genetic and physiological changes in these plants, which may elicit a certain reaction of the environment including changes of microbiological composition of soil rhizosphere. The aim of introgressing genes for certain traits into a cultivated plant is to enhance its yield and intensify food production. There are more and more genetically modified plant species such as soybean, corn, potato, rice and others and there is a pressure to use them as human food and animal feed. Genetically modified soybean plants with introgressed gene for resistance to total herbicides, such as Round-up, are more productive than non-modified herbicide-sensitive soybeans.

  15. Development of SSR markers for genetic diversity and phylogenetic studies of Phomopsis longicolla causing Phomopsis seed decay in soybean

    Science.gov (United States)

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...

  16. Aboveground dry biomass partitioning and nitrogen accumulation in early maturing soybean ‘Merlin’

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2017-12-01

    Full Text Available The aim of the study was to determine the biomass and nitrogen accumulation in early maturing soybean plants experiencing contrasting weather conditions. Soybean (Glycine max is a species of agricultural crop plant that is widely described in scientific publications. During 2014–2016, a field experiment with early maturing soybean ‘Merlin’ was carried out at Grodziec Śląski, Poland (49°48'01" N, 18°52'04" E. Results showed that the morphological traits of the plants, the yield of individual plants, and the soybean crop were all closely related to the climatic conditions. A high amount of precipitation stimulated seed development, resulting in a high production potential. The harvest index calculated for soybean ‘Merlin’ was high and exceeded 0.5 g g−1. The nitrogen content of the aboveground biomass increased during ontogenesis. The maximum yield of dry matter was noted at the green maturity phase, which subsequently decreased at the full maturity phase because of the loss of the leaf fraction. The variation in the effectiveness of nitrogen accumulation in seeds between 2015 and 2016 was 30%. The nitrogen harvest index values were high in each year of the experiment and exceeded 0.92 g−1. For the production of 1 ton of seeds with an adequate amount of soybean straw, plants needed, on average, 68 kg of nitrogen.

  17. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Choi Beom-Soon

    2008-12-01

    Full Text Available Abstract Background Soybean lipoxygenases (Lxs play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. Results Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62 and Gm-Mt orthologs (Ks = 0.45 supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. Conclusion This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between

  18. Competition between the phytophagous stink bugs Euschistus heros and Piezodorus guildinii in soybeans.

    Science.gov (United States)

    Tuelher, Edmar S; Silva, Éder H; Hirose, Edson; Guedes, Raul Narciso C; Oliveira, Eugênio E

    2016-10-01

    The abundance and contribution of the neotropical brown stink bug, Euschistus heros (F.), and the redbanded stink bug, Piezodorus guildinii (West.), to the composition of insect pests of soybean, Glycine max (L.), fields have changed both spatially and temporally in neotropical soybean production areas. Therefore, we assessed the competitiveness of each species in direct competition experiments following an additive series. We performed mixed (adult) insect infestations in soybean plants and evaluated the fitness of each species and the soybean yield. While the competitive ability of E. heros was significantly compromised by increments in conspecifics and heterospecifics (i.e. P. guildinii), the competitive ability of P. guildinii was compromised by the presence of heterospecifics (i.e. E. heros). The reproductive output of P. guildinii remained unaffected by increments in E. heros or of P. guildinii. Intriguingly, despite the fact that P. guildinii apparently lost the competition with E. heros, almost no pod production was observed in any plant colonised by the former. The higher abundance of E. heros in neotropical soybean fields seems to result from higher competitive ability than its heterospecific competitor P. guildinii, which may prevent the higher losses caused by P. guildinii. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions Following Polyploidy in the Ancestor of Soybean

    Science.gov (United States)

    The genomes of most flowering plants have undergone polyploidization at some point in their evolution. How such polyploidization events have impacted the subsequent evolution of genome structure is poorly understood. We sequenced two homoeologous regions in soybean (Glycine max), which underwent a...

  20. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Directory of Open Access Journals (Sweden)

    Severin Andrew J

    2010-08-01

    Full Text Available Abstract Background Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. Results The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. Conclusions This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.

  1. Electrical conductivity of the seed soaking solution and soybean seedling emergence

    Directory of Open Access Journals (Sweden)

    Vieira Roberval Daiton

    2004-01-01

    Full Text Available Vigor of soybean [Glycine max (L. Merrill] seeds can be evaluated by measuring the electrical conductivity (EC of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE. Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.

  2. Rhizosphere acidification of faba bean, soybean and maize

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.L. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094 (China); Cao, J. [School of Life Science, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000 (China); Zhang, F.S. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Li, L., E-mail: lilong@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China)

    2009-07-01

    Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L{sup -1} P as KH{sub 2}PO{sub 4}. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h{sup -1} plant{sup -1}) and specific proton efflux (0.47 nmol h{sup -1} cm{sup -1}) was greater than that those of soybean (21.80 nmol h{sup -1} plant{sup -1} and 0.05 nmol h{sup -1} cm{sup -1}, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.

  3. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Kraiss, Heidi; Cullen, Eileen M

    2008-06-01

    Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.

  4. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del

    2007-01-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  5. Management of Anthracnose in Soybean using Fungicide

    Directory of Open Access Journals (Sweden)

    Subash Subedi

    2015-12-01

    Full Text Available Experiments on soybean (Glycine max L. Meril were carried out aiming to control anthracnose (pod blight caused by fungus, Colletotrichum truncatum with five treatments represented by different fungicidal sprays against control receiving no spray with three replicates of each under field conditions during two consecutive years from 2012 to 2013. In 2012, the higher Percent Disease Control (PDC and Percent Yield Increase (PYI were estimated in plot treated with SAAF (Carbendazim 12% + Mancozeb 63% followed by Mancozeb fungicides. The mean Pod Infection (PI was low in plots treated with SAAF followed by Mancozeb. Almost similar trends of disease control were observed in 2013. The lower Percent Disease Index (PDI was 46.25% and mean PI was 29.67% with higher yield value of 2431.25 kg/ha obtained from the plots sprayed with SAAF then by Mancozeb. The results showed that, the combined treatment with fungicides, SAAF followed by Mancozeb were effective to control anthracnose or pod blight disease of soybean to increase the yield.

  6. Phosphate Fertilizer and Growing Environment Change the Phytochemicals, Oil Quality, and Nutritional Composition of Roundup Ready Genetically Modified and Conventional Soybean.

    Science.gov (United States)

    Scilewski da Costa Zanatta, Tatiane; Manica-Berto, Roberta; Ferreira, Cristiano Dietrich; Cardozo, Michele Maciel Crizel; Rombaldi, Cesar Valmor; Zambiazi, Rui Carlos; Dias, Álvaro Renato Guerra

    2017-04-05

    Phosphorus (P) intake, genotype, and growth environment in soybean cultivation can affect the composition of the soybean. This experiment was conducted in two locations (microregions I and II) using a randomized complete block design, including conventional soybean (BRS Sambaíba) and genetically modified (GM) [Msoy 9144 Roundup Ready (RR)] cultivars and varying doses of phosphorus fertilizer (0, 60, 120, and 240 kg/ha P 2 O 5 ). Soybeans were evaluated for chemical composition, total phenols, phytic acid content, individual isoflavone content, antioxidant activity, oil quality, fatty acid profile, total carotenoid content, and individual tocopherol contents. Multivariate analysis facilitated reduction in the number of variables with respect to soybean genotype (conventional BRS Sambaíba and GM Msoy 9144 RR), dose of P 2 O 5 fertilizer, and place of cultivation (microregion I and II). BRS Sambaíba had higher concentrations of β-glucosides, malonylglucosides, glycitein, and genistein than Msoy 9144 RR, which showed a higher concentration of daidzein. The highest concentrations of isoflavones and fatty acids were observed in soybeans treated with 120 and 240 kg/ha P 2 O 5 , regardless of the location and cultivar.

  7. Toothpick test: a methodology for the detection of RR soybean plants1

    Directory of Open Access Journals (Sweden)

    Fabiana Mota da Silva

    Full Text Available Due to the large increase in the area cultivated with genetically modified soybean in Brazil, it has become necessary to determine methods that are fast and efficient for detecting these cultivars. The aim of this work was to test the efficiency of the toothpick method in the detection of RR soybean plants, as well as to distinguish between cultivars, for sensitivity caused by herbicide. Ten transgenic soybean cultivars, resistant to the active ingredient glyphosate, and ten conventional soybean cultivars were used. Toothpicks soaked in glyphosate were applied to all the plants at stage V6 and evaluations were made at 2, 4, 6, 8 and 10 days after application (DAA. The effects of the glyphosate on the cultivars, and the symptoms of phytotoxicity caused in the transgenic plants were evaluated by means of grading scales. The toothpick test is effective in identifying RR soybean cultivars and also in separating them into groups by sensitivity to the symptoms caused by the glyphosate.

  8. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    Science.gov (United States)

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species. PMID:19283127

  9. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes.

    Science.gov (United States)

    Kim, D G; Riggs, R D

    1991-07-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.

  10. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  11. Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L. Using 1H-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Won Woo Kim

    2013-11-01

    Full Text Available Seed oil triacylglycerol (TAG composition of 32 soybean varieties were determined and compared using 1H-NMR. The contents of linolenic (Ln, linoleic (L, and oleic (O ranged from 10.7% to 19.3%, 37.4%–50.1%, and 15.7%–34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the 1H-NMR method.

  12. Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.).

    Science.gov (United States)

    Tanaka, Seiya; Ario, Nobuyuki; Nakagawa, Andressa Camila Seiko; Tomita, Yuki; Murayama, Naoki; Taniguchi, Takatoshi; Hamaoka, Norimitsu; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-06-03

    Soybean pods are located at the nodes, where they are in the shadow, whereas cowpea pods are located outside of the leaves and are exposed to sunlight. To compare the effects of light quality on pod growth in soybean and cowpea, we measured the length of pods treated with white, blue, red or far-red light. In both species, pods elongated faster during the dark period than during the light period in all light treatments except red light treatment in cowpea. Red light significantly suppressed pod elongation in soybean during the dark and light periods. On the other hand, the elongation of cowpea pods treated with red light markedly promoted during the light period. These results suggested that the difference in the pod set sites between soybean and cowpea might account for the difference in their red light responses for pod growth.

  13. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    Science.gov (United States)

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  14. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  15. Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids

    Directory of Open Access Journals (Sweden)

    Patrícia Minatovicz F. Doblinski

    2003-03-01

    Full Text Available The scope of the present study was to investigate how the p-coumaric (p-CA and p-hydroxybenzoic (p-HD acids affect the peroxidase (POD, EC 1.11.1.7 activity, the lipid peroxidation (LP and the root growth of soybean (Glycine max (L. Merr.. Three-day-old seedlings were cultivated in nutrient solution containing p-CA or p-HD (0.1 to 1 mM for 48 h. After uptake, both compounds (at 0.5 and 1 mM decreased root length (RL, fresh weight (FW and dry weight (DW while increased soluble POD activity, cell wall (CW-bound POD activity (with 1 mM p-CA and 0.5 mM p-HD and LP.A proposta do presente trabalho foi investigar como os ácidos p-cumárico (p-CA e p-hidroxibenzóico (p-HD afetam a atividade da peroxidase (POD, EC 1.11.1.7, a peroxidação lipídica (LP e o crescimento de raízes de soja (Glycine max (L. Merr.. Plântulas de três dias foram cultivadas em solução nutritiva com p-CA ou p-HD (0,1 a 1 mM por 48 horas. Após absorção, ambos os compostos (a 0,5 e 1 mM reduziram o comprimento das raízes (RL, a biomassa fresca (FW e a biomassa seca (DW enquanto aumentaram a atividade da POD solúvel, a atividade da POD ligada à parede celular (com p-CA 1 mM e p-HD 0,5 mM, e a LP.

  16. Isolation of low-molecular albumins of 2S fraction from soybean (Glycine max (L.) Merrill).

    Science.gov (United States)

    Galbas, Mariola; Porzucek, Filip; Woźniak, Anna; Słomski, Ryszard; Selwet, Marek

    2013-01-01

    Numerous studies have shown that consumption of soybean products decrease the risk of cancers in humans. Experiments at the molecular level have demonstrated that in most cases proteins and peptides are responsible for the anticancer properties of soybeen. Special attention should be paid to lunasin - a peptide described for the first time 16 years ago. Due to its structure it causes i.a., inhibition of cancer cell proliferation. A novel procedure for the isolation and purification of low-molecular-mass 2S soybean albumin protein is described in the present paper. A fraction of four peptides one of them corresponding to molecular mass and isoelectric point characteristic for lunasin. The obtained peptides decreased on the rate of HeLa cell proliferation.

