WorldWideScience

Sample records for cucumis sativus electronic

  1. Free radical scavenging activity of leaves of Cucumis sativus

    OpenAIRE

    Pritesh Rashmikant Shah; Swati Dhande; Yadunath Joshi; Vilasrao Kadam

    2013-01-01

    Cucumis sativus commonly called as ‘Cucumber’ is commonly used plant throughout the world. The plant is attributed to various uses in Ayurveda. The methanolic extract of leaves of Cucumis sativus was screened for free radical scavenging activity properties using gallic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) free radical. Different concentrations of leaf extract ranging from 100- 1000µg/ml were subjected to DPPH...

  2. The genome of the cucumber, Cucumis sativus L.

    NARCIS (Netherlands)

    Huang, S.W.; Li, R.Q.; Vossen, van der E.A.G.

    2009-01-01

    Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequen

  3. Mathematical modelling of cucumber (cucumis sativus) drying

    Science.gov (United States)

    Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.

    2014-07-01

    This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.

  4. The genome of the cucumber, Cucumis sativus L

    DEFF Research Database (Denmark)

    Huang, Sanwen; Li, Ruiqiang; Zhang, Zhonghua

    2009-01-01

    ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides......Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA...

  5. Backcross introgression of the Cucumis hystrix chakr. genome increases genetic diveristy in U.S. processing cucumber (Cucumis sativus L.)

    Science.gov (United States)

    The genetic base of commercial cucumber (Cucumis sativus L.) is extremely narrow (about 3 to 8% polymorphism). Wide-based crosses within C. sativus [i.e., var. sativus x var. hardwickii (R.) Alef.] and interspecific hybridization attempts prior to 1995 have not substantially increased genetic diver...

  6. Free radical scavenging activity of leaves of Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Pritesh Rashmikant Shah

    2013-11-01

    Full Text Available Cucumis sativus commonly called as ‘Cucumber’ is commonly used plant throughout the world. The plant is attributed to various uses in Ayurveda. The methanolic extract of leaves of Cucumis sativus was screened for free radical scavenging activity properties using gallic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1, 1-diphenyl-2-picryl-hydrazyl (DPPH free radical. Different concentrations of leaf extract ranging from 100- 1000µg/ml were subjected to DPPH assay. Leaf extract showed a maximum DPPH scavenging activity of 86.17% at 1000µg/ml, whereas for Gallic acid it was found to be 98.03%. The study reveals that antioxidant activity of plant would exert beneficial effects if consumed.

  7. Cucumis sativus secretes 4'-ketoriboflavin under iron-deficient conditions.

    Science.gov (United States)

    Satoh, Junichi; Koshino, Hiroyuki; Sekino, Kouta; Ito, Shinsaku; Katsuta, Ryo; Takeda, Kouji; Yoshimura, Etsuro; Shinmachi, Fumie; Kawasaki, Shinji; Niimura, Youichi; Nukada, Tomoo

    2016-01-01

    A new compound in cucumber, Cucumis sativus, nutrient solution that appears under iron-deficient conditions, but not under ordinary culture conditions, has been revealed by HPLC analysis. The chemical structure of this compound was identified using LC-MS and NMR techniques as that of 4'-ketoriboflavin. This is the first report to show that 4'-ketoriboflavin can be found in metabolites from organisms.

  8. Inheritance of Beta-Carotene-Associated Flesh Color in Cucumber (Cucumis Sativus L.) Fruit

    Science.gov (United States)

    The nutritional value of cucumber (Cucumis sativus L.) can be improved by the introgression of ß-carotene (i.e., provitamin A and/or orange flesh) genes from “Xishuangbanna gourd” (XIS; Cucumis sativus var. xishuangbannanesis Qi et Yuan) into U.S. pickling cucumber. However, the genetics of ß-carote...

  9. Chloroplast ultrastructure in leaves of Cucumis sativus chlorophyll mutant

    Directory of Open Access Journals (Sweden)

    Irena Palczewska

    2014-02-01

    Full Text Available The developing and young leaves of Cucumis sativus chlorophyll mutants are yellow, when mature they become green and do not differ in their colour from those of control plants. The mesophyll of yellow leaves contains a diversiform plastid population with a varying degree of defectiveness, which is mainly manifested in the reduction or disorganization of the typical thylakoid system. DNA areas, ribosome-like particles and aggregates of electron-dense material are preserved in the stroma of mutated plastids. Starch grains are deficient. Apart from mutated plastids, chloroplasts with a normal structure, as in control plants, were also observed.The leaf greening process is accompanied by a reconstruction and rearrangement of the inner chloroplast lamellar system and an ability to accumulate starch. However, in the mutant chloroplasts as compared with control-plant ones, an irregular arrangement of grana and reduced number of inter-grana thylakoids can be seen. An osmiophilic substance stored in the stroma of mutated plastids and the vesicles formed from an internal plastid membrane take part in restoration of the membrane system.

  10. Comparative DFT Study of Phytochemical Constituents of the Fruits of Cucumis trigonus Roxb. and Cucumis sativus Linn.

    Directory of Open Access Journals (Sweden)

    Subarayan Bothi Gopalakrishnan

    2014-01-01

    Full Text Available The hepatoprotective active phytochemical constituents from the ethanolic extracts of the fruits of Cucumis trigonus Roxb. and Cucumis sativus Linn. were identified by GC-MS analysis. The density functional theory (DFT of these molecules was calculated by density functional B3LYP methods using B3LYP/6-311++G(d,p basis set. The optimized geometries of phytochemical constituents were evaluated. Physicochemical properties such as HOMO, LUMO, ionization potential, electron affinity, electronegativity, electrochemical potential, hardness, softness, electrophilicity, total energy, and dipole moment have also been recorded. These are very important parameters to understand the chemical reactivity and biological activity of the phytochemical constituents. Glycodeoxycholic acid and 2-(2-methylcyclohexylidene-hydrazinecarboxamide were found to be effective drugs selected on the basis of their HOMO and LUMO energy gap and softness. The effective properties of these compounds may be due to the presence of amino, carbonyl, and alcohol as a functional group.

  11. Silicon facilitates manganese phytoextraction by cucumber (Cucumis sativus L.)

    OpenAIRE

    Dragišić-Maksimović, Jelena; Mojović, Miloš; Maksimović, Vuk

    2016-01-01

    The effect of excess nutrient levels of manganese (Mn, 50 and 100 mM) on the growth inhibition and the appearance of Mn-toxicity symptoms in the leaves was studied in cucumber plants (Cucumis sativus L. cv. Chinese long). Silicon (Si), when supplied as 1.5 mM silicic acid, clearly decreased symptoms of Mn-toxicity despite approximately the same total Mn content in the leaves. In treated plants, Si improves growth and biomass production compared with that of non-Si treated plants. Inert deposi...

  12. Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Chilling temperatures (Cucumis sativus L.) plants during winter and early spring growing seasons. Inheritance to chilling in U.S. processing cucumber is controlled by cytoplasmic (maternally) and nuclear factors. To understand inherit...

  13. Cucumber (Cucumis sativus L.) and kabocha squash (Cucurbita moschata Duch).

    Science.gov (United States)

    Nanasato, Yoshihiko; Tabei, Yutaka

    2015-01-01

    We established improved methods for Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and kabocha squash (Cucurbita moschata Duch). Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the Agrobacterium infection efficiency in the proximal regions of explants. Wounding treatment was also essential for kabocha squash. Cocultivation on filter paper wicks suppressed necrosis of explants, keeping regeneration efficacy. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence. These putative transgenic plants grew normally and T1 seeds were obtained, and stable integration and transmission of the transgene in T1 generations were confirmed by Southern hybridization and PCR. The average transgenic efficiency for cucumber and kabocha squash was 11.9 ± 3.5 and 9.2 ± 2.9 %, respectively.

  14. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Cucumber (Cucumis sativus L.) is a major cucurbit vegetable species whose genetic base has been drastically reduced during its domestication. The crop's narrow genetic base (3-12% DNA polymorphism) has resulted from the use of limited genetic material and intense selection during plant improvement....

  15. Effect of arsenic species on the growth and arsenic accumulation in Cucumis sativus.

    Science.gov (United States)

    Hong, Sun Hwa; Choi, Sun Ah; Lee, Myung-Hyun; Min, Bo Ra; Yoon, Cheolho; Yoon, Hyeon; Cho, Kyung-Suk

    2011-01-01

    The effects of arsenic (As) species, such as As(III), As(V) and dimethylarsinic acid (DMA), on the accumulation of As in cucumber (Cucumis sativus), as well as on its growth in a soil mesocosm were evaluated. When Cucumis sativus was cultivated in soils contaminated with 20 and 50 mg/kg of As(III), As(V) or DMA for 40 days, the growth was markedly inhibited by the inorganic As (As(III) and As(V)) rather than the organic As (DMA). Irrespective of the As species, the As concentrations accumulated in Cucumis sativus increased with increasing As concentration in the soil. The As bioaccumulation factors from soil into the tissue of Cucumis sativus were 17.5-35.4, 29.3-42.7 and 17.6-25.7 for As(III), As(V) and DMA, respectively. In addition, the As translocation factors from the roots to shoots were 0.025-0.031, 0.018-0.032 and 0.014-0.026 for As(III), As(V) and DMA, respectively. In conclusion, Cucumis sativus mainly accumulated As in its roots rather than its shoots and easily accumulated inorganic rather than organic As from the soil into its tissue.

  16. Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.).

    Science.gov (United States)

    Park, Y; Katzir, N; Brotman, Y; King, J; Bertrand, F; Havey, M

    2004-08-01

    Zucchini yellow mosaic virus (ZYMV) routinely causes significant losses in cucumber ( Cucumis sativus L.) and melon ( Cucumis melo L.). ZYMV resistances from the cucumber population 'TMG1' and the melon plant introduction (PI) 414723 show different modes of inheritance and their genetic relationships are unknown. We used molecular markers tightly linked to ZYMV resistances from cucumber and melon for comparative mapping. A 5-kb genomic region (YCZ-5) cosegregating with the zym locus of cucumber was cloned and sequenced to reveal single nucleotide polymorphisms and indels distinguishing alleles from ZYMV-resistant (TMG1) and susceptible (Straight 8) cucumbers. A low-copy region of the YCZ-5 clone was hybridized to bacterial artificial chromosome (BAC) clones of melon and a 180-kb contig assembled. One end of this melon contig was mapped in cucumber and cosegregated with ZYMV resistance, demonstrating that physically linked regions in melon show genetic linkage in cucumber. However the YCZ-5 region segregated independently of ZYMV resistance loci in two melon families. These results establish that these sources of ZYMV resistances from cucumber TMG1 and melon PI414723 are likely non-syntenic.

  17. Exploring a new serine protease from Cucumis sativus L.

    Science.gov (United States)

    Nafeesa, Zohara; Shivalingu, B R; Vivek, H K; Priya, B S; Swamy, S Nanjunda

    2015-03-01

    Coagulation is an important physiological process in hemostasis which is activated by sequential action of proteases. This study aims to understand the involvement of aqueous fruit extract of Cucumis sativus L. (AqFEC) European burp less variety in blood coagulation cascade. AqFEC hydrolyzed casein in a dose-dependent manner. The presence of protease activity was further confirmed by casein zymography which revealed the possible presence of two high molecular weight protease(s). The proteolytic activity was inhibited only by phenyl methyl sulphonyl fluoride suggesting the presence of serine protease(s). In a dose-dependent manner, AqFEC also hydrolysed Aα and Bβ subunits of fibrinogen, whereas it failed to degrade the γ subunit of fibrinogen even at a concentration as high as 100 μg and incubation time up to 4 h. AqFEC reduced the clotting time of citrated plasma by 87.65%. The protease and fibrinogenolytic activity of AqFEC suggests its possible role in stopping the bleeding and ensuing wound healing process.

  18. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  19. Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L.

    Science.gov (United States)

    Pimenta Lange, Maria João; Liebrandt, Anja; Arnold, Linda; Chmielewska, Sara-Miriam; Felsberger, André; Freier, Eduard; Heuer, Monika; Zur, Doreen; Lange, Theo

    2013-06-01

    Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.

  20. Determination of germination quality of cucumber (Cucumis sativus) seed by LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    Purpose: We developed a viability evaluation method for cucumber (Cucumis sativus) seed using hyperspectral reflectance imaging. Methods: Reflectance spectra of cucumber seeds in the 400 to 1000 nm range were collected from hyperspectral reflectance images obtained using blue, green, and red LED ill...

  1. Multispectral fluorescence imaging technique for discrimination of cucumber (Cucumis Sativus) seed viability

    Science.gov (United States)

    In this study, we developed a nondestructive method for discriminating viable cucumber (Cucumis sativus) seeds based on hyperspectral fluorescence imaging. The fluorescence spectra of cucumber seeds in the 420–700 nm range were extracted from hyperspectral fluorescence images obtained using 365 nm u...

  2. Cucumber (Cucumis sativus L.) seed performance as influenced by ovary and ovule position

    NARCIS (Netherlands)

    Jing, H.C.; Jalink, H.; Bergervoet, J.W.; Klooster, M.; Du, S.L.; Bino, R.J.; Hilhorst, H.W.M.; Groot, S.P.C.

    2000-01-01

    The performance of cucumber (Cucumis sativus L.) seeds in relation to ovary and ovule position was monitored during seed production. Seeds from three (first, seventh and tenth nodes) fruit positions and three (stylar, intermediate and peduncular) ovule positions were harvested serially during

  3. Chilling tolerant U.S. processing cucumber (Cucumis sativus L.): three advanced backcross and ten inbred backcross lines

    Science.gov (United States)

    Environmental stresses such as chilling temperatures can reduce seed germination rate, seeding emergence rate, flower and fruit development, marketable yield, and postharvest fruit storage longevity in cucumber (Cucumis sativus L.). Chilling temperatures occur in unpredictable patterns, making it d...

  4. Phylogenetics of Cucumis (Cucurbitaceae: Cucumber (C. sativus belongs in an Asian/Australian clade far from melon (C. melo

    Directory of Open Access Journals (Sweden)

    Schaefer Hanno

    2007-04-01

    Full Text Available Abstract Background Melon, Cucumis melo, and cucumber, C. sativus, are among the most widely cultivated crops worldwide. Cucumis, as traditionally conceived, is geographically centered in Africa, with C. sativus and C. hystrix thought to be the only Cucumis species in Asia. This taxonomy forms the basis for all ongoing Cucumis breeding and genomics efforts. We tested relationships among Cucumis and related genera based on DNA sequences from chloroplast gene, intron, and spacer regions (rbcL, matK, rpl20-rps12, trnL, and trnL-F, adding nuclear internal transcribed spacer sequences to resolve relationships within Cucumis. Results Analyses of combined chloroplast sequences (4,375 aligned nucleotides for 123 of the 130 genera of Cucurbitaceae indicate that the genera Cucumella, Dicaelospermum, Mukia, Myrmecosicyos, and Oreosyce are embedded within Cucumis. Phylogenetic trees from nuclear sequences for these taxa are congruent, and the combined data yield a well-supported phylogeny. The nesting of the five genera in Cucumis greatly changes the natural geographic range of the genus, extending it throughout the Malesian region and into Australia. The closest relative of Cucumis is Muellerargia, with one species in Australia and Indonesia, the other in Madagascar. Cucumber and its sister species, C. hystrix, are nested among Australian, Malaysian, and Western Indian species placed in Mukia or Dicaelospermum and in one case not yet formally described. Cucumis melo is sister to this Australian/Asian clade, rather than being close to African species as previously thought. Molecular clocks indicate that the deepest divergences in Cucumis, including the split between C. melo and its Australian/Asian sister clade, go back to the mid-Eocene. Conclusion Based on congruent nuclear and chloroplast phylogenies we conclude that Cucumis comprises an old Australian/Asian component that was heretofore unsuspected. Cucumis sativus evolved within this Australian

  5. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    Science.gov (United States)

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity.

  6. Properties and nucleotide se- quence of linear plasmid-like DNA pC4 from mitochondria of Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four kinds of mitochondrial plasmid-like DNAs, designated pC1, pC2, pC3 and pC4, were detected in Cucumis sativus Jinyan No. 4. The electron microscopy ob- servation showed that pC4 was linear conformation. Complete sequence of pC4 was cloned into pUC19 with E. coli JM109 as host. Sequence analysis revealed that pC4 was 370 bp long, the shortest one among all the reported mitochondrial plasmid-like DNAs. pC4 was AT rich. It contained terminal direct repeat sequence (35 bp in length) as well as many short direct and inverted repeats. ORFs in pC4 were short. pC4 was found to be homologous to nuclear DNAs, but lack homology with main mitochondrial and chloroplast DNAs. pC4-homologous sequence also occurred in nuclear genome of Jinyan No. 7 which contained no mito- chondrial plasmid-like DNAs. The hybridization pattern of Jinyan No. 7 was slightly different from that of Jinyan No. 4. This suggested that pC4 occurred at the forepart of Cucumis sativus species divergence and integrated into the nuclear genome, and the pC4-homologous sequence in nucleus varied during species diverging.

  7. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships.

    Science.gov (United States)

    Zhao, Xin; Lu, Jingyuan; Zhang, Zhonghua; Hu, Jiajin; Huang, Sanwen; Jin, Weiwei

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  8. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships

    Institute of Scientific and Technical Information of China (English)

    Xin Zhao; Jingyuan Lu; Zhonghua Zhang; Jiajin Hu; Sanwen Huang; Weiwei Jin

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s.var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  9. Glandular Characteristics of the Stigma During the Development of Cucumis sativus Female Flowers

    Institute of Scientific and Technical Information of China (English)

    PENGYi-Ben; BAIShu-Nong; XUZhi-Hong; LIYi-Qin

    2004-01-01

    The stigma initiation and development of Cucumis sativus L female flower was studied usingelectron microscopy. The differentiation of stigmatic cells could be recognized when the floral bud wasabout 1 mm in length. After the pinnate structure of the stigma appeared, three regions indicating thepapillae, the transmitting tissue and the secretory tissue were observed. The pinnate stigma wascharacterized as a partition structure for naming immature and mature stigma in the following investigation.The ultrastructure of various tissue cells of the stigma during the development was observed usingtransmission electron microscopy. Throughout the whole developmental process the cytoplasm of papillaeand secretory tissue cells was filled with many endoplasmic reticula (ER). Most of the ER was tube-like andrough with enlarged cisterna from which many vesicles were produced. |n the mature stigma, numbers ofplasmodesmata were found between the secretory and the transmitting tissue cells. The papillae andsecretory tissue cells are highly vacuolated and the plasmalemma was invaginated or exvaginated. Thenuclear envelope of secretory tissue cells was enlarged, which led to the formation of plurivalvis nucleusduring stigma development, Apparently, nuclear envelope became more strongly lamellate at mature stage.In different tissue cells of mature stigma, ATPase activity was localized along the plasmalemma andvacuole membrane. The PM-H*-ATPase specific activity increased during stigma deve{opment. Ourresults revealed the glandular characteristics of the developing stigma of cucumber female flowers.

  10. Effect of aqueous extract of Cucumis sativus Linn. fruit in ulcerative colitis in laboratory animals

    Institute of Scientific and Technical Information of China (English)

    Mithun Vishwanath K Patil; Amit D Kandhare; Sucheta D Bhise

    2012-01-01

    Objective: To elucidate the ameliorative effect of aqueous extract of fruit of Cucumis sativus (C. sativus) (CS) in acetic acid induced colitis in wistar rats. Methods: The animals were administered with 2 mL acetic acid (4%) via intra rectal. The animals were divided into various treatment groups (n=6). Prednisolone was used as standard drug and C. sativus was administered at a dose of 100, 250 and 500 mg/kg p.o. The control group of animals received 1 mL of vehicle (distilled water). Ulcer area, ulcer index, spleen weight, colon weight to length ratio, macroscopic score, hematological parameters, colonic myeloperoxidase (MPO) and histological changes were recorded after the treatment regimen of 11 d. Results: Intrarectal instillation of acetic acid caused enhanced ulcer area, ulcer index, spleen weight, colon weight to length ratio, colonic MPO and hematological parameters. Pretreatment with C. sativus for 7 d exhibited significant effect in lowering of ulcer area, ulcer index as well as neutrophil infiltration at a dose of 250 and 500 mg/kg in acetic acid induced colitis. Conclusion: The present investigation demonstrates C. sativus is of potent therapeutic value in the amelioration of experimental colitis in laboratory animals by inhibiting the inflammatory mediator.

  11. Metabolism of Exogenous Indoleacetic Acid to Its Amide Conjugates in Cucumis sativus L. 12

    Science.gov (United States)

    Purves, William K.; Hollenberg, Stanley M.

    1982-01-01

    Incubation of hypocotyl segments of light-grown Cucumis sativus L. in 0.1 millimolar 3-indoleacetic acid for 16 hours led to the formation of indoleacetylaspartate and indoleacetylglutamate. There was no evidence for the formation of other conjugates of 3-indoleacetic acid with individual amino acids during the period from 4 to 48 hours of incubation. Indoleacetylglutamate reached its maximum concentration after about 4 hours of incubation and indoleacetylaspartate after about 8 hours. These levels remained unchanged for at least 40 hours. Indoleacetylaspartate caused small increases in cucumber hypocotyl segment growth at high concentrations, 1 millimolar being more effective than 0.1 millimolar. PMID:16662461

  12. Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Smitha

    2017-02-01

    Full Text Available In this article, the agricultural solid waste, Cucumis sativus (RCS was activated by sulfuric acid (CCS for removing typical basic dyes, crystal violet (CV and rhodamine B (RHB from aqueous solution. The different parameters like effect of concentration, sorbent dosage, contact time and pH were studied. Isotherm data showed that the Langmuir isotherm provided the best correlation for the adsorption of CV and RHB onto RCS and CCS. The kinetic experimental data were well fitted by the pseudo-second-order kinetic model with intraparticle diffusion being one of the rate limiting steps. It can be concluded that C. sativus, the eco friendly adsorbent, is expected to be environmentally and economically feasible for the removal of CV and RHB from aqueous solution.

  13. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture.

    Science.gov (United States)

    Hong, Sun Hwa; Choi, Sun Ah; Yoon, Hyeon; Cho, Kyung-Suk

    2011-01-01

    Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.

  14. Inheritance and mapping of the ore gene controlling the quantity of ß-carotene in cucumber (Cucumis sativus L.) endocarp

    Science.gov (United States)

    The metabolic precursor of vitamin A, ß-carotene, is essential for human health. The gene(s) controlling ß- carotene quantity (QßC) has been introgressed from Xishuangbanna gourd (XIS, possessing ß-carotene; Cucumis sativus L. var. xishuangbannanesis Qi et Yuan; 2n = 2x = 14) into cultivated cucumbe...

  15. Investigation of the Use of "Cucumis Sativus" for Remediation of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project

    Science.gov (United States)

    Butler, Lynsey R.; Edwards, Michael R.; Farmer, Russell; Greenly, Kathryn J.; Hensler, Sherri; Jenkins, Scott E.; Joyce, J. Michael; Mann, Jason A.; Prentice, Boone M.; Puckette, Andrew E.; Shuford, Christopher M.; Porter, Sarah E. G.; Rhoten, Melissa C.

    2009-01-01

    An interdisciplinary, semester-long project is presented in which students grow Cucumis sativus (cucumber) plants from seeds and study the ability of the plants to remediate a heavy metal from contaminated soil or water or both. Phytoremediation strategies for environmental cleanup are presented as possible alternatives to chemical based clean-up…

  16. Use of molecular markers aids in the development of diverse inbred backcross lines in Beit Alpha cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Beit Alpha cucumber (Cucumis sativus L.) is a Mediterranean fresh-market type with a relatively narrow genetic base. To broaden its base for plant improvement, 42 diverse accessions were compared employing a previously defined standard marker array to choose wide-based parental lines for use in bac...

  17. Investigation of the Use of "Cucumis Sativus" for Remediation of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project

    Science.gov (United States)

    Butler, Lynsey R.; Edwards, Michael R.; Farmer, Russell; Greenly, Kathryn J.; Hensler, Sherri; Jenkins, Scott E.; Joyce, J. Michael; Mann, Jason A.; Prentice, Boone M.; Puckette, Andrew E.; Shuford, Christopher M.; Porter, Sarah E. G.; Rhoten, Melissa C.

    2009-01-01

    An interdisciplinary, semester-long project is presented in which students grow Cucumis sativus (cucumber) plants from seeds and study the ability of the plants to remediate a heavy metal from contaminated soil or water or both. Phytoremediation strategies for environmental cleanup are presented as possible alternatives to chemical based clean-up…

  18. Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus.

    Science.gov (United States)

    Fu, Rao; Liu, Wei; Li, Qiang; Li, Jing; Wang, Lina; Ren, Zhonghai

    2013-07-01

    The class IV homeodomain-leucine zipper (HD-Zip IV) proteins are plant-specific transcriptional factors known to play crucial roles in plant growth and development. In this study, 11 cucumber (Cucumis sativus) HD-Zip IV genes were identified in the version 2 cucumber genome and found to be distributed unevenly across the chromosomes. The CsHDZIV (Cucumis sativus homeodomain-leucine zipper IV) gene family is smaller than in other studied species (except for rice) because of the absence of gene duplication events. Phylogenetic analysis showed that HD-Zip IV genes from cucumber, Arabidopsis, tomato, cotton, maize, and rice could be classified into five subgroups. All CsHDZIV genes appear to be derived from a basic module containing 11 exons in the coding region. Two conserved motifs of 21 and 19 nucleotides were found in the 3'-untranslated regions of six CsHDZIV genes, suggesting that post-transcriptional regulation may play a role in regulation of CsHDZIV genes. In addition, 6 of 11 CsHDZIV genes were found to undergo alternative splicing events. Reverse transcription PCR analysis showed that all CsHDZIV genes (except one) were expressed and showed preferential expression in reproductive organs.

  19. Backcross introgression of plastomic factors controlling chilling tolerance into elite cucumber (Cucumis sativus L.) germplasm: Early generation recovery of recurrent parent phenotytpe

    Science.gov (United States)

    Environmental stresses such as chilling temperatures can decrease germination, emergence, flower and fruit development, marketable yield, and postharvest fruit storage longevity in cucumber (Cucumis sativus L.). While response to chilling injury in cucumber is controlled by simple plastidic (matern...

  20. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves.

    Science.gov (United States)

    Zhang, Zishan; Jia, Yujiao; Gao, Huiyuan; Zhang, Litao; Li, Haidong; Meng, Qingwei

    2011-11-01

    By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m(-2) s(-1)) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m(-2 )s(-1)) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F (v)/F (m)) and the content of active P700 (ΔI/I (o)) significantly decreased after chilling treatment under 200 μmol m(-2 )s(-1) light. After the leaves were transferred to 25°C, F (v)/F (m) recovered quickly under both 200 and 15 μmol m(-2 )s(-1) light. ΔI/I (o) recovered quickly under 15 μmol m(-2) s(-1) light, but the recovery rate of ΔI/I (o) was slower than that of F (v)/F (m). The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I (o) was severely suppressed by 200 μmol m(-2) s(-1) light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.

  1. Antimicrobial Activity of Sphingolipids Isolated from the Stems of Cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Zhu Yu

    2010-12-01

    Full Text Available Three antimicrobial sphingolipids were separated by bioassay-guided isolation from the chloroform fraction of the crude methanol extract of cucumber (Cucumis sativus L. stems and identified as (2S,3S,4R,10E-2-[(2'R-2-hydroxytetra-cosanoylamino]-1,3,4-octadecanetriol-10-ene (1, 1-O-β-D-glucopyranosyl(2S,3S,4R,10E-2-[(2'R-2-hydroxy-tetracosanoylamino]-1,3,4-octadecanetriol-10-ene (2 and soya-cerebroside I (3 by their physicochemical properties and spectroscopic analysis. They were evaluated to show antifungal and antibacterial activity on test microorganisms including four fungal and three bacterial species. Among them, compound 1, a relatively low polarity aglycone,  exhibited stronger antimicrobial activity than its corresponding glycoside 2. The results indicated that sphingolipids could be the main antimicrobial compounds in the crude methanol extract of cucumber stems.

  2. Assessment of Salicylic Acid Impacts on Seedling Characteristic of Cucumber (Cucumis sativus L. under Water Stress

    Directory of Open Access Journals (Sweden)

    Hossein MARDANI

    2012-02-01

    Full Text Available Impacts of various concentrations of salicylic acid (SA on cucumber (Cucumis sativus L. seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.

  3. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus.

    Science.gov (United States)

    Zhou, S J; Jing, Z; Shi, J L

    2013-12-11

    Mildew resistance locus o (MLO) is a plant-specific seven-transmembrane (TM) gene family. Several studies have revealed that certain members of the MLO gene family mediate powdery mildew susceptibility in three plant species, namely, Arabidopsis, barley, and tomato. The sequenced cucumber genome provides an opportunity to conduct a comprehensive overview of the MLO gene family. Fourteen genes (designated CsMLO01 through CsMLO14) have been identified within the Cucumis sativus genome by using an in silico cloning method with the MLO amino acid sequences of Arabidopsis thaliana and rice as probes. Sequence alignment revealed that numerous features of the gene family, such as TMs, a calmodulin-binding domain, peptide domains I and II, and 30 important amino acid residues for MLO function, are well conserved. Phylogenetic analysis of the MLO genes from cucumber and other plant species reveals seven different clades (I through VII). Three of these clades comprised MLO genes from A. thaliana, rice, maize, and cucumber, suggesting that these genes may have evolved after the divergence of monocots and dicots. In silico mapping showed that these CsMLOs were located on chromosomes 1, 2, 3, 4, 5, and 6 without any obvious clustering, except CsMLO01. To our knowledge, this paper is the first comprehensive report on MLO genes in C. sativus. These findings will facilitate the functional characterization of the MLOs related to powdery mildew susceptibility and assist in the development of disease resistance in cucumber.

  4. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit.

    Science.gov (United States)

    Liu, Bin; Liu, Xingwang; Yang, Sen; Chen, Chunhua; Xue, Shudan; Cai, Yanling; Wang, Dandan; Yin, Shuai; Gai, Xinshuang; Ren, Huazhong

    2016-04-01

    Gibberellins are phytohormones with many roles, including the regulation of fruit development. However, little is known about the relationship between GA perception and fleshy fruit ontogeny, and particularly locule formation. We characterized the expression of cucumber (Cucumis sativus) GA receptor gene (CsGID1a) using quantitative real-time PCR, in situ hybridization and a promoter::β-glucuronidase (GUS) assay. CsGID1a-RNAi cucumber fruits were observed by dissecting microscope, scanning electron microscopy and transmission electron microscopy. Finally, genome-wide gene expression in young fruits from a control and the RNAi line was compared using a digital gene expression (DGE) analysis approach. The expression pattern of CsGID1a was found to be closely correlated with fruit locule formation, and silencing CsGID1a in cucumber resulted in fruits with abnormal carpels and locules. Overexpression of CsGID1a in the Arabidopsis thaliana double mutant (gid1a gid1c) resulted in 'cucumber locule-like' fruits. The DGE analysis suggested that expression of genes related to auxin synthesis and transport, as well as the cell cycle, was altered in CsGID1a-RNAi fruits, a result that was supported by comparing the auxin content and cellular structures of the control and transgenic fruits. This study demonstrates a previously uncharacterized GA signaling pathway that is essential for cucumber fruit locule formation.

  5. Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency.

    Directory of Open Access Journals (Sweden)

    Gianpiero Vigani

    Full Text Available Mitochondria, as recently suggested, might be involved in iron sensing and signalling pathways in plant cells. For a better understanding of the role of these organelles in mediating the Fe deficiency responses in plant cells, it is crucial to provide a full overview of their modifications occurring under Fe-limited conditions. The aim of this work is to characterize the ultrastructural as well as the biochemical changes occurring in leaf mitochondria of cucumber (Cucumis sativus L. plants grown under Fe deficiency.Mitochondrial ultrastructure was investigated by transmission electron microscopy (TEM and electron tomography techniques, which allowed a three-dimensional (3D reconstruction of cellular structures. These analyses reveal that mitochondria isolated from cucumber leaves appear in the cristae junction model conformation and that Fe deficiency strongly alters both the number and the volume of cristae. The ultrastructural changes observed in mitochondria isolated from Fe-deficient leaves reflect a metabolic status characterized by a respiratory chain operating at a lower rate (orthodox-like conformation with respect to mitochondria from control leaves.To our knowledge, this is the first report showing a 3D reconstruction of plant mitochondria. Furthermore, these results suggest that a detailed characterization of the link between changes in the ultrastructure and functionality of mitochondria during different nutritional conditions, can provide a successful approach to understand the role of these organelles in the plant response to Fe deficiency.

  6. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants.

    Science.gov (United States)

    Wóycicki, Rafał; Witkowicz, Justyna; Gawroński, Piotr; Dąbrowska, Joanna; Lomsadze, Alexandre; Pawełkowicz, Magdalena; Siedlecka, Ewa; Yagi, Kohei; Pląder, Wojciech; Seroczyńska, Anna; Śmiech, Mieczysław; Gutman, Wojciech; Niemirowicz-Szczytt, Katarzyna; Bartoszewski, Grzegorz; Tagashira, Norikazu; Hoshi, Yoshikazu; Borodovsky, Mark; Karpiński, Stanisław; Malepszy, Stefan; Przybecki, Zbigniew

    2011-01-01

    Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in

  7. The genome sequence of the North-European cucumber (Cucumis sativus L. unravels evolutionary adaptation mechanisms in plants.

    Directory of Open Access Journals (Sweden)

    Rafał Wóycicki

    Full Text Available Cucumber (Cucumis sativus L., a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10 and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930, Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth

  8. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    Science.gov (United States)

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed.

  9. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus.

    Science.gov (United States)

    Landi, Marco; Remorini, Damiano; Pardossi, Alberto; Guidi, Lucia

    2013-11-01

    This study aimed to evaluate the behavior of zucchini (Cucurbita pepo L.) and cucumber (Cucumis sativus L.) under boron (B) excess. Plants were grown under greenhouse conditions in a sandy soil-peat mixture using a nutrient solution containing 0.2 (control), 10 and 20 mg L(-1) B. Visible symptoms were quantified and leaf B accumulation, gas exchanges, chlorophyll (Chl) a fluorescence, malondialdehyde by-products and antioxidants were investigated 20 days after the beginning of the treatments. Boron toxicity induced oxidative load and leaf necrotic burns coupled with the reduction of leaf growth and biomass accumulation in both species. Boron excess resulted in a decrease of Chl a/b ratio, potential (Fv/Fm) and actual (ΦPSII) PSII quantum efficiency, photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) as well. A general stimulation of the antioxidant enzymes ascorbate peroxidase, catalase and superoxide dismutase was observed, and a significant increase in the oxidized form of ascorbate and glutathione was evidenced for treated plants of both species. A difference between the two species was observed: C. pepo appeared to be more sensitive to B stress being damaged at all B concentration. C. sativus grown at 10 mg L(-1) B in nutrient solution showed some down-regulated mechanisms, i.e. increase in Chl b content and a good photochemical PSII efficiency as well as a higher amount of constitutive antioxidant molecules, that, however, are not sufficient to contrast the negative effects of B.

  10. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Simon Philipp W

    2010-10-01

    Full Text Available Abstract Background Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber. Results A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although

  11. [Variability and phylogenetic relationships of the Cucumis sativus L. species inferred from NBS profiling and RAPD analysis].

    Science.gov (United States)

    Goriunova, S V; Gashkova, I V; Kosareva, G A

    2011-08-01

    Genetic variability of the Cucumis sativus species and its phylogenetic relationsips with other species of the genus were studied on the basis of RAPD marking and analysis of intra- and interspecific polymorphism of the nucleotide sequences of the NBS-LRR gene family in species of the genus Cucumis with the use of the NBS profiling method. According to RAPD analysis, cucumber cultivars from different geographic regions are highly similar, except for accessions k-3835 and k-3833 from Afghanistan. NBS profiling analysis revealed phylogenetically most distinct accessions expected to be characterized by specificity of resistance: k-3845 from Uzbekistan, k-3851 from Kyrgyzstan, line 701, k-3835 and k-3833 from Afghanistan, k-2757 and k-3079 from Netherlands, vr.k. 908 from Canada, k-2926 from Bulgaria, Russian cultivars Monastyrskii, Izyashchnyi, and Lel'. Three essentially different groups of species were distinguished, and the C. sativus species (subgenus Cucumis) was found to be distant from the species belonging to the subgenus Melo.

  12. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L. infection.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Savory

    Full Text Available Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, 'Vlaspik', and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi. Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576-6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s by which to engineer or effect resistance in the host.

  13. [Growth and development of cucumber Cucumis sativus L. in the prereproductive period under long photoperiods].

    Science.gov (United States)

    Shibaeva, T G; Markovskaia, E F

    2013-01-01

    When plants are grown in a greenhouse, an increase in the photoperiod, as well as continuous lighting, is one of the ways to improve plant productivity and energy savings. However, a number of crops under long photoperiods develop signs of light damage to leaves, and productivity is reduced. We studied the effect of the photoperiod (8, 12, 16, 20, and 24 h) and photon flux densities (60, 120, and 160 micromol/m2 with PAR) on cucumber plants Cucumis sativus L. in a prereproductive period. We show that the response of the cucumber plants to a photoperiod duration of more than 20 h, including continuous lighting, depending on the plant age and lighting conditions, may include epinastic reaction of the leaves, activation of a mechanism of nonphotochemical chlorophyll fluorescence quenching, and/or reversible photoinhibition of a reaction center of photosystem II, development of reversible chlorosis, reduction of a light-harvesting complex, and increase in the content of carotenoids. Reaction of immature and virginile plants to long photoperiods was different, which highlights the need for experimental separation of the prereproductive period of development in terms of age states and consideration of this when preparing programs of cultivation.

  14. [Role of phytochrome in organ formation processes in Cucumis sativus L].

    Science.gov (United States)

    Sysoeva, M I; Marovskaia, E F

    2013-01-01

    The role of phytochrome B in the organogenesis process in the apical and axillary shoot meristems during early ontogenesis stages in cucumber Cucumis sativus L. at photoperiods (day/night) 10/14, 16/8 h, and continuous light in comparison with wild type plants and phytochrome B-deficient mutant (lh-mutant) was investigated. In mutant phytochrome B, deficiency caused inhibition of initiation of leaves both in the leading shoot and off-shoots and increased the number of flower buds (IV stage of organogenesis). With continuous light, the number of off-shoots and flowers during stage IV of organogenesis in wild-type plants increased twofold in comparison with the mutant. Short-term temperature drops did not induce floral ontogenesis in mutants but increased the number of off-shoots in both experimental variants during a long photoperiod and continuous light situations. We propose that phytochrome B, by increasing the compactness of chromatin, may facilitate coordination of ontogenesis processes with changing environmental conditions.

  15. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research.

    Science.gov (United States)

    Pawełkowicz, Magdalena; Zieliński, Konrad; Zielińska, Dorota; Pląder, Wojciech; Yagi, Kouhei; Wojcieszek, Michał; Siedlecka, Ewa; Bartoszewski, Grzegorz; Skarzyńska, Agnieszka; Przybecki, Zbigniew

    2016-01-01

    In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.

  16. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis.

    Science.gov (United States)

    Adhikari, Bishwo N; Savory, Elizabeth A; Vaillancourt, Brieanne; Childs, Kevin L; Hamilton, John P; Day, Brad; Buell, C Robin

    2012-01-01

    The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.

  17. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.

    Science.gov (United States)

    Shang, Qing-Mao; Li, Liang; Dong, Chun-Juan

    2012-10-01

    Phenylalanine ammonia-lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway, and therefore plays a key role in both plant development and stress defense. In many plants, PAL is encoded by a multi-gene family, and each member is differentially regulated in response to environmental stimuli. In the present study, we report that PAL in cucumber (Cucumis sativus L.) is encoded for by a family of seven genes (designated as CsPAL1-7). All seven CsPALs are arranged in tandem in two duplication blocks, which are located on chromosomes 4 and 6, respectively. The cDNA and protein sequences of the CsPALs share an overall high identity to each other. Homology modeling reveals similarities in their protein structures, besides several slight differences, implying the different activities in conversion of phenylalanine. Phylogenic analysis places CsPAL1-7 in a separate cluster rather than clustering with other plant PALs. Analyses of expression profiles in different cucumber tissues or in response to various stress or plant hormone treatments indicate that CsPAL1-7 play redundant, but divergent roles in cucumber development and stress response. This is consistent with our finding that CsPALs possess overlapping but different cis-elements in their promoter regions. Finally, several duplication events are discussed to explain the evolution of the cucumber PAL genes.

  18. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2

    Directory of Open Access Journals (Sweden)

    Huang Sanwen

    2011-01-01

    Full Text Available Abstract Background Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.. Results In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR. The relationship between the genetic and physical distances along chromosome was analyzed. Conclusions Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.

  19. Measurement of heme efflux and heme content in isolated developing chloroplasts. [Cucumis sativus, cv. Sumter

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Weinstein, J.D. (Clemson Univ., SC (USA))

    1990-11-01

    Hemes destined for cytosolic hemoproteins must originate in one of the cellular compartments which have the capacity for heme synthesis, namely the chloroplast or the mitochondria. Since developing chloroplasts from greening cucumber (Cucumis sativus, cv. Sumter) cotyledons are known to contain complete heme and chlorophyll biosynthetic pathways, they were tested for their capacity export hemes. Picomole quantities of heme were measured by reconstitution of the heme with apo-peroxidase and subsequent determination of peroxidase activity. The assay method was sensitive (as little as 0.7 picomole of heme could be detected in a volume of 100 microliters) and was linear with heme concentration. When intact plastids were incubated with apo-peroxidase, a steady-state rate of efflux between 0.12 and 0.45 picomole heme/minute/milligram plastid protein was measured. The efflux rate was not due to plastid breakage and could be enhanced by incubating with the heme precursor, {delta}-aminolevulinic acid. Cold acetone extraction removed 47 {plus minus} 17 picomoles heme/milligram plastid protein from the total b-type heme pool in the chloroplasts (166 {plus minus} 9 picomoles heme/milligram protein, by acid-acetone extraction). The reconstitution technique provided a similar estimate of readily exchangeable heme in the plastid, 37 {plus minus} 8 picomoles heme/milligram protein (or 6 micromolar in the plastids). These values may be indicative of a free heme pool which exists in the chloroplast.

  20. Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L.

    Science.gov (United States)

    Sui, Xiao-lei; Meng, Fan-zhen; Wang, Hong-yun; Wei, Yu-xia; Li, Rui-fu; Wang, Zhen-yu; Hu, Li-ping; Wang, Shao-hui; Zhang, Zhen-xian

    2012-12-15

    Raffinose synthase (RS, EC2.4.1.82) is one of the key enzymes that channels sucrose into the raffinose family oligosaccharides (RFOs) biosynthetic pathway. However, the gene encoding RS is poorly characterized in cucumber (Cucumis sativus L.), which is a typical RFOs-translocating plant species. Here we isolated the gene encoding RS (CsRS) from the leaves of cucumber plants. The complete cDNA of CsRS consisted of 2552 nucleotides with an open reading frame encoding a polypeptide of 784 amino acid residues. Reverse transcription-polymerase chain reaction and RNA hybridization analysis revealed that expression of CsRS was the highest in leaves followed by roots, fruits, and stems. The RS activity was up-regulated and the raffinose content was high in the leaves of transgenic tobacco with over-expression of CsRS, while both the RS activity and the raffinose content decreased in the transgenic cucumber plants with anti-sense expression of CsRS. The expression of CsRS could be induced by low temperature and exogenous phytohormone abscisic acid (ABA). In cucumber growing under low temperature stress, CsRS expression, RS activity and raffinose content increased gradually in the leaves, the fruits, the stems and the roots. The most notable increase was observed in the leaves. Similarly, the expression of CsRS was induced in cucumber leaves and fruits with 200 μM and 150 μM ABA treatments, respectively.

  1. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus.

    Science.gov (United States)

    Zhao, Jun-Long; Wang, Yun-Li; Yao, Dan-Qing; Zhu, Wen-Ying; Chen, Long; He, Huan-Le; Pan, Jun-Song; Cai, Run

    2015-10-01

    Trichomes on plants, similar to fine hairs on animal and human bodies, play important roles in plant survival and development. They also represent a useful model for the study of cell differentiation. Although the regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been well studied, the genes that regulate multicellular trichome development remain unclear. We confirmed that Cucumis sativus (cucumber) trichomes are multicellular and unbranched, but identified a spontaneous mutant, trichome-less (tril), which presented a completely glabrous phenotype. We compared the transcriptome profilings of the tril mutant and wild type using the Illumina HiSeq 2000 sequencing technology. A total of 991 genes exhibited differential expression: 518 were up-regulated and 473 were down-regulated. We further identified 62 differentially expressed genes that encoded crucial transcription factors and were subdivided into seven categories: homeodomain, MADS, MYB, and WRKY domains, ethylene-responsive, zinc finger, and other transcription factor genes. We further analyzed the tissue-expression profiles of two candidate genes, GLABRA2-like and ATHB51-like, using qRT-PCR and found that these two genes were specifically expressed in the epidermis and trichomes, respectively. These results and the tril mutant provide useful tools to study the molecular networks associated with multicellular trichome development.

  2. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis.

    Directory of Open Access Journals (Sweden)

    Bishwo N Adhikari

    Full Text Available The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus. To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.

  3. Purification, physico-chemical characterization and thermodynamics of chitooligosaccharide binding to cucumber (Cucumis sativus) phloem lectin.

    Science.gov (United States)

    Nareddy, Pavan Kumar; Bobbili, Kishore Babu; Swamy, Musti J

    2017-02-01

    A chitooligosaccharide-specific lectin has been purified from the phloem exudate of cucumber (Cucumis sativus) by affinity chromatography on chitin. The molecular weight of the cucumber phloem lectin (CPL) was determined as 51912.8Da by mass spectrometry whereas SDS-PAGE yielded a single band with a subunit mass of 26kDa, indicating that the protein is a homodimer. Peptide mass fingerprinting studies strongly suggest that CPL is identical to the 26kDa phloem protein 2 (PP2) from cucumber. CD spectroscopy indicated that CPL is a predominantly β-sheets protein. Hemagglutination activity of CPL was mostly unaffected between 4 and 90°C and between pH 4.0 and 10.0, indicating functional stability of the protein. Isothermal titration calorimetric studies indicate that the CPL dimer binds to two chitooligosaccharide ((GlcNAc)2-6) molecules with association constants ranging from 1.0×10(3) to 17.5×10(5)M(-1). The binding reaction was strongly enthalpy driven (ΔHb=-ve) with negative contribution from binding entropy (ΔSb=-ve). The enthalpy-driven nature of binding reactions suggests that hydrogen bonding and van der Waals interactions stabilize the CPL-chitooligosaccharide association. Enthalpy-entropy compensation was observed for the CPL-chitooligosaccharide interaction, indicating that water molecules play an important role in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of Low Concentration of Yttrium on Physiological Characteristics of Cucumber (Cucumis Sativus L.)

    Institute of Scientific and Technical Information of China (English)

    Wang Shuo; Chen Dan; Qin Zhaojiang; Dong Zhenyu; Ju Mingchao; Xie Bingning

    2007-01-01

    There is no doubt that rare earth elements stand an important position among the essential elements of plant growth and it is long time since they are first used as plant growth promoters. Given their effects on microstructure, most reports are focused on the toxicology rather than promotion. Using cucumis sativus L. (Jin Chun No.5) as experiment material, we try to find out the nutritional effects of low Y3+ concentrations on cucumber seedlings' leaves. The present paper suggests that the rare earth elements act as micronutrients at low concentrations while they give rise to toxicity at high concentration. Benefits defeat toxicity with concentration ranging from 5 to 25μmol·L-1. Through careful study, at the Y (N03)3 concentration of 10μmol·L1 the content of chlorophyll as well as the activities of SOD, Cu-Zn SOD and the POD are the highest. It indicates 10μmol·L-1 is the optimum concentration of yttrium for promoting the cucumber growth.

  5. Cytological Analyses on Development of Male and Female Gametophytes in an Interspecific Hybrid F1 from Cucumis hystrix Chakr. × Cucumis sativus L.

    Institute of Scientific and Technical Information of China (English)

    LUO Xiang-dong; DAI Liang-fang; QIAN Chun-tao; CHEN Jin-feng

    2006-01-01

    An interspecific hybrid F1 of Cucumis hystrix Chakr. × Cucumis sativus L. (NC4406) was used to establish the developmental sequence and to characterize the male and female gametophytes at cytological level for further understanding of the phylogenic relationship and the mechanism of fertility or sterility in the interspecific hybrid F1. The development of male and female gametophytes was studied through meiotic analysis and paraffin section observation technique, respectively.Meanwhile, the fertility level was assessed through hybrid F1 backcrossing to cultivated cucumber 4406. Variable chromosome confgurations were observed in the pollen mother cells (PMCs) of hybrid F1 at metaphase Ⅰ, e.g., univalents,bivalents, trivalents, quadravalents, etc. At anaphase Ⅰ and Ⅱ, chromosome lagging and bridges were frequently observed as well, which led to the formation of polyads and only a partial number of microspores could develop into fertile pollen grains (about 23.3%). Observations of the paraffin sections showed numerous degenerated and abnormal embryo sacs during the development of female gametophytes, and only 40% of the female gametophytes could develop into normal eight-nuclear megaspore. On an average, 22.8 and 6.3 seeds per fruit could be obtained from the reciprocal backcross. The interspecific hybrid F1 of C. hystrix × NC4406 was partially fertile; however, the meiotic behaviors of hybrid F1 showed a high level of intergenomic recombination between C. hystrix and C. sativus chromosomes, which indicated that it plays an important role for introgression of useful traits from C. hystrix into C. sativus.

  6. Chromosome synteny in cucumis species

    Science.gov (United States)

    Cucumber, Cucumis sativus L. (2n = 2x = 14) and melon, C. melo L. (2n = 2x = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Two inter-fertile botanical varieties with 14 chromosomes, the cultivated C. sativus var. sativus L. and the wild C. sativus var. hardwick...

  7. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    Science.gov (United States)

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.

  8. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.).

    Science.gov (United States)

    He, Xiaoming; Li, Yuhong; Pandey, Sudhakar; Yandell, Brain S; Pathak, Mamta; Weng, Yiqun

    2013-08-01

    Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0-74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.

  9. Uptake and/or utilization of two simple phenolic acids by Cucumis sativus

    Energy Technology Data Exchange (ETDEWEB)

    Shann, J.R.

    1986-01-01

    The uptake of ferulic acid (FA) and p-hydroxybenzoic acid (p-HBA) from solutions (0.1 to 1.00 mM, pH 4.0 to 7.0), was determined for intact and excised roots of Cucumis sativus. Uptake methods based on high performance liquid chromatographic (HPLC) analysis of phenolic acid depletion from solution were compared to those radioisotopic methods employing (U-ring-/sup 14/C)FA or p-HBA. Although radiotracer methods more accurately reflected actual uptake of the compounds by cucumber seedlings, HPLC solution depletion methods may be useful in the elucidation of trends over very limited periods of time. The uptake of FA was unaffected by the presence of p-HBA. The uptake of p-HBA was reduced by 30% in the presence of FA when compared to the uptake from solutions containing p-HBA alone. Ferulic acid acts both as an allelopathic agent and precursor in the endogenous process of lignification. To evaluate the involvement of exogenous FA in lignin biosynthesis, roots of hydroponically grown cucumber seedlings were exposed to concentrations of FA labeled with (U-ring-/sup 14/C)FA. Radiotracer was distributed throughout the seedling. A quantitative change in lignification occurred in treated seedlings. In roots and stems, the level of lignin increased with the number of exposures and as the concentrations of exogenous FA increased. Radiotracer was found in the residues of lignin isolated from seedling tissue treated with (U-ring-/sup 14/C)FA. This suggested the utilization of the exogenously applied FA in the endogenous process of lignification.

  10. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    Science.gov (United States)

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.

  11. Endopeptidase Isoenzyme Characteristics in Cucumis sativus Leaves During Dark-induced Senescence

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Fei Wang; Lie-Feng Zhang; Qi Rui; Lang-Lai Xu

    2007-01-01

    The changes and characteristics of endopeptidase (EP) isoenzymes in cucumber (Cucumis sativus L.) leaves during dark-induced senescence were investigated by activity staining after gradient-polyacrylamide gel electrophoresis (G-PAGE) containing co-polymerized gelatin as substrate. The results showed that both the chlorophyll and the protein contents of leaves were decreased, and the protein degradation was correlated with the increase of proteolytic activity during the course of leaf senescence. Meanwhile, nine cucumber endopeptidases isoenzymes (CEP) with 140, 120, 106, 94, 76, 55, 46, 39 and 35 kDa molecular weights were detected. Four of these, CEP2, 3, 4 and CEP9 appeared all the time, but the changes of the activity were different during incubation. Another four CEPs (CEP5, 6, 7 and CEP8) whose activities increased with dark-induced time were only detected in senescent leaves.Furthermore, the biochemical properties of these nine CEP were also characterized. All the CEPs had high activities from 35 ℃ to 45 ℃, and the optimum temperature was found to be 40 ℃. However, the activities of CEPs were not detected below 25 ℃ or over 60 ℃. The activity bands appeared at a wide range of pH from 5.0 to 9.0, but the optimum pH was found at 7.0. No CEPs were detected at pH 4 or pH 10. By inhibition analysis we concluded that CEP2,3, 4 and CEP9 were serine endopeptidases and CEP6 was a kind of cysteine protease. It is suggested that serine endopeptidases might play a major role in cucumber leaf senescence, and for the first time, six senescencerelated endopeptidases (CEP1, 5, 6, 7, 8 and 9) were found in cucumber leaves.

  12. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus.

    Science.gov (United States)

    Yu, Youjian; Liang, Ying; Lv, Meiling; Wu, Jian; Lu, Gang; Cao, Jiashu

    2014-01-01

    Polygalacturonase (PG, EC3.2.1.15), one of the hydrolytic enzymes associated with the modification of pectin network in plant cell wall, has an important role in various cell-separation processes that are essential for plant development. PGs are encoded by a large gene family in plants. However, information on this gene family in plant development remains limited. In the present study, 53 and 62 putative members of the PG gene family in cucumber and watermelon genomes, respectively, were identified by genome-wide search to explore the composition, structure, and evolution of the PG family in Cucurbitaceae crops. The results showed that tandem duplication could be an important factor that contributes to the expansion of the PG genes in the two crops. The phylogenetic and evolutionary analyses suggested that PGs could be classified into seven clades, and that the exon/intron structures and intron phases were conserved within but divergent between clades. At least 24 ancestral PGs were detected in the common ancestor of Arabidopsis and Cucumis sativus. Expression profile analysis by quantitative real-time polymerase chain reaction demonstrated that most CsPGs exhibit specific or high expression pattern in one of the organs/tissues. The 16 CsPGs associated with fruit development could be divided into three subsets based on their specific expression patterns and the cis-elements of fruit-specific, endosperm/seed-specific, and ethylene-responsive exhibited in their promoter regions. Our comparative analysis provided some basic information on the PG gene family, which would be valuable for further functional analysis of the PG genes during plant development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses.