  17. Contribution of nitrogen derived from mineral supplementation for soybean seedlings

    Directory of Open Access Journals (Sweden)

    Gerusa Massuquini Conceição

    Full Text Available ABSTRACT Seeds can absorb N from mineral supplementation, thus stimulating seedling development in soybeans (Glycine max (L. Merrill. This study aimed to evaluate the contribution to soybean seedlings of N derived from mineral supplementation in seeds with different nutritional contents. Seeds of the cultivar BMX Potência RR received mineral supplementation enriched with 2.5% excess 15N. The treatments were performed in seeds in two lots, one with high and one with low nutritional content. At 2, 6 and 10 days after sowing on paper towels, the seedlings were collected and separated into cotyledons, roots and shoots. Dry matter production, root length and root volume were assessed. Total N and 15N values were analyzed in the seedling organ tissues. The seeds from the lot with lower nutritional content absorbed more N from the mineral supplement, which was accumulated in the cotyledons and redistributed to the root systems and cotyledons. At 10 days after sowing, most of the N in the organs of soybean seedlings was derived from the seed reserves, regardless of nutritional content. Thus, application of N through mineral supplementation is of low importance for the development and nutrition of seedlings.

  18. Biofertilisasi bakteri rhizobium pada tanaman kedelai (Glycine max (L MERR.

    Directory of Open Access Journals (Sweden)

    Tini Surtiningsih

    2012-02-01

    Full Text Available The aim of this research want to know the influence of the addition Rhizobium bacteria species, dose and combination both ofthem, on growth and production of soybean plant (Glycine max (L Merr.. The experimental design of this research was factorial design4×2, 4 species of Rhizobium are R1 = Rhizobium japonicum, R2 = R. phaseoli, R3 = R. leguminosarum, R4 = mixture of R1, R2 andR3, and 2 dose of inoculan Rhizobium (D1 = 5 m/plant, and D2 = 10 ml/plant with 1010 sel bacteria/ml and 5 replications. Independentvariable is species of Rhizobium, dose of inoculan Rhizobium and combination both of them. Dependent variable is dry matter, weightof nodules and dry weight of seeds. The harvest data was analyzed by Kruskal-Wallis Test using 5% level (a = 0.05 followed by Mann-Whitney Test. The result of this research show that species of Rhizobium, dose of inoculan Rhizobium and combination both of thempresent insignificant result (a > 0.05 on soybean growth and production, but the mixture of Rhizobium species with high level doseof bacteria, present better result than single species with low dose of bacteria.

  19. Effects of enhanced UVB on growth and yield of alfalfa and soybean under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydon, S.A.; Mohamad, A.

    1998-01-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author)

  20. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  1. Radiosensitivity of a soybean cultivation to Co-60 gamma rays

    International Nuclear Information System (INIS)

    Rios, H.; Labrada, A.; Rodriguez, R.; Hurtado, E.

    1987-01-01

    For the purpose of determining the effect of radiations on physiological and productive indexes in the G7R-315 soybean variety, experiments under field and laboratory conditions were carried out. The answers to straight-line irradiation doses on the basis of arkose. We reached to the conclusion that the height under laboratory conditions and the survival at the moment of crop bring about adequate indexes to determine dose-50 in the studied material

  2. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  3. Entomofauna associated to soybean [Glycine max (L. Merr.] in direct seeding and conventional tillage

    Directory of Open Access Journals (Sweden)

    Arahis Cruz Limonte

    2016-01-01

    Full Text Available The main purpose of this research work was to investigate the effect of the direct seeding and conventional tillage of soybean on the incidence of plagues and natural enemies. The study was carried out on the farm “Día y Noche” of the Basic Unit of Cooperative Production “28 de Octubre” (UBPC, for its Spanish acronym, and in the Laboratories of the Agricultural Research Center of Central University of Las Villas. Field experiments were conducted on an Inceptisol, since November 2013 to May 2014. The soybean cultivar Incasoy – 27 was used. The insects in relation to the development stages of the plant were identified and quantified. In both systems 10 species of phytophagous insects and one of entomophagous insects were quantified; Hedylepta indicata L. stands out with more presence in the direct seeding, while Diabrotica balteata LeConte and the species belong to the family Pentatomidae caused most damage to the plants in conventional tillage.

  4. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    2014-09-13

    and My Abdelmajid Kassem. Effect of Two Row Spaces on Several Agronomic Traits in Soy - bean [Glycine max (L.) Merr.], Atlas Journal of Plant Biology... SoyS - NP6K Illumina Infinium BeadChip Genotyping Array , Journal of Plant Genome Sciences (09 2013) Masum Akond1, Shiming Liu2, Melanie Boney1

  5. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Ge, Honglian; Zhang, Fan; Guo, Ning; Wang, Yucheng; Chen, Long; Ji, Xiue; Li, Chengwei

    2016-03-01

    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary is a major disease of soybean (Glycine max (L.) Merr.). At present, we revealed the three-way interaction between Trichoderma harzianum T-aloe, pathogen S. sclerotiorum and soybean plants in order to demonstrate biocontrol mechanism and evaluate biocontrol potential of T-aloe against S. sclerotiorum in soybean. In our experiments, T-aloe inhibited the growth of S. sclerotiorum with an efficiency of 56.3% in dual culture tests. T-aloe hyphae grew in parallel or intertwined with S. sclerotiorum hyphae and produced hooked contact branches, indicating mycoparasitism. Plate tests showed that T-aloe culture filtrate inhibited S. sclerotiorum growth with an inhibition efficiency of 51.2% and sclerotia production. T-aloe pretreatment showed growth-promoting effect on soybean plants. The activities of peroxidase, superoxide dismutase, and catalase increased, and the hydrogen peroxide (H2O2) as well as the superoxide radical (O2(-)) content in soybean leaves decreased after T-aloe pretreatment in response to S. sclerotiorum pathogen challenge. T-aloe treatment diminished damage caused by pathogen stress on soybean leaf cell membrane, and increased chlorophyll as well as total phenol contents. The defense-related genes PR1, PR2, and PR3 were expressed in the leaves of T-aloe-treated plants. In summary, T-aloe displayed biocontrol potential against S. sclerotiorum. This is the first report of unraveling biocontrol potential of Trichoderma Spp. to soybean sclerotinia stem rot from the three-way interaction between the biocontrol agent, pathogen S. sclerotiorum and soybean plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean.

    Science.gov (United States)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    2015-07-01

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  7. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    Science.gov (United States)

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  8. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  9. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  10. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups.

    Science.gov (United States)

    Yin, Guangjun; Xu, Hongliang; Xiao, Shuyang; Qin, Yajuan; Li, Yaxuan; Yan, Yueming; Hu, Yingkao

    2013-10-03

    WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates

  11. Development and utilization of a new chemically-induced soybean library with a high mutation densityOO

    Institute of Scientific and Technical Information of China (English)

    Zhongfeng Li; Yong Guo; Longguo Jin; Lijuan Zhang; Yinghui Li; Yulong Ren; Wei He; Ming Liu; Nang Myint Phyu Sin Htwe; Lin Liu; Bingfu Guo; Lingxue Jiang; Jian Song; Bing Tan; Guifeng Liu; Maiquan Li; Xianli Zhang; Bo Liu; Xuehui Shi; Sining Han; Sunan Hua; Fulai Zhou; Yansong Ma; Lili Yu; Yanfei Li; Shuang Wang; Jun Wang; Ruzhen Chang; Lijuan Qiu; Zhongyan Wei; Huilong Hong; Zhangxiong Liu; Jinhui Lei; Ying Liu; Rongxia Guan

    2017-01-01

    Mutagenized populations have provided impor-tant materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesul-fonate (EMS)-induced soybean (Glycine max) population, consisting of 21,600 independent M2 lines, was developed. Over 1,000 M4 (5) families, with diverse abnormal pheno-types for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed signifi-cantly decreased chlorophyll (Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to MinnGold, where a different single nucleotide polymorphism variation in the Mg-chelatase subunit gene (ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker-assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean.

  12. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    Science.gov (United States)

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  13. Qualidade da aplicação aérea líquida com uma aeronave agrícola experimental na cultura da soja (Glycine Max L. Liquid aerial pesticide application quality with an experimental agricultural aircraft in soybean crop (Glycine Max L.

    Directory of Open Access Journals (Sweden)

    Elton F. dos Reis

    2010-10-01

    Full Text Available Os avanços da tecnologia de aplicação aérea de agroquímicos têm-se dado na direção de redução do volume de calda, o que pode ocasionar má distribuição e consequente deposição irregular. O presente trabalho teve como objetivo avaliar a qualidade da aplicação de calda de pulverização em aplicação aérea, na cultura da soja (Glycine Max L.. Para a aplicação, foi utilizada uma aeronave agrícola experimental, aplicando um volume de calda de 20 L ha-1 . Para a determinação dos volumes depositados nas folhas do terço superior, médio e inferior das plantas de soja, foi utilizado corante alimentício azul brilhante adicionado à calda de pulverização. Estas folhas foram lavadas, e o volume determinado por espectrofotometria. Para a obtenção do espectro de gotas, foram utilizados alvos artificiais constituídos por papel hidrossensível, distribuídos no terço superior e médio das plantas. Os dados foram submetidos à análise de variância de fator único, considerando as diferentes posições na planta, e cartas de controle foram feitas a partir dos limites inferior e superior de controle. A aplicação aérea de calda de pulverização na cultura da soja apresentou menores valores de diâmetro da mediana volumétrica, amplitude relativa e cobertura no terço médio em relação ao terço superior da cultura da soja. Houve menor deposição da calda de pulverização no terço inferior. Os indicadores de cobertura da calda de pulverização demonstraram que a aplicação aérea com a aeronave agrícola experimental avaliada não se encontra sob controle estatístico de processo, ou seja, fora do padrão de qualidade.Advances in aerial pesticide application technology of chemicals have been given in the direction of reducing the syrup volume, which can cause poor distribution and consequent irregular deposition. This study aimed to evaluate the quality of the syrup spray on aerial application in soybean crop (Glycine Max

  14. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil.

    Science.gov (United States)

    Marques, Luiz H; Santos, Antonio C; Castro, Boris A; Storer, Nicholas P; Babcock, Jonathan M; Lepping, Miles D; Sa, Verissimo; Moscardini, Valéria F; Rule, Dwain M; Fernandes, Odair A

    2018-01-01

    Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.

  15. Leaf movement, photosynthesis and resource use efficiency responses to multiple environmental stress in Glycine max (soybean)

    International Nuclear Information System (INIS)

    Rosa, L.M.G.

    1993-01-01

    Increases in the concentration of greenhouse gases in the atmosphere, may cause a significant increase in temperature, with implications for general wind patterns and precipitation. Reductions in stratospheric ozone will result in increased levels of UV-B reaching earth's surface. During their lifetime plants must deal with a variety of co-occurring environmental stresses. Accordingly, studies into plant responses to multiple environmental factors is important to our understanding of limits to their growth, productivity, and distribution. Heliotropic leaf movements are a generalized plant response to environmental stresses, and the pattern of these movements can be altered by resource availability (e.g., water, and nitrogen). Previous greenhouse and field studies have demonstrated damaging effects of UV-B radiation in crop species, including soybean. Documented in this paper are Leaf movement and gas exchange responses of four soybean cultivars with different sensitivity to UV-B radiation to enhanced levels of UV-B, and modifications of these responses caused by water stress and nitrogen fertilization. UV-B radiation had no effect on the patterns of leaf orientation in soybean; however, a ranking of the cultivars based on midday leaf angles was the same as the ranking of these cultivars based on their sensitivity to UV-B radiation. Water and nitrogen altered the leaf movement patterns of soybeans. Gas exchange parameters in all four cultivars responded in a similar fashion to changes in leaf water potential. Reductions in water availability resulted in lower discrimination. Nitrogen fertilization in cv Forrest, also resulted in lower discrimination, especially under low water regimes, indicating a higher water use efficiency for fertilized plants. UV-B radiation resulted in lower discrimination in the UV-B sensitive CNS cultivar, indicating a stronger stomatal limitation to photosynthesis under increased UV-B levels

  16. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    Science.gov (United States)

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  17. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  18. Corn-Soybean Rotation Systems in the Mississippi Delta: Implications on Mycotoxin Contamination and Soil Populations of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hamed K. Abbas

    2012-01-01

    Full Text Available The effect of corn-soybean rotation on mycotoxin contamination in corn (Zea mays L. and soybean (Glycine max L. Merrill. grains has not been fully evaluated. Therefore, this research investigated the effect of corn-soybean rotation on aflatoxin and fumonisin contamination in respective grains. The results showed that aflatoxin levels in soybean averaged 2.3, <0.5, 0.6, and 6.8 ng/g in 2005, 2006, 2007, and 2008, while corn aflatoxin levels were 16.7, 37.1, 2.4, and 54.8 ng/g, respectively. Aspergillus flavus colonization was significantly greater (P≤0.05 in corn (log 1.9, 2.9, and 4.0 cfu/g compared to soybean (<1.3, 2.6, and 2.7 cfu/g in 2005, 2007, and 2008, respectively. Aflatoxigenic A. flavus isolates were more frequent in corn than in soybean in all four years. Higher fumonisin levels were found in corn (0.2 to 3.6 μg/g than in soybean (<0.2 μg/g. Rotating soybean with corn reduces the potential for aflatoxin contamination in corn by reducing A. flavus propagules in soil and grain and reducing aflatoxigenic A. flavus colonization. These results demonstrated that soybean grain is less susceptible to aflatoxin contamination compared to corn due to a lower level of colonization by A. flavus with a greater occurrence of non-aflatoxigenic isolates.

  19. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses.

    Science.gov (United States)

    Srour, Ali; Afzal, Ahmed J; Blahut-Beatty, Laureen; Hemmati, Naghmeh; Simmonds, Daina H; Li, Wenbin; Liu, Miao; Town, Christopher D; Sharma, Hemlata; Arelli, Prakash; Lightfoot, David A

    2012-08-02

    Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. The inference that soybean has adapted part of an existing pathogen recognition and

  20. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  1. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  2. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  3. Effect of Cover Crops on Vertical Distribution of Leaf Area and Dry Matter of Soybean (Glycine max L. in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    seyyedeh samaneh hashemi

    2017-08-01

    Full Text Available Introduction Amount and vertical distribution of leaf area are essential for estimating interception and utilization of solar radiation of crop canopies and, consequently dry matter accumulation (Valentinuz & Tollenaar, 2006. Vertical distribution of leaf area is leaf areas per horizontal layers, based on height (Boedhram et al., 2001. Above-ground biomass is one of the central traits in functional plant ecology and growth analysis. It is a key parameter in many allometric relationships (Niklas & Enquist, 2002. The vertical biomass distribution is considered to be the main determinant of competitive strength in plant species. The presence of weeds intensifies competition for light, with the effect being determined by plant height, position of the branches, and location of the maximum leaf area. So, this experiment was conducted to study the vertical distribution of leaf area and dry matter of soybean canopy in competition with weeds and cover crops. Materials and methods This experiment was performed based on complete randomized block design with 3 replications in center of Agriculture of Joybar in 2013. Soybean was considered as main crop and soybean and Persian clover (Trifolium resupinatum L., fenugreek (Trigonella foenum–graecum L., chickling pea (Lathyrus sativus L. and winter vetch (Vicia sativa L. were the cover crops. Treatments were included cover crops (Persian clover, fenugreek, chickling pea and winter vetch and cover crop planting times (simultaneous planting of soybean with cover crops and planting cover crops three weeks after planting of soybeans and also monoculture of soybeans both in weedy and weed free conditions were considered as controls. Soybean planted in 50 cm row spacing with 5 cm between plants in the same row. Each plot was included 5 rows soybeans. Cover crop inter-seeded simultaneously in the main crop. Crops were planted on 19 May 2013 for simultaneous planting of soybean. The dominant weed species were green

  4. Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance

    International Nuclear Information System (INIS)

    Huggins, D.R.; Clapp, C.E.; Allmaras, R.R.; Lamb, J.A.; Layese, M.F.

    1998-01-01

    Carbon flow in terrestrial ecosystems regulates partitioning between soil organic C (SOC) and atmospheric CO2. Our objectives were to assess SOC dynamics using natural 13C abundance in corn (Zea mays L., a C4 species)-soybean [Glycine max (L.) Merr., a C3 species] sequences. Fifteen treatments of continuous corn, continuous soybean, various sequences of corn and soybean, and fallow were initiated in 1981 at Lamberton, MN, on a Webster clay loam (fine-loamy, mixed, mesic Typic Haplaquoll). In 1991, soil and aboveground shoot samples from all treatments were analyzed for total organic C and delta 13C. Carbon inputs, delta 13C, and SOC were integrated into a two-pool model to evaluate C dynamics of corn and soybean. Total SOC was similar across all treatments after 10 yr; however, differences in soil delta 13C occurred between continuous corn (delta 13C = -17.2 per thous and) and continuous soybean (delta 13C = -18.2 per thousand). Modeled C dynamics showed SOC decay rates of 0.011 yr-1 for C4-derived C and 0.007 yr-1 for C3-derived C, and humification rates of 0.16 yr-1 for corn and 0.11 yr-1 for soybean. Decay and humification rates were slightly lower than those found in other Corn Belt studies. Levels of SOC were predicted to decline an additional 7 to 18% with current C inputs from either corn or soybean, respectively. Annual C additions required for SOC maintenance averaged 5.6 Mg C ha-1, 1.4 to 2.1 times greater than previously reported estimates. Controlled variation in natural 13C abundance in corn-soybean rotations during a 10-yr period adequately traced C dynamics

  5. 不同环境条件下大豆籽粒蛋白质和油分含量与指数的遗传效应分析%Analysis of Genetic Effects on Contents and Indexed of Protein and Oil in Soybean Seeds in Different Environments

    Institute of Scientific and Technical Information of China (English)

    宁海龙; 李文霞; 李文滨; 王继安

    2005-01-01

    Protein and oil are two of the important quantitative traits closely related to the nutrient quality in soybean(Glycine max [L. ] Merry). The content and yield of protein and oil have become one of the main goals in soybean breeding. For soybean breeding programs, understanding the inheritance is of importance. Genetic analyses of protein and oil content in soybean seed have been reported. Most of the studies showed that protein and oil content are quantitatively inherited. Genetic effects, heritability and correlation of protein and oil content in soybean seeds have been estimated.

  6. Resistance of Advanced Soybean Lines to Pod Borrer (Etiella zinckenella

    Directory of Open Access Journals (Sweden)

    Heru Kuswantoro

    2017-07-01

    Full Text Available The increasing and stabilizing of soybean product in Indonesia face many limitations. One of the limiting factors is pod borrer (Etiella zinckenella Treitschke infestation that is able to cause yield loss up to 80%. Objective of the research was to find out some advanced soybean lines that resistant to pod borrer. Design was randomized complete block with three replications. Soybean lines were grown gradualy to ensure the simultanously flowering. The plants were caged at 35 days after planting (DAT and infested with the imago of E. zinckenella at 56 DAT. Results showed that different soybean lines affected imago population, eggs population, larvae population, infected pods and infected seeds. Some genotypes were consistantly resistant to E. zinckenella. The resistance of those genotypes were non preference resistance based on eggs population, larvae population, infected pod and infected seeds. This study discovered nine soybean lines that is resistant to E. zinckenella, so that it can be beneficial for improving soybean resistance to this pest through releasing as a new resistant pod borer variety after tested further in potential yield and genetic x environment interaction trials. In addition, there were three varieties and two germplasm accessions that can be used as gene sources for improving the resistance of the varieties. The three varieties are able to be cultivated directly in field to decrease the E. zinckenella occurrence. 

  7. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    Science.gov (United States)

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  8. Breeding for high N2 fixation in groundnut and soybean in Viet Nam

    International Nuclear Information System (INIS)

    Nguyen Xuan Hong

    1998-01-01

    Groundnut (Arachis hypogaea L.) and soybean (Glycine max (L.) Mer.) are grown mainly on two types of soil in Viet Nam: coastal-sandy and upland-degraded soils. These soils are deficient in N, and considering that fertilizer N is not only costly to farmers but also a threat to the environment, it is important to maximize productivity by exploiting the ability of these legumes to fix N 2 symbiotically in their root nodules. We initiated programmes of breeding and selection to combine high N 2 fixation and high grain-yielding capacity. In the spring of 1992, breeding lines of groundnut and soybean were tested under greenhouse conditions for varietal differences in the capacity to fix N 2 using the acetylene reduction assay and the 15 N-dilution technique, with upland rice as reference plants. Varietal differences were found in nitrogenase activity, and percent N derived from fixation (%Ndfa) ranged from 11 to 63% for groundnut and from 9 to 79% for soybean. Field experiments in the autumn-winter season of 1992 again revealed significant varietal differences; %Ndfa ranged from 36 to 56% for groundnut and from 28 to 58% for soybean. Gamma-irradiated seeds of soybean were propagated in bulk from M 1 to M 4 . Five high-yielding mutant lines of both species were selected from the M 5 populations, and N 2 fixation was estimated using the 15 N-dilution technique. The average values for %Ndfa of the mutants were 55 and 57%, significant improvements over the parent-cultivar values of 25 and 29% for soybean and groundnut, respectively

  9. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HOU Wen-sheng; YaeI Hacham; SUN Shi; WU Cun-xiang; Ifat Matityahu; SONG Shikui; RacheI Amir; HAN Tian-fu

    2018-01-01

    Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Although the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low concentration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione γ-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.

  10. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  11. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    Science.gov (United States)

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  12. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  13. High-residue cultivation timing impact on organic no-till soybean weed management

    Science.gov (United States)

    A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can b...

  14. Evaluating the Potential for Soybean Culture in Romania Compared with the European Union

    Directory of Open Access Journals (Sweden)

    Elena ŞURCĂ

    2018-05-01

    Full Text Available Soybean is a very popular plant for its wide use, and it is coming back to the attention of farmers due to its special importance in various sectors. Thus, the present study, aims to highlight Romania’s position regarding the areas cultivated with this plant, grain and oil production, consumption per capita and also forage consumption in the zootechnical sector. Also, it will bring in the highlight aspects very important, like imports and exports for the period of 2000-2016 in order to assess the potential of soybean culture and its necessity on the territory of Romania. Due to the high demand for soybeans and / or soybean products, Romania has to resort to the European or world market in order to satisfy the demand for this product, mainly used in the livestock sector. Soybean culture will be analyzed in two different period, the first period will be the pre-accession (2000-2007 and the second one will be the post-accession (2007-2016 of Romanian to the European Union, thus reference will be made to genetically modified soybeans and their use on national and European territories.

  15. Genetic Analysis of Embryo, Cytoplasm and Maternal Effects and Their Environment Interactions for Isoflavone Content in Soybean [Glycine max(L.) Merr.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype × environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal,embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore,the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean. The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.

  16. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    International Nuclear Information System (INIS)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-01-01

    Highlights: ► We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. ► Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. ► The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. ► GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  17. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Soybean sprouts are considered as natural and healthy food by Asian consumers. However, sprouts are often associated with outbreaks of foodborne illnesses and recalls due to contamination of seeds with human pathogens. Irradiation may be used to inactivate pathogens on seeds and sprouts. In this stu...

  18. QTLs for resistance to Phomopsis seed decay are associated with days to maturity in soybean (Glycine max).

    Science.gov (United States)

    Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Yin-Won; Li, Baodu; Lee, Suk-Ha

    2013-08-01

    Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100-Satt460 and Sat_038-Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.

  19. The fficiency of Mycorrhiza biofertilizer treatment to the growth and yield of soybean

    Science.gov (United States)

    Samanhudi; Pujiasmanto, B.; Sudadi; Putra, I. H.; Mumtazah, H. M.

    2018-03-01

    Soybean is one of the major commodities in Indonesia. Due to its high demand, its requires an effort to increase the production. Soybeans are generally cultivated in dry land, for that its need a special management to increase the yield. The association between Mycorrhiza and roots help the plant to get water and nutrients. In this regard Mycorrhiza expected to increase soybean yield and efficiency. This research aim is to study the dose of Mycorrhiza on the growth and yield of soybean efficiently. The experiment was conducted in Selogiri District, Wonogiri, while the analysis of Mycorrhiza and soil was inFaculty of Agriculture, Universitas Sebelas Maret Surakarta from February to April 2016. Randomized Complete Block Design (RCBD) with two factors was emplyed for this experiment. The treatments are compost dose (derived from Waste Management Faculty of Agriculture UNS) and Mycorrhizal dose (obtained from BPPT Serpong). The result showed that the Mycorrhiza treatmentwas able to improved the growth and yield of soybean. The most efficient dose of is Mycorrhiza treatment at 0.64 ton ha-1.