    Science.gov (United States)

    Khan, Abdul L; Hamayun, Muhammad; Ahmad, Nadeem; Waqas, Muhammad; Kang, Sang-Mo; Kim, Yoon-Ha; Lee, In-Jung

    2011-12-01

    Endophytic fungi are potential sources of secondary metabolites; however, they are little known for phytohormones secretion and amelioration of plant growth under abiotic stresses. We isolated a novel endophyte from the roots of Cucumis sativus and identified it as a strain of Exophiala sp. by sequencing internal transcribed spacer/large subunit rDNA and phylogenetic analysis. Prior to identification, culture filtrate (CF) of Exophiala sp. has shown significant growth promotion of Waito-C [a gibberellins (GAs)-deficient mutant cultivar] and Dongjin-byeo (normal GAs biosynthesis cultivar) rice seedlings. CF analysis of Exophiala sp. showed the presence of physiologically active GAs (GA₁, GA₃, GA₄ and GA₇) and inactive GAs (GA₅, GA₈, GA₉, GA₁₂ and GA₂₀). Exophiala sp. had higher GAs in its CF than wild-type strain of Gibberella fujikuroi except GA₃. Influence of Exophiala sp. was assessed on cucumber plant's growth and endogenous abscisic acid (ABA), salicylic acid (SA) and bioactive GAs under salinity and drought stresses. Exophiala sp.-treated plants have shown significantly higher growth and rescued the host plants from stress promulgated water deficit, osmotic and cellular damage. The altered levels of stress-responsive ABA showed low level of stress confined to endophyte-applied plants than control. Elevated levels of SA and bioactive GAs (GA₃ and GA₄) in endophyte-associated plants suggest stress-modulating response toward salinity and drought. In conclusion, symbiotic relations between Exophiala and cucumber have reprogrammed the host plant growth under abiotic stresses, thus indicating a possible threshold role of endophytic fungi in stress alleviation. This study could be extended for improving agricultural productivity under extreme environmental conditions.

  14. Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus.

    Science.gov (United States)

    Khan, Abdul Latif; Hamayun, Muhammad; Radhakrishnan, Ramalingam; Waqas, Muhammad; Kang, Sang-Mo; Kim, Yoon-Ha; Shin, Jae-Ho; Choo, Yeon-Sik; Kim, Jong-Guk; Lee, In-Jung

    2012-02-01

    We investigated in this study the influence of an endophytic fungus, Paecilomyces formosus LHL10, on the thermotolerance of cucumber (Cucumis sativus) upon exposure to high (38°C) and low (8°C) temperature stresses. The results showed that endophyte-inoculated plants had significantly higher plant growth attributes under high-temperature stress. However, they were either low or insignificant in non-inoculated control and inoculated plants with 8°C treatments. Lower stress-promulgated water deficit and cellular membrane damage were observed in endophyte-treated plants after 38°C treatment than in control plants under 8°C stress. Total polyphenol, reduced glutathione, and lipid peroxidation activities were reduced in endophyte-associated plants after exposure to 38°C as compared with control and 8°C-treated plants. The concentration of saturated fatty acids (palmitic-C16:0; stearic-C18:0) was lower in endophyte-treated plants with or without low-temperature stress, but after 8°C treatment increased compared with controls. Unsaturated fatty acids (oleic-C18:1; linoleic-C18:2; linolenic-C18:3 acids) were similar at normal conditions; however, at 38°C, C18:2 and C18:3 were decreased, and C18:1 was increased in endophyte-treated plants compared with controls, while the inverse relationship was found at 8°C. Low levels of abscisic acid in P. formosus-associated plants after 38°C treatments revealed stress tolerance compared with control and 8°C-treated plants. In contrast, salicylic acid was pronounced in endophyte-treated plants after low-temperature stress as compared to other treatments. The results provide evidence that the response to P. formosus association was beneficial at normal growth temperature and had varying effects in response to temperature stress.

  15. MENTIMUN(Cucumis Sativus L DI DESA TIRTA MULYA KECAMATAN MAKARTI JAYA KABUPATEN BANYUASIN II

    Directory of Open Access Journals (Sweden)

    Irham Falahudin

    2015-08-01

    Full Text Available Cucumber plants (Cucumis sativus L. that includes or creeping vines and is one type of vegetable-fruit of the gourd family labuan (Cucurbitaceae that has been popular throughout the world and favored from Asia. Cucumber cultivation in Indonesia, found almost in every region, ranging from lowland to highland hot climate (tropical and moderate. One animal that has an abundant amount in cucumber plants are insects. This study aims to know the different types of species that exist on the Order Coleoptera cucumber farm in the village of Tirta Mulya District of makarti Jaya Banyuasin II and determine the role of the Order Coleoptera insects on cucumber plantations in the village of Tirta Mulya District of makarti Jaya Banyuasin II. This is a qualitative study conducted in October-November 2014 held in Cucumber Plants in the village of Tirta Mulya District of makarti Jaya Banyuasin II. Catching insects done using transect method and pitfall traps such as sweeping the net, pit fall traps and light traps, results in identification in the laboratory penelitanya UIN Raden Fatah Palembang. The results of this study indicate that insects are caught in a cucumber plantation obtained as many as 113 individual 3 families and 7 species. Insects which dominates in the village of Tirta Mulya District of makarti Jaya Banyuasin II is Cocinella repanda, Curinus coeruleus, Coelophora inaequalis, and Aulacophora similis, and insects that have the fewest number is Micraspis discolor, Micraspis vincta and Oryctes rhinoceros. The role of the Order Coleoptera Insects in general predators of the family Coccinellidae to eradicate mites while the family Chrysomelidae Scarabacidae and are pests that attack on cucumber plants that can cause death.

  16. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L. plants

    Directory of Open Access Journals (Sweden)

    Borlotti Andrea

    2012-10-01

    Full Text Available Abstract Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L. plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1 activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2 and glutamate synthase (EC 1.4.1.14 an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids to the leaves.

  17. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    Science.gov (United States)

    Borlotti, Andrea; Vigani, Gianpiero; Zocchi, Graziano

    2012-10-11

    Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves.

  18. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus.

    Science.gov (United States)

    Sun, Hao; Guo, Jia; Duan, Yaoke; Zhang, Tiantian; Huo, Heqiang; Gong, Haijun

    2017-02-01

    Cucumber (Cucumis sativus) is a widely grown cucurbitaceous vegetable that exhibits a relatively high capacity for silicon (Si) accumulation, but the molecular mechanism for silicon uptake remains to be clarified. Here we isolated and characterized CsLsi1, a gene encoding a silicon transporter in cucumber (cv. Mch-4). CsLsi1 shares 55.70 and 90.63% homology with the Lsi1s of a monocot and dicot, rice (Oryza sativa) and pumpkin (Cucurbita moschata), respectively. CsLsi1 was predominantly expressed in the roots, and application of exogenous silicon suppressed its expression. Transient expression in cucumber protoplasts showed that CsLsi1 was localized in the plasma membrane. Heterologous expression in Xenopus laevis oocytes showed that CsLsi1 evidenced influx transport activity for silicon but not urea or glycerol. Expression of cucumber CsLsi1-mGFP under its own promoter showed that CsLsi1 was localized at the distal side of the endodermis and the cortical cells in the root tips as well as in the root hairs near the root tips. Heterologous expression of CsLsi1 in a rice mutant defective in silicon uptake and the over-expression of this gene in cucumber further confirmed the role of CsLsi1 in silicon uptake. Our results suggest that CsLsi1 is a silicon influx transporter in cucumber. The cellular localization of CsLsi1 in cucumber roots is different from that in other plants, implying the possible effect of transporter localization on silicon uptake capability.

  19. Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus

    Energy Technology Data Exchange (ETDEWEB)

    Orth, A.B.; Teramura, A.H.; Sisler, H.D. (Univ. of Maryland, College Park (USA))

    1990-09-01

    Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment of 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.

  20. Depletion of soil mineral N by roots of ¤Cucumis sativus¤ L. colonized or not by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Johansen, A.

    1999-01-01

    Two experiments were conducted where Cucumis sativus were grown in uncompartmented pots either alone or in symbiosis with Glomus intraradices Schenck and Smith (Experiment 1) or Glomus sp. (Experiment 2) in order to investigate if root colonization by arbuscular mycorrhizal (AM) fungi has an effect...

  1. 黄瓜韧皮部的类血影蛋白%Spectrin-like Protein in the Phloem of Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    邢立静; 花宝光; 娄成后

    2002-01-01

    Spectrin-like protein has been found in a variety of plant cells. In this study, electron microscopic observation of immuno-gold labelled preparations from the leaf petiole of cucumber (Cucumis sativus L.) shows that it also exists in the sieve element-companion cell (SE-CC) complex, being widely distributed in P-protein filaments and sieve element reticulum (SER), in the cytoplasm and mitochondrial membrane of companion cell (CC) and in the branched plasmodesmata between sieve element (SE) and CC as well. The results suggest that this protein could be synthesized in CC and transferred to SE through plasmodesmata. Western blotting showed that spectrin-like protein existed in the protein of phloem exudate of cucumber, and its molecular weight was about 260 kD.%以黄瓜(Cucumis sativus L.)叶柄为实验材料,应用胶体金免疫电镜技术证明类血影蛋白存在于韧皮部的筛管-伴胞复合体中,广泛分布于筛分子中的韧皮蛋白纤丝以及筛分子网络结构上,并且分布在伴胞的细胞质和线粒体膜以及筛分子与伴胞之间的分支状胞间连丝上,表明该蛋白可能由伴胞合成并经由二者之间的胞间连丝运输到筛分子中.用免疫印迹技术证明,黄瓜韧皮部汁液蛋白中存在类血影蛋白,其分子量约为260 kD,与动物细胞中血影蛋白的分子量接近.

  2. Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L.

    Science.gov (United States)

    İşeri, Özlem Darcansoy; Körpe, Didem Aksoy; Yurtcu, Erkan; Sahin, Feride Iffet; Haberal, Mehmet

    2011-09-01

    Adequate copper (Cu(2+)) concentrations are required for plants; however, at higher concentrations it can also cause multiple toxic effects. In the present study, lipid peroxidation, hydrogen peroxide levels as well as ascorbate peroxidase (APX: EC 1/11/1/11) and catalase (CAT: EC 1.11.1.6) activities were determined in Lycopersicum esculentum Mill. and Cucumis sativus L. seedlings after 7-day exposure to copper sulfate. In addition, DNA damage in these two crops was assessed by measuring micronucleus (MN) frequency and tail moments (TM) as determined by Comet assay. Inhibitory copper concentrations (EC(50): 30 and 5.5 ppm for L. esculentum and C. sativus, respectively) were determined according to dose-dependent root inhibition curves, and EC(50) and 2×EC(50) were applied. Malondialdehyde (MDA) and H(2)O(2) levels significantly increased in all groups studied. CAT activity increased in treatment groups of C. sativus. APX activity increased in L. esculentum seedlings due to 2×EC(50) treatment. Reductions in mitotic indices (MI) represented Cu(2+)dependent root growth inhibition in all treatment groups studied. According to TMs and MN frequencies, copper exposure induced significant DNA damage (p sativus roots. In conclusion, Cu(2+)induced oxidative damage, elevations in H(2)O(2) levels and alterations in APX and CAT activities, as well as significant DNA damage in nuclei of both study groups. To our knowledge, this is the first comparative and comprehensive study demonstrating the effects of copper on two different plant species at relevant cytotoxic concentrations at both biochemical and genotoxicity levels with multiple end points.

  3. Pharmacological evaluation of ameliorative effect of aqueous extract of Cucumis sativus L. fruit formulation on wound healing in Wistar rats

    Directory of Open Access Journals (Sweden)

    Mithun Vishwanath K Patil

    2011-01-01

    Full Text Available Aim: The aim of present investigation was to formulate and evaluate the ameliorative effect of aqueous extract of Cucumis sativus L. fruit cream formulation on experimentally induced wounds in rats. Materials and Methods: The cream was formulated using soft white paraffin base containing 2.5%, 5%, and 10% w/w of aqueous extract of of Cucumis sativus L. fruit. Excision wounds of size 300 mm 2 and 2 mm depth were used for the study of rate of contraction of wound and epithelization. All the three formulations were evaluated for various pharmaceutical parameters such as pH, viscosity, spreadability, and acute skin irritation study. Epithelialization period, wound contraction, scar width, and histopathological evaluation parameters were used for pharmacological evaluation of wound healing activity of the formulation. Statistical Analysis: All the results were expressed as mean±SEM. Data analysis was performed using GraphPad Prism 5.0 software (GraphPad, San Diego, CA, USA. Statistical comparisons were made between drug-treated groups and disease control animals. Data of disease activity index were analyzed using one-way analysis of variance; Dunnett′s multiple range test was applied for post hoc analysis, whereas data of wound area and percent wound contraction were analyzed using two-way repeated analysis of variance, Bonferroni′s multiple range test was applied for post hoc analysis. A value of P<0.05 was considered to be statistically significant. Results: Cream formulation of AECS when applied topically did not show any sign and symptoms of skin irritation. The treatment with aqueous extract of C. sativus fruit cream formulation (2.5%, 5%, and 10% w/w resulted in significance decrease (P<0.05, P<0.001, and P<0.001, respectively in wound area, epithelization period, and scar width, whereas rate of wound contraction significance increased (P<0.001 respectively when compared with control group animals. Conclusion: The present investigation

  4. Construction of a BAC library from cucumber (Cucumis sativus L.) and identification of linkage group specific clones

    Institute of Scientific and Technical Information of China (English)

    Yuan Guan; Qi Chen; Junsong Pan; Zheng Li; Huanle He; Aizhong Wu; Rentao Song; Run Cai

    2008-01-01

    A bacterial artificial chromosome (BAC) library consisting of 19,200 clones with an average insert size of 105 kb has been constructed from a cucumber (Cucumis sativus L.) inbred line S94, derived from a cultivar in North China. The entire library was equivalent to approximately 5 haploid cucumber genomes. To facilitate chromosome engineering and anchor the cucumber genetic linkage map to its chromosomes, 15 sequence-characterized amplified regions (SCAR) and seven simple sequence repeats (SSR) markers from each link-age group of cucumber were used to screen an ordered array of pooled BAC DNA with polymerase chain reaction (PCR). Fifteen mark-ers gave at least two positive clones. As a result, 22 BAC clones representing 7 linkage groups of cucumber were identified, which further validated the genome coverage and utility of the library. This BAC library and linkage group specific clones provide essential resources for future research of the cucumber genome.

  5. Changes in the physiological regulation of transpiration caused by the effects of industrial air pollution. [Cucumis sativus

    Energy Technology Data Exchange (ETDEWEB)

    Kozinka, V.; Klasova, A.; Niznansky, A.

    1963-01-01

    Through Hygen's method of quantitative analysis of transpiration curves, the authors studied the intensity of stomatal and cuticular transpiration of germinating leaves of Cucumis sativus which were experimentally exposed to solid impurities containing F. The difference between the control and experimental plants shows that the impurities not only blocked the regulating system of breathing but also caused increased cuticular transpiration. Numerous lesions were observed; cuticle damage also spread to the inner tissues. A direct relationship between microscopic and macroscopic symptoms was not proven. The creation of conditions adverse to the normal development of the water balance was intensified when the impurities were dropped onto the surface of the leaves. The possible protective function of trichomes is mentioned, but applies only when the impurities settle on a dry surface.

  6. Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots.

    Science.gov (United States)

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Burzynski, Marek

    2012-06-01

    The effect of heavy metals on plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber (Cucumis sativus) roots was studied. The aim of this work was to explain the mechanism of modification of the PM H(+)-ATPase activity in plants subjected to heavy metals. Plants were treated with 10 μM Cd or Cu for 6 d. After 3 d exposure to the heavy metals, some of the plants were transferred to control conditions for a further 3 d (3/3 plants). The activity of PM H(+)-ATPase was found to be increased in plants treated with heavy metals. The highest activity measured as proton transport was observed in 3/3 plants. Estimation of transcript levels of C. sativus PM H(+)-ATPase in roots indicated that the action of Cd, but not Cu, affected the gene expression level. Transcript levels of C. sativus PM H(+)-ATPase (CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9) genes increased in roots treated with Cd. Moreover, Western blot analysis with antibody against phosphothreonine and 14-3-3 protein indicated that increased activity of PM H(+)-ATPase under heavy-metal stress resulted from phosphorylation of the enzyme. It was found that Cu markedly increased the activity of catalase and ascorbate peroxidase and reduced the level of H(2)O(2) in cucumber roots. In contrast, Cd did not affect these parameters. These results indicate that Cd and Cu can, in different ways, lead to modification of PM H(+)-ATPase activity. Additionally, it was observed that treatment of plants with heavy metals led to an increased level of heat-shock proteins in the tissues. This suggests that the plants had started adaptive processes to survive adverse conditions, and increased PM H(+)-ATPase activity could further enhance the repair processes in heavy-metal-stressed plants.

  7. Protective mechanisms of Cucumis sativus in diabetes-related models of oxidative stress and carbonyl stress

    Directory of Open Access Journals (Sweden)

    Himan Heidari

    2016-03-01

    Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.

  8. Evaluation of the Effects of Cucumis sativus Seed Extract on Serum Lipids in Adult Hyperlipidemic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Soltani, Rasool; Hashemi, Mohammad; Farazmand, Alimohammad; Asghari, Gholamreza; Heshmat-Ghahdarijani, Kiyan; Kharazmkia, Ali; Ghanadian, Syed Mustafa

    2017-01-01

    Hyperlipidemia is associated with increased risk of atherosclerosis; therefore, control of this risk factor is very important in preventing atherosclerosis. Cucumber (Cucumis sativus) seed is used traditionally as a lipid-lowering nutritional supplement. The aim of this study was to evaluate the effect of cucumber seed extract on serum lipid profile in adult patients with mild hyperlipidemia. In a randomized double-blind placebo-controlled clinical trial, hyperlipidemic patients with inclusion criteria were randomly and equally assigned to either Cucumis or placebo groups and used one medicinal or placebo capsule, respectively, once daily with food for 6 wk. Body mass index (BMI) as well as fasting serum levels of total cholesterol, triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) were measured for all patients pre- and post-intervention and finally the changes were compared between the groups. Twenty-four patients in Cucumis group and 23 patients in placebo group completed the study. Cucumis seed extract resulted in significant reduction of total cholesterol (P = 0.016), LDL-C (P < 0.001), TG (P < 0.001), and BMI (P < 0.001) as well as significant increase of HDL-C (P = 0.012) compared to placebo. In conclusion, the consumption of C. sativus seed extract with daily dose of 500 mg results in desirable effects on serum lipid profile in adult hyperlipidemic patients. Therefore, cucumber seed could be considered as a food supplement for treatment of dyslipidemia.

  9. Pepino japonês (Cucumis sativus L. submetido ao tratamento com fécula de mandioca Japonese cucumber (Cucumis sativus L. submitted of the treatment with cassava starch film

    Directory of Open Access Journals (Sweden)

    Kelen Cristina dos Reis

    2006-06-01

    Full Text Available Com o presente trabalho objetivou-se avaliar a qualidade e a vida útil do pepino (Cucumis sativus L., utilizando recobrimento com película de fécula de mandioca. Após seleção, amostras de pepino japonês foram mergulhadas em suspensões de fécula de mandioca a 0, 2, 3 e 4%, secos ao ar e armazenados em câmara fria a 5ºC e 95% de UR por 8 dias. As análises realizadas foram perda de massa, pH, sólidos solúveis (SS , acidez titulável (AT, Cor L*a*b e firmeza. O delineamento utilizado foi o DIC com 3 repetições, com os tratamentos dispostos em esquema fatorial 4 x 5. O valor encontrado para firmeza nas amostras tratadas com película a 4% foram menores em comparação aos outros tratamentos, isto, provavelmente se deve à plasticidade do tecido que estas amostras apresentaram. A película reduziu significativamente a perda de massa das amostras mantidas sob refrigeração. A aplicação de película de fécula de mandioca na concentração mais elevada (4%, proporcionou ao pepino um aspecto melhor de conservação, tornando o produto mais atraente.This work was made to evaluate the properties and postharvest life of cucumber (Cucumis sativus L. coated with cassava starch film. After the selection the fruits were dipped in suspensions 0, 2, 3 and 4% starch, dried naturally and stored in chamber cold (5ºC ± 1ºC and 90% ± 5% HR during 8 days and the analyses were done in the time zero and in intervals of 2 days. The analyses done were loss mass, titratable acidity (TA, pH, soluble solids (SS, color L*a*b and firmness. The test was conducted in completely randomized design, with three repetitions, with the treatments disposed in factory layout 4x5. The value found for firmness in the samples treated with biofilm at 4% was smaller in comparison to the other treatments, this, is probably due to the plasticity of the tissue that these samples presented. The film reduced the loss of mass of the samples maintained under refrigeration

  10. Age dependent alterations in photosystem II acceptor side in Cucumis sativus cotyledonary leaf thylakoids: analysis of binding characteristics of herbicide [14C]-atrazine.

    Science.gov (United States)

    Prakash, J S; Baig, M A; Mohanty, P

    1999-02-01

    Senescence induced temporal changes in photosystems can be conveniently studied in cotyledonary leaves. We monitored the protein, chlorophyll and electron transport activities in Cucumis sativus cv Poinsette cotyledonary leaves and observed that by 20th day, there was a 50%, 41% and 30-33% decline in the chlorophyll, protein and photosystem II activity respectively when compared to 6th day cotyledonary leaves taken as control. We investigated the changes in photosystem II activity (O2 evolution) as a function of light intensity. The photosystem II functional antenna decreased by 27% and the functional photosystem II units decreased by 30% in 20-day old cotyledonary leaf thylakoids. The herbicide [14C]-atrazine binding assay to monitor specific binding of the herbicide to the acceptor side of photosystem II reaction centre protein, D1, showed an increase in the affinity for atrazine towards D1 protein and decrease in the QB binding sites in 20th day leaf thylakoids when compared to 6th day leaf thylakoids. The western blot analysis also suggested a decrease in steady state levels of D1 protein in 20th day cotyledonary leaf thylakoids as compared to 6th day sample which is in agreement with [14C]-atrazine binding assay and light saturation kinetics.

  11. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia.

    Science.gov (United States)

    Sebastian, Patrizia; Schaefer, Hanno; Telford, Ian R H; Renner, Susanne S

    2010-08-10

    Among the fundamental questions regarding cultivated plants is their geographic origin and region of domestication. The genus Cucumis, which includes cucumber (Cucumis sativus) and melon (Cucumis melo), has numerous wild African species, and it has therefore been assumed that melon originated in Africa. For cucumber, this seemed less likely because wild cucumbers exist in India and a closely related species lives in the Eastern Himalayas. Using DNA sequences from plastid and nuclear markers for some 100 Cucumis accessions from Africa, Australia, and Asia, we show here that melon and cucumber are of Asian origin and have numerous previously overlooked species-level relatives in Australia and around the Indian Ocean. The wild progenitor of C. melo occurs in India, and our data confirm that the Southeast Asian Cucumis hystrix is the closest relative of cucumber. Most surprisingly, the closest relative of melon is Cucumis picrocarpus from Australia. C. melo diverged from this Australian sister species approximately 3 Ma, and both diverged from the remaining Asian/Australian species approximately 10 Ma. The Asian/Australian Cucumis clade comprises at least 25 species, nine of them new to science, and diverged from its African relatives in the Miocene, approximately 12 Ma. Range reconstruction under maximum likelihood suggests Asia as the ancestral area for the most recent common ancestor of melon and cucumber, fitting with both having progenitor populations in the Himalayan region and high genetic diversity of C. melo landraces in India and China. Future investigations of wild species related to melon and cucumber should concentrate on Asia and Australia.

  12. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L. seedlings response to abiotic stress

    Directory of Open Access Journals (Sweden)

    Lijie eWei

    2015-11-01

    Full Text Available Effects of brassinosteroids (BRs on cucumber (Cucumis sativus L. abiotic stresses resistance to salt, polyethylene glycol (PEG, cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 µM brassinolide (BL, the most active BRs relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (CSACS1, ripening-related ACC synthase2 (CSACS2, ripening-related ACC synthase3 (CSACS3, 1-aminocyclopropane-1-carboxylate oxidase1 (CSACO1, 1-aminocyclopropane-1-carboxylate oxidase2 (CSACO2 and CSAOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings.

  13. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.

    Science.gov (United States)

    Ye, Xueling; Song, Tiefeng; Liu, Chang; Feng, Hui; Liu, Zhiyong

    2014-12-01

    MicroRNAs (miRNAs) are approximately 21 nt noncoding RNAs that influence the phenotypes of different species through the post-transcriptional regulation of gene expression. Although many miRNAs have been identified in a few model plants, less is known about miRNAs specific to cucumber (Cucumis sativus L.). In this study, two libraries of cucumber RNA, one based on fruit samples and another based on mixed samples from leaves, stems, and roots, were prepared for deep-sequencing. A total of 110 sequences were matched to known miRNAs in 47 families, while 56 sequences in 46 families are newly identified in cucumber. Of these, 77 known and 44 new miRNAs were differentially expressed, with a fold-change of at least 2 and p-value < 0.05. In addition, we predicted the potential targets of known and new miRNAs. The identification and characterization of known and new miRNAs will enable us to better understand the role of these miRNAs in the formation of cucumber fruit.

  14. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Li, Hao; He, Jie; Yang, Xiaozhen; Li, Xin; Luo, Dan; Wei, Chunhua; Ma, Jianxiang; Zhang, Yong; Yang, Jianqiang; Zhang, Xian

    2016-03-01

    Melatonin is involved in defending against oxidative stress caused by various environmental stresses in plants. In this study, the roles of exogenous melatonin in regulating local and systemic defense against photooxidative stress in cucumber (Cucumis sativus) and the involvement of redox signaling were examined. Foliar or rhizospheric treatment with melatonin enhanced tolerance to photooxidative stress in both melatonin-treated leaves and untreated systemic leaves. Increased melatonin levels are capable of increasing glutathione (reduced glutathione [GSH]) redox status. Application of H2 O2 and GSH also induced tolerance to photooxidative stress, while inhibition of H2 O2 accumulation and GSH synthesis compromised melatonin-induced local and systemic tolerance to photooxidative stress. H2 O2 treatment increased the GSH/oxidized glutathione (GSSG) ratio, while inhibition of H2 O2 accumulation prevented a melatonin-induced increase in the GSH/GSSG ratio. Additionally, inhibition of GSH synthesis blocked H2 O2 -induced photooxidative stress tolerance, whereas scavenging or inhibition of H2 O2 production attenuated but did not abolish GSH-induced tolerance to photooxidative stress. These results strongly suggest that exogenous melatonin is capable of inducing both local and systemic defense against photooxidative stress and melatonin-enhanced GSH/GSSG ratio in a H2 O2 -dependent manner is critical in the induction of tolerance.

  15. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus.