  20. Biological responses of two soybean cultivars exposed to enhanced UVB radiation

    International Nuclear Information System (INIS)

    D'Surney, S.J.; Tschaplinski, T.J.; Edwards, N.T.; Shugart, L.R.

    1993-01-01

    A UVB exposure and monitoring system has been established at the Oak Ridge National Laboratory's Global Climate Change Research Facility. The system consists of a power supply, and data acquisition and exposure equipment to accomplish controlled, elevated exposure of terrestrial plants to UVB. Plant biomass, selected compounds that absorb UV radiation, and DNA integrity/damage were measured for two soybean cultivars [Glycine max (L.) Merr.] Forrest and Essex exposed to elevated UVB (32% above ambient) in this system. The biomass of each major plant organ was observed to be less in soybean cultivar Forrest upon exposure to enhanced UVB with the greatest response in seed pods and stems. In contrast, soybean cultivar Essex showed no biomass response to elevated UVB. Enhanced UVB caused significant (P < 0.1) changes in concentrations of UV-absorbing compounds in both soybean cultivars. The Essex cultivar had an increase in UV-absorbing compounds, whereas a decline was observed for soybean Forrest. There was a decrease in the integrity of DNA, as measured by strand breaks, from both cultivars at 30 and 52 days to exposure. DNA pyrimidine dimers in isolated plant DNA were measured with Micrococcus luteus UV endonuclease. DNA from soybean Forrest exposed to UVB and sampled at 30 and 52 days of exposure had significantly greater (P<0.05) pyrimidine dimer concentration (dimer frequency ≈ 1 dimer per 28,000 DNA bases) than either cultivar exposed to UV treatment for 1 day or Essex at days 30–52 (dimer frequencies < /1 per 120,000 bases of DNA). Decrease in DNA integrity and biomass production in Forrest under elevated UVB may be related to the inability to maintain high concentrations of UV-absorbing compounds in leaves. The tolerant cultivar Essex increased the concentration of UV-absorbing compounds while maintaining biomass production and DNA integrity under elevated UVB

  1. Assessing Predictive Properties of Genome-Wide Selection in Soybeans

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2016-08-01

    Full Text Available Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr. We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.

  2. Assessing Predictive Properties of Genome-Wide Selection in Soybeans.

    Science.gov (United States)

    Xavier, Alencar; Muir, William M; Rainey, Katy Martin

    2016-08-09

    Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. Copyright © 2016 Xavie et al.

  3. Research Regarding the Accumulation in Soybeans of Heavy Metals from Anaerobic Composted Sewage Sludge Used as Organic Fertilizer

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2010-10-01

    Full Text Available In sewage sludge from urban wastewater treatment stations can often be find high levels of Ni, Pb, Cu, Zn, Mn andCd. Aerobic or anaerobic composting of this sewage sludge does not eliminate the possibility of bioaccumulation ofthese metals in plants through metabolic processes of phytoextraction type. Researches regarding the accumulationdegree of heavy metals through phytoextraction processes were performed on soybean plants (Glycine max, Condorvariety. Plants were fertilized with anaerobic composted sludge in amounts of 25 t of / ha, 50 t / ha and 100 t / ha.The chemical analysis was done on an average sample of three repetitions. Metal concentration in soybeans wasanalyzed by reporting to the maximum allowance level for sheep, considered one of the most sensitive farm speciesto heavy metal toxicity. Our results showed a higher level than normal with 5.8 mg / kg only in the case of copperions. Zn, Pb, Mn and Cd concentration in soybeans was below the maximum allowance limits set by the rules offeeding farm animals. Also, heavy metal content of soybeans was not affected by the amount of composted sludgeused as fertilizer.

  4. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  5. Efeito de doses de metribuzin no crescimento e na conversão da energia solar em plantas de soja (Glycine max (L . merrill Effect of metribuzin doses on the growth and solar energy conversion in soybean (Glycine max (L. merrill plants

    Directory of Open Access Journals (Sweden)

    P. J. Silva Neto

    1991-01-01

    Full Text Available O crescimento e a eficiência na conversão da energia solar foram estudados em soja (Glycine max (L. Merri ll, cv. 'Uberaba', cultivada em condições de campo, sob quatro doses de metribuzin (0, 0,35; 0,70 e 1,05 kg i.a.ha-1. O valor máximo da conversão da energia solar foi de 0,75%, para as plantas cultiva das na maior dose do herbicida. Os valores da conversão da energia solar média durante o ciclo da cultura foram 0,32 ; 0,31 ; 0,32 e 0,33%. em ordem crescente de dose do metribuzin. De modo geral, na fase vegetativa as plantas controle apresentaram valores inferiores em todos os valores de crescimento determinados, superando as tratadas com metribuzin somente na fase reprodutiva, mostrando que no período crítico de competição o dano causado pelas plantas daninhas é maior que a possível fitotoxicida de causada pelo metribuzin.Growth analysis and evaluation of solar energy conversion in soybean (Glycine max (L. Merrill, Uberaba unver field conditions and four doses of metribuzin (0,0;0,35; 0,70 and 1,05 kg i.a.ha-1 were performed in this study. Maximum solar energy conversion was 0,75% for pla nts tre ate d wit h 1,05 kg i.a.ha -1 metribuzin. The aver age of solar energy conversion throughout the entire crop cycle were 0,32, 0,31 , 0,32 and 0,33% for the increasing metribuzin doses. In general, the control showed lower figures for all growth values studied than the treated during the vegetative phase. During the reproductive phase, however, they surpassed those tre ated with metribuzin, showing that in the critical period of competition weeds were more harmful than the phytotoxicity produced by metribuzin.

  6. Emisiones de óxido nitroso en un cultivo de soja [Glycine max (L. Merrill]: efecto de la inoculación y de la fertilización nitrógenada Nitrous oxide emission during a soybean [Glycine max (L. Merril] culture: inoculation and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Ignacio A Ciampitti

    2005-12-01

    Full Text Available El óxido nitroso absorbe radiación infrarroja contribuyendo al efecto invernadero; este gas es producido principalmente en el suelo, mediante los procesos de nitrificación y denitrificación. En un estudio a campo, sobre un suelo Argiudol típico, se evaluó el efecto de la fertilización y la inoculación con Bradyrhizobium japonicum en un cultivo de soja [Glycine max (L. Merrill], sobre las emisiones de óxido nitroso. Los gases se extrajeron de cilindros de PVC y la lectura se realizó con cromatografía gaseosa. Las emisiones presentaron valores crecientes desde la siembra hacia madurez fisiológica del cultivo, para todos los tratamientos; este comportamiento fue concomitante con la evolución presentada por la humedad edáfica. La fertilización nitrogenada aumentó significativamente (PNitrous oxide gas absorbs infrared radiation contributing to the greenhouse effect; this gas is produced mainly in soil, by means of the processes of nitrification and denitrification. In a field study at the FAUBA on a typic Argiudol, we evaluated the effect of fertilization and inoculation with Bradyrhizobium japonicum during a soybean culture [Glycine max (L. Merrill], on nitrous oxide emisión. Gases were sampled with PVC cylinders and were read with gaseous chromatography. Emissions presented increasing values from seeding towards physiological maturity for all treatments; this behavior was similar to the evolution presented by nitrate level and soil moisture. Nitrogen fertilization significantly increased (P<0.05 nitrous oxide emissions and inoculation only had a significant effect with the highest level of fertilization (P=0.09. Plots fertilized at highest dose and inoculated gave the greatest nitrous oxide emissions. The variable that better explains the emissions is the nitrate level (r² = 0.1899; P=0.0231.

  7. Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD

    International Nuclear Information System (INIS)

    Atak, Cimen; Alikamanoglu, Sema; Acik, Leyla; Canbolat, Yasemin

    2004-01-01

    The aim of our study was to induce with radiation of atrazine resistant and tolerated mutants in Coles, Amsoy-71 and 1937 soybean varieties. Atrazine that is photosynthetic inhibitor is the most important herbicide of S-triazin group, and shows toxic effect on soybean plant. For the improvement of the atrazine resistant plants with mutation breeding, the seeds belonging to the three varieties were irradiated with 200 Gy of gamma radiation dose. The irradiated seeds were sown in the field and at the end of harvesting season, every pod at node situated on the main stem was picked up separately and M 2 generations were obtained. At the plants, which were obtained from M 2 generation, chlorophyll mutants were determined and atrazine selection was made. The percentage of chlorophyll mutants for Amsoy-71, Coles and 1937 soybean varieties were found as 1.07, 1.48 and 1.32, respectively. At the end of atrazine selection, the percentages of atrazine resistant plants for Amsoy-71, Coles and 1937 soybean varieties were 0.80, 0.60 and 0.53, respectively. The percentages of atrazine tolerated plants were 1.07, 1.18 and 1.05, respectively as well. In our research; the differences among the mutants replying to atrazine in various concentrations were examined by using RAPD procedure as the molecular marker techniques in comparison with polymorphism. In the study done by using 14 primers; according to the amplification results, the differences between atrazine resistant plants were shown

  8. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen

    2015-05-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Relationship between Protein Accumulation Regulation and Yield Formation in Soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN Lihua; LI Jie; LIU Lijun; ZU Wei

    2006-01-01

    Three different genotypes soybeans were adopted in this experiment under three fertilizer levels.The object of this study was to investigate protein accumulation regulation of soybean cultivars under the condition of different nutrient levels, and their effects on soybean yield and quality, and to provide theoretical evidence for breed, cultivation and agricultural production, also man-powered controllable locations. The concentration of N in the leaves declined after seedling stage, then increased again at stage of early flowering, and started to decrease up to leaf senescence, declined rapidly from seed-filling season to stage of yellow ripeness. The concentration of N in the stems and pod walls declined with growth stage. High seed protein genotypes exhibited higher N assimilating and partitioning during whole growth stages. Pod walls were media of N partitioning. Protein was accumulated mainly during the later period of reproductive growth stage up to harvest, so plant growth after stage of yellow ripeness could not be neglected.

  10. Foliar and soil application of 15N-labelled fertilizers in the cultivation of common bean and soybean

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.; Skarlou, V.D.; Apostolakis, C.G.; Katranis, N.

    1979-01-01

    In two field experiments (one with beans and one with soybeans) during 1977, the influence of soil application of different nitrogen fertilizers and also of foliar application of the Hanway nutrient solution (N-P-K-S) on nitrogen fixation, grain yield and fertilizer utilization was studied. The nodule data for soybeans indicated that urea applied as starter, topdress or foliar spray adversely affected nodule number and weight. Starter (NH 4 ) 2 SO 4 had an effect similar to urea, while starter NH 4 NO 3 had slight or no adverse effect. Use of (NH 4 ) 2 SO 4 or NH 4 NO 3 in the Hanway solution had a strong adverse effect. Yield data of the soybean experiment indicated that urea, applied as starter or starter plus topdress, had no essential effect while foliar spray showed a clear adverse effect on the grain yield of soybean-nod. When (NH 4 ) 2 SO 4 or NH 4 NO 3 were used in the foliar spray, the adverse effect was more evident. Non-nod soybean showed slight yield response to topdress N and significant positive response to Hanway foliar spray. In the bean experiment some evidence of positive response to topdress N plus Hanway foliar spray was observed in the non-nod crop, but it was not significant. The utilization coefficient of the applied fertilizers varied with the treatments. The highest utilization coefficient (50-70%), for both experiments, was observed when urea was applied as foliar spray. Application of urea as starter gave low utilization while topdress application gave high utilization in the soybean experiment and low in that of common bean. Under the experimental conditions starter urea was better utilized than starter ammonium sulphate or nitrate. (author)

  11. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.

    Science.gov (United States)

    Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart

    2012-02-01

    Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effect of raceme-localized supplemental light on soybean reproductive abscission

    International Nuclear Information System (INIS)

    Myers, R.L.; Brun, W.A.; Brenner, M.L.