    Science.gov (United States)

    Zhao, Jun-Long; Pan, Jun-Song; Guan, Yuan; Zhang, Wei-Wei; Bie, Bei-Bei; Wang, Yun-Li; He, Huan-Le; Lian, Hong-Li; Cai, Run

    2015-11-01

    Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome development in Arabidopsis thaliana have been intensively studied, but genes regulating multicellular trichome development in plants remain unclear. Here, we characterized Cucumis sativus (cucumber) trichomes as representative multicellular and unbranched structures, and identified Micro-trichome (Mict), using map-based cloning in an F2 segregating population of 7,936 individuals generated from a spontaneous mict mutant. In mict plants, trichomes in both leaves and fruits, are small, poorly developed, and denser than in the wild type. Sequence analysis revealed that a 2,649-bp genomic deletion, spanning the first and second exons, occurred in a plant-specific class I homeodomain-leucine zipper gene. Tissue-specific expression analysis indicated that Mict is strongly expressed in the trichome cells. Transcriptome profiling identified potential targets of Mict including putative homologs of genes known in other systems to regulate trichome development, meristem determinacy, and hormone responsiveness. Phylogenic analysis charted the relationships among putative homologs in angiosperms. Our paper represents initial steps toward understanding the development of multicellular trichomes.

  16. Impact of a snail pellet on the phytoavailability of different metals to cucumber plants (Cucumis sativus L.).

    Science.gov (United States)

    Freitag, Sabine; Krupp, Eva M; Raab, Andrea; Feldmann, Jörg

    2013-02-01

    FePO4 based molluscicides (snail pellets) also contain a chelating agent. The influence of the chelating agent, which is intrinsically present in the molluscicide, on the phytoavailability of other metals present in the growth medium was investigated in the present study. Cucumber plants (Cucumis sativus) were grown in a hydroponic nutrient solution and exposed for one week to different metals in combination with a chelating agent containing molluscicide. Oven dried roots and shoots of plants were HNO 3/H2O2 microwave digested and analysed regarding total Fe, stable isotopic (54)Fe, Cd, Pb, and Bi concentrations using ICP-MS. The results showed that the addition of a chelating agent enhances the Fe phytoavailability to the plant, whether as an intrinsic part of the molluscicide or added individually. Additionally, the chelating agent present in the pesticide mobilises externally added metals and thus increases their phytoavailability. In particular the significantly higher Cd concentration in shoots from plants exposed to chelating agents indicates a potentially detrimental environmental effect.

  17. Ultraviolet-induced photodegradation of cucumber (Cucumis sativus L. ) microsomal and soluble protein tryptophanyl residues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.R. (Dept. of Agriculture, Beltsville, MD (United States))

    1993-03-01

    The in vitro effects of ultraviolet B (280--320 nm) radiation on microsomal membrane proteins and partially purified ribulose bisphosphate carboxylase (Rubisco) from cucumber (Cucumis sativus L.) was investigated by measuring the direct photolytic reduction of tryptophan fluorescence and the formation of fluorescent photooxidation products. Exposure of microsomes and Rubisco to monochromatic 300-nm radiation resulted in the loss of intrinsic tryptophan fluorescence and the production of blue-emitting fluorophores. The major product of tryptophan photolysis was tentatively identified as N-formylkynurenine (N-FK). Even though the rates of tryptophan photodegradation and N-FK formation were similar, the amount of blue fluorescence produced was significantly higher in the microsomes relative to Rubisco. Studies with various free radical scavengers and other modifiers indicated that tryptophan photodegradation requires oxygen species. The optimum wavelengths for loss of tryptophan fluorescence were 290 nm for the microsomes and 280 nm for Rubisco. The temperature dependence of tryptophan fluorescence and rate of tryptophan photodegradation indicated an alteration in the cucumber microsomal membranes at about 24[degrees]C, which influenced protein structure and tryptophan photosensitivity. 29 refs., 6 figs., 1 tab.

  18. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis.

    Science.gov (United States)

    Hao, J H; Dong, C J; Zhang, Z G; Wang, X L; Shang, Q M

    2012-05-01

    To investigate the response of cucumber seedlings to exogenous salicylic acid (SA) and gain a better understanding of SA action mechanism, we generated a proteomic profile of cucumber (Cucumis sativus L.) cotyledons treated with exogenous SA. Analysis of 1500 protein spots from each gel revealed 63 differentially expressed proteins, 59 of which were identified successfully. Of the identified proteins, 97% matched cucumber proteins using a whole cucumber protein database based on the newly completed genome established by our laboratory. The identified proteins were involved in various cellular responses and metabolic processes, including antioxidative reactions, cell defense, photosynthesis, carbohydrate metabolism, respiration and energy homeostasis, protein folding and biosynthesis. The two largest functional categories included proteins involved in antioxidative reactions (23.7%) and photosynthesis (18.6%). Furthermore, the SA-responsive protein interaction network revealed 13 key proteins, suggesting that the expression changes of these proteins could be critical for SA-induced resistance. An analysis of these changes suggested that SA-induced resistance and seedling growth might be regulated in part through pathways involving antioxidative reactions and photosynthesis.

  19. Atmospheric Humidity Influences Oviposition Rate of Tetranychus urticae (Acari: Tetranychidae) Through Morphological Responses of Host Cucumis sativus Leaves.

    Science.gov (United States)

    Shibuya, T; Itagaki, K; Ueyama, S; Hirai, N; Endo, R

    2016-02-01

    We investigated the effects of morphology of host cucumber, Cucumis sativus L., leaves acclimatized to different atmospheric humidity levels on oviposition by adult females of the twospotted spider mite, Tetranychus urticae Koch. Cucumber seedlings were grown at a vapor pressure deficit (VPD) of 0.4, 1.9, or 3.0 kPa at 28°C (90%, 50%, or 20% relative humidity, respectively) in growth chambers until the second true leaves had expanded. Adult females of T. urticae were released on the adaxial surfaces of leaf squares cut from first and second true leaves in each treatment group, and held in the same humidity condition. Eggs were counted 2 d after release. The lower acclimatization humidity (higher VPD) increased trichome (leaf hair) density of the host leaves and oviposition rate, but the relationship between the trichome and oviposition differed between leaf positions. The leaf mass per area (LMA) was greater in first true leaves than in second true leaves, but was not influenced by VPD. A linear regression model with oviposition rate as the dependent variable and trichome density and LMA as independent variables showed that both variables influenced the oviposition rate approximately equally. We conclude that oviposition was accelerated under low humidity (high VPD) conditions indirectly probably through an increase in the trichome density of host leaves.

  20. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L.

    Science.gov (United States)

    Li, Yuhong; Yang, Luming; Pathak, Mamta; Li, Dawei; He, Xiaoming; Weng, Yiqun

    2011-10-01

    The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F(2:3) families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F(2) plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber.

  1. Synergistic effect of flyash and SO{sub 2} on development of cucumber (Cucumis sativus L.) leaf injury

    Energy Technology Data Exchange (ETDEWEB)

    Tung, G.; McIlveen, W.D.; Jones, R.D. [Ontario Ministry of Environment and Energy, Etobicoke, Ontario (Canada)

    1995-10-01

    In a two-factorial experiment, sulfur dioxide alone at concentration of 131 {micro}g/m{sup 3} over long exposures or flyash for either coal or oil combustion alone applied onto cucumber (Cucumis sativus L.) foliage causes no visible injury. However, if both flyash and sulfur dioxide were presented simultaneously, a specific mosaic-chlorosis symptom developed on leaves. A synergistic effect was thus demonstrated. Histopathology of the mosaic-chlorosis symptom was studied. An unusual pattern of tissue abnormally initiated from the collapse of the anticlinal cell walls of the upper epidermal cells and progressed along cell walls into mesophyll tissues. Cellular injury at the lower spongy tissues typical of that caused by SO{sub 2} was also observed. A significant elevation of sulfate-sulfur in the leaves treated with a combination of SO{sub 2} and flyash was demonstrated. Significant interactions between the two factors were found for both injury and sulfur chemistry. This suggests that flyash deposits on the leaf surface play a catalytic role in oxidizing atmospheric sulfur dioxide continuously to form sulfuric acid (H{sub 2}SO{sub 4}) in situ. This acid could infiltrate into mesophyll damage cells and tissues en route.

  2. Effect of Maturity Stage on the Gene Expression of Antioxidative Enzymes in Cucumber (Cucumis sativus L.) Fruits Under Chilling Stress

    Institute of Scientific and Technical Information of China (English)

    QIAN Chun-lu; MI Hong-bo; ZHAO Yu-ying; HE Zhi-ping; MAO Lin-chun

    2013-01-01

    The gene expression patterns of antioxidative enzymes in cucumber (Cucumis sativus L.) fruits at four different maturity stages, immature (3-8 d after anthesis (DAA), mature (9-16 DAA), breaker (17-22 DAA), and yellow (35-40 DAA), were determined before and after cold storage at 2°C for 9 d and after subsequent rewarming at 20°C for 2 d. The electrolyte leakage and malondialdehyde content in cucumber fruits were increased after cold storage and subsequent rewarming. Increased expressions of peroxidase, ascorbate peroxidase (APX), and monodehydroascorbate reductase after cold storage played an important role in cucumber fruits to cope with chilling injury. The elevated cyt-superoxide dismutase, catalase, APX and dehydroascorbate reductase after subsequent rewarming in cucumber fruits facilitated the recovery from chilling stress. The highest expression levels of all the seven antioxidative enzyme genes in yellow fruits might be responsible for the enhanced chilling tolerance. Cucumber fruits at earlier developmental stages was more susceptible to chilling stress than those at later stages. The relative higher gene expressions of antioxidative enzymes genes at earlier developmental stages may be the responses to the sever oxidative stress caused by chilling injury.

  3. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants.

    Science.gov (United States)

    Hong, Jie; Peralta-Videa, Jose R; Rico, Cyren; Sahi, Shivendra; Viveros, Marian N; Bartonjo, Jane; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-04-15

    Currently, most of the nanotoxicity studies in plants involve exposure to the nanoparticles (NPs) through the roots. However, plants interact with atmospheric NPs through the leaves, and our knowledge on their response to this contact is limited. In this study, hydroponically grown cucumber (Cucumis sativus) plants were aerially treated either with nano ceria powder (nCeO2) at 0.98 and 2.94 g/m(3) or suspensions at 20, 40, 80, 160, and 320 mg/L. Fifteen days after treatment, plants were analyzed for Ce uptake by using ICP-OES and TEM. In addition, the activity of three stress enzymes was measured. The ICP-OES results showed Ce in all tissues of the CeO2 NP treated plants, suggesting uptake through the leaves and translocation to the other plant parts. The TEM results showed the presence of Ce in roots, which corroborates the ICP-OES results. The biochemical assays showed that catalase activity increased in roots and ascorbate peroxidase activity decreased in leaves. Our findings show that atmospheric NPs can be taken up and distributed within plant tissues, which could represent a threat for environmental and human health.

  4. Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination

    Institute of Scientific and Technical Information of China (English)

    Yi-Ben PENG; Cheng ZOU; Hua-Qin GONG; Shu-Nong BAI; Zhi-Hong XU; Yi-Qin LI

    2005-01-01

    Arabinogalactan proteins (AGPs) and pectins were detected in the floral buds of cucumber (Cucumis sativus L.) during its sex determination using the following monoclonal antibodies: MAC 207 (recognizes AGP epitopes); JIM 8 (recognizes a subset ofAGP epitopes); and JIM 5 and JIM 7 (epitopes of pectins esterified to various degrees). In the stem apex meristem (SAM) of the cucumber, epitopes of MAC 207, JIM 7, and JIM 5 were localized in the cells from second to third peripheral layers when the sex organ primodium began to differentiate; epitopes of MAC 207 and JIM 5 were also detected in the ragged edge cells. A very dense labeling signal with MAC 207 was observed in the carpel and pistil primodium. The AGP epitopes recognized by JIM 8 were localized in the anther of the male flower and the anther-like portion of the stagnant stamen of the female flower. This suggests that the AGPs and pectins in the SAM of the cucumber are closely associated with the differentiation of the SAM, from meristematic cells to floral primodium. The subset of AGPs recognized by JIM 8 may play an important role in stamen formation.

  5. [Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress].

    Science.gov (United States)

    Hao, Jing-Hong; Yi, Yang; Shang, Qing-Mao; Dong, Chun-Juan; Zhang, Zhi-Gang

    2012-03-01

    To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance.

  6. Exocarp Properties and Transcriptomic Analysis of Cucumber (Cucumis sativus) Fruit Expressing Age-Related Resistance to Phytophthora capsici.

    Science.gov (United States)

    Ando, Kaori; Carr, Kevin M; Colle, Marivi; Mansfeld, Ben N; Grumet, Rebecca

    2015-01-01

    Very young cucumber (Cucumis sativus) fruit are highly susceptible to infection by the oomycete pathogen, Phytophthora capsici. As the fruit complete exponential growth, at approximately 10-12 days post pollination (dpp), they transition to resistance. The development of age-related resistance (ARR) is increasingly recognized as an important defense against pathogens, however, underlying mechanisms are largely unknown. Peel sections from cucumber fruit harvested at 8 dpp (susceptible) and 16 dpp (resistant) showed equivalent responses to inoculation as did whole fruit, indicating that the fruit surface plays an important role in defense against P. capsici. Exocarp from 16 dpp fruit had thicker cuticles, and methanolic extracts of peel tissue inhibited growth of P. capsici in vitro, suggesting physical or chemical components to the ARR. Transcripts specifically expressed in the peel vs. pericarp showed functional differentiation. Transcripts predominantly expressed in the peel were consistent with fruit surface associated functions including photosynthesis, cuticle production, response to the environment, and defense. Peel-specific transcripts that exhibited increased expression in 16 dpp fruit relative to 8 dpp fruit, were highly enriched (P<0.0001) for response to stress, signal transduction, and extracellular and transport functions. Specific transcripts included genes associated with potential physical barriers (i.e., cuticle), chemical defenses (flavonoid biosynthesis), oxidative stress, penetration defense, and molecular pattern (MAMP)-triggered or effector-triggered (R-gene mediated) pathways. The developmentally regulated changes in gene expression between peels from susceptible- and resistant- age fruits suggest programming for increased defense as the organ reaches full size.

  7. Water uptake and growth of cucumber plants (Cucumis sativus L.) under control of dissolved O2 concentration in hydroponics.

    Science.gov (United States)

    Yoshida, S; Kitano, M; Eguchi, H

    1996-12-01

    Dissolved O2 concentration ([O2]) in nutrient solution was controlled at 0.01, 0.10 and 0.20 mM with accuracy of +/- 0.005 mM in a newly developed hydroponic system, and the effects of [O2] on water uptake and growth of cucumber plants (Cucumis sativus L.) were analyzed. For evaluating water uptake rate under the control of [O2], water flux at the stem base was measured on-line with +/-5% in accuracy, 1 mg s-1 in resolution and 1 min in time constant by heat flux control (HFC) method. Water uptake rate was drastically increased by lighting to the plant at each [O2], and water uptake per day was depressed in proportion to decrease in [O2]. In the plants grown for 10 days, leaf area, fresh weight and dry weight of leaves decreased at lower [O2], while stem length and number of leaves were scarcely affected. These facts suggest that membrane permeability of root cells reduces at lower [O2] through respiration-dependent processes, and growth is inhibited through leaf turgor loss caused by the depressed water uptake of roots in O2-deficient nutrient solution in hydroponics.

  8. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid.

    Science.gov (United States)

    Zhou, Xingang; Yu, Gaobo; Wu, Fengzhi

    2012-08-01

    Changes in soil biological properties have been implicated as one of the causes of soil sickness, a phenomenon that occurs in continuous monocropping systems. However, the causes for these changes are not yet clear. The aim of this work was to elucidate the role of p-hydroxybenzoic acid (PHBA), an autotoxin of cucumber (Cucumis sativus L.), in changing soil microbial communities. p-Hydroxybenzoic acid was applied to soil every other day for 10 days in cucumber pot assays. Then, the structures and sizes of bacterial and fungal communities, dehydrogenase activity, and microbial carbon biomass (MCB) were assessed in the rhizosphere soil. Structures and sizes of rhizosphere bacterial and fungal communities were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time PCR, respectively. p-Hydroxybenzoic acid inhibited cucumber seedling growth and stimulated rhizosphere dehydrogenase activity, MBC content, and bacterial and fungal community sizes. Rhizosphere bacterial and fungal communities responded differently to exogenously applied PHBA. The PHBA decreased the Shannon-Wiener index for the rhizosphere bacterial community but increased that for the rhizosphere fungal community. In addition, the response of the rhizosphere fungal community structure to PHBA acid was concentration dependent, but was not for the rhizosphere bacterial community structure. Our results indicate that PHBA plays a significant role in the chemical interactions between cucumber and soil microorganisms and could account for the changes in soil microbial communities in the continuously monocropped cucumber system.

  9. Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    Science.gov (United States)

    Agüera, Eloísa; Ruano, David; Cabello, Purificación; de la Haba, Purificación

    2006-07-01

    Expression and activity of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) were analysed in relation to the rate of CO(2) assimilation in cucumber (Cucumis sativus L.) leaves. Intact plants were exposed to different atmospheric CO(2) concentrations (100, 400 and 1200microLL(-1)) for 14 days. A correlation between the in vivo rates of net CO(2) assimilation and the atmospheric CO(2) concentrations was observed. Transpiration rate and stomatal conductance remained unaffected by CO(2) levels. The exposure of the cucumber plants to rising CO(2) concentrations led to a concomitant increase in the contents of starch and soluble sugars, and a decrease in the nitrate content in leaves. At very low CO(2), NR and GS expression decreased, in spite of high nitrate contents, whereas at normal and elevated CO(2) expression and activity were high although the nitrate content was very low. Thus, in cucumber, NR and GS expression appear to be dominated by sugar levels, rather than by nitrate contents.

  10. The effect of ammonium ions on the activity of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase in Cucumis sativus L. seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubiak-Dobosz

    2014-02-01

    Full Text Available Changes in the activity of glutamate dehydrogenase (GDH, alanine aminotransferase (GPT and aspartate aminotransferase (GOT were studied in various organs of Cucumis sativus L. seedlings in relation to the uptake of mineral nitrogen (in form of N03- or NH4+ from the medium. Activity of GDH, GPT, and GOT was higher in young leaves and roots of cucumber seedlings if the plants developed- in an ammonium medium. No similar changes of aminotransferases activity were noted in the cotyledons. Factors affecting varying effect of ammonium ions upon GPT and GOT activity are discussed for particular organs of cucumber seedlings.

  11. In vitro culture of Cucumis sativus L. VI. Histological analysis of leaf explants cultured on media with 2, 4-D or 2, 4, 5-T

    OpenAIRE

    Anna Nadolska-Orczyk; Stefan Malepszy

    2014-01-01

    The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of Cucumis sativus cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T) and cytokinin (BAP or 2iP). During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociati...

  12. Exogenous Brassinosteroid Induced the Salt Resistance of Cucumber (Cucumis sativus L.) Seedlings%外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性

    Institute of Scientific and Technical Information of China (English)

    尚庆茂; 宋士清; 张志刚; 郭世荣

    2006-01-01

    [目的] 明确外源油菜素甾醇(Brassinosteroid,BR)对黄瓜(Cucumis sativus L.)幼苗抗盐性的诱导作用.[方法] 采用根际注射结合叶面喷施外源BR(0、0.005、0.01、0.05、0.1、0.2 mg·L-1)的方法,比较分析了盐胁迫下幼苗植株盐害指数、抗氧化酶活性、渗透调节物质含量等生理指标.[结果] 外源BR能够明显改善盐胁迫下黄瓜幼苗植株的生长发育状况,降低盐害指数,最高幅度达40.2个百分点(P<0.01),极显著地提高叶片细胞游离脯氨酸(Pro)和可溶性糖的含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶活性(P<0.01),进而保护细胞膜的稳定性.[结论] 外源BR可以有效诱导黄瓜幼苗的抗盐性,并且最佳浓度范围是0.01~0.05 mg·L-1.

  13. Ion exchanger BIONA 312 as a component of soils polluted with nickel in cultivation of cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The objective of the studies undertaken was to assess the possibility of ion exchange substrate BIONA 312 use for nickel bioavailability limitation in cucumber (Cucumis sativus L. 'Hermes'cv. as determined on the ground of chlorophyll and Ni content. BIONA 312, regarding the chemical composition, is a mixture of strongly acid cation exchanger KU-2x8 and polyfunctional weakly alkaline anion exchanger EDE-10P. The experiment was differentiated in regard to nickel and ion exchanger content. The following doses of Ni (in the form of NiSO4 were introduced: 0,30 or 75mg Ni·dm-3 of the substrate. BIONA 312 was added to the medium in the following doses: O,2 or 5% of substrate volume. Together with Ni dose increase in the medium there was recorded a significant increase of this metal concentration in the cucumber biomass. Nickel in the amount 30 mg dm-3 did not affect considerably the changes in any of chlorophyll form, but a dose 75mg Ni·dm-3 has caused a significant decrease in chlorophyll "a" concentration in cucumber leaves. Simultaneously with the increase in the nickel content in the nutritive environment the decrease in the value of organic mass productivity coefficient was observed. The introduction of 5% ion exchange substrate BIONA 312 into the medium containing nickel in the amount 30 or 75 mg·dm-3 induced a significant growth of the studied chlorophyll fractions in the cucumber leaves. BIONA 312 introduced to the environment contaminated with nickel in the amount of 30 or 75 mg·dm-3 has significantly reduced Ni content in the cucumber biomass simultaneously increasing participation of roots in organic mass production. More efficient for the reduction of harmful Ni effect on the cucumber plants turned out to be introduction of ionite sorbent BIONA 312 at the dosage 5% than 2%.

  14. Isolation, culture and plantlet regeneration from cotyledon and mesophyll protoplasts of two pickling cucumber (Cucumis sativus L.) genotypes.

    Science.gov (United States)

    Punja, Z K; Tang, F A; Sarmento, G G

    1990-07-01

    Optimal protoplast yields from cotyledons (2.0×10(6) protoplasts/ 0.5 g tissue) and from true leaves (5.0×10(6) protoplasts/g tissue) of two Cucumis sativus genotypes were obtained following a 16 h digestion with, respectively, 1.25% pectinase+0.5% Cellulysin and 0.5 % pectinase+ 1.0% Cellulysin. Enzyme solutions were prepared in modified MS medium containing half-strength major salts, full complement of minor salts and vitamins, 2% sucrose and 0.25 M mannitol. A plating density of 3.5-4.0× 10(4) protoplasts/ml or higher was required for sustained division, with first division occurring in 6-7 days, second-third division in 8-9 days, and minicalli formation by day 13. Embedding in 0.4% agarose provided the highest plating efficiency (proportion that formed minicalli) of mesophyll protoplasts, which was 28.3% for genotype 3672 and 15% for genotype 3676. By comparison, liquid culture and droplet culture gave lower plating efficiencies (10-19%). Cotyledon and mesophyll protoplasts of one genotype formed minicalli on MS medium containing 2,4-D/BA at 1.0/2.5 μM and 5.0/5.0 μM, respectively, within 21 days, while mesophyll protoplasts of the second genotype formed minicalli on MS medium containing NAA/BA at 5.0/5.0 μM within 12 days. Shoot buds or somatic embryos were obtained upon subculture of calli to MS medium containing lower concentrations (0.05-0.01 μM) of 2,4-D/BA or NAA/BA and a few plantlets, ca.18, were recovered on hormone-free medium.

  15. MAP-kinase activity in etiolated Cucumis sativus cotyledons: the effect of red and far-red light irradiation.

    Science.gov (United States)

    Alvarez-Flórez, Fagua; Vidal, Dolors; Simón, Esther

    2013-02-01

    Phytochrome (phy) signalling in plants may be transduced through protein phosphorylation. Mitogen-activated protein kinase (MAP-kinase, MAPK) activity and the effect of R (red) and FR (far-red) light irradiation on MAPK activity were studied in etiolated Cucumis sativus L. cotyledons. By in vitro protein phosphorylation and in-gel assays with myelin basic protein (MBP), a protein band (between 48 and 45 kDa) with MAPK-like activity was detected. The addition to the phosphorylation buffer of specific protein phosphatase (PTP) inhibitors (Na(3)VO(4) and NaF) and genistein, apigenin or PD98059 as MAPK inhibitors allowed us to confirm the MAPK activity of the protein band. Irradiation of etiolated cotyledons with FR light for 5, 10 or 60 min rapidly and transiently stimulated the MAPK activity of the protein band. This suggests that there was a very low fluence response (VLFR) of phys. In addition, 15 min of R light irradiation or a sequential treatment of 15 min of R plus 5 min of FR also increased MAPK activity. The stimulatory effect of R light was also attributed to the same photoreceptor, which suggests that MAPKs are involved in phytochrome signal transduction. Protein immunoprecipitation and immunoblotting analysis with the polyclonal antibody anti-pERK1/2 (Tyr 204) and the monoclonal antibody anti-phosphotyrosine PY20 allowed us to recognize the above mentioned protein band as two proteins with molecular masses (M(r)) of approximately 47 and 45 kDa, and MAPK activity. The biochemical and immunological properties showed by the proteins detected indicated that they were members of the MAPK family phosphorylated in tyrosine residues.

  16. Quantitative trait locus analysis of lateral branchrelated traits in cucumber (Cucumis sativus L.) using recombinant inbred lines

    Institute of Scientific and Technical Information of China (English)

    JIANG Su; YUAN XiaoJun; PAN JunSong; HE HuanLe; CAI Run

    2008-01-01

    A group of 224 recombinant inbred lines (RILs) was derived from a narrow cross between 2 cucumber (Cucumis sativus L.) lines, namely, S94 (Northern China type with weak lateral branch growth potential and early lateral branch sprouting time) and S06 (Northern European type with strong lateral branch growth potential and late lateral branch sprouting time). These lines were then used for investigating lateral branch-related traits. A total of 36 quantitative trait loci (QTLs) were detected for the following 4 lateral branch-related traits: lateral branch average length (LBAL), lateral branch total length (LBTL), lateral branch number (LBN), and first lateral branch node (FLBN). Further, each QTL explained 3.1% (Ibtl 2.1, spring) to 32.3% (Ibn2.3, spring) of the observed phenotypic variance. Eleven QTLs (Ibal1.1, Ibtl 1.1, Ibn1.2, fIbn1.2, etc.) for different traits were found to be clustered on the e23m18d-ME23EM6c section (7.4 cM) of linkage group (LG) 1; further, 15 QTLs (Ibal 2.1, Ibtl 2.1, Ibn 2.1, flbn 2.1, etc.)were found to be clustered on the S94A1-ME4SA4a section (13.9 cM) of LG2. Twenty-one QTLs explained more than 10% of the phenotypic variance. Moreover, Ibtl 1.3 (autumn, 26.2%, logarithm of odds (LOD)= 17.4; spring, 26,9%, LOD=17.9) had stable position and contribution in both seasons. Several se-quence-anchor markers (CMBR40, F, CS30, S94A1, CSWTA11B, etc.) were closely linked with some QTLs for LBAL, LBTL, LBN, and FLBN, which can be used for the marker-assisted selection to improve the plant architecture in cucumber breeding.

  17. Effects of CO/sub 2/ enrichment on growth and photoassimilate transport in a dwarf cucumber (Cucumis sativus L. ) cultivar

    Energy Technology Data Exchange (ETDEWEB)

    Madore, M.; Grodzinski, B.

    1985-01-01

    When grown for six weeks in a CO/sub 2/ enriched atmosphere (1150 microliters per liter) dwarf cucumber plants (Cucumis sativus L. cv. Spacemaster) showed enhanced rates of development in the form of longer internodes, more male flowers, more leaves and more dry matter than plants grown under ambient (330 microliters per liter) CO/sub 2/ levels. Under CO/sub 2/ enrichment there was an increase in leaf area and dry weight per unit leaf area, the latter being attributable to increased starch levels in the leaves. The pool sizes of key transport sugars (i.e., stachyose, verbascose, ramnose, and sucrose) were similar in leaves of plants grown under the different levels of CO/sub 2/. However, in leaves of CO/sub 2/ enriched plants the amino acid pool sizes, particularly those of glycine and serine were lower. Following /sup 14/C/sub 2/ pulse-labelling of source leaves of similar morphological age proportionally less /sup 14/C was recovered in starch under high CO/sub 2/ while more of the currently labelled photosynthate appeared to be exported. The endogenous level of starch was higher in leaves of plants grown under CO/sub 2/ enrichment, and although the pool sizes of the key transport sugars remained constant during the chase period, a greater proportion of the recently-fixed /sup 14/C was channeled into the transport sugars under high CO/sub 2/. The distribution of /sup 14/C in petiole extracts and phloem exudates of the feed leaves showed a similar increase of label in transport sugars, such as stachyose, and a decline in the amino acids, particularly glycine and serine. Taken together the data indicate that CO/sub 2/ enrichment not only altered photoassimilate partitioning in the leaves, but also altered the nature of the metabolites exported.

  18. Low Light Stress Down-Regulated Rubisco Gene Expression and Photosynthetic Capacity During Cucumber (Cucumis sativus L.) Leaf Development

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-lei; SUI Xiao-lei; HUANG Hong-yu; WANG Shao-hui; WEI Yu-xia; ZHANG Zhen-xian

    2014-01-01

    Low light stress is one of the most important factors affecting photosynthesis and growth in winter production of cucumber (Cucumis sativus L.) in solar greenhouses in northern China. Here, two genotypes of cucumber (Deltastar and Jinyan 2) are used to determine the effect of low light stress on Rubisco expression and photosynthesis of leaves from emergence to senescence. During leaf development, the net photosynthetic rate (PN), stomatal conductance (gs), Rubisco initial activity and activation state, transcript levels of rbcL and rbcS, and the abundance of rbcL and rbcS DNA in these two genotypes increase rapidly to reach maximum in 10-20 d, and then decrease gradually. Meanwhile, the actual photosystem II efifciency (ФPSI ) of cucumber leaves slowly increased in the early leaf developing stages, but it declined quickly in leaf senescent stages, accompanied by an increased non-photochemical quenching (NPQ). Moreover, PN, gs, initial Rubisco activity, and abundance of protein, mRNA and DNA of Rubisco subunits of leaves grown under 100μmol m-2 s-1 are lower, and require more time to reach their maxima than those grown under 600μmol m-2 s-1 during leaf development. All these results suggest that lower photosynthetic capacity of cucumber leaves from emergence to senescence under low light stress is probably due to down-regulated Rubisco gene expression in transcript and protein levels, and decreased initial and total activity as well as activation state of Rubisco. Deltastar performs better than Jinyan 2 under low light stress.

  19. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

    Science.gov (United States)

    Shu, Sheng; Yuan, Ling-Yun; Guo, Shi-Rong; Sun, Jin; Yuan, Ying-Hui

    2013-02-01

    The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.

  20. Effect of salt and water stresses on growth, nitrogen and phosphorus metabolism in Cucumis sativus L. seedlings

    Directory of Open Access Journals (Sweden)

    Elżbieta Sacała

    2011-04-01

    Full Text Available Plants exposed to osmotic stress exhibit changes in their physiology and metabolism. In general, osmotic stress reduces water availability and causes nutritional imbalance in plants. In the present study, we compared the response of cucumber (Cucumis sativus L. var. Władko F-1 to ionic (100 mmol•dm-3 NaCl and osmotic stress (10% PEG 6000. Both stress factors reduced significantly fresh and dry weight of 7-day-old cucumber seedlings. Under PEG treatment reduction of cucumber dry mass was lesser than in fresh mass, whereas under salt stress decrease in dry weight of cucumber shoots was more pronounced than in fresh mass. Salt stress caused severe decrease in nitrate concentration and activity of nitrate reductase (NR. In cotyledons nitrate content declined to 17% of the control and similar reduction in NR activity was observed. In the roots, observed changes were not so drastic but there was also strong interaction between reduction in nitrate content and NR activity. Under 10% PEG both nitrate concentration and NR activity in cucumber roots were significantly higher in comparison to control plants. In cotyledons NR activity was significantly lower than in control plants, while decrease in nitrate content was not statistically significant. Phosphate concentration did not change significantly in cucumber cotyledons but increased in roots treated both NaCl (32% increase and PEG (53% increase. Similar tendencies were observed in acid phosphatase activity. Obtained results indicated that osmotic and salt stresses evoke differential responses, particularly in growth reduction and nitrogen metabolism in cucumber seedlings.

  1. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress.

    Science.gov (United States)

    Fariduddin, Q; Khalil, Radwan R A E; Mir, Bilal A; Yusuf, M; Ahmad, A

    2013-09-01

    Brassinosteroids have been extensively used to overcome various abiotic stresses. But its role in combined stress of salt and excess copper remains unexplored. Seeds of two cultivars (Rocket and Jumbo) of Cucumis sativus were grown in sand amended with copper (100 mg kg(-1)), and developed seedlings were exposed to salt stress in the form of NaCl (150 mM) at the 30-day stage of growth for 3 days. These seedlings were subsequently sprayed with 0 or 0.01 μM of 24-epibrassinolide (EBL) at the 35-day stage. The plants exposed to NaCl and Cu in combination exhibited a significant decline in fresh and dry mass of plant, chlorophyll content, activities of carbonic anhydrase, net photosynthetic rate and maximum quantum yield of the PSII primary photochemistry followed by NaCl and Cu stress alone, more severely in Jumbo than in Rocket. However, the follow-up treatment with EBL to the stressed and nonstressed plant improved growth, chlorophyll content, carbonic anhydrase activity and photosynthetic efficiency, and further enhanced the activity of various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline at the 40-day stage of growth, and the response of the hormone was more effective in Rocket than in Jumbo. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the NaCl- and/or Cu-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Furthermore, antioxidant enzyme activity and proline content were more enhanced in Rocket than in Jumbo cultivar.

  2. Quantitative trait locus analysis of lateral branch-related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A group of 224 recombinant inbred lines (RILs) was derived from a narrow cross between 2 cucumber (Cucumis sativus L.) lines, namely, S94 (Northern China type with weak lateral branch growth potential and early lateral branch sprouting time) and S06 (Northern European type with strong lateral branch growth potential and late lateral branch sprouting time). These lines were then used for investigating lateral branch-related traits. A total of 36 quantitative trait loci (QTLs) were detected for the following 4 lateral branch-related traits: lateral branch average length (LBAL), lateral branch total length (LBTL), lateral branch number (LBN), and first lateral branch node (FLBN). Further, each QTL explained 3.1% (lbtl2.1, spring) to 32.3% (lbn2.3, spring) of the observed phenotypic variance. Eleven QTLs (lbal1.1, lbtl1.1, lbn1.2, flbn1.2, etc.) for different traits were found to be clustered on the e23m18d-ME23EM6c section (7.4 cM) of linkage group (LG) 1; further, 15 QTLs (lbal2.1, lbtl2.1, lbn2.1, flbn2.1, etc.) were found to be clustered on the S94A1-ME4SA4a section (13.9 cM) of LG2. Twenty-one QTLs explained more than 10% of the phenotypic variance. Moreover, lbtl1.3 (autumn, 26.2%, logarithm of odds (LOD) = 17.4; spring, 26.9%, LOD = 17.9) had stable position and contribution in both seasons. Several se-quence-anchor markers (CMBR40, F, CS30, S94A1, CSWTA11B, etc.) were closely linked with some QTLs for LBAL, LBTL, LBN, and FLBN, which can be used for the marker-assisted selection to improve the plant architecture in cucumber breeding.

  3. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    Science.gov (United States)

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins.

  4. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus).

    Science.gov (United States)

    Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Cao, Li; Wang, Meijiao; Gu, Xingfang; Huang, Sanwen; Chen, Mingsheng; Wang, Guodong

    2016-09-01

    Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement.

  5. Exocarp Properties and Transcriptomic Analysis of Cucumber (Cucumis sativus Fruit Expressing Age-Related Resistance to Phytophthora capsici.

    Directory of Open Access Journals (Sweden)

    Kaori Ando

    Full Text Available Very young cucumber (Cucumis sativus fruit are highly susceptible to infection by the oomycete pathogen, Phytophthora capsici. As the fruit complete exponential growth, at approximately 10-12 days post pollination (dpp, they transition to resistance. The development of age-related resistance (ARR is increasingly recognized as an important defense against pathogens, however, underlying mechanisms are largely unknown. Peel sections from cucumber fruit harvested at 8 dpp (susceptible and 16 dpp (resistant showed equivalent responses to inoculation as did whole fruit, indicating that the fruit surface plays an important role in defense against P. capsici. Exocarp from 16 dpp fruit had thicker cuticles, and methanolic extracts of peel tissue inhibited growth of P. capsici in vitro, suggesting physical or chemical components to the ARR. Transcripts specifically expressed in the peel vs. pericarp showed functional differentiation. Transcripts predominantly expressed in the peel were consistent with fruit surface associated functions including photosynthesis, cuticle production, response to the environment, and defense. Peel-specific transcripts that exhibited increased expression in 16 dpp fruit relative to 8 dpp fruit, were highly enriched (P<0.0001 for response to stress, signal transduction, and extracellular and transport functions. Specific transcripts included genes associated with potential physical barriers (i.e., cuticle, chemical defenses (flavonoid biosynthesis, oxidative stress, penetration defense, and molecular pattern (MAMP-triggered or effector-triggered (R-gene mediated pathways. The developmentally regulated changes in gene expression between peels from susceptible- and resistant- age fruits suggest programming for increased defense as the organ reaches full size.

  6. Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant.

    Science.gov (United States)

    Juszczuk, Izabela M; Flexas, Jaume; Szal, Bozena; Dabrowska, Zofia; Ribas-Carbo, Miquel; Rychter, Anna M

    2007-12-01

    The effects of changes in mitochondrial DNA in cucumber (Cucumis sativus L.) mosaic mutant (MSC16) on respiration, photosynthesis and photorespiration were analyzed under non-stressed conditions. Decreased respiratory capacity of complex I in MSC16 mitochondria was indicated by lower respiration rates of intact mitochondria with malate and by rotenone-inhibited NADH or malate oxidation in the presence of alamethicin. Moreover, blue native PAGE indicated decreased intensity of protein bands of respiratory chain complex I in MSC16 leaves. Concerning the redox state, complex I impairment could be compensated to some extent by increased external NADH dehydrogenases (ND(ex)NADH) and alternative oxidase (AOX) capacity, the latter presenting differential expression in the light and in the dark. Although MSC16 mitochondria have a higher AOX protein level and an increased capacity, the AOX activity measured in the dark conditions by oxygen discrimination technique is similar to that in wild-type (WT) plants. Photosynthesis induction by light followed different patterns in WT and MSC16, suggesting changes in feedback chloroplast DeltapH caused by different adenylate levels. At steady-state, net photosynthesis was only slightly impaired in MSC16 mutants, while photorespiration rate (PR) was significantly increased. This was the result of large decreases in both stomatal and mesophyll conductance to CO2, which resulted in a lower CO2 concentration in the chloroplasts. The observed changes on CO2 diffusion caused by mitochondrial mutations open a whole new view of interaction between organelle metabolism and whole tissue physiology. The sum of all the described changes in photosynthetic and respiratory metabolism resulted in a lower ATP availability and a slower plant growth.

  7. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.

    Science.gov (United States)

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-07-01

    Toxicity of engineered nanoparticles on organisms is of concern worldwide due to their extensive use and unique properties. The impacts of ZnO nanoparticles (ZnO NPs) on seed germination and root elongation of corn (Zea mays L.) and cucumber (Cucumis sativus L.) were investigated in this study. The role of seed coats of corn in the mitigation toxicity of nanoparticles was also evaluated. ZnO NPs (1,000 mg L(-1)) reduced root length of corn and cucumber by 17 % (p < 0.05) and 51 % (p < 0.05), respectively, but exhibited no effects on germination. In comparison with Zn(2+), toxicity of ZnO NPs on the root elongation of corn could be attributed to the nanoparticulate ZnO, while released Zn ion from ZnO could solely contribute to the inhibition of root elongation of cucumber. Zn uptake in corn exposed to ZnO NPs during germination was much higher than that in corn exposed to Zn(2+), whereas Zn uptake in cucumber was significantly correlated with soluble Zn in suspension. It could be inferred that Zn was taken up by corn and cucumber mainly in the form of ZnO NPs and soluble Zn, respectively. Transmission electron microscope confirmed the uptake of ZnO NPs into root of corn. Although isolation of the seed coats might not be the principal factor that achieved avoidance from toxicity on germination, seed coats of corn were found to mitigate the toxicity of ZnO NPs on root elongation and prevent approximately half of the Zn from entering into root and endosperm.

  8. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.

    Science.gov (United States)

    Wang, Hong; Gu, Min; Cui, Jinxia; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2009-07-17

    Light quality is thought to affect many plant physiological processes during growth and development, particularly photosynthesis. We examined how light quality influences plant photosynthesis by analyzing changes in photosynthetic parameters and expression levels of some photosynthesis related genes of cucumber (Cucumis sativus L. cv. Jinyou No. 1) plants. The plants were grown under different light qualities: purple (P), blue (B), green (G), yellow (Y), red (R) and white light (W) of the same photosynthetic photon flux density (PFD) about 350 micromol m(-2)s(-1) for 5 days. The results show that all plants grown under monochromatic light had reduced growth, CO(2) assimilation rate (Pn) and quantum yield of PSII electron transport (Phi(PSII)) as compared with plants grown under W, and these reductions were more significant in the plants under G, Y and R. The decrease in Phi(PSII) is mostly due to the reduction in photochemical quenching (qP). Interestingly, P- and B-grown plants had higher stomatal conductance (Gs), total and initial Rubisco activities and higher transcriptional levels of 10 genes which encode key enzymes in the Calvin cycle together with higher total soluble sugars, sucrose and starch contents as compared with W-grown plants, whereas in G-, Y-, and R-grown plants these parameters declined. Therefore, the reduction in Pn under P and B is likely the result of inactivation of photosystems, whilst under Y, G and R it is caused by, in addition to photosystem inactivation, the closure of stomata and the transcriptional down-regulation of genes for the Calvin cycle enzymes such as rbc L and rca. In conclusion, light quality alters plant photosynthesis by the effects on the activity of photosynthetic apparatus in leaves and the effects on the expression and/or activity of the Calvin cycle enzymes.

  9. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences.

    Science.gov (United States)

    Koo, Dal-Hoe; Nam, Young-Woo; Choi, Doil; Bang, Jae-Wook; de Jong, Hans; Hur, Yoonkang

    2010-04-01

    Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes appears to be an invaluable tool for the study of evolution due to its effectiveness in chromosome identification and precise physical gene mapping. By applying fluorescence in situ hybridization of 45S rDNA and CsCent1 probes to cucumber pachytene chromosomes, here, we demonstrate that cucumber chromosomes 1 and 2 may have evolved from fusions of ancestral karyotype with chromosome number n = 12. This conclusion is further supported by the centromeric sequence similarity between cucumber and melon, which suggests that these sequences evolved from a common ancestor. It may be after or during speciation that these sequences were specifically amplified, after which they diverged and specific sequence variants were homogenized. Additionally, a structural change on the centromeric region of cucumber chromosome 4 was revealed by fiber-FISH using the mitochondrial-related repetitive sequences, BAC-E38 and CsCent1. These showed the former sequences being integrated into the latter in multiple regions. The data presented here are useful resources for comparative genomics and cytogenetics of Cucumis and, in particular, the ongoing genome sequencing project of cucumber.

  10. Cloning and expression analysis of transketolase gene in Cucumis sativus L.

    Science.gov (United States)

    Bi, Huangai; Wang, Meiling; Dong, Xubing; Ai, Xizhen

    2013-09-01

    Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A full-length cDNA encoding transketolase (TK, designated as CsTK) was isolated from cucumber leaves (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR and RACE. The cDNA contained 2368 nucleotides with a complete open reading frame (ORF) of 2229 nucleotides, which was predicted to encode a peptide of 742 amino acids. Expression analysis by real-time PCR and western blot revealed that TK mRNA was abundant in cucumber leaves and detectable in stems, fruits and roots. TK activity and the gene expression at the mRNA and protein levels was higher in mid-position leaves (4th apical leaves) than in upper position leaves (1st) and base position leaves (12th). The diurnal variation of CsTK expression and TK activity in the optimal functional leaf (4th leaf) was a single-peak curve, and the peak appeared at 14:00 on a sunny day. Low temperature (5 °C) and low light (100 μmol m(-2) s(-1)) induced CsTK expression, but the expression level decreased after 24 h of chilling stress. Over-expression of CsTK increased the TK activity, mRNA abundance and activities of other main enzymes in Calvin cycle, and net photosynthetic rate (Pn) in transgenic cucumber leaves. Transgenic plants showed a higher ratio of female flower and yield relative to the wild type (WT) plants. The decreases in Pn and carboxylation efficiency (CE) were less in transgenic plants than that in WT during low temperature and low light intensity.

  11. Cucumber (Cucumis sativus L.) Nitric Oxide Synthase Associated Gene1 (CsNOA1) Plays a Role in Chilling Stress

    Science.gov (United States)

    Liu, Xingwang; Liu, Bin; Xue, Shudan; Cai, Yanlinq; Qi, Wenzhu; Jian, Chen; Xu, Shuo; Wang, Ting; Ren, Huazhong

    2016-01-01

    Nitric oxide (NO) is a gaseous signaling molecule in plants, transducing information as a result of exposure to low temperatures. However, the underlying molecular mechanism linking NO with chilling stress is not well understood. Here, we functionally characterized the cucumber (Cucumis sativus L.) nitric oxide synthase-associated gene, NITRIC OXIDE ASSOCIATED 1 (CsNOA1). Expression analysis of CsNOA1, using quantitative real-time PCR, in situ hybridization, and a promoter::β-glucuronidase (GUS) reporter assay, revealed that it is expressed mainly in the root and shoot apical meristem (SAM), and that expression is up-regulated by low temperatures. A CsNOA1-GFP fusion protein was found to be localized in the mitochondria, and ectopic expression of CsNOA1 in the A. thaliana noa1 mutant partially rescued the normal phenotype. When overexpressing CsNOA1 in the Atnoa1 mutant under normal condition, no obvious phenotypic differences was observed between its wild type and transgenic plants. However, the leaves from mutant plant grown under chilling conditions showed hydrophanous spots and wilting. Physiology tolerance markers, chlorophyll fluorescence parameter (Fv/Fm), and electrolyte leakage, were observed to dramatically change, compared mutant to overexpressing lines. Transgenic cucumber plants revealed that the gene is required by seedlings to tolerate chilling stress: constitutive over-expression of CsNOA1 led to a greater accumulation of soluble sugars, starch, and an up-regulation of Cold-regulatory C-repeat binding factor3 (CBF3) expression as well as a lower chilling damage index (CI). Conversely, suppression of CsNOA1 expression resulted in the opposite phenotype and a reduced NO content compared to wild type plants. Those results suggest that CsNOA1 regulates cucumber seedlings chilling tolerance. Additionally, under normal condition, we took several classic inhibitors to perform, and detect endogenous NO levels in wild type cucumber seedling. The results

  12. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions.

    Science.gov (United States)

    Wang, Xiaoping; White, Jason C; Gent, Martin P N; Iannucci-Berger, William; Eitzer, Brian D; Mattina, MaryJane Incorvia

    2004-01-01

    Previous studies have shown that zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under field conditions are good and poor accumulators, respectively, of persistent organic pollutants from soil. Here, each species was grown under three cultivation regimes: dense (five plants in 5 kg soil): nondense (one plant in 80 kg soil): and field conditions (two to three plants in approximately 789 kg soil). p,p'-DDE and inorganic element content in roots, stems, leaves, and fruit were determined. In addition. rhizosphere, near-root, and unvegetated soil fractions were analyzed for concentrations of 11 low-molecular-weight organic acids (LMWOA) and 14 water-extractable inorganic elements. Under field conditions, zucchini phytoextracted 1.3% of the weathered p,p'-DDE with 98% of the contaminant in the aerial tissues. Conversely, cucumber removed 0.09% of the p,p'-DDE under field conditions with 83% in the aerial tissues. Under dense cultivation, cucumber produced a fine and fibrous root system not observed in our previous experiments and phytoextracted 0.78% of the contaminant, whereas zucchini removed only 0.59% under similar conditions. However. cucumber roots translocated only 5.7% of the pollutant to the shoot system, while in zucchini 48% of the p,p'-DDE in the plant was present in the aerial tissue. For each species, the concentrations of LMWOA in soil increased with increasing impact by the root system both within a given cultivation regime (i.e., rhizosphere > near-root > unvegetated) and across cultivation regimes (i.e., dense > nondense > field conditions). Under dense cultivation, the rhizosphere concentrations of LMWOAs were significantly greater for cucumber than for zucchini; no species differences were evident in the other two cultivation regimes. To enable direct comparison across cultivation regimes, total in planta p,p'-DDE and inorganic elements were mass normalized or multiplied by the ratio of plant mass to soil mass. For cucumber, differences in

  13. Compensation effect of bacterium containing biofertilizer on the growth of Cucumis sativus L. under Al-stress conditions.

    Science.gov (United States)

    Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia

    2013-03-01

    Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without

  14. Photosensitivity of Cucumber (Cucumis sativus L. Seedlings Exposed to Ultraviolet-B Radiation Fotosensibilidad de Plantines de Pepino de Ensalada (Cucumis sativus L. Expuestos a Radiación Ultravioleta del tipo B.

    Directory of Open Access Journals (Sweden)

    María Luisa Tapia F

    2010-03-01

    Full Text Available The intensity of ultraviolet-B radiation (UV-B has increased on the Earth´s surface due to the stratospheric ozone depletion, causing an adverse effect on a wide range of species, such as morphological, physiological, and biochemical alterations. This research studied the intraspecific photosensitivity of cucumber (Cucumis sativus L. seedlings exposed to UV-B. Six commercial cultivars were evaluated: Laura, Sprint 440, Dasher II, Exocet, Poinsett 76, and Marketmore 76 under greenhouse-controlled environmental conditions with a hydroponic sandwich-type system with a Hoagland II nutrient solution. Seedlings were irradiated from expanded cotyledons to the third true leaf with three intensities of UV-B radiation (30, 40, and 50 μW cm-2 for 18 d between 11:40-15:40 h. Seedling growth, morphology, accumulation of photosynthetic pigments, and absorbing UV-B pigments were evaluated. ‘Laura’ was the least affected by chlorosis and had a total absence of leaf curl, whereas ‘Poinsett 76’ was the most affected in the 40 and 50 μW cm-2 intensities. Both leaf area and seedling height of ‘Marketmore 76’ and ‘Poinsett 76’ had the lowest values. ‘Laura’ obtained the highest value in both fresh weight and dry weight. ‘Poinsett 76’ had the least amount of pigments absorbing UV-B and was 53% lower than that obtained by ‘Laura’. ‘Poinsett 76’ had lower chlorophyll and carotenoids. Parameters used were indicators of the seedling response to UV-B radiation, but could not be used for cucumber seedling sensitivity to UV-B radiation.La radiación ultravioleta tipo B (UV-B ha ido aumentando su intensidad a nivel de la superficie terrestre producto de la disminución del ozono estratosférico, provocando efectos negativos en una amplia gama de especies, observándose alteraciones morfológicas, fisiológicas y bioquímicas. En este trabajo se estudió la fotosensibilidad intraespecífica de plantines de pepino de ensalada (Cucumis sativus

  15. 黄瓜CFL基因的组织表达分析%Tissue Expression Analysis of CFL Gene of Cucumis sativus L.

    Institute of Scientific and Technical Information of China (English)

    马刘峰; 易海艳; 易霞; 司马义·巴拉提; 伊力哈木江·艾合买提

    2013-01-01

    利用RT-PCR方法对黄瓜(Cucumis sativusL.)CFL基因在各器官组织中的表达谱进行了分析.结果表明,CFL基因在黄瓜根、下胚轴、子叶、节间等营养组织以及花原基、花蕾、雌雄花和子房等繁殖组织中均有表达,且在幼嫩组织中表达量较高,其表达量会随着器官发育而不断下调,但花器官中的表达量要明显高于营养器官和组织中的表达量.

  16. 黄瓜雄花形成过程中心皮的发育%CARPEL DEVELOPMENT IN MALE FLOWERS OF CUCUMBER (CUCUMIS SATIVUS.L)

    Institute of Scientific and Technical Information of China (English)

    袁高峰; 汪俏梅

    2004-01-01

    黄瓜(Cucumis sativus L)为重要的经济作物,雌雄同株异花,是研究植物性别分化的经典材料。人们对黄瓜性别分化进行了广泛的研究。Astmon和Galun,任吉君和王艳对黄瓜性别分化的形态特征和器官发生进行了初步研究,表明黄瓜单性花分化和发育过程中经历了无性期、两性期和单性期,最

  17. Effects of Magnetic Field on Drought Resistance of Cucumis sativus L. Seeds%磁场对黄瓜种子抗旱性的影响

    Institute of Scientific and Technical Information of China (English)

    陈怀军; 赵文霞

    2010-01-01

    [目的]研究磁场对黄瓜(Cucumis sativus L.)种子抗旱性的影响.[方法]用不同磁感应强度的磁场处理黄瓜种子,在干旱胁迫条件下检测磁场处理对黄瓜幼苗抗旱性的影响.[结果]经磁场处理后,黄瓜幼苗中过氧化物酶(POD)活力增强,脯氨酸含量增加,丙二醛(MDA)含量减少.[结论]磁场处理通过清除幼苗体内自由基、降低细胞渗透势,减轻了黄瓜幼苗体内膜脂过氧化水平,提高了幼苗抗旱能力.

  18. Competition for in vitro (/sup 3/H)gibberellin A/sub 4/ binding in cucumber by gibberellins and their derivatives. [Cucumis sativus L. cv National Pickling

    Energy Technology Data Exchange (ETDEWEB)

    Yalpani, N.; Srivastava, L.M.

    1985-12-01

    The gibberellin (GA) binding properties of a cytosol fraction from hypocotyls of cucumber (Cucumis sativus L. cv National Pickling) were examined using a DEAE filter paper assay, (/sup 3/H)GA/sub 4/, and over 20 GAs, GA derivatives and other growth regulators. The results demonstrate structural specificity of the binding protein for ..gamma..-lactonic C-19 GAs with a 3 ..beta..-hydroxyl and a C-6 carboxyl group. Additional hydroxylations of the A, C, or D ring of the ent-gibberellane skeleton and methylation of the C-6 carboxyl impede or abolish binding affinity. Bioassay data are generally supported by the in vitro results but significantly GA/sub 9/ and GA/sub 36/, both considered to be precursors of GA/sub 4/ in cucumber, show no affinity for the binding protein. The results are discussed in relation to the active site of the putative GA/sub 4/ receptor in cucumber.