    1987-01-01

    The percentage of soybean [Glycine max (L.) Merr.] reproductive structures that abscise is a potentially important yield factor. To better understand the involvement of light in the abscission of reproductive structures, a series of in vitro raceme-culture and growth-chamber experiments were conducted. In the in vitro raceme-culture experiments, racemes with four to six flowers at or past anthesis were excised from the soybean plant (genotype IX93-100), embedded in a complete nutrient, solid agar medium, and subjected to various light treatments. A series of three experiments indicated that the racemes contain a photoreceptor, possibly phytochrome, capable of regulating sucrose accumulation. In each of the growth chamber studies, supplemental light was supplied directly to individual soybean flowers via fiber optic light guides. The light source increased the photon flux to the flowers by 10-fold. The first growth chamber experiment showed that flowers receiving supplemental light were more intense sinks for 14 C-sucrose than were controls (intensity value of 1.0 vs 0.4 x 10 -7 , intensity = [dps of flower/dps of raceme]/[kg dry wt of flower]). In a second study, 42% of flowers treated with supplemental light set pods, while only 26% of control flowers set pods. A third experiment showed that red supplemental light produced 55% fruit set, compared to 41% set for far-red light, and 35% for controls. These experiments indicate that both photoassimilate accumulation and abscission in young soybean reproductive structures may be regulated by light quality

  13. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Incidence of root rot diseases of soybean in Multan Pakistan and its management by the use of plant growth promoting rhizobacteria

    International Nuclear Information System (INIS)

    Haq, M.I.; Tahir, M.I.; Mahmood, S.

    2012-01-01

    Eight villages in Multan district were surveyed to record incidence of disease and losses of soybean (Glycine max L.) caused by root rot fungi. The root incidence ranged 10-17% and losses ranged 6.75-15.5%. The evaluation of four PGPR isolates was used in combination with organic amendment for the management of root-rot disease incidence and to reduce the population of root pathogenic fungi and to increase the yield in field. This study demonstrated effective biological control by the PGPR isolates tested, thereby indicating the possibility of application of rhizobacteria for control of soil bor ne diseases of soybean in Pakistan and other countries. (author)

  15. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  16. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress

    OpenAIRE

    Bilal, Saqib; Khan, Abdul L.; Shahzad, Raheem; Asaf, Sajjad; Kang, Sang-Mo; Lee, In-Jung

    2017-01-01

    This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and ...

  17. Soil water erosion under different cultivation systems and different fertilization rates and forms over 10 years

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-12-01

    Full Text Available The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa , soybean (Glycine max , common vetch (Vicia sativa , maize (Zea mays , fodder radish (Raphanus sativus , and black beans (Phaseolus vulgaris . The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

  18. Growth Protocols for Etiolated Soybeans Germinated within BRIC-60 Canisters Under Spaceflight Conditions

    Science.gov (United States)

    Levine, H. G.; Sharek, J. A.; Johnson, K. M.; Stryjewski, E. C.; Prima, V. I.; Martynenko, O. I.; Piastuch, W. C.

    As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented

  19. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  20. Effectiveness of fast neutrons irradiation for the stimulation and induction of genetic changes in soybean (Glycine max L. Merrill) genome

    International Nuclear Information System (INIS)

    Sodkiewicz, T.; Sodkiewicz, W.

    1999-01-01

    Air-dry seeds of soybean cv. Warszawska were irradiated with fast neutrons (Nf) using the U-120 cyclotron (at the Institute of Nuclear Physics in Cracow) at the doses of 500, 1000, 1500 R. Additionally, each of the irradiation doses was combined with the selected effective chemical mutagen N-nitroso-N-methylurea - in three concentrations: 0.5, 1.5 and 2.5 mM, to evaluate synergistic effect of these two different mutagenic agents. The results showed some of protection effect of radiation on the level of somatic damage of soybean plants. In addition, the phenomenon of the 'delaying effect' was noted, because the protection effect of fast neutron radiation in the combined treatments with chemomutagen was observed in the emergence and plant survival in the M 2 generation as well. From the point of view of genetic changes induced in the soybean genome, the most effective dose of fast neutron irradiation was 500 R. The number of soybean mutants with earlier ripening obtained (in comparison with original 'mother' variety) at this irradiation dose was higher, than with the highest effective concentration of chemical mutagen (1.0 -1.5 mM MNUA). (author)

  1. Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets; evidence for dynamic changes of TCA cycle intermediates

    Science.gov (United States)

    Soybean (Glycine max [Merr.]L.) was grown in indoor chambers with ambient (38 Pa) and elevated (70 Pa) CO2 and day/night temperature treatments of 28/20, 32/24, and 36/28 °C. Net rates of CO2 assimilation increased with growth temperature and were enhanced an additional 25% on average by CO2 enrich...

  2. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  3. Agglomeration Determines Effects of Carbonaceous Nanomaterials on Soybean Nodulation, Dinitrogen Fixation Potential, and Growth in Soil

    Science.gov (United States)

    The potential effects of carbonaceous nanomaterials (CNMs) on agricultural plants are of concern. However, little research has been performed using plants cultivated to maturity in soils contaminated with various CNMs at different concentrations. Here, we grew soybean for 39 days...

  4. Experimental silo-dryer-aerator for the storage of soybean grains

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT This study aimed to verify the capacity of silo-dryer-aerator prototype equipment operating as a silo-storage-aerator for soybean quality analysis. Soybeans with water content of 17% (wet basis – w.b. were dried and stored in a silo-dryer-aerator system that was designed using a drying chamber, four independent storage cells, and a static capacity of 164 kg. Another batch of grains was stored in a silo-storage-aerator with a capacity of 1,200 kg. The experiment was set up in a completely randomized factorial 5 × 4 experimental design including five grain batches stored after being dried at 30, 40, and 50 °C (mixed grains were dried at three temperatures in the silo-dryer-aerator cells and one mixed grain batch stored in the silo-storage-aerator system under ambient air conditions for four storage times (zero, one, two, and three months. There was no difference between the grains stored in the silo-dryer-aerator and silo-storage-aerator at the end of the three-month storage in terms of the physico-chemical quality. The storage time associated with drying at 50 °C caused a reduction in the physical-chemical quality of the grains. The silo-dryer-aerator system was presented as a possible alternative to store soybean (Glycine max L. grains.

  5. Modeling the effects of ozone on soybean growth and yield.

    Science.gov (United States)

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  6. Soybean (Glycine max L. Merr. Yield Gap Analysis using Boundary Line Method in Gorgan and Aliabad Katul

    Directory of Open Access Journals (Sweden)

    Alireza Nehbandani

    2017-12-01

    Full Text Available Introduction Increasing the production of crops has been a necessity to reach food security for growing population. Since "expanding acreage" is almost impossible, "increasing the yield per unit of area", is the only possible option. Closing the gap between actual yield and potential yield (yield gap is one of the important methods to increase yield per unit of area. It is necessary to increase yield to primarily identify the factors that contributing in the yield gap in each area. Recognizing potentials as well as the impact of each limiting factor on yield individually, plays an important role in determining the alternative management strategies to achieve maximum performance. Therefore, the present study was conducted in Gorgan and Aliabad Katul county for simultaneous recognition of best management practices, percentage of the affected fields, estimation of soybean yield potential and gaps using boundary line analysis. Material and Methods To quantify the production and estimation of soybean yield gap in Gorgan and Aliabad Katul, Farm management information of 224 soybean farms in the years 2010, 2011, 2013 and 2014 were collected. This information was collected through continuous farm monitoring during the growing season as along with face to face interviews with the farmers. Farms were selected by consulting with agricultural service centers expert in Gorgan and Aliabad districts. Based on the available information at the service centers, only farms , which is different in terms of acreage, cultural practices and harvesting operations were selected. In this study, by plotting the distribution of the yield obtained in each field as the dependent variable against the independent variables (crop management activities, using SAS software and an appropriate function was fitted on the upper edge of the data distribution. Results and Discussion The results showed that the average yield on the farms surveyed was 3507 Kg.ha-1 and by improving crop

  7. Gamma rays induced mutation for low phytic acid and trypsin inhibitor content in soybean

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manjaya, J.G.

    2017-01-01

    Soybean (Glycine max (L.) Merrill) is an important source of vegetable protein and is used as a food, feed and health supplement. However, consumption of soybean as food is limited because of the presence of many anti-nutritional factors. Trypsin inhibitors and phytic acid are two major anti-nutritional factors present in soybean that need to be removed for increasing the soybean consumption as food. Trypsin inhibitor is known to inhibit the trypsin/chymotrpsin activity and phytic acid reduces the bioavailability of essential micronutrients in digestive tract, resulting in adverse effect on health. Therefore, developing soybean cultivars having low trypsin inhibitors and phytic acid content is highly desirable. Soybean cultivar JS 93-05 was irradiated with 250 Gy gamma rays to induce mutation for various morphological and biochemical characters. A large number of mutants with altered morphological characters were identified. Ninety true breeding mutant lines in M6 generation were screened for trypsin inhibitor and phytic acid content. The phytic acid content was estimated using modified colorimetric method and trypsin inhibitor concentration was estimated using BAPNA as substrate in colorimetric method. The phytic acid content in the mutants varied from 7.59 to 24.14 mg g -1 . Two mutants lines TSG - 62 (7.59 mg g -1 ) and TSG - 66 (9.62 mg g -1 ) showed significant low phytic acid content as compared to the parent JS 93-05 (20.19 mg g -1 ). The trypsin inhibitor concentration in the mutants varied from 19.92 to 53.64 TIU mg -1 and one mutant line (TSG -14) was found with the lowest trypsin inhibitor concentration of 19.92 TIU mg -1 compared to parent JS 93-05 (50.90 TIU mg -1 ). The mutant lines identified in this study will serve as important genetic resources for developing low phytic acid and low trypsin inhibitor cultivars in soybean. (author)

  8. Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    J.D Bresolin

    2010-06-01

    Full Text Available Soybean is the most important oilseed cultivated in the world and Brazil is the second major producer. Expansion of soybean cultivation has direct and indirect impacts on natural habitats of high conservation value, such as the Brazilian savannas (Cerrado. In addition to deforestation, land conversion includes the use of fertilizers and pesticides and can lead to changes in the soil microbial communities. This study evaluated the soil bacterial and fungal communities and the microbial biomass C in a native Cerrado and in a similar no-tillage soybean monoculture area using PCR-DGGE and sequencing of bands. Compared to the native area, microbial biomass C was lower in the soybean area and cluster analysis indicated that the structure of soil microbial communities differed. 16S and 18S rDNA dendrograms analysis did not show differences between row and inter-row samples, but microbial biomass C values were higher in inter-rows during soybean fructification and harvest. The study pointed to different responses and alterations in bacterial and fungal communities due to soil cover changes (fallow x growth period and crop development. These changes might be related to differences in the pattern of root exudates affecting the soil microbial community. Among the bands chosen for sequencing there was a predominance of actinobacteria, y-proteobacteria and ascomycetous divisions. Even under no-tillage management methods, the soil microbial community was affected due to changes in the soil cover and crop development, hence warning of the impacts caused by changes in land use.

  9. Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation.

    Science.gov (United States)

    Fang, Fang; Chen, Jing; Jiang, Li-Yun; Qu, Yan-Hua; Qiao, Ge-Xia

    2018-01-09

    Biological invasion is considered one of the most important global environmental problems. Knowledge of the source and dispersal routes of invasion could facilitate the eradication and control of invasive species. Soybean aphid, Aphis glycines Matsumura, is one of the most destructive soybean pests. For effective management of this pest, we conducted genetic analyses and approximate Bayesian computation (ABC) analysis to determine the origins and dispersal of the aphid species, as well as the source of its invasion in the USA, using eight microsatellite loci and the mitochondrial cytochrome c oxidase subunit I (COI) gene. We were able to identify a significant isolation by distance (IBD) pattern and three genetic lineages in the microsatellite data but not in the mtDNA dataset. The genetic structure showed that the USA population has the closest relationship with those from Korea and Japan, indicating that the two latter populations might be the sources of the invasion to the USA. Both population genetic analyses and ABC showed that the northeastern populations in China were the possible sources of the further spread of A. glycines to Indonesia. The dispersal history of this aphid can provide useful information for pest management strategies and can further help predict areas at risk of invasion. This article is protected by copyright. All rights reserved.

  10. Degree Day Requirements for Kudzu Bug (Hemiptera: Plataspidae), a Pest of Soybeans.

    Science.gov (United States)

    Grant, Jessica I; Lamp, William O

    2018-04-02

    Understanding the phenology of a new potential pest is fundamental for the development of a management program. Megacopta cribraria Fabricius (Hemiptera: Plataspidae), kudzu bug, is a pest of soybeans first detected in the United States in 2009 and in Maryland in 2013. We observed the phenology of kudzu bug life stages in Maryland, created a Celsius degree-day (CDD) model for development, and characterized the difference between microhabitat and ambient temperatures of both kudzu, Pueraria montana (Lour.) Merr. (Fabales: Fabaceae) and soybeans, Glycine max (L.) Merrill (Fabales: Fabaceae). In 2014, low population numbers yielded limited resolution from field phenology observations. We observed kudzu bug populations persisting within Maryland; but between 2013 and 2016, populations were low compared to populations in the southeastern United States. Based on the degree-day model, kudzu bug eggs require 80 CDD at a minimum temperature of 14°C to hatch. Nymphs require 545 CDD with a minimum temperature of 16°C for development. The CDD model matches field observations when factoring a biofix date of April 1 and a minimum preoviposition period of 17 d. The model suggests two full generations per year in Maryland. Standard air temperature monitors do not affect model predictions for pest management, as microhabitat temperature differences did not show a clear trend between kudzu and soybeans. Ultimately, producers can predict the timing of kudzu bug life stages with the CDD model for the use of timing management plans in soybean fields.

  11. Radiation induced mutagenesis in soybean (Glycine Max L. Merrill)

    International Nuclear Information System (INIS)

    Wakode, M.M.; Nandanwar, R.S.; Patil, G.P.

    2000-01-01

    The mutagenic effects of gamma rays (10, 20 and 30 kR) on some biological parameter in M1 generation and frequency and spectrum of chlorophyll and morphological mutations in five cultivars of soybean viz. JS-8021, JS-335, JS- 7105, Monetta and PKV -1 have been studied. A dose dependant decrease was noticed in most of the characters like root length, shoot length, germination, plant height, plant survival and pollen sterility. While seedling height, number of seeds per pod and number of branches per plant were not affected significantly. The highest frequency and spectrum of chlorophyll and morphological mutations was noticed in variety JS-8021 in which 20 different gene loci for various characters were mutated. However variety JS- 7105 showed less radio sensitive response for different traits in which only 12 different loci were mutated. While JS-335, monetta and PKV-I showed moderate response to frequency and spectrum of various mutations. These varieties showed differential response to radio sensitivity, some useful mutations included, high yielding mutant in 20 kR, non shattering mutant in 30 kR and vine type mutant in 10 kR in variety monetta. Extra early type, erect and high branched type mutant were recorded with high frequency in 10 and 20 kR respectively in variety JS-8021. In general, 20 kR dose was found more effective in all the varieties studied. (author)

  12. Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: assessing variation across North America

    Directory of Open Access Journals (Sweden)

    Severin E. Stevenson

    2012-08-01

    Full Text Available Soybean (Glycine max is a hugely valuable soft commodity that generates tens of billions of dollars annually. This value is due in part to the balanced composition of the seed which is roughly 1:2:2 oil, starch and protein by weight. In turn, the seeds have many uses with various derivatives appearing broadly in processed food products. As is true with many edible seeds, soybeans contain proteins that are anti-nutritional factors and allergens. Soybean, along with milk, eggs, fish, crustacean shellfish, tree nuts, peanuts and wheat, elicit a majority of food allergy reactions in the United States. Soybean seed composition can be affected by breeding, environmental conditions (e.g. temperature, moisture, insect/pathogen load, and/or soil nutrient levels. The objective of this study was to evaluate the influence of genotype and environment on allergen and anti-nutritional proteins in soybean. To address genetic and environmental effects, four varieties of non-GM soybeans were grown in six geographically distinct regions of North America (Georgia, Iowa, Kansas, Nebraska, Ontario, and Pennsylvania. Absolute quantification of proteins by mass spectrometry can be achieved with a technique called multiple reaction monitoring (MRM, during which signals from an endogenous protein are compared to those from a synthetic heavy-labeled internal standard. Using MRM, eight allergens were absolutely quantified for each variety in each environment. Statistical analyses show that for most allergens, the effects of environment far outweigh the differences between varieties brought about by breeding.

  13. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    Science.gov (United States)

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Capture and utilization of solar radiation by the soybean and common bean crops and by weeds

    International Nuclear Information System (INIS)

    Santos, Jose Barbosa dos; Procopio, Sergio de Oliveira; Silva, Antonio Alberto da; Costa, Luiz Claudio

    2003-01-01

    Aiming to develop techniques for the establishment of a Weed Integrated Management Program, the performance of common bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill) and of weeds Bidens pilosa L., Euphorbia heterophylla L. (two biotypes), sensitive and resistant to ALS inhibitor - herbicides and [ Desmodium tortuosum (SW.) DC.], was evaluated in relation to their efficiency in capturing and utilizing solar radiation.The following indices were calculated: total dry biomass production rate (Ct), leaf dry biomass production rate (Cf), radiation efficient use (x), net assimilation rate (EA), specific leaf area (SA), leaf area index (L), leaf matter ratio (FW) and leaf area ratio (FA). No difference was observed for all characteristics evaluated among E. heterophylla biotypes. Soybean showed the highest rate of total dry biomass production along its cycle and also the highest leaf area index, indicating its greater capacity in capturing light and providing shade to competitive plants. Especially after flowering, common bean was the most efficient in draining its photoassimilates for leaf formation. Soybean showed greater efficiency in converting radiation intercepted in the biomass. (author)

  15. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds.

    Science.gov (United States)

    Panthee, D R; Pantalone, V R; Sams, C E; Saxton, A M; West, D R; Orf, J H; Killam, A S

    2006-02-01

    Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To achieve this objective, 101 F(6)-derived recombinant inbred lines (RIL) from a population developed from a cross of N87-984-16 x TN93-99 were used. Ground soybean seed samples were analyzed for Met and Cys concentration using a near infrared spectroscopy instrument. Data were analyzed using SAS software and QTL Cartographer. RIL differed (Pseed dry weight) for Cys and 4.4-8.8 (g kg(-1) seed dry weight) for Met. Heritability estimates on an entry mean basis were 0.14 and 0.57 for Cys and Met, respectively. A total of 94 polymorphic simple sequence repeat molecular genetic markers were screened in the RIL. Single factor ANOVA was used to identify candidate QTL, which were confirmed by composite interval mapping using QTL Cartographer. Four QTL linked to molecular markers Satt235, Satt252, Satt427 and Satt436 distributed on three molecular linkage groups (MLG) D1a, F and G were associated with Cys and three QTL linked to molecular markers Satt252, Satt564 and Satt590 distributed on MLG F, G and M were associated with Met concentration in soybean seed. QTL associated with Met and Cys in soybean seed will provide important information to breeders targeting improvements in the nutritional quality of soybean.

  16. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    Science.gov (United States)

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  17. The effects of gamma radiation on soybean isoflavones contents

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mastro, Nelida L. del; Mandarino, Jose M.G.

    2009-01-01

    Soybean (Glycine max) is the most common source of isoflavones in human feeding. It was suggested that there is a correlation among antioxidant activity of flavonoids and total phenolics content. Plants use isoflavones and their derivatives as part of the plant's defensive arsenal, to ward off disease-causing pathogenic fungi and other microbes. Highly processed foods made from legumes, such as tofu, retain most of their isoflavone content, with the exception of fermented miso, which has increased levels. Little is known about the influence of oxidative stress induced by radiation on the isoflavones contents. In the present paper, the effects of gamma irradiation on soybean isoflavones contents are presented. Samples from several Brazilian soybean cultivars were gamma irradiated with doses of 0, 1, 2, 5 e 10 kGy, dose rate about 3 kGy/h in a 60 Co (Gammacell 220 - AECL). Isoflavones contents were determined after extraction with 70% ethanol containing 0.1% acetic acid by an HPLC method. The total isoflavone content remained almost unchanged with the increase of radiation dose up to 10 kGy. Although a general correlation among total isoflavone content and radiation dose was not found, some data suggest that for a few of the isoflavones from specific cultivars, the increase in the radiation dose induced a decrease in their content as for glucosyl glucosides and malonyl isoflavones, as well as an increase in their aglycone content. (author)

  18. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  19. The effects of gamma radiation on soybean isoflavones contents

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos R.R. de; Mastro, Nelida L. del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: nlmastro@ipen.br, e-mail: mrramos@ipen.br; Mandarino, Jose M.G. [EMBRAPA Soybean, Londrina, PR (Brazil)], e-mail: jmarcos@cnpso.embrapa.br

    2009-07-01

    Soybean (Glycine max) is the most common source of isoflavones in human feeding. It was suggested that there is a correlation among antioxidant activity of flavonoids and total phenolics content. Plants use isoflavones and their derivatives as part of the plant's defensive arsenal, to ward off disease-causing pathogenic fungi and other microbes. Highly processed foods made from legumes, such as tofu, retain most of their isoflavone content, with the exception of fermented miso, which has increased levels. Little is known about the influence of oxidative stress induced by radiation on the isoflavones contents. In the present paper, the effects of gamma irradiation on soybean isoflavones contents are presented. Samples from several Brazilian soybean cultivars were gamma irradiated with doses of 0, 1, 2, 5 e 10 kGy, dose rate about 3 kGy/h in a {sup 60}Co (Gammacell 220 - AECL). Isoflavones contents were determined after extraction with 70% ethanol containing 0.1% acetic acid by an HPLC method. The total isoflavone content remained almost unchanged with the increase of radiation dose up to 10 kGy. Although a general correlation among total isoflavone content and radiation dose was not found, some data suggest that for a few of the isoflavones from specific cultivars, the increase in the radiation dose induced a decrease in their content as for glucosyl glucosides and malonyl isoflavones, as well as an increase in their aglycone content. (author)

  20. Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: A case study of Argentina.

    Science.gov (United States)

    Arrieta, E M; Cuchietti, A; Cabrol, D; González, A D

    2018-06-01

    Of all human activities, agriculture has one of the highest environmental impacts, particularly related to Greenhouse Gas (GHG) emissions, energy use and land use change. Soybean and maize are two of the most commercialized agricultural commodities worldwide. Argentina contributes significantly to this trade, being the third major producer of soybeans, the first exporter of soymeal and soybean oil, and the third exporter of maize. Despite the economic importance of these crops and the products derived, there are very few studies regarding GHG emissions, energy use and efficiencies associated to Argentinean soybean and maize production. Therefore, the aim of this work is to determine the carbon and energy footprint, as well as the carbon and energy efficiencies, of soybeans and maize produced in Argentina, by analyzing 18 agronomic zones covering an agricultural area of 1.53millionkm 2 . Our results show that, for both crops, the GHG and energy efficiencies at the Pampean region were significantly higher than those at the extra-Pampean region. The national average for production of soybeans in Argentina results in 6.06ton/ton CO 2 -eq emitted to the atmosphere, while 0.887ton of soybean were produced per GJ of energy used; and for maize 5.01ton/ton CO 2 -eq emitted to the atmosphere and 0.740ton of maize were produced per each GJ of energy used. We found that the large differences on yields, GHGs and energy efficiencies between agronomic regions for soybean and maize crop production are mainly driven by climate, particularly mean annual precipitation. This study contributes for the first time to understand the carbon and energy footprint of soybean and maize production throughout several agronomic zones in Argentina. The significant differences found in the productive efficiencies questions on the environmental viability of expanding the agricultural frontier to less suitable lands for crop production. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Radiation-use efficiency of soybean, mungbean and cowpea under different environmental conditions

    International Nuclear Information System (INIS)

    Muchow, R.C.; Robertson, M.J.; Pengelly, B.C.

    1993-01-01

    Radiation-use efficiency (RUE), defined as the amount of biomass accumulated per unit radiation intercepted, is a key measure of the photosynthetic performance of crops growing in different environments. The RUE of soybean (Glycine max L.), mungbean (Vigna radiata) and cowpea (Vigna unguiculata) growing under well-watered field conditions in tropical and subtropical environments was determined from frequent biomass samplings and continous logging of intercepted radiation throughout growth. The slope of the relationship between net biomass accumulation and intercepted radiation was linear throughout most of growth, almost until the end of pod-filling in all species and all environments. The decrease in RUE just prior to maturity was associated with losses of biomass due to leaf shedding, and also with a decline in specific leaf nitrogen. The RUE during the linear phase was slightly higher in cowpea than in mungbean and soybean. For each species, the RUE was similar in different environments despite large differences in air temperature, water vapour saturation deficit and incident radiation. It was concluded that RUE under well-watered conditions is constant throughout most of growth and unaffected by the aerial environment. Baseline values of RUE were 0.88 g MJ -1 for soybean, 0.94 g MJ -1 for mungbean, and 1.05 g MJ -1 for cowpea. (author)

  2. Introduction of exogenous wild soybean DNA into cultivated soybean and RAPD molecular verification

    Institute of Scientific and Technical Information of China (English)

    谢纬武; 王斌; 雷勃钧; 李希臣; 卢翠华; 钱华; 周思君

    1995-01-01

    The exogenous total DNA of the wild high-protein soybean was transferred to cultivatedsoybean through the pollen tube channel and the genomic variation of the transformed progeny was detected bythe method of RAPD(Random Amplified Polymorphic DNA).Distinguished variations were found in one of the 7 transformed plants of the first generation(D1),ofwhich the traits of fruition,outward appearance,leaf shape and flower colour were almost identical withthose of the recipient parent;of which grain weight,seed coat colour and stem strength were situated betweenthe two parents;and there were greatly more pods per plant and 12.5% higher content of protein in seedsthan that of the recipient parent.All the properties have been invariably inherited for 3 generations.Through RAPD analysis of the genomes of the donor,the recipient and the transformed progeny(D3)as agroup,DNA polyrnorphisms were found in amplified products by 24 of 150 primers.The results prove thatthe exogenous DNA caused the distinct variance of the genome.The authors infer that the homogeneousrecombination of large exogenous DNA is the main cause for the variance.