  19. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber ( Cucumis sativus L. )

    Institute of Scientific and Technical Information of China (English)

    PAN Junsong; WANG Gang; LI Xiaozun; HE Huanle; WU Aizhong; CAI Run

    2005-01-01

    With an F2 population from the cross of two cucumber inbred lines, S06 and S52, sequence-related amplified polymorphism (SRAP) was used to construct a genetic linkage map in cucumber (Cucumis sativus L. ). Sixty-four SRAP primer combinations generated 108 polymorphic bands in the F2 population analysis. The average of polymorphic bands produced by one primer pair was 1.5,and the maximum was 5. Using Mapmaker 3.0, a linkage map was constructed, which consisted of 77 SRAP markers distributed in nine linkage groups (LOD≥3.0) and spanned 1114.2 cM with an average interval of 14.5 cM between markers. The gene for the first-flowernode trait, termed ffn, was mapped to linkage group IX, flanked by DC1EM5 and ME7EM2A at 10.3 cM and 12.1 cM distance, respectively.

  20. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks.

    Science.gov (United States)

    Nanasato, Yoshihiko; Konagaya, Ken-Ichi; Okuzaki, Ayako; Tsuda, Mai; Tabei, Yutaka

    2013-07-01

    An improved method for genetic transformation of cucumber (Cucumis sativus L. cv. Shinhokusei No. 1) was developed. Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the efficiency of Agrobacterium infection in the proximal regions of explants. Co-cultivation on filter paper wicks suppressed necrosis of explants, leading to increased regeneration efficiency. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence, and integration of the transgene into the cucumber genome was confirmed by genomic polymerase chain reaction (PCR) and Southern blotting. These transgenic plants grew normally and T1 seeds were obtained from 7 lines. Finally, stable integration and transmission of the transgene in T1 generations were confirmed by GFP fluorescence and genomic PCR. The average transgenic efficiency for producing cucumbers with our method was 11.9 ± 3.5 %, which is among the highest values reported until date using kanamycin as a selective agent.

  1. Allelopathic influence of aqueous extracts from the leaves of Morus alba L. on seed germination and seedling growth of Cucumis sativus L. and Sinapsis alba L.

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2014-04-01

    Full Text Available The aim of the present study was to elucidate impact of the aqueous extracts from leaves of Morus alba L. on germination, growth and photosynthetic activity of Cucumis sativus L. and Sinapis alba L. Plants were grown for 21 days at the temperature 25°C (day and 18°C (night, within 12/12 hours photoperiod, light intensity 150 μmol·m-2·s-1 and relative humidity 60-70% (day/night. Our experiments proved that allelopathic compounds in aqueous extracts of the leaves M. alba at high concentrations, reduce power and energy of germination. Biometric analysis of seedlings and adult plants grown showed that allelopathic substances have stimulating or inhibiting function depending on the stage of treatment. Moreover, they cause changes in chlorophyll contents and activity of photosystem II (PS II.

  2. 乙烯利和三十烷醇对黄瓜性别及其产量的影响%EFFECTS OF ETHREI AND MYRICYL ALCOHOL ON TH E SEX EXPRESSION AND YIELD OF CUCUMIS SATIVUS L.

    Institute of Scientific and Technical Information of China (English)

    彭子模; 张宝欣; 祝长青; 曾卫军; 葛菊芬; 张亚平

    2000-01-01

    以黄瓜(Cucumis Sativus L.)为材料,在四叶期至性别定型前,于叶面两次喷施乙烯利.由初花期起在叶面三次喷施三十烷醇.试验证明,100,150和200mg/l乙烯利处理能提高雌雄比值,而对照则很低.

  3. Effects of Magnetic Field on SOD Enzyme Activity and Root Vigor of Cucumis sativus L.Seedlings%磁场处理对黄瓜幼苗SOD酶活性和根系活力的影响

    Institute of Scientific and Technical Information of China (English)

    陈怀军

    2011-01-01

    [Objective] The aim was to study the effects of magnetic field on SOD enzyme activity and root vigor of Cucumis sativus L. Seedlings. [ Method] In the simulation of the drought stress conditions, the change of SOD enzyme activity and the root vigor of Cucumis sativus L. seedlings were studied which were treated with magnetic field of different magnetic flux. [ Result] The results showed that compared with the control group, magnetic field treatment can strengthen SOD enzyme activity and root vigor of Cucumis sativus . [ Conclusion] By improving the seedling SOD enzyme activity and root activity, the magnetic treatment enhanced the seedling free radicals and the ability to absorb water, reduced the damage to the young seedlings, and improved the ability of fighting drought%[目的]研究磁场处理对黄瓜(Cucumis sativus L.)幼苗SOD酶活性和根系活力的影响.[方法]在模拟的干旱胁迫条件下,研究不同磁感应强度处理对黄瓜幼苗SOD酶活性和根系活力的影响.[结果]与对照组相比,磁场处理能增强黄瓜幼苗SOD酶活性和根系活力.[结论]磁场处理通过提高幼苗SOD酶活性和根系活力,增强了幼苗清除体内自由基的能力和吸收水分的能力,减轻了干旱对幼苗的伤害,提高了幼苗的抗旱能力.

  4. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    Science.gov (United States)

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables.

  5. The Effect of Different Cucurbit Rootstocks on Some Morphological and Physiological Traits of Cucumber (Cucumis sativus cv. Super Dominus

    Directory of Open Access Journals (Sweden)

    reihane Mesgari

    2017-02-01

    Full Text Available Introduction: Cucumber is one of the most important vegetable crops for the local consumption and exportation. The use of grafted vegetable seedlings has been popular in many countries during recent years. Growing fruit-bearing vegetables, chiefly tomato, cucumber and watermelon through grafted seedlings become a widespread practice worldwide. Grafting is a valuable technique to avoid soil-borne diseases, provide biotic and abiotic stress tolerance, enhance nutrient uptake, optimize water use, and increase fruit yield and quality. Vegetable grafting is a new topic in Iran and there are a limited number of studies on grafted vegetable production. However, attention to grafting by researchers has recently increased. Suitable rootstocks should be identified and characterized for the effective utilization of grafting. The rootstock's vigorous root system increases the efficiency of water and nutrient absorption, and may also serve as a source of endogenous plant hormones, thus leading to increased growth and yield in addition to disease control. In the present study, we investigated the response of two Cucurbita sp. and an Iranian melon as rootstocks for cucumber. Materials and methods: In order to study the effect of cucurbit rootstocks and grafting method on growth, yield and fruit quality of cucumber (Cucumis sativus cv. Super Dominus, an experiment was conducted as a factorial design in the base of RCBD with three replications in the greenhouse and research farm, University of Zanjan. Treatments were included three rootstocks (Cucurbita moschata L., Lagenaria siceraria and Cucumis melo L. and ungrafted plants (control and two grafting method (hole insertion and splice grafting. Seeds were sown simultaneously in plastic pots. For obtaining the same stem diameter of scion and rootstocks, cucumber seeds were planted four days earlier than rootstocks seeds. The seedlings were grown in an environment-controlled greenhouse with 25/20 day

  6. Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L.

    Science.gov (United States)

    Zhang, Ying; Zhang, Hui; Sun, Xin; Wang, Lei; Du, Na; Tao, Yue; Sun, Guoqiang; Erinle, Kehinde O; Wang, Pengjie; Zhou, Changjian; Duan, Shuwei

    2016-01-01

    Pollution of agricultural soils caused by widely employed plastic products, such as phthalic acid esters (PAEs), are becoming widespread in China, and they have become a threat to human health and the environment. However, little information is available on the influence of PAEs on vegetable crops. In this study, effects of different dimethyl phthalate (DMP) treatments (0, 30, 50, 100, and 200 mg L(-1)) on seed germination and growth of cucumber seedlings were investigated. Although germination rate showed no significant difference compared to control, seed germination time was significantly delayed at DMP greater than 50 mg L(-1). Concentrations of DMP greater than 30 mg L(-1) reduced cucumber lateral root length and number. The measurement of five physiological indexes in cucumber leaves with increasing DMP concentration revealed a decrease in leaf chlorophyll content, while proline and H2O2 contents increased. Peroxidase (POD) and catalase (CAT) activities increased in cucumber plants under 30 and 50 mg L(-1) DMP treatments compared to control; while after a 7-day treatment, these activities were seriously reduced under 100 and 200 mg L(-1) DMP treatments. According to transmission electron microscopy (TEM) micrographic images, the control and 30 mg L(-1) DMP treatments caused no change to leaf chloroplast shape with well-structured thylakoid membrane and parallel pattern of lamellae. At concentrations higher than 30 mg L(-1), DMP altered the ultrastructure of chloroplast, damaged membrane structure, disordered the lamellae, and increased the number and volume of starch grains. Moreover, the envelope of starch grains began to degrade under 200 mg L(-1) DMP treatment.

  7. Fine Mapping of Virescent Leaf Gene v-1 in Cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Han Miao

    2016-09-01

    Full Text Available Leaf color mutants are common in higher plants that can be used as markers in crop breeding or as an important tool in understanding regulatory mechanisms in chlorophyll biosynthesis and chloroplast development. In virescent leaf mutants, young leaves are yellow in color, which gradually return to normal green when the seedlings grow large. In the present study, we conducted phenotypic characterization and genetic mapping of the cucumber virescent leaf mutant 9110Gt conferred by the v-1 locus. Total chlorophyll and carotenoid content in 9110Gt was reduced by 44% and 21%, respectively, as compared with its wild type parental line 9110G. Electron microscopic investigation revealed fewer chloroplasts per cell and thylakoids per chloroplast in 9110Gt than in 9110G. Fine genetic mapping allowed for the assignment of the v-1 locus to a 50.4 kb genomic DNA region in chromosome 6 with two flanking markers that were 0.14 and 0.16 cM away from v-1, respectively. Multiple lines of evidence supported CsaCNGCs as the only candidate gene for the v-1 locus, which encoded a cyclic-nucleotide-gated ion channel protein. A single nucleotide change in the promoter region of v-1 seemed to be associated with the virescent color change in 9110Gt. Real-time PCR revealed significantly lower expression of CsaCNGCs in the true leaves of 9110Gt than in 9110G. This was the first report that connected the CsaCNGCs gene to virescent leaf color change, which provided a useful tool to establish linkages among virescent leaf color change, chloroplast development, chlorophyll biosynthesis, and the functions of the CsaCNGCs gene.

  8. Genetic Analysis and QTL Mapping of Fruit Peduncle Length in Cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Zhang, Song; Wang, Ye; Zhang, Sheng-Ping; Gu, Xing-Fang

    2016-01-01

    Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding. PMID:27936210

  9. Chromosome Karyotype Analysis of Normal and One Mutant of Light Yellowsprout Species of Cucumis sativus%黄瓜正常品种及一个芽黄突变体的核型分析

    Institute of Scientific and Technical Information of China (English)

    李娟娟; 王蕾; 贾俊忠; 陈福龙; 陈芳; 高剑峰

    2011-01-01

    对黄瓜(Cucumis sativus L.)6个正常品种和1个芽黄突变体的根尖细胞染色体进行计数,并对其核型进行了分析.结果表明,正常黄瓜与芽黄突变体黄瓜的染色体数目均为2n=14,属于二倍体植物,染色体基数为7.芽黄突变体的染色体核型公式与正常黄瓜品种长春密刺(C.sativus cv.Changchunmici)、津研4号(C.sativus cv.Jinyan No.4)、津优2号(C.sativus cv.Jinyou No.2)、津优3号(C.sativus cv.Jinyou No.3)、农城3号(C.sativus cv.Nongcheng No.3)、新泰密刺(C.sativus cv.Xintaimici)的染色体核型公式一致,均为2n=14=12m+2sm;核型不对称系数为55.49%~57.45%.核型类型均为1A型,属对称核型.在系统演化上,黄瓜可能属于较原始的种类.通过对不同黄瓜材料间的染色体长度进行方差分析,结果P>0.05.说明在染色体水平上芽黄突变体与正常的黄瓜几乎没有区别.%The chromosome number and karyotype analysis of six normal and one mutant of light yellowsprout species' root tips were studied. The results suggested that both the mutant of light yellowsprout and the normal are diploid plants with same chromosome number which was 2n=14. The chromosome base was 7. The chromosome karyotype formula 2n=14=12m+2sm was identical between mutant of light yellowsprout and six normal species which were Cucumis sativus L. cv.Changchunmici, C. sativus cv. Jinyan No.4, C. sativus cv. Jinyou No.2, C. sativus cv. Jinyou No.3, C. sativus cv.Nongcheng No.3 and C. sativus cv. Xintaimici. Asymmetry index (As.K%) ranged from 55.49 % t0 57.45%. The karyotype was 1A and all of them belong to symmetrical type. C. sativus might belong to original species in phylogeny. The variance analysis of the length of chromosomes among different varieties of C. sativus L. showed that P>0.05, thus there is no difference between the normal and mutant of light yellowsprout at the level of chromosome.

  10. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming

    2014-01-01

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%-42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G(-)) bacteria were significantly correlated with PCB degradation rates (R(2) = 0.719, p Cucurbita related soil microorganisms could play an important role in remediation of PCB contaminated soils.

  11. Acclimation to high CO/sub 2/ in monoecious cucumbers. II. Carbon exchange rates, enzyme activities, and starch and nutrient concentrations. [Cucumis sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Peet, M.M.; Huber, S.C.; Patterson, D.T.

    1986-01-01

    Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO/sub 2/ decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO/sub 2/ than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO/sub 2/ grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO/sub 2/ could explain the lack of any yield increase when compared with plants grown at 350 microliters per liter.

  12. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Jiang, Li; Yan, Shuangshuang; Yang, Wencai; Li, Yanqiang; Xia, Mengxue; Chen, Zijing; Wang, Qian; Yan, Liying; Song, Xiaofei; Liu, Renyi; Zhang, Xiaolan

    2015-01-26

    Cucumber (Cucumis sativus L.) fruit is a type of fleshy fruit that is harvested immaturely. Early fruit development directly determines the final fruit length and diameter, and consequently the fruit yield and quality. Different cucumber varieties display huge variations of fruit length, but how fruit length is determined at the molecular level remains poorly understood. To understand the genes and gene networks that regulate fruit length in cucumber, high throughout RNA-Seq data were used to compare the transcriptomes of early fruit from two near isogenic lines with different fruit lengths. 3955 genes were found to be differentially expressed, among which 2368 genes were significantly up-regulated and 1587 down-regulated in the line with long fruit. Microtubule and cell cycle related genes were dramatically activated in the long fruit, and transcription factors were implicated in the fruit length regulation in cucumber. Thus, our results built a foundation for dissecting the molecular mechanism of fruit length control in cucumber, a key agricultural trait of significant economic importance.

  13. Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. [Cucumis sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Abeles, F.B.; Dunn, L.J.; Morgens, P.; Callahan, A.; Dinterman, R.E.; Schmidt, J. (Appalachian Fruit Research Station, Kearneysville, WV (USA) Army Medical Research Institute for Infectious Diseases, Frederick, MD (USA))

    1988-07-01

    Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv Poinsett 76) cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12 and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that ({sup 35}S)Na{sub 2}SO{sub 4} was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues.

  14. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.

    Science.gov (United States)

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel

    2009-12-01

    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  15. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO(3))(2) stress.

    Science.gov (United States)

    Yuan, Lingyun; Shu, Sheng; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2012-09-01

    The effects of 0.1 μM 24-epibrassinolide (EBL) on plant growth (plant height, leaf area, fresh weight, and dry weight), chlorophyll content, photosynthetic characteristics, antioxidant enzymes, and chloroplast ultrastructure were investigated using cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) with 80 mM Ca(NO(3))(2) to induce stress. The presence of Ca(NO(3))(2) caused significant reductions in net photosynthetic rate (P(N)), stomatal conductance (Gs), intercellular CO(2) concentration (Ci), and transpiration rate (Tr) of leaves. In addition, Ca(NO(3))(2) markedly reduced the chlorophyll content and inhibited photochemical activity, including the actual photochemical efficiency (ΦPSII). In contrast, EBL increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosynthesis caused by the Ca(NO(3))(2). The application of EBL to the plants subjected to Ca(NO(3))(2)-enhanced photochemical activity. EBL protected the photosynthetic membrane system from oxidative damage due to up-regulating the capacity of the antioxidant systems. Microscopic analyses revealed that Ca(NO(3))(2) affected the structure of the photosynthetic apparatus and membrane system and induced damage of granal thylakoid layers, while EBL recovered the typical shape of chloroplasts and promoted the formation of grana. Taken together, EBL compensated for damage/losses by Ca(NO(3))(2) due to the regulation of photosynthetic characteristics and the antioxidant system.

  16. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    Science.gov (United States)

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  17. Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L. ) with RAPD markers

    Institute of Scientific and Technical Information of China (English)

    LI Xiaozun; PAN Junsong; WANG Gang; TIAN Libo; SI Longting; WU Aizhong; CAI Run

    2005-01-01

    A cucumber ( Cucumis sativus L. ) molecular linkage map, including 79 random-amplified polymorphic DNAs (RAPD)and two genes , lb for lateral branch and f for female sex expression, is constructed from a cross between a line, S52, with weak lateral growing ability and staminate from Dabieshan Mountains area in China and another line, S06, with strong lateral growing ability and gynoecious from Europe. The map contains nine linkage groups and spans 1110.0 cM with an average distance of 13.7 cM between loci. The lb locus is located in a longer linkage group LG-2 and flanked by two markers, OP-Q5-1 and OP-M-2-2, at 9.3 cM and 15.9 cM, respectively. In the meantime, the RAPD loci, OP-Q5-2 and BC151, in a short linkage group were found to flank f at 13.7 cM and 13.4 cM,respectively. The construction of RAPD map has paved a way for further study of the genes for lateral branch, female sex expression and other agronomic traits in cucumber.

  18. Cucumis sativus L. WAX2 Plays a Pivotal Role in Wax Biosynthesis, Influencing Pollen Fertility and Plant Biotic and Abiotic Stress Responses.

    Science.gov (United States)

    Wang, Wenjiao; Liu, Xingwang; Gai, Xinshuang; Ren, Jiaojiao; Liu, Xiaofeng; Cai, Yanling; Wang, Qian; Ren, Huazhong

    2015-07-01

    Cuticular waxes play an important part in protecting plant aerial organs from biotic and abiotic stresses. In previous studies, the biosynthetic pathway of cuticular waxes and relative functional genes has been researched and understood; however, little is known in cucumber (Cucumis sativus L.). In this study, we cloned and characterized an AtWAX2 homolog, CsWAX2, in cucumber and found that it is highly expressed in the epidermis, where waxes are synthesized, while subcellular localization showed that CsWAX2 protein is localized to the endoplasmic reticulum (ER). The transcriptional expression of CsWAX2 was found to be induced by low temperature, drought, salt stress and ABA, while the ectopic expression of CsWAX2 in an Arabidopsis wax2 mutant could partially complement the glossy stem phenotype. Abnormal expression of CsWAX2 in transgenic cucumbers specifically affected both very long chain (VLC) alkanes and cutin biosynthesis. Furthermore, transgenic cucumber plants of CsWAX2 showed significant changes in pollen viability and fruit resistance to water loss and pathogens compared with the wild type. Collectively, these results indicated that CsWAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and the plant's response to biotic and abiotic stresses.

  19. The molecular mechanism of sexual differentiation in cucumber(Cucumis sativus L.)%黄瓜性型分化的分子机制

    Institute of Scientific and Technical Information of China (English)

    梁永宏; 李广林; 郭韬; 魏强

    2010-01-01

    黄瓜(Cucumis sativus)是雌雄异花植物性型分化研究的重要模式植物,近年来虽然其性型分化的分子机制研究取得了一定的成果,但其性型分化的调控机制尚未完全阐明.该文综合花器官发育基因、性别决定基因、内源激素、环境因子、性型分化假说,在分子水平构建了黄瓜性型分化的表达调控网络'同时对激素和性别决定基因协控的黄瓜单性花器官凋亡机制进行了阐述,并就miRNA在黄瓜性型分化调控中的作用进行了探讨.

  20. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Li, Ji; Wu, Zhe; Cui, Li; Zhang, Tinglin; Guo, Qinwei; Xu, Jian; Jia, Li; Lou, Qunfeng; Huang, Sanwen; Li, Zhengguo; Chen, Jinfeng

    2014-07-01

    Parthenocarpy is an important trait determining yield and quality of fruit crops. However, the understanding of the mechanisms underlying parthenocarpy induction is limited. Cucumber (Cucumis sativus L.) is abundant in parthenocarpic germplasm resources and is an excellent model organism for parthenocarpy studies. In this study, the transcriptome of cucumber fruits was studied using RNA sequencing (RNA-Seq). Differentially expressed genes (DEGs) of set fruits were compared against aborted fruits. Distinctive features of parthenocarpic and pollinated fruits were revealed by combining the analysis of the transcriptome together with cytomorphological and physiological analysis. Cell division and the transcription of cell division genes were found to be more active in parthenocarpic fruit. The study also indicated that parthenocarpic fruit set is a high sugar-consuming process which is achieved via enhanced carbohydrate degradation through transcription of genes that lead to the breakdown of carbohydrates. Furthermore, the evidence provided by this work supports a hypothesis that parthenocarpic fruit set is induced by mimicking the processes of pollination/fertilization at the transcriptional level, i.e. by performing the same transcriptional patterns of genes inducing pollination and gametophyte development as in pollinated fruit. Based on the RNA-Seq and ovary transient expression results, 14 genes were predicted as putative parthenocarpic genes. The transcription analysis of these candidate genes revealed auxin, cytokinin and gibberellin cross-talk at the transcriptional level during parthenocarpic fruit set.

  1. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO₂ nanoparticles in cucumber (Cucumis sativus) plants.

    Science.gov (United States)

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Diaz, Baltazar Corral; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-07-17

    Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.

  2. High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L.) microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection.

    Science.gov (United States)

    Liu, H W; Luo, L X; Liang, C Q; Jiang, N; Liu, P F; Li, J Q

    2015-01-01

    Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16') were artificially inoculated with Cucumber green mottle mosaic virus (CGMMV) at the three-true-leaf stage. Leaf and flower samples were collected at different time points post-inoculation (10, 30 and 50 d), and processed by high throughput sequencing analysis to identify candidate miRNA sequences. Bioinformatic analysis using screening criteria, and secondary structure prediction, indicated that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in vivo) were produced by cucumber plants in response to CGMMV infection. Moreover, gene expression profiles (p-value cucumbers. Gene ontology (GO) analysis revealed that the predicted target genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda algorithms, were involved in three functional categories: 2265 in molecular function, 1362 as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the predicted target genes were frequently involved in metabolic processes (166 pathways) and genetic information processes (40 pathways) and to a lesser degree the biosynthesis of secondary metabolites (12 pathways). These results could provide useful clues to help elucidate host-pathogen interactions in CGMMV and cucumber, as well as for the screening of resistance genes.

  3. 黄瓜营养体苦味基因Bi的定位%Fine Mapping of the Foliage Bitterness Gene (Bi) in Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    李曼; 龚义勤; 苗晗; 武剑; 顾兴芳; 张圣平; 王晓武

    2010-01-01

    以黄瓜(Cucumis sativus L.)营养体无苦味的材料9110Gt(bibi)与有苦味的材料9930(BiBi)为亲本,对以两亲本构建的148个株系的RILs群体进行SSR标记的遗传连锁分析,对Bi基因进行初步定位,两侧翼标记SSR19672和SSR00004与Bi基因的连锁距离分别为4.4和3.4 cM.利用两侧翼标记筛选以相同亲本构建的1 815株的F2群体中的重组单株,结合黄瓜基因组测序的结果及生物信息学的知识,在标记区域内开发了31对SSR标记,最终将Bi基因定位在黄瓜的第6染色体上,最近的两侧翼标记SSR02309和SSR00004与苦味基因分别相距1.7和2.2 cM.

  4. In vitro culture of Cucumis sativus L. VI. Histological analysis of leaf explants cultured on media with 2, 4-D or 2, 4, 5-T

    Directory of Open Access Journals (Sweden)

    Anna Nadolska-Orczyk

    2014-01-01

    Full Text Available The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of Cucumis sativus cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T and cytokinin (BAP or 2iP. During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociation of their cell walls near vessels and in the lower part of the explant adjacent to the medium. These cells were strongly plasmolysed. On the 2,4-D containing medium mostly meristematic tissue developed, proliferating around vascular bundles and forming meristematic centers or promeristem-like structures. After 35-50 days of culture, secondary callus was formed by separation of meristematic cells from the meristem surface in explants cultured on the 2,4-D containing medium. On medium supplemented with 2, 4, 5-T the detachment of parenchymatic and meristematic cells occurred, along with formation of a gel-like substance. The gel-like callus contained multi-cellular aggregates, proembryoids and embryoids. This type of callus tissue was initiated more intensively on medium with 2, 4, 5-T, but the frequency of somatic embryogenesis was much lower. The periferial cells of aggregates, proembryoids and embryoids showed the tendency to separate from the surface of the tissue. Many embryoids formed adventitious embryos.

  5. 不同配方基质对黄瓜幼苗生长的影响%Effects of Different Substrate Formula on Seedling Growth of Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    刘全军; 杨慧玲; 李胜利; 孙治强

    2011-01-01

    Effects of different medium mix substrates (sawdust, residue of mushroom culture and peat moss) on seedling growth of Cucumis sativus L. were studied. The results showed that decomposition had a great influence on physical and chemical properties of sawdust. When decomposed sawdust and residue of mushroom culture were used as soil-mix for cucumber seedling production, there were no irregular emergence and yellowing of seedlings. In our experiments, M3 (60% sawdust + 30% residue of mushroom culture +10% peat moss) and M4(60% sawdust + 40% residue from mushroom culture) were better performing soil-mix for cucumber seedling production.%研究了以锯末、菇渣为基本原料的不同基质配方对黄瓜幼苗生长发育的影响.结果表明,腐熟对锯末的理化性质有很大的影响;以腐熟锯末和菇渣育苗时,未发现出苗不齐和幼苗黄化现象;试验所用基质配方中,M3(60%锯末+30%菇渣+10%草炭)和M4(60%锯末+40%菇渣)是较好的黄瓜育苗无土基质配方.

  6. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis.

    Science.gov (United States)

    Wei, Qing-Zhen; Fu, Wen-Yuan; Wang, Yun-Zhu; Qin, Xiao-Dong; Wang, Jing; Li, Ji; Lou, Qun-Feng; Chen, Jin-Feng

    2016-06-07

    The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes.

  7. Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters.

    Science.gov (United States)

    Soydam Aydin, Semra; Gökçe, Esra; Büyük, Ilker; Aras, Sümer

    2012-07-04

    Contamination of plants with heavy metals could result in damage in DNA, such as mutations and cross-links with proteins. These altered DNA profiles may become visible in changes such as the appearance of a new band, or loss of an existing band, in the random amplified polymorphic DNA (RAPD) assay. In this study, various concentrations of copper and zinc salts were applied to cucumber seedlings during germination. Results displayed abnormalities in germination and also changes in root elongation, dry weight and total soluble protein level. All treatment concentrations (40, 80, 160, 240, 320, and 640mg/L) used in the study caused a decrease/delay in germination of the cucumbers to different extents. Inhibition or activation of root elongation was considered to be the first effect of metal toxicity in the tested plants. Application of the metal salts and the combined solutions on cucumber (Cucumis sativus L.) seedlings revealed similar consequences for total soluble protein level, dry weight and ultimately in inhibitory rates as well. The data obtained from RAPD band-profiles and genomic template stability (GTS) showed results that were consistent with the population parameters. In this regard, we conclude that molecular marker assays can be applied in combination with population parameters to measure genotoxic effects of heavy metals on plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Phytofabrication of Bioactive Molecules Encapsulated Metallic Silver Nanoparticles from Cucumis sativus L. and Its Enhanced Wound Healing Potential in Rat Model

    Directory of Open Access Journals (Sweden)

    Perumal Venkatachalam

    2015-01-01

    Full Text Available The present study describes a rapid method for synthesis of metallic silver nanoparticles using callus (CAgNPs and leaf extracts (LEAgNPs of Cucumis sativus and evaluation of its wound healing activity in rat model. The prepared silver nanoparticles showed a peak at 350 nm corresponding to the surface plasmon resonance band. The FTIR spectroscopy measurements showed the presence of the possible biomolecules. X-ray diffraction analysis confirmed the crystalline structure of the synthesized silver nanoparticles. TEM images showed the size of the synthesized CAgNPs with diameter ranged from 21 nm to 23 nm with polygonal shape whereas, in the case of LEAgNPs, spherical shape was noticed with an average size between 11 nm and 19 nm. The EDX results indicated the chemical composition at specific locations on synthesized nanoparticles. Furthermore the topical application of ointment prepared using synthesized AgNPs was found to show enhanced wound healing activity in Wistar albino rat model. By the 21st day, the ointment base containing 5% (w/w of silver nanoparticles showed 100% potential wound healing activity than the standard drug as well as control bases. Results strongly showed that the ointment base containing LEAgNPs was found to be very effective in wound repair mechanism in the experimental rats.

  9. 分葱对黄瓜、萝卜和白菜的化感作用%Allelopathy of Allium fistulosum L.var.caespitosum Makino on Cucumis sativus L.,Raphanus sativus L. and Brassica chinensis L.

    Institute of Scientific and Technical Information of China (English)

    姜丽; 孙玉文; 刘景安

    2007-01-01

    以黄瓜(Cucumis sativus L.),萝卜(Raphanus satovis L.)和白菜(Brassica chinensis L.)3种蔬菜作物为受体,通过种子萌发试验及幼苗生长试验,对分葱(Allium fistulosum L.var.caespitosum Makino)根系及其地上部水浸液的化感作用进行了初步研究.结果表明:分葱根系和地上部水浸液对黄瓜、萝卜和白菜具有一定的化感作用.对黄瓜和萝卜的萌发有一定的抑制作用,而对其幼苗生长有一定的促进作用;对白菜的萌发表现为低浓度促进高浓度抑制,而对其幼苗生长有一定的抑制作用.因此,在蔬菜栽培制度中,分葱可与黄瓜和萝卜进行合理的轮作与间套作;但可能不适宜与白菜进行轮作或间套作.

  10. 辐射花粉授粉和胚培养诱导产生黄瓜单倍体植株%Recovery of cucumber (Cucumis sativus L.) haploid plants through pollination by irradiated pollens and embryo culture

    Institute of Scientific and Technical Information of China (English)

    雷春; 陈劲枫; 钱春桃; 张永兵; 宋慧

    2004-01-01

    以5个基因型的黄瓜(Cucumis sativus L.)为试材,通过γ射线辐射花粉授粉并结合胚培养,从3个基因型中获得了单倍体植株.与正常二倍体植株相比,单倍体植株生长缓慢,花器异常.研究发现辐射剂量、亲本基因型、授粉组合对座果率和单倍体产率有一定影响.

  11. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  12. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus

    Science.gov (United States)

    Link, B. M.; Wagner, E. R.; Cosgrove, D. J.

    2001-01-01

    In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by alpha-expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new alpha-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two alpha-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.

  13. Functional characterization and expression analysis of cucumber (Cucumis sativus L.) hexose transporters, involving carbohydrate partitioning and phloem unloading in sink tissues.

    Science.gov (United States)

    Cheng, Jin-Tao; Li, Xiang; Yao, Feng-Zhen; Shan, Nan; Li, Ya-Hui; Zhang, Zhen-Xian; Sui, Xiao-Lei

    2015-08-01

    Many hexose transporters (HTs) have been reported to play roles in sucrose-transporting plants. However, little information about roles of HTs in RFOs (raffinose family oligosaccharides)-transporting plants has been reported. Here, three hexose transporters (CsHT2, CsHT3, and CsHT4) were cloned from Cucumis sativus L. Heterologous expression in yeast demonstrated that CsHT3 transported glucose, galactose and mannose, with a K(m) of 131.9 μM for glucose, and CsHT4 only transported galactose, while CsHT2 was non-functional. Both CsHT3 and CsHT4 were targeted to the plasma membrane of cucumber protoplasts. Spatio-temporal expression indicated that transcript level of CsHT3 was much higher than that of CsHT2 and CsHT4 in most tissues, especially in peduncles and fruit tissues containing vascular bundles. GUS staining of CsHT3-promoter-β-glucuronidase (GUS) transgenic Arabidopsis plants revealed CsHT3 expression in tissues with high metabolic turnover, suggesting that CsHT3 is involved in sugar competition among different sink organs during plant development. The transcript levels of CsHT3 and cell wall invertase genes increased in peduncles and fruit tissues along with cucumber fruit enlargement, and CsHT3 localized to phloem tissues by immunohistochemical localization; These results suggest that CsHT3 probably plays an important role in apoplastic phloem unloading of cucumber fruit.

  14. High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L. microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection.

    Directory of Open Access Journals (Sweden)

    H W Liu

    Full Text Available Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16' were artificially inoculated with Cucumber green mottle mosaic virus (CGMMV at the three-true-leaf stage. Leaf and flower samples were collected at different time points post-inoculation (10, 30 and 50 d, and processed by high throughput sequencing analysis to identify candidate miRNA sequences. Bioinformatic analysis using screening criteria, and secondary structure prediction, indicated that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in vivo were produced by cucumber plants in response to CGMMV infection. Moreover, gene expression profiles (p-value <0.01 validated the expression of 3 of the novel miRNAs and 3 of the putative candidate miRNAs and identified a further 82 conserved miRNAs in CGMMV-infected cucumbers. Gene ontology (GO analysis revealed that the predicted target genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda algorithms, were involved in three functional categories: 2265 in molecular function, 1362 as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed that the predicted target genes were frequently involved in metabolic processes (166 pathways and genetic information processes (40 pathways and to a lesser degree the biosynthesis of secondary metabolites (12 pathways. These results could provide useful clues to help elucidate host-pathogen interactions in CGMMV and cucumber, as well as for the screening of resistance genes.

  15. CsNIP2;1 is a Plasma Membrane Transporter from Cucumis sativus that Facilitates Urea Uptake When Expressed in Saccharomyces cerevisiae and Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Lu; Yan, Jiapei; Vatamaniuk, Olena K; Du, Xiangge

    2016-03-01

    Urea is an important source of nitrogen (N) for the growth and development of plants. It occurs naturally in soils, is the major N source in agricultural fertilizers and is an important N metabolite in plants. Therefore, the identification and characterization of urea transporters in higher plants is important for the fundamental understanding of urea-based N nutrition in plants and for designing novel strategies for improving the N-use efficiency of urea based-fertilizers. Progress in this area, however, is hampered due to scarce knowledge of plant urea transporters. From what is known, urea uptake from the soil into plant roots is mediated by two types of transporters: the major intrinsic proteins (MIPs) and the DUR3 orthologs, mediating low- and high-affinity urea transport, respectively. Here we characterized a MIP family member from Cucumis sativus, CsNIP2;1, with regard to its contribution to urea transport. We show that CsNIP2;1 is a plasma membrane transporter that mediates pH-dependent urea uptake when expressed in yeast. We also found that ectopic expression of CsNIP2;1 improves growth of wild-type Arabidopsis thaliana and rescues growth and development of the atdur3-3 mutant on medium with urea as the sole N source. In addition, CsNIP2;1 is transcriptionally up-regulated by N deficiency, urea and NO3 (-). These data and results from the analyses of the pattern of CsNIP2;1 expression in A. thaliana and cucumber suggest that CsNIP2;1 might be involved in multiple steps of urea-based N nutrition, including urea uptake and internal transport during N remobilization throughout seed germination and N delivery to developing tissues.

  16. Factors influencing cucumber (Cucumis sativus L. somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture

    Directory of Open Access Journals (Sweden)

    Tadeusz Wróblewski

    2014-01-01

    Full Text Available A method of obtaining and the characteristics of an embryogenic stabilised cucumber (Cucumis sativus L. suspension culture which has many similarities to the carrot model are presented. The Specific Type I cells and proembryogenic mass were present in such a suspension. The maintenance of the proembryogenic stage took place in medium containing 2,4-D as the sole growth regulator, subsequent stages of embryogenesis occurred in hormone-free medium. Embryonic structures were also observed in medium with auxin in the late stages of growth, probably due to the depletion of 2,4-D in the medium during subculture. The choice of the proper inorganic nitrogen sources and the maintenance of correct proportions between them had a significant effect on the formation of these structures. We have shown that the pH of the medium with an embryogenic culture became stabilized regardless of the initial pH value and depended on the medium composition. The inoculum used for the initiation of subsequent subcultures of the stable suspension culture was 1 part tissue to 300 parts medium and was small in comparison to the systems described for the cucumber so far. From 1 ml of basic suspension 7 embryos were obtained on medium without growth regulators 10 days after inoculation, and this amount increased to 21 after 3 weeks. From 3.2% of the somatic embryos it was posible to regenerate plants. The high yield and synchronisation of the process and the development of embryos without passing through callus tissue create the possibility of using this system for molecular investigations and in the technology of somatic seed production.

  17. Inhibitory Effect of High Concentration LaCl3 on Photosystem Ⅱ Activity of Cucumber (Cucumis sativus Linn)%高浓度LaCl3抑制黄瓜(Cucumis sativus Linn)光系统Ⅱ(PS Ⅱ)活性

    Institute of Scientific and Technical Information of China (English)

    王立丰; 李良璧; 白克智; 匡廷云

    2005-01-01

    研究了高浓度LaCl3对黄瓜(Cucumis sativus Linn.)的光系统Ⅱ(PS Ⅱ)光诱导荧光动力学参数、低温荧光光谱和放氧活性的影响. 结果表明, 随着黄瓜体内LaCl3浓度的升高、其荧光量子产率、 PS Ⅱ最大光化学效率、放氧活性和电子传递速率都明显降低. 低温荧光分析表明, 低浓度LaCl3引起激发能更多的分配给PS Ⅱ. 高浓度LaCl3对黄瓜幼苗的抑制作用表现在对类囊体膜结构的破坏, 进而导致PS Ⅱ光合活性下降, 并最终抑制黄瓜生长.

  18. Cucumis sativus×C.hystrix种间杂种的形态学和细胞学观察

    Institute of Scientific and Technical Information of China (English)

    罗向东; 陈劲枫; 郭军洋; 娄群峰; 钱春桃

    2004-01-01

    以甜瓜属种间杂种F1(2n=19,华南型黄瓜“二早子”×Cucumis hystrix)为试材,对其形态学、细胞学和育性作了观察分析。结果表明:该杂种无雌花,雄花不能正常开放,表现高度不育。该杂种F1长势瘦弱,与笔者以前报道的种间杂种F1(C.kystrix与华北型黄瓜“北京截头”正反交)相比,在育性和形态学性状上有明显差异。花粉母细胞减数分裂观察发现,杂种F1的终变期和中期Ⅰ主要以17条单价体(1)和1个二价体(Ⅱ)存在;整个花粉母细胞的减数分裂行为异常,经常可见染色体滞后和纺锤丝定向紊乱,形成多极染色体,末期Ⅱ后形成多分体.以致不能发育成正常的花粉粒,导致杂种F1高度不育。

  19. Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus.

    Science.gov (United States)

    Ramezani, Moazzameh; Rahmani, Fatemeh; Dehestani, Ali

    2017-06-05

    Cucurbitacins are mostly found in the members of the family Cucurbitaceae and are responsible for the bitter taste of cucumber. Pharmacological activities such as anti-bacterial and anti-tumor effects have been attributed to these structurally divers triterpens. The aim of this study was to investigate the effect of potassium phosphite (KPhi) and chitosan on Cucurbitacin E (CuE) concentration in different tissues of Cucumis sativus. The antibacterial effect of plant ethanolic extracts was also examined against E.coli PTCC 1399 and Pseudomonas aeruginosa PTCC 1430 bacterial strains. After emergence of secondary leaves, cucumber plants were divided into 4 groups (each group consisted of 6 pots and each pot contained one plant) and different treatments performed as follows: group1. Leaves were sprayed with distilled water (Control), group 2. The leaves were solely treated with potassium phosphite (KPhi), group 3. Leaves were solely sprayed with chitosan (Chitosan), group 4. Leaves were treated with KPhi and chitosan (KPhi + chitosan). The KPhi (2 g L(-1)) and chitosan (0.2 g L(-1)) were applied twice every 12 h for one day. Fruits, roots and leaves were harvested 24 h later. The ethanolic extract of plant organs was used for determination of CuE concentration using HPLC approach. The antimicrobial activity was evaluated by the agar well diffusion method. The experiments were arranged in a completely randomized design (CRD) and performed in six biological replications for each treatment. Analysis of variance was performed by one-way ANOVA and Dunnette multiple comparison using SPSS. The highest level of CuE was recorded in fruit (2.2 g L(-1)) of plants under concomitant applications of KPhi and chitosan. Result of antibacterial activity evaluation showed that under concomitant treatments of KPhi and chitosan, fruit extract exhibited the highest potential for activity against E. coli PTCC 1399 (with mean zone of inhibition equal to 36 mm) and Pseudomonas

  20. The Infection of Cucumber (Cucumis sativus L.) Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF) Genes, Particularly in Association with Giant Cell Formation

    Science.gov (United States)

    Liu, Bin; Liu, Xingwang; Liu, Ying; Xue, Shudan; Cai, Yanling; Yang, Sen; Dong, Mingming; Zhang, Yaqi; Liu, Huiling; Zhao, Binyu; Qi, Changhong; Zhu, Ning; Ren, Huazhong

    2016-01-01

    Cucumber (Cucumis sativus L.) is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita). However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D) reduced root-knot nematode (RKN) parasitism. It is known that Actin-Depolymerizing Factor (ADF) affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF) genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I), and CsADF6 (Subclass III) have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes), and CsADF5 (Subclass IV) in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2, and CsADF2-3), with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI) with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2) showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III) showed a specific induction at 21 DAI, while CsADF5 (Subclass IV) was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately 2-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection. PMID:27695469

  1. The Infection of Cucumber (Cucumis sativus L. Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF Genes, Particularly in Association with Giant Cell Formation

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-09-01

    Full Text Available Cucumber (Cucumis sativus L. is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita. However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D reduced root-knot nematode (RKN parasitism. It is known that Actin-Depolymerizing Factor (ADF affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I and CsADF6 (Subclass III have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes and CsADF5 (Subclass IV in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2 and CsADF2-3, with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2 showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III showed a specific induction at 21 DAI, while CsADF5 (Subclass IV was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately two-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection.

  2. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1994-01-01

    An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two...... horizontal compartments contained 100 g soil (quartz sand : clay loam, 1:1) with 0.5 g ground clover leaves labelled with P-32. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root...... of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals....

  3. 外源NO对NaCl胁迫下黄瓜(Cucumis sativus L.)幼苗生长和谷胱甘肽抗氧化酶系统的影响%Effects of nitric oxide on the growth and glutathione dependent antioxidative system in cucumber (Cucumis sativus L.) seedlings under NaCl stress

    Institute of Scientific and Technical Information of China (English)

    樊怀福; 郭世荣; 段九菊; 杜长霞; 孙锦

    2008-01-01

    采用营养液水培,研究了外源一氧化氮(NO)对黄瓜(Cucumis sativus L.)幼苗生长和叶片谷胱甘肽抗氧化酶系统的影响.结果表明,正常生长条件下添加NO能促进黄瓜幼苗生长,而添加NO信号传递途径关键酶鸟苷酸环化酶(cGC)抑制剂亚甲基蓝(MB-1)显著抑制了黄瓜幼苗的生长;添加NO显著缓解了盐胁迫对黄瓜幼苗生长的抑制,提高了叶片谷胱甘肽还原酶(GR)活性、脱氢抗坏血酸还原酶(DHAR)活性、抗坏血酸过氧化物酶(APX)及还原型谷胱甘肽(GSH)、抗坏血酸(ASA)含量,降低了氧化型谷胱甘肽(GSSG)含量,提高了GSH/GSSG,对单脱氢抗坏血酸还原酶(MDAR)活性无显著影响;NaCl胁迫下添加NO的同时添加MB-1抑制了GR活性的提高,GSH和ASA含量、GSH/GSSG均降低,GSSG含量提高,但对MDAR、APX和DHAR活性无显著影响,表明NaCl胁迫下NO对GR活性、GSH和ASA含量、GSH/GSSG的调节可能是通过cGC介导的,对MDAR无明显的调节作用,对DHAR、APX的调节还存在其它途径.

  4. 猪粪对露地黄瓜产量及土壤培肥效果的影响%Effects of Pig Manure on the Yield and Fertilization in Soil of Cucumis sativus Linn

    Institute of Scientific and Technical Information of China (English)

    刘建军; 高婷; 刘希财

    2012-01-01

    Taking pig manure as variable factors, adopting random district design, the effect of pig manure on the yield and soil nutrients of Cucumis sativus Linn were studied to provide reference for production of Cucumber in open and fertilization in soil. The results showed that the production of Cucumis sativus Linn in open, the best amount of pig manure was 1 500 kg per 1 000 m2 ,and should not be too excessive,besides,applying pig manure could increase the content of available nitrogen,available phosphorus, available potassium and organic matter in soil, moreover, with the application rate increased, the soil fertility enhanced.%为给露地黄瓜生产及土壤培肥提供参考,以猪粪为变量因素,采用随机区组设计,对露地黄瓜产量和土壤养分的影响进行研究。结果表明:在露地黄瓜的生产中,1.50kg·m-2的猪粪施用量为最佳施用量,不宜过多,另通过施入猪粪还可以增加土壤中速效氮、速效磷、速效钾和有机质的含量,且随着施用量的增加而增加,增强土壤肥力。

  5. Acumulación de Grados-Día en un Cultivo de Pepino (Cucumis sativus L. en un Modelo de Producción Aeropónico Growing Degree Days Accumulation in a Cucumber (Cucumis sativus L. Crop Grown in an Aeroponic Production Model

    Directory of Open Access Journals (Sweden)

    Dubián Hoyos García

    2012-06-01

    Full Text Available Resumen. La temperatura tiene gran influencia sobre los cultivos y es clave en la determinación de la fecha de siembra, cosecha y las variables de producción. Los grados-día (GDD o unidades térmicas (HU son uno de los índices más comúnmente utilizados para estimar el desarrollo de las plantas y para predecir la fecha de cosecha. En el cultivo de pepino (Cucumis sativus L., el número de días desde la siembra hasta la cosecha depende del genotipo y su interacción con la temperatura ambiental. En este trabajo se estudiaron variables fenométricas que inciden sobre la eficiencia y producción de cultivos bajo un sistema aeropónico. Se determinó que se requirieron 726 y 660 grados-día, correspondientes a 73 y 64 días para los materiales comerciales Dasher II y Poinsset 76, respectivamente. Se analizó el efecto de dos periodos de riego 30 y 60 s, con un intervalo de aplicación de cuatro min durante el día, sobre las variables área foliar y peso seco de tallos y hojas en el híbrido Dasher II. No se encontraron diferencias significativas para los parámetros evaluados lo que indicó que el tiempo de 30 s representó una ventaja económica por el ahorro de energía. Se usaron tres soluciones nutritivas: Hoagland y Arnon, Aeropónicos 100% y Aeropónicos 50%, para determinar el efecto sobre el peso seco y el área foliar. Se encontró una reducción de las variables área foliar, materia seca acumulada en el tallo y las hojas, peso promedio de frutos (hasta 44,3% y número promedio de frutos, con la solución Aeropónicos al 50% de la concentración comercial. Los resultados permiten implementar variables de eficiencia en el cultivo aeropónico de pepino, las cuales inciden en el rendimiento, viabilidad económica y ambiental de la tecnología.Abstract. Plant growth and development is determined largely by weather which is composed by several factors. Temperature is one of such key factors which is very important for deciding sowing and

  6. Genetic Analysis and Mapping of gl-2 Gene in Cucumber(Cucumis sativus L.)%黄瓜无毛基因gl-2的遗传分析和定位

    Institute of Scientific and Technical Information of China (English)

    杨双娟; 苗晗; 张圣平; 程周超; 周健; 董邵云; Todd C.Wehner; 顾兴芳

    2011-01-01

    以黄瓜(Cucumis sativus L.)有毛类型‘9110Gt’(P1)和无毛突变体‘NCG-042’(P2)为试材,对无毛基因gl-2进行遗传分析和基因定位研究。结果表明,黄瓜的有毛、无毛性状由一对核基因控制,有毛对无毛为显性。结合分离群体分组混合分析法(bulked segregant analysis,BSA),以F2为作图群体,筛选得到18对与黄瓜无毛基因gl-2相关的SSR引物,构建了gl-2基因的SSR连锁群,并将该基因定位在黄瓜第2染色体上,两侧最近的连锁标记为SSR10522和SSR13275,遗传距离分别为0.6cM和3.8cM。经过回交群体验证,SSR10522和SSR13275的正确率分别为94.4%和91.6%。%Genetic analysis and gene mapping were carried out on gl-2 gene in cucumber(Cucumis sativus L.)using 9110G(twith trichomes)and NCG-042(glabrous mutant)as experimental materials.The genetic analysis showed having trichomes or not is determined by a single nuclear gene,and the trait of having trichomes(Gl-2)is dominant to the glabrous(gl-2)in cucumber.Bulked segregant analysis(BSA) and simple sequence repeat(SSR)techonology were employed to mapping gl-2 gene of cucmber in F2 population.gl-2 gene was mapped to a linkage group with 11 SSR makers,corresponding to chromosome 2 of cucumber.The flanking markers SSR10522 and SSR132751 were linked to the gl-2 gene with genetic distances of 0.6 and 3.8 cM,respectively.The veracity of SSR10522 and SSR132751 was tested using BC1P2 population,and the accuracy rate for the two markers was 94.4% and 91.6%.

  7. 西瓜和黄瓜乙烯受体ETR1基因片段的克隆与序列比较分析%Cloning and Sequence of ETR1 Gene from Citrullus lanatus and Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    曹迪; 许勇; 郭绍贵; 赵越; 宫国义; 张海英

    2009-01-01

    乙烯受体基因ETR1是乙烯信号转导过程中的关键调控基因.研究根据ETR1基因的保守序列设计引物,以西瓜(Citrullus lanatus (Thunb.) Matsum & Nadai var.lanatus)和黄瓜(Cucumis sativus L.)的基因组DNA为模板进行PCR扩增,获得序列长度分别为1 633 bp和1 491 bp的基因片段CLETR1和CSETR1.序列分析表明,CLETR1和CSETR1与Genebank中收录的多条ETR1基因的核苷酸序列同源性在80%~98%,氨基酸序列同源性在75%~98%.西瓜和黄瓜ETR1基因片段的编码序列存在明显的单核苷酸变异,共23个核苷酸位点存在SNPs(Single nucleotide polymorphisms),其中5个SNPs导致4个编码氨基酸的改变.%ETR1 was the controlling gene in ethylene signal transduction. A pair of oligo nucleotide primers were de-signed from conserved domain of ETR1 gene family. PCR amplifications were performed on genomic DNA template of Cit-rullus lanatus (Thunb. ) Matsum & Nadai var. lanatus and Cucumis sativus L., they produced two fragments of 1 633 bp and 1 491 bp,named CLETR1 and CSETR1 respectively.The results of Blastn on NCBI Genebank database indicated that many highly matched homologous nucleic acid sequences and amino acid sequences were all ethylene receptor gene, the ratio were 80% -95% and 75% -90% respectively. The single nucleotide variations were found in the conserved sequences between CLETR1 and CSETR1,there were 23 SNPs(single nucleotide polymorphisms) in the encoding region, and 5 of them resulted 4 amino acids difference.

  8. 噻苯隆对黄瓜果实生长及内源激素水平的影响%EFFECTS OF THIDIAZURON ON CUCUMBER(Cucumis sativus L.) GROWTH AND CONTENTS OF ENDOGENOUS HORMONES IN CUCUMBER

    Institute of Scientific and Technical Information of China (English)

    侯勇; 曾显斌; 朱彭玲; 曾芸; 余桂蓉; 陈强; 夏中梅

    2011-01-01

    The effects of thidiazuron(TDZ) on growth and quality of cucumber(Cucumis sativus L.) "chuancui 1" were investigated.And the effects of TDZ on contents of endogenous hormones such as IAA,GA,ABA and ZT were studied.Results showed that daily mean growth of cucumber on 3-6d after TDZ treatment increased by 35.71% compared with control.Fresh weight and fruit setting rate of cucumber raised by 27.09% and 7.23%,respectively after TDZ treatment.Anomalous fruit rate of cucumber decreased by 75.51% in the TDZ treatment group than control.Futhermore,TDZ had no obvious effects on cucumber quality.In addition,the contents of GA,IAA,and ABA in cucumber were promoted by 5.16%,20.24%,and 177.79%,respectively after TDZ treatment,during 3~6d after treatment.However,the content of ZT decreased after TDZ treatment during 0~6d after treatment with the minimum value of 40.54% compared with that of control.%以黄瓜(Cucumis sativus L.)"川翠1号"为试验材料,研究苯脲型细胞分裂素类物质噻苯隆(TDZ)对黄瓜果实生长、品质及内源激素水平等的影响。结果表明,相比对照,TDZ处理的花后3~6d内黄瓜日均增长量增加35.71%;采收时单果鲜重、座瓜率分别增加27.09%和7.23%,畸形瓜率降低75.51%,且对黄瓜品质没有明显影响。此外,TDZ处理显著增加黄瓜花后3~6d果实内源GA、IAA和ABA含量,波动最大峰值分别较对照增加5.16%、20.24%和177.70%,并显著降低黄瓜花后0~6d内源ZT水平,其含量波动最低峰值较对照同期ZT水平低40.54%。

  9. Effects of "Lengdong-bao" on the Yield and Cold Resistance of Cucumis sativus Seedlings under Low Temperature Stress%冷冻宝对低温胁迫下黄瓜幼苗抗冷性及产量的影响

    Institute of Scientific and Technical Information of China (English)

    崔美香; 贾兵国; 暴建枝; 李丽敏

    2009-01-01

    以黄瓜品种津春4号(Cucumis sativus cv Jinchun 4)为试材,研究了在低温胁迫下使用非激素类杭冷剂冷冻宝对其产量的影响.结果表明,2.50 g·L~(-1)冷冻宝浓度处理的黄瓜幼苗,在低温6℃±0.2℃胁迫下,可使叶片可溶性糖的含量显著增加,丙二醛含量降低,提高幼苗的抗冷性,并具有明显的促成和增产作用.从产投比考虑,冷冻宝的最适使用浓度为2.50 g·L~(-1).%Effects of "Lengdong-bao" on the growth of Cucumis sativus cv Jinchun 4 under low temperature stress were studied. The result showed that with the treatment of "Lengdong-bao" under the temperature 6℃±0.2℃ the content of soluble sugar in C. sativus leaves increased significantly,the contents of MDA decreased and the cold resistance improved. The optimal concentration was 2.50 g·L~(-1).