  3. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  4. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  5. 1,10-Phenanthroline and its derivatives are novel hatching stimulants for soybean cyst nematodes.

    Science.gov (United States)

    Nonaka, Shiori; Katsuyama, Tsutomu; Kondo, Tatsuhiko; Sasaki, Yasuyuki; Asami, Tadao; Yajima, Shunsuke; Ito, Shinsaku

    2016-11-01

    Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode and one of the most serious soybean pests. Herein, we present the heterocyclic compound 1,10-phenanthroline (Phen) and its derivatives as novel hatching stimulants for SCN. Phen treatment promoted hatching of second-stage juveniles of SCNs in a concentration-dependent manner. In addition, the hatching of SCNs following treatment with Phen occurred more rapidly than that following treatment with the known hatching stimulant, glycinoeclepin A (GEA). Furthermore, the co-application of Phen and GEA enhanced SCN hatching rate compared with that of Phen or GEA alone. A structure-activity relationship study for Phen derivatives suggested that 2,2'-bipyridine is the essential structure of the SCN-hatching stimulants. These results suggest that Phen and its derivatives activate different hatching pathways of SCNs from GEA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A fermented barley and soybean formula enhances skin hydration.

    Science.gov (United States)

    Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-Gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won

    2015-09-01

    Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.

  7. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    Full Text Available Introduction Utilizing biological fertilizer is a proper and cheap method for crop production. Potentially, soybean can be used as biological fertilizers and seed inoculation. Zinc is an essential element that have positive effects on plant growth and its development. Canola, sunflower, soybean and safflower are the main cultivated oilseeds in Iran. Soybean production in Iran is very low as compared to other countries. One of the most effective factor in increasing the soybean yield is seed inoculation with plant growth promoting rhizobacteria (PGPR and application of Zinc fertilizer. Some of the benefits provided by PGPR are the ability to produce gibberellic acid, cytokinins and ethylene, N2 fixation, solubilization of mineral phosphates and other nutrients (56. Numerous studies have shown a substantial increase in dry matter accumulation and seed yield following inoculation with PGPR. Seyed Sharifi (45 reported that seed inoculation with Azotobacter chroococcum strain 5 increased all of the growth indices such as total dry matter, crop growth rate and relative growth rate. Increasing and extending the role of biofertilizers such as Rhizobium can reduce the need for chemical fertilizers and decrease adverse environmental effects. Therefore, in the development and implementation of sustainable agricultural techniques, biofertilization has great importance in alleviating environmental pollution and deterioration of the nature. As a legume, soybean can obtain a significant portion (4-85% of its nitrogen requirement through symbiotic N2 fixation when grown in association with effective and compatible Rhizobium strains. Since there is little available information on nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR on yield in the agro-ecological growing zones of Ardabil province of Iran. Therefore, this research was conducted to investigate the effects of nano-zinc oxide and seed inoculation with plant growth

  8. Optimization of Agrobacterium-Mediated Transformation in Soybean

    Science.gov (United States)

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide

  9. Within-field spatial distribution of Megacopta cribraria (Hemiptera: Plataspidae) in soybean (Fabales: Fabaceae).

    Science.gov (United States)

    Seiter, Nicholas J; Reay-Jones, Francis P F; Greene, Jeremy K

    2013-12-01

    The recently introduced plataspid Megacopta cribraria (F.) can infest fields of soybean (Glycine max (L.) Merrill) in the southeastern United States. Grid sampling in four soybean fields was conducted in 2011 and 2012 to study the spatial distribution of M. cribraria adults, nymphs, and egg masses. Peak oviposition typically occurred in early August, while peak levels of adults occurred in mid-late September. The overall sex ratio was slightly biased at 53.1 ± 0.2% (SEM) male. Sweep samples of nymphs were biased toward late instars. All three life stages exhibited a generally aggregated spatial distribution based on Taylor's power law, Iwao's patchiness regression, and spatial analysis by distance indices (SADIE). Interpolation maps of local SADIE aggregation indices showed clusters of adults and nymphs located at field edges, and mean densities of adults were higher in samples taken from field edges than in those taken from field interiors. Adults and nymphs were often spatially associated based on SADIE, indicating spatial stability across life stages.

  10. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems.

    Science.gov (United States)

    Uhm, Joo Tae; Yoon, Won Byong

    2011-08-01

    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  11. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Nasr Esfahani

    2015-06-01

    Full Text Available Drought stress is one of the major constraints for production and yield of soybean (Glycine max. For this reason, identifying mechanisms associated with drought tolerance in soybean is very impotent for improving and increasing drought resistance by genetic engineering methods. In this study, the effect of drought on growth traits (plant height, fresh and dry weight of shoot and also fresh and dry weight of root and enzyme activities of isocitrate dehydrogenase (ICDH, phosphoenolpyruvate carboxylase (PEPC, malate dehydrogenase (MDH, glutamine synthetase (GS and nitrate reductase (NR were assessed in drought sensitive and tolerant cultivars of soybean. The results showed that growth indicators are higher in drought tolerant cultivar under water availability (control and water deficient when compared with those of drought sensitive cultivar. An increase in the activity of ICDH was observed in both the cultivars under drought stress as compared with their respective control plants but this activity was higher in tolerant cultivar. The activities of PEPC, MDH, GS and NR were significantly decreased in drought sensitive cultivar whereas the activities of these enzymes were higher in another cultivar. In general, the results of this study showed different behavior in the activities of assayed enzymes in two sets of soybean cultivars differing in drought tolerance and also decline of the activities of these enzymes in drought sensitive cultivar due to water deficit stress may be one of the possible reasons for decreased growth of the soybean plants under drought.

  12. High linolenic acid mutant in soybean induced by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Y. [Saga Univ. (Japan); Hossain, A. B.M.M.; Yanagita, T.; Kusaba, S.

    1989-12-15

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M{sub 2} progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M{sub 2} plants. The M{sub 3} generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety.

  13. High linolenic acid mutant in soybean induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Takagi, Y.; Hossain, A.B.M.M.; Yanagita, T.; Kusaba, S.

    1989-01-01

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M 2 progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M 2 plants. The M 3 generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety

  14. Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) Infestations in Tree Borders and Subsequent Patterns of Abundance in Soybean Fields.

    Science.gov (United States)

    Aigner, B L; Kuhar, T P; Herbert, D A; Brewster, C C; Hogue, J W; Aigner, J D

    2017-04-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an important pest of soybean (Glycine max L. Merr.) in the Mid-Atlantic United States. In order to assess the influence of nonmanaged wooded borders on H. halys infestation patterns in soybean, 12 soybean fields in Orange and Madison Counties, VA, were sampled each week from July to October in 2013 or 2014 for H. halys. At each location, five 2-min visual counts of H. halys life stages were made on tree of heaven (Ailanthus altissima Mill.) and other favorable host trees along a wooded border, on the adjacent soybean edge, 15 m into the soybean field, and 30 m into the field. Seasonal data showed a clear trend at all locations of H. halys densities building up on A. altissima-dominated wooded borders in July, then, gradually moving into adjacent soybean field edges later in the summer. Halyomorpha halys did not move far from the invading field edge, with approximately half as many bugs being present at 15 m into the field and very few being detected 30 m into the field. These results have implications for continued monitoring and management using field border sprays, particularly on edges adjacent to woods. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Free amino acid content and metabolic activities of setting and aborting soybean ovaries

    International Nuclear Information System (INIS)

    Ghiasi, H.; Paech, C.; Dybing, C.D.

    1987-01-01

    Fruits of soybean (glycine max [L.] Merr.) that are destined to abscise shortly after anthesis grow more slowly than fruits that will be retained. In this work, amino acid composition, protein metabolism, and nucleic acid metabolism were studied in setting and abscising soybean ovaries from anthesis to 6 days after anthesis. Principal free amino acids were asparagine, aspartic acid, glutamic acid, serine, and glutamine. Percent aspartate and glutamate declined as the ovaries grew, with aspartate declining more in abscising and glutamate more in setting ovaries. Percent glutamate was positively correlated to percent abscission throughout the period. Proline, serine, and leucine were positively correlated to abscission from 0 to 2 days after anthesis, whereas significant negative correlations were observed at these ages for ethanolamine and arginine. 75 Se fed as selenate and 14 C fed as sucrose, glycine, and alanine were readily incorporated into soluble and insoluble proteins in a 24-hour in vitro incubation. Radioactivity of total proteins, expressed on a per-ovary basis, was negatively correlated with percent abscission and positively correlated with ovary weight. [ 14 C]Glutamine and serine followed the opposite pattern, with greater protein labeling in abscising than in setting ovaries. When data were expressed as disintegrations per minute per milligram ovary fresh weight, protein labeling from alanine was seen to be significantly greater in abscising ovaries at anthesis and throughout the sampling period. Nucleic acid labeling from uridine was highly correlated to ovary weight; labeling from thymidine was greater in setting than abscising ovaries at anthesis and in abscising ovaries at later stages of development

  16. Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing

    Directory of Open Access Journals (Sweden)

    Glauber Monçon Fipke

    Full Text Available ABSTRACT Increased grain yield can be obtained via an interaction between plants and growth-promoting microorganisms. The Bradyrhizobium spp. are capable of fixing atmospheric nitrogen in soybeans [Glycine max (L. Merril], and Azospirillum spp. induce the synthesis of phytohormones. The aim of this study was to evaluate inoculation with Bradyrhizobium and co-inoculation with Bradyrhizobium + Azospirillum brasilense in soybeans in combination with the application a topdressing of 0, 75 or 150 kg of N ha-1 of urea during the reproductive stage. Three soybean cultivars (BMX Ativa, TEC 6029 and BMX Potência, were tested in field experiments in Santa Maria, RS, Brazil, during two agricultural years (2013/2014 and 2014/2015 and two sowing times. Morphological, nodulation and yield components were evaluated. Co-inoculation increased the grain yield by 240 kg ha-1 compared with conventional inoculation. When co-inoculated, cultivars BMX Ativa, TEC 6029 and BMX Potência showed increased grain yields of 6, 4 and 12%, respectively. The application of 150 kg ha-1 of N as a topdressing increased the grain yield by 300 kg ha-1 in the co-inoculated cultivars TEC 6029 and BMX Potência, but without a financial return. When inoculated only with Bradyrhizobium, the cultivars did not respond positively to the application of urea.

  17. ANALYSIS IMPORT POLICY OF SOYBEAN ON ECONOMICS PERFORMANCE OF INDONESIAN SOYBEAN

    Directory of Open Access Journals (Sweden)

    Muthiah Abda Azizah

    2015-11-01

    Full Text Available Trade liberalization is closely related to the opening of market access for Indonesian products to the world and vice versa. Since the soybean trade out of BULOG control began in 1998, soybean imports increased very rapidly (Sudaryanto and Swastika, 2007. This research aims to determine the general picture of soybean economy, factors analyses that influence the economic performance of Indonesian soybean and findings the alternative of policies that can reduce soybean imports in Indonesia. Methods of data analysis are descriptive analysis, 2SLS simultaneous equations, and simulation of policy alternatives. Results of the analysis of the factors that affect the economic performance of Indonesian soybean, consists of 1 The area of soybean harvest is influenced significantly by the price of domestic soybean and domestic prices of corn, 2 Productivity soybean influenced significantly by the domestic prices of soybean and fertilizer prices, 3 soybean demand influenced significantly by population, domestic prices of soybean, 4 domestic prices of soybean significantly affected by world prices of soybean, exchange rates, and soybean supply, 5 Imports of soybean influenced significantly by the domestic demand of soybean and soybean production. Therefore, policy scenarios should be made to reduce soybean imports, including by carrying out the expansion of soybean harvest policy, the policy of increasing the productivity of soybean, the policy of subsidizing the price of fertilizer.

  18. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  19. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi; Saito, Toshiyuki; Ohyanagi, Hajime; Okumura, Jun; Ishige, Kentaro; Suzuki, Harukazu; Nakamura, Takuji; Komatsu, Setsuko

    2016-01-01

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  20. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  1. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Evaluation of genetic diversity among soybean (Glycine max) genotypes using univariate and multivariate analysis.

    Science.gov (United States)

    Oliveira, M M; Sousa, L B; Reis, M C; Silva Junior, E G; Cardoso, D B O; Hamawaki, O T; Nogueira, A P O

    2017-05-31

    The genetic diversity study has paramount importance in breeding programs; hence, it allows selection and choice of the parental genetic divergence, which have the agronomic traits desired by the breeder. This study aimed to characterize the genetic divergence between 24 soybean genotypes through their agronomic traits, using multivariate clustering methods to select the potential genitors for the promising hybrid combinations. Six agronomic traits evaluated were number of days to flowering and maturity, plant height at flowering and maturity, insertion height of the first pod, and yield. The genetic divergence evaluated by multivariate analysis that esteemed first the Mahalanobis' generalized distance (D 2 ), then the clustering using Tocher's optimization methods, and then the unweighted pair group method with arithmetic average (UPGMA). Tocher's optimization method and the UPGMA agreed with the groups' constitution between each other, the formation of eight distinct groups according Tocher's method and seven distinct groups using UPGMA. The trait number of days for flowering (45.66%) was the most efficient to explain dissimilarity between genotypes, and must be one of the main traits considered by the breeder in the moment of genitors choice in soybean-breeding programs. The genetic variability allowed the identification of dissimilar genotypes and with superior performances. The hybridizations UFU 18 x UFUS CARAJÁS, UFU 15 x UFU 13, and UFU 13 x UFUS CARAJÁS are promising to obtain superior segregating populations, which enable the development of more productive genotypes.

  3. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi).

    Science.gov (United States)

    Algar, Elena; Ramos-Solano, Beatriz; García-Villaraco, Ana; Sierra, M Dolores Saco; Gómez, M Soledad Martín; Gutiérrez-Mañero, F Javier

    2013-09-01

    The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the β-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.

  4. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  5. Effect of γ-irradiated soybean on various physico-chemical characteristics with respect to ruminal feeding

    International Nuclear Information System (INIS)

    Mani, Veena; Chandra, Prakash

    2003-01-01

    Soybean seeds (Glycine max.) were irradiated at dose levels of 0, 1, 2, 5, 10 and 20 k Gy and different physical and chemical properties of irradiated soybean seeds were studied. Water activity (a w ) decreased with the increasing dose while browning index increased u up to 5 kGy dose and thereafter declined gradually. Proximate composition, cell wall constituents, acid detergent insoluble nitrogen, mineral composition, total soluble sugar and starch content did not reveal any significant change due to 20 kGy level irradiation. N-solubility in different buffers decreased with increased dose levels, however, differences were significant only at higher (10 and 20 kGy) levels. The proteins also indicated similar subunit gel pattern in all the samples. α-amino nitrogen was increased gradually from 50.29 to 56.40 μg/100 mg and trypsin inhibitor activity was diminished up to 28 per cent, if irradiation dose increased up to 20 kGy level. Lipoxygenase activity also depicted inactivation of enzyme up to 36 per cent at 20 kGy as compared to un-irradiated soybean. Free fatty acid and acidity increased with increasing dose but at 20 kGy level the value decreased. (author)

  6. ELECTRICAL CONDUCTIVITY OF SOYBEAN SEED CULTIVARS AND ADJUSTED MODELS OF LEAKAGE CURVES ALONG THE TIME

    Directory of Open Access Journals (Sweden)

    ADRIANA RITA SALINAS

    2010-01-01

    Full Text Available The objective of this work was to study the behavior of ten soybean [Glycine max (L. Merr.] cultivars using the electrical conductivity (EC test by the comparison of curves of the accumulative electrolyte leakage along the time and to establish the statistical model that allow the best adjust of the curves. Ten soybean cultivars were used and they were mechanically harvested in 2004 in the EEA Oliveros, Santa Fe, Argentina. Measurements of EC were made for 100 individual seeds of each cultivar during 20 hours of immersion at intervals of 1 hour using an equipment that permit an individual seed analysis (Seed Automatic Analyzer SAD 9000S. There were proposed two statistical models to study the EC along the time of the 10 cultivars studied using SAS Statistics Program, to select the model that better allow us to understand the EC behavior along the time. Model 1 allowed to make comparisons of EC along the time between cultivars and to study the influence of the production environment on the physiological quality of soybean seeds. The time to reach the stabilization of the EC must not be lower than 19 hours for the different cultivars.

  7. Transcriptomic characterization of soybean (Glycine max) roots in response to rhizobium infection by RNA sequencing

    International Nuclear Information System (INIS)

    He, Q.; Li, Z.; Wang, S.; Huang, S.; Yang, H.

    2018-01-01

    Legumes interacting with rhizobium to convert N2 into ammonia for plant use has attracted worldwide interest. However, the plant basal nitrogen fixation mechanisms induced in response to Rhizobium, giving differential gene expression of plants, have not yet been fully realized. The differential expressed genes of soybean between inoculated and mock-inoculated were analyzed by a RNA-Seq. The results of the sequencing were aligned against the Williams 82 genome sequence, which contain 55787 transcripts; 280 and 316 transcripts were found to be up- and down-regulated, respectively, for inoculated and mock-inoculated soybean roots at stage V1. Gene ontology (GO) analyses detected 104, 182 and 178 genes associated with the cell component category, molecular function category and biological process category, respectively. Pathway analysis revealed that 98 differentially expressed genes (115 transcripts) were involved in 169 biological pathways. We selected 19 differentially expressed genes and analyzed their expressions in mock-inoculated, inoculated USDA110 and CCBAU45436 using qRT-PCR. The results were in accordance with those obtained from rhizobia infected RNA-Seq data. These showed that the results of RNA-Seq had reliability and universality. Additionally, this study showed some novel genes associated with the nitrogen fixation process in comparison to previously identified QTLs. (author)

  8. Plant regeneration from cotyledons of mature soybean (Glycine max L.) Wilis cultivar using gamma rays

    International Nuclear Information System (INIS)

    Hutabarat, D.; Ratna, R.

    1999-01-01

    Soybean Wilis cultivar was efficiently regenerated in vitro via somatic embryogenesis. Cotyledonary explants were excised from mature germinating seeds. Seeds were germinated on agar solution and on B5 medium enriched with 5 ppm BA, 0.25 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Cotyledonary nodes from both germinating seeds were excised and cultured on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Age of seedlings had a remarkable influence on shoot regeneration. Cotyledon from seeds germinated on agar solution with light gave better result in shoot regeneration compare with those germinated in darkness. The highest number of regenerants per explants (5 shoots) was produced by cotyledon from seeds germinated on B5 medium enriched with 5 ppm IBA and 500 ppm casein hydrolyzate in darkness. The seeds of soybean were exposed to gamma-rays doses 10 Gy then germinated on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate did not improve the number of plant regeneration. Only 5-day-old seedlings from seeds were exposed to gamma-rays dose 30 Gy could improve the number of shoot regeneration, one of the cotyledonary node treated produced 21 regeneration shoots

  9. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    Science.gov (United States)

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  10. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  11. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  12. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    Science.gov (United States)

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  14. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  15. THE EFFECT OF SPRUCE BARK POLYPHENOLS EXTRACT IN COMBINATION WITH DEUTERIUM DEPLETED WATER (DDW ON GLYCINE MAX L. AND HELIANTHUS ANNUUS L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Corneliu Tanase

    2010-09-01

    Full Text Available The aim of this study was to evaluate the effect of spruce bark aqueous extract and deuterium depleted water (DDW as bioregulators on the plant growth Glycine max L. and Helianthus annuus. The following specific parameteres were closely monitorised: germination energy and germination capacity, plants vegetative organelles growth and development and photoassimilatory pigments concentrations. The results have shown that DDW presents different effects depending on tested plant species. In the case of soybean, DDW presented stimulatory effects on both germination energy and capacity, radicles elongation, primary leaves growth and development but inhibitory effects on photoassimilatory pigments. Spruce bark extract reduced the germination capacity of soybean seeds, but accelerated the germination process of sunflower seeds and present stimulatory effects on plantlets biomass accumulation. The combination of DDW with Picea abies polyphenolic extract promoted soybean plantlet elongation, especially the rootlets ones and stimulated green biomass accumulation for both soybean and sunflower plantlets. Analyzing the photoassimilatory pigments concentration for sunflower, it can be observed an increasing trend (almost 100% comparing with control when introduce into the growth medium DDW and P. abies polyphenolic extract. DDW and P. abies bark extract have shown an important role in plant growth and development, improving photoassimiliation process.

  16. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy

    DEFF Research Database (Denmark)

    Holzhauser, Thomas; Wackermann, Olga; Ballmer-Weber, Barbara K

    2008-01-01

    BACKGROUND: Soybean is considered an important allergenic food, but published data on soybean allergens are controversial. OBJECTIVE: We sought to identify relevant soybean allergens and correlate the IgE-binding pattern to clinical characteristics in European patients with confirmed soy allergy....

  17. Sowing seasons and quality of soybean seeds

    Directory of Open Access Journals (Sweden)

    Ávila Marizangela Rizzatti

    2003-01-01

    Full Text Available Considering the difficulties of producing high quality soybean [Glycine max (L. Merrill] seeds during the traditional cropping period in some areas of the State of Paraná, Brazil, a research project was carried out with the objective of evaluating the influence of sowing dates on the physiological and sanitary quality of seeds, during the 1998/99 and 1999/00 cropping seasons, in Maringá, PR, Brazil. The experiment consisted of five cultivar competition assays, arranged in a completely randomized block design, with each assay sown at different dates (10/15, 10/30, 11/15, 11/30 and 12/15 for each cropping season. The evaluated cultivars were BRS 132 (early, BRS 133 (semi-early, BR 16 (semi-early, BRS 134 (intermediate and FT- Estrela (late. Seeds obtained at the sowing dates were evaluated in the laboratory by germination, accelerated aging, and health tests. Sowing in November resulted in seeds with superior physiological and health quality. Cultivar BRS 133 showed the greatest stability in seed production with better quality for the different sowing dates. Cultivars BRS 134 and BRS 133, which were sown during the period from 10/15 to 11/30, produced seeds that had higher percentages of normal seedlings in the germination and accelerated aging tests. Advancing or delaying sowing dates had adverse effects on soybean seed production with regard to their sanitary quality.

  18. Oil accumulation in soybean seeds grown in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    José Leonardo Bruno

    2015-10-01

    Full Text Available The soybean seed presents around 20% of oil and 40% of protein. These levels, during the filling of the seeds, can be influenced by environmental conditions, where are produced changes on its biochemistry composition. The higher temperatures promote the accumulation of protein, and the moderate temperatures favor the oil accumulation. Under in vivo growing conditions the control of these factors is difficult. The in vitro procedure can help the research, because the seed can be isolated from the mother plant in controlled environment. The objective of this experiment was to evaluate the oil content of BRS184 and BRS282in vitro and in vivo. The in vivo procedure, occurred in the greenhouse, with 3plantsper potand seed collectionin R8, and in vitro procedure, developed in the laboratory, where the immature seeds were taken from the mother plant in R5 stage, cultured with a liquid culture medium containing 20 mM, 40 mM and 60 mM glutamine, with a constant agitation, during eight days at 25 ± 0.2 °C, and sucrose concentration of 204.5 mM. After the in vitro cultivation time for, the fresh weight gain of the seeds was evaluated, and after both experiments, was determined by the oil content for cultivation in R5, and R8. The accumulation of oil in soybean seeds presents a complex interaction, ranging between the genotype and the environmental conditions, under in vivo and in vitro cultivation. There is a positive correlation between production and oil content in seeds.

  19. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    Science.gov (United States)

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  20. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available Gamma-aminobutyric acid (GABA, a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L. under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetra-acetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia–NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.