  10. Cloning and Sequence Analysis of Stachyose Synthase Gene in Cucumis sativus L.%黄瓜水苏糖合成酶基因的全长cDNA克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    缪旻珉; 程皓; 马晨澄

    2008-01-01

    [目的]克隆黄瓜(Cucumis sativus L.)水苏糖合成酶(STS)基因全长cDNA,为深入研究黄瓜同化物运输机理奠定基础.[方法]以黄瓜品种津研4号成熟叶片为材料,采用RT-PCR结合RACE技术,克隆得到3个黄瓜水苏糖合成酶全长cDNA.[结果] 3序列(GenBank登录号分别为:EU096496、EU096497、EU096498)长度分别为3 016、3 081、3 153 bp,编码相同的846个氨基酸.序列分析结果表明,黄瓜STS与其他高等植物的STS具有较高的同源性.[结论] 3个cDNA序列的差异主要表现在3′非翻译区长度不等,推测可能由同一基因经3′非翻译区可变剪接生成.

  11. 紫花苜蓿和黄花苜蓿对黄瓜生长影响的研究%The effect of Medicago sativa and M. Hispida on growth of cucumber(cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    陈奇涵; 崔邑城; 杭悦宇; 周义锋

    2005-01-01

    以每株黄瓜(Cucumis sativus)施用100 g、200 g、400 g新鲜紫花苜蓿(Medicago sativa)及200 g干燥黄花苜蓿(M.hispida)施用剂量,研究了紫花苜蓿、黄花苜蓿对黄瓜生长的影响.结果表明,紫花苜蓿和黄花苜蓿对黄瓜的植株高度、座果数、成熟瓜数具有明显的促进作用,但都表现在果期早期或早中期;对黄瓜已座果的果实成熟、增重有促进作用.紫花苜蓿不同的施用剂量对黄瓜生长产生了不同程度的促进作用,其中400 g鲜(紫)/株组的各类指标优于其他2个组;干燥黄花苜蓿对黄瓜生长的各项指标也有较好的促进作用.

  12. 黄瓜植株性别表现与3种氧化酶同工酶的关系%CORRELATION OF SEX EXPRESSION AND THREE OXIDASE ISOZYME IN CUCUMBER PLANT (CUCUMIS SATIVUS L.)

    Institute of Scientific and Technical Information of China (English)

    艾辛; 祝莉莉; 舒理慧; 陶晓明; 何光存

    2000-01-01

    采用同工酶电泳技术分析了二叶期纯雌株和雌雄株黄瓜(Cucumis sativus L.)子叶和真叶过氧化物酶、多酚氧化酶和超氧化物歧化酶同工酶,结果发现:纯雌株比雌雄株酶活性强、酶带数量多,这种差异酶带大多与雌性或雌雄性别紧密相关,经检验可以作为黄瓜雌性株早期鉴定的生化标记,尤其以真叶中多酚氧化酶同工酶Rf 0.287表现稳定,鉴定成功率高.等电聚焦电泳比垂直平板聚丙烯酰胺凝胶电泳分辨效果好.

  13. Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars.

    Science.gov (United States)

    Wu, Tingquan; Wang, Rui; Xu, Xiaomei; He, Xiaoming; Sun, Baojuan; Zhong, Yujuan; Liang, Zhaojuan; Luo, Shaobo; Lin, Yu'e

    2014-10-10

    L-type lectin receptor kinase (LecRK) proteins are an important family involved in diverse biological processes such as pollen development, senescence, wounding, salinity and especially in innate immunity in model plants such as Arabidopsis and tobacco. Till date, LecRK proteins or genes of cucumber have not been reported. In this study, a total of 25 LecRK genes were identified in the cucumber genome, unequally distributed across its seven chromosomes. According to similarity comparison of their encoded proteins, the Cucumis sativus LecRK (CsLecRK) genes were classified into six major clades (from Clade I to CladeVI). Expression of CsLecRK genes were tested using QRT-PCR method and the results showed that 25 CsLecRK genes exhibited different responses to abiotic (water immersion) and biotic (Phytophthora melonis and Phytophthora capsici inoculation) stresses, as well as that between disease resistant cultivar (JSH) and disease susceptible cultivar (B80). Among the 25 CsLecRK genes, we found CsLecRK6.1 was especially induced by P. melonis and P. capsici in JSH plants. All these results suggested that CsLecRK genes may play important roles in biotic and abiotic stresses.

  14. Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo).

    Science.gov (United States)

    Meyer, J D F; Deleu, W; Garcia-Mas, J; Havey, M J

    2008-05-01

    A fosmid library of cucumber was synthesized as an unrestricted resource for researchers and used for comparative sequence analyses to assess synteny between the cucumber and melon genomes, both members of the genus Cucumis and the two most economically important plants in the family Cucurbitaceae. End sequencing of random fosmids produced over 680 kilobases of cucumber genomic sequence, of which 25% was similar to ribosomal DNAs, 25% to satellite sequences, 20% to coding regions in other plants, 4% to transposable elements, 13% to mitochondrial and chloroplast sequences, and 13% showed no hits to the databases. The relatively high frequencies of ribosomal and satellite DNAs are consistent with previous analyses of cucumber DNA. Cucumber fosmids were selected and sequenced that carried eukaryotic initiation factors (eIF) 4E and iso(4E), genes associated with recessively inherited resistances to potyviruses in a number of plants. Indels near eIF4E and eIF(iso)4E mapped independently of the zym, a recessive locus conditioning resistance to Zucchini yellow mosaic virus, establishing that these candidate genes are not zym. Cucumber sequences were compared with melon BACs carrying eIF4E and eIF(iso)4E and revealed extensive sequence conservation and synteny between cucumber and melon across these two independent genomic regions. This high degree of microsynteny will aid in the cloning of orthologous genes from both species, as well as allow for genomic resources developed for one Cucumis species to be used for analyses in other species.

  15. 不同配比红蓝LED光对黄瓜果实产量和品质的影响%Effect of different proportions of red and blue LED lights on yield and quality of fruit of Cucumis ;sativus

    Institute of Scientific and Technical Information of China (English)

    刘晓英; 徐文栋; 焦学磊; 徐志刚

    2016-01-01

    Taking fluorescent lamp as the control, effect of different proportions of red and blue LED lights ﹝including 100% red light, 75% red light-25% blue light ( R31 ) , 50% red light-50% blue light ( R11 ) , 25% red light-75% blue light ( R13 ) and 100% blue light﹞ on traits, yield and nutritional quality of fruit of Cucumis sativus Linn. were researched. The results show that in the treatment group of 100% red light, seedling of C. sativus grows slowly, development of fruit is abnormal, and yield per plant and contents of VC , soluble sugar and soluble protein in fruit are lower than those in other treatment groups. In the treatment group of 100% blue light, development of fruit is normal, fruit yield per plant is significantly lower than that in the combined treatment groups of red and blue LED lights, while contents of soluble sugar, sucrose, free amino acids and soluble solid in fruit are generally significantly higher than those in other treatment groups, and soluble protein content is also high. Fresh weight per fruit of C. sativus in R31 treatment group is significantly higher than that in other treatment groups, fruit yield per plant in R31 and R11 treatment groups is significantly higher than that in other treatment groups, and also, contents of VC and soluble protein in fruit in R11 treatment group are significantly higher than those in other treatment groups. It is suggested that yield per plant and nutritional quality of fruit of C. sativus is affected by synergistic effect of red and blue lights, and more suitable light proportion for culturing C. sativus in greenhouse is 50% red light-50% blue light.%以荧光灯为对照,研究不同配比红蓝LED光处理﹝包括100%红光、75%红光-25%蓝光( R31)、50%红光-50%蓝光(R11)、25%红光-75%蓝光(R13)和100%蓝光﹞对黄瓜(Cucumis sativus Linn.)果实性状、产量及营养品质的影响。结果表明:100%红光处理组黄瓜植株生长缓慢,果实发育异常,果实单株产量及VC

  16. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene.

    Science.gov (United States)

    Li, Qiang; Cao, Chenxing; Zhang, Cunjia; Zheng, Shuangshuang; Wang, Zenghui; Wang, Lina; Ren, Zhonghai

    2015-05-01

    The spines and bloom of cucumber (Cucumis sativus L.) fruit are two important quality traits related to fruit market value. However, until now, none of the genes involved in the formation of cucumber fruit spines and bloom trichomes has been identified. Here, the characterization of trichome development in wild-type (WT) cucumber and a spontaneous mutant, glabrous 1 (csgl1) controlled by a single recessive nuclear gene, with glabrous aerial organs, is reported. Via map-based cloning, CsGL1 was isolated and it was found that it encoded a member of the homeodomain-leucine zipper I (HD-Zip I) proteins previously identified to function mainly in the abiotic stress responses of plants. Tissue-specific expression analysis indicated that CsGL1 was strongly expressed in trichomes and fruit spines. In addition, CsGL1 was a nuclear protein with weak transcriptional activation activity in yeast. A comparative analysis of the digital gene expression (DGE) profile between csgl1 and WT leaves revealed that CsGL1 had a significant influence on the gene expression profile in cucumber, especially on genes related to cellular process, which is consistent with the phenotypic difference between csgl1 and the WT. Moreover, two genes, CsMYB6 and CsGA20ox1, possibly involved in the formation of cucumber trichomes and fruit spines, were characterized. Overall, the findings reveal a new function for the HD-Zip I gene subfamily, and provide some candidate genes for genetic engineering approaches to improve cucumber fruit external quality.

  17. Antalya İli ve İlçelerindeki Örtüaltı Hıyar (Cucumis sativus L. ve Kabak (Cucurbita pepo L. Üretim Alanlarında Viral Etmenlerin Saptanması

    Directory of Open Access Journals (Sweden)

    Ahmet ÇAT

    2016-04-01

    Full Text Available Bu çalışma, 2014-2015 yılları arasında Antalya ili ve ilçelerinde örtüaltı hıyar (Cucumis sativus L. ve kabak  (Cucurbita pepo L. üretim alanlarında ZYMV (Zucchini yellow mosaic virus, PRSV (Papaya ring spot virus, SqMV (Squash mosaic virus ve CMV (Cucumber mosaic virus’nün varlığının, serolojik, ve biyolojik yöntemlerle saptanması ve toplanan örneklerdeki yaygınlığının ortaya konulması amacıyla 2014-2015 yılları arasında yürütülmüştür. Örtüaltı hıyar ve kabak üretim alanlarından alınan ve virüs şüphesi duyulan 455 yaprak ve meyve örneğinin hepsi DAS-ELISA ile testlenmiştir. Teslenen 455 örneğin 346 adedininde (%76 bir ve daha fazla virüs ile enfekteli olduğu belirlenmiştir. ELISA testleri sonucunda pozitif reaksiyon veren bitkilerden alınan dokular mekanik inokulasyon çalışmalarında kullanılmıştır.  İndikatör bitkiler üzerinde 15-30 gün gibi bir sürede belirti gözlenmiştir.

  18. SSR Inheritance Analysis and Screening for Linked Marker of Powdery Mildew Resistance in Cucumber(Cucumis sativus L.)%黄瓜白粉病抗性遗传分析与连锁标记筛选

    Institute of Scientific and Technical Information of China (English)

    聂京涛; 潘俊松; 何欢乐; 司龙亭; 蔡润

    2011-01-01

    In order to accelerate molecular marker assisted breeding process of powdery mildew resistance in cucumber ( Cucumis sativus L.) , in this paper, high susceptible cucumber inbred line M 12,abd high resistant inbred line M3 to powdery mildew were taken as parent and their hybrid, F2 populations and BC1 populations were used as experimental materials.We identified the seedlings inoculated with powdery mildew fungus and probed into the genetic regulation of powdery mildew resistance in cucumber.Combing with BSA method and SSR technology, SSR markers linked to the major resistant gene of powdery mildew in cucumber was obtained.The results showed that the resistance to powdery mildew was mainly controlled by a single recessive gene.By analyzing F2 single plant with SSR technique, a marker SSR15592 linked to the resistant gene was identified.The genetic distance between this marker and resistant gene was 7.62 cM.%以黄瓜高感、高抗白粉病自交系M12、M3为亲本组合得到的F2群体和BC1群体为试材,采用苗期接种鉴定,探讨了黄瓜白粉病抗性的遗传规律;结合BSA法和SSR技术,获得了与黄瓜白粉病抗性主效基因连锁的SSR标记.结果表明,供试亲本间白粉病抗性主要受一隐性单基因控制.对F2单株进行SSR分析,鉴定出1个与黄瓜白粉病抗性基因连锁的标记SSR15592,该标记与抗性基因间的遗传距离为7.62 cM.

  19. Cloning and expression analysis of tyrosylprotein sulfotransferase gene CsTPST in Cucumis sativus L.%黄瓜酪氨酸硫化转移酶基因CsTPST克隆及其表达分析

    Institute of Scientific and Technical Information of China (English)

    杜亚琳

    2016-01-01

    [Objective]The present study was conducted to clone tyrosylprotein Sulfotransferases gene in Cucumis sativus L.(CsTPST) and analyze regulatory role of plant peptides in development of C. sativus L., in order to lay a founda-tion for analysis of function of CsTPST and interaction between peptide and ethylene in development of C. sativus L.[Method]Homology alignment was conducted based on TPST protein sequence in Arabidopsis thaliana. sequence, gene structure,phylogenetic relationship,and expression pattern of CsTPST were obtained through PCR amplification and bioin-formatics analysis, and the expression pattern was studies through qRT-PCR. [Result]Gene cDNA in CsTPST was 789 bp in length,and encoded a protein with 262 amino acids. Phylogenetic analysis indicated that CsTPST exhibited the highest similarity with TPST from melon,with 93% of amino acid sequence similarity. qRT-PCR analysis showed that CsTPST gene had high expression level in female flowers,roots and leaves,while it had relatively low expression level in male flowers and stems. More interestingly,CsTSPT gene expression was up-related in cucumber leaves under ACC(an ethylene synthesis promoter) treatment,while down-regulated under AVG (an ethylene synthesis inhibitor) treatment. CsTPST gene pro-moter could activate expression of GFP gene. [Conclusion]The results revealed that CsTSPT is an ethylene-induced gene, which can provide reference for research on biological function and molecular mechanism of sex determination.%【目的】克隆黄瓜酪氨酸硫化转移酶基因(CsTPST),并分析植物多肽在发育过程中的调控作用,为研究CsTPST的功能及多肽与乙烯在黄瓜发育过程中的相互作用打下基础。【方法】以拟南芥TPST蛋白序列信息为基础进行同源比对,经PCR扩增和生物信息学分析获得CsTPST基因序列信息、结构和亲缘关系,并利用qRT-PCR对其表达模式进行分析。【结果】CsTPST基因cDNA全长789 bp,编码262

  20. Pollination of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), by the stingless bees Scaptotrigona aff. depilis moure and Nannotrigona testaceicornis Lepeletier (Hymenoptera: Meliponini) in greenhouses.

    Science.gov (United States)

    Santos, Solange A B dos; Roselino, Ana C; Bego, Luci R

    2008-01-01

    When for a successful fruit development the fertilization of flowers is necessary, bees can be used as crop-pollinators in greenhouses. In the present study, we investigated the effectiveness of the stingless bees Scaptotrigona aff. depilis Moure and Nannotrigona testaceicornis Lepeletier as pollinators of cucumber plants (Cucumus sativus var. caipira) in greenhouses during the Brazilian winter season. The study was conducted in four greenhouses (GH), of which two greenhouses contained bee colonies to ascertain pollination of the cucumber plants (GH I, with S. aff. depilis, GH II, with N. testaceicornis), whereas the other two greenhouses (GH III, GH IV) had no bee colonies and served as control groups. Furthermore, we planted cucumbers in an open field plot (OA) where pollination by any/various visiting insects could occur. Each of the experimental areas measured 87.5 m2. Without pollination (GH III, GH IV), the plants produced a low number of cucumbers, and the fruits were smaller and less heavy than in those experimental areas where pollination occurred. In the open field area, not protected against unfavorable climatic conditions, the plants produced fewer flowers than the plants in the greenhouses. The highest cucumber yield (with the highest amount of perfect fruits) was found in those greenhouses which housed the stingless bees as pollinators (GH I, GH II). Our results demonstrate that stingless bees can be successfully and efficiently used as pollinators of greenhouse cucumbers during the winter season.

  1. Expression of a High Mobility Group Protein Isolated from Cucumis sativus Affects the Germination of Arabidopsis thaliana under Abiotic Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    Ji Young Jang; Kyung Jin Kwak; Hunseung Kang

    2008-01-01

    Although high mobility group B (HMGB) proteins have been identified from a variety of plant species, their importance and functional roles in plant responses to changing environmental conditions are largely unknown. Here, we investigated the functional roles of a CsHMGB isolated from cucumber (Cucurnis sativus L.) in plant responses to environmental stimuli. Under normal growth conditions or when subjected to cold stress, no differences in plant growth were found between the wild.type and transgenic Arabidopsis thaliana overexpressing CsHMGB. By contrast, the transgenic Arabidopsis plants displayed retarded germination compared with the wild-type plants when grown under high salt or dehydration stress conditions. Germination of the transgenic plants was delayed by the addition of abscisic acid (ABA), implying that CsHMGB affects germination through an ABA-dependent way. The expression of CsHMGB had affected only the germination stage, and CsHMGB did not affect the seedling growth of the transgenic plants under the stress conditions. The transcript levels of several germination-responsive genes were modulated by the expression of CsHMGB in Arabidopsis. Taken together, these results suggest that ectopic expression of a CsHMGB in Arabidopsis modulates the expression of several germination-responsive genes, and thereby affects the germination of Arabidopsis plants under different stress conditions.

  2. Effects of NaCl Stress on Generation of Root Border Cells in Cucumber (Cucumis sativus L.)%NaCl胁迫对黄瓜根系边缘细胞发生的影响

    Institute of Scientific and Technical Information of China (English)

    乔永旭

    2011-01-01

    The effects of NaCl on cucumber (Cucumis sativus) plant biomass, root length, root activity and the generation of the root border cells were investigated. The results showed that NaCl treatment led to decrease of plant biomass and root length and increase of root activity. The primal border cells occurred nearly synchronously with primary root tip growth in cucumber. The number and the viability of border cells reached maximum when root length extended to 25 mm. Both the number and activities of the border cells in vitro roots were gradually dropped while NaCl concentration increased and treatment time extended. In contrast, the mucilage thickness increased with elevation of NaCl concentration. In general, the root border cells could secrete mucilage and self-decompose under NaCl stress, which might protect root tip from NaCl toxicity in some degree.%以黄瓜为试材,研究了NaCl处理对植株生物量、根长、根系活力、根边缘细胞的数目和活性及黏胶层厚度的影响.结果表明,NaCl处理降低了植株生物量与根系长度,增加了黄瓜幼苗的根系活力.黄瓜边缘细胞的出现几乎与根同时发生,当根长达到25 mm时,边缘细胞的数目与活性均达到最大值.NaCl处理对边缘细胞的数目与活性表现出一定的抑制作用.离体根尖的边缘细胞活性也随NaCl处理浓度与处理时间的增加而逐渐减小,但根边缘细胞黏胶层厚度却随NaCl处理浓度的增加而增加.总之,NaCl对黄瓜幼苗造成一定伤害,但根系边缘细胞可通过降解死亡与增加黏胶的分泌量在一定程度上减轻这种伤害程度.

  3. 黄瓜幼果cDNA文库构建与EST测序分析%Construction of a Young Fruit cDNA Library and EST Sequencing in Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    潘宇; 蒲志群; 肖雅文; 赵名琛; 郑浴; 石士涛; 胡小燕; 张兴国

    2013-01-01

    将黄瓜授粉前后多个发育阶段的幼果组织等量混合后提取总RNA和mRNA,以λTriplEx2为栽体、XL1-Blue为宿主茵,构建了1个黄瓜幼果cDNA文库;其滴度为1.165×106pfu/mL,重组率在94.4%左右.测序获得116条EST,92.2%的长度在400 bp以上,19%为重叠序列.在GenBank中进行BLAST分析后确认与已知功能基因相似的EST序列有71条,有相似序列而功能未知的基因和没有相似序列的EST序列各占19.83%和18.97%.从对文库的检验结果看,构建的cDNA文库重组率较高,库容达到预期要求.%The growth and development of cucumber (Cucumis sativus L.) fruit is closely related to its yield and quality.To gain the gene expression pattern of the young fruit just before and after pollination is important to exploring the molecular mechanisms of parthenocarpy and fruit growth initiation.In this study,tissues of young fruit of cucumber at different development stages before and after pollination were mixed and total RNA and mRNA were extracted.Then,a cDNA library of cucumber young fruit with a titer of 1.165 × 106 pfu/mL and a recombinant frequency of 94.4% was constructed,using λTriplEx2 as a vector and XL1-Blue as the host strain.One hundred and sixteen EST sequences were obtained,of which 92.2% were over 400 bp in size and 19% were contigs.BLAST analysis in GenBank revealed that 71 of the 116 ESTs were homologous to genes of known function,19.83% were related to genes with unknown functions and 18.97 % were novel.The cDNA library sufficed the criteria with high recombinant efficiency and wide representativeness.The results will facilitate the cloning of development-related genes from cucumber fruit.

  4. 黄瓜、西瓜和南瓜EIN3基因片段的克隆与序列分析%Cloning and Sequence of EIN3 Gene from Cucumis sativus, Citrullus lanatus and Cucurbita maxima

    Institute of Scientific and Technical Information of China (English)

    陈惠明; 卢向阳; 许亮; 许勇; 张海英; 刘晓虹

    2007-01-01

    EIN3(ethylene insensitive 3)位于细胞核的核蛋白,为乙烯信号转导的下游调控基因,根据GenBank植物EIN3基因家族的保守序列设计了1对引物,以黄瓜(Cucumis sativus)、西瓜(Citrullus lanatus)和南瓜(Cucurbita maxima)总DNA为模板PCR扩增到3个725 bp的基因片段CsEIN3、ClEIN3和CmEIN3,并提交GenBank,登录号分别为AY973275、DQ023225和DQ023224.将片段序列在NCBI数据库中Blastn同源搜寻,显示151条有同源性的序列全部是EIN3基因.NCBI网站的ORF(open reading frame)Finder找到正确的开放式阅读框,翻译成为氨基酸序列,对CsEIN3、ClEIN3及CmEIN3氨基酸序列在NCBI网站进行Blastp比对,在大分子结构数据库(molecular modelling database,MMDB)搜索,3个推测蛋白保守结构域三级结构与拟南芥EIN3的DNA结合域(MMDB:30598;PDB:1WIJ)完全相同,系统进化分析表明,黄瓜、西瓜和南瓜与双子叶植物甜瓜、绿豆、蒺藜状苜蓿、烟草、番茄、拟南芥及单子叶水稻、桃红蝴蝶兰等的EIN3家族成员都有较高的相似性.

  5. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Science.gov (United States)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  6. The security performance of Agasicles hygrophila larvae in Cucumis sativus and Vigna unguiculata%莲草直胸跳甲幼虫在黄瓜和豇豆上的安全性表现

    Institute of Scientific and Technical Information of China (English)

    李霜; 赵龙龙; 李娜; 王苑馨; 郭艳琼; 郝炯; 马瑞燕

    2016-01-01

    莲草直胸跳甲(Agasicles hygrophila)为引进我国控制入侵种喜旱莲子草(Alternanthera philoxeroides)的专食性天敌.它在主要植物上是否安全直接影响到其生防价值和生态安全.对前人已研究过的且对莲草直胸跳甲有影响的非靶标植物进一步研究,从莲草直胸跳甲的趋性、取食及非靶标植物对幼虫的寿命长短、生长发育的影响等指标筛选出黄瓜(Cucumis sativus)、豇豆(Vigna unguiculata)等植物,并采用涂抹汁液饲喂法、全汁液饲喂法和植物表皮毛数量与类型测定、植物表皮毛处理等方法来研究目标植物对莲草直胸跳甲幼虫的致死原因.结果显示:莲草直胸跳甲对豇豆、黄瓜叶片有趋性和轻微取食现象,且其幼虫在豇豆叶片上聚集性死亡,因此其幼虫对黄瓜、豇豆是安全的.莲草直胸跳甲幼虫取食豇豆、黄瓜叶片汁液48 h内存活率为100%,豇豆叶片表皮毛为钩状,且其背面表皮毛的数量最多,为139±14.11,其中幼虫在豇豆叶片背面死亡率最高,为53.33%±0.09%.2龄幼虫在豇豆叶片背面的脱离率最小,为6.67%±0.03%,去除豇豆叶片表皮毛以后,幼虫在豇豆叶片上的脱离率为100%.综上,豇豆、黄瓜叶片汁液对莲草直胸跳甲幼虫生存影响不显著,钩状表皮毛对莲草直胸跳甲幼虫有致死作用,表明非靶标植物的物理性状在引进天敌昆虫适应性上为不利因素.

  7. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... This technology transfer trials have shown the advantages and ... Key words: Cucumber production, protected agriculture tunnels, cost benefit ratio, technology transfer, ... Use of PA can increase production by more than five.

  8. Photosynthesis of Cucumis sativus under weak light in response to different proportions of red to blue light%红蓝光比例对弱光下黄瓜幼苗光合功能的影响

    Institute of Scientific and Technical Information of China (English)

    王晓艳; 张晓楠; 成后德; 崔瑾; 许晓明

    2014-01-01

    White 1ight ( contro1) , red 1ight, b1ue 1ight, red to b1ue at 7 : 1 and red to b1ue at 1 : 1 provided by 1ight-emitting diodes were app1ied to study the inf1uences of different combinations of red and b1ue 1ight on cucumber( Cucu-mis sativus) functiona1 1eaves under weak 1ight environment. Resu1ts showed that the stack of thy1akoid membranes of grown 1eaves under red 1ight was severe1y squeezed, and grana and stroma 1ame11ae were irregu1ar. The photochemica1 efficiency ( Fv/Fm ) , net photosynthetic rate ( Pn ) and stomata1 conductance ( Gs ) were the 1owest under red 1ight. Under b1ue 1ight, the SPAD va1ue and the deviation of excitation energy from fu11 ba1ance between PS1 and PS2 (β/α-1 ) were the 1owest. The specific 1eaf weight ( SLW) , PN , Gs , photosynthetic performance index ( PIcsm ) were the 1argest in red to b1ue 1ight at 1 : 1 treatment. A1though Pn in white 1ight treatment and red to b1ue 1ight at 7 : 1 treatment were significant1y greater than that under b1ue 1ight, there was no significant difference in Gs . Cucumber 1eaves grown under red 1ight a1one exhibited dys-functiona1 photosynthetic operation, and b1ue 1ight was indespensab1e for the efficient operation of cucumber photosynthetic apparatus under weak 1ight. Red to b1ue 1ight at 1 : 1, was favorab1e for the deve1opment of ch1orop1ast and high photosyn-thetic rate under weak 1ight.%为了研究不同比例的红蓝光对弱光下黄瓜叶绿体超微结构和相关光合特性的影响,采用发光二极管( LED)调制不同红蓝光比例,以白光为对照,研究红光,蓝光,红光、蓝光配比7:1和红光、蓝光配比1:1对黄瓜功能叶的影响。结果显示,红光处理下类囊体膜的垛叠严重受挤压,基粒、基质片层毫无规则;最大光化学效率( Fv/Fm )、净光合速率( Pn )、气孔导度( Gs )最低。蓝光处理下叶绿素相对含量( SPAD值)和不平衡系数均最低。红光、蓝光配比1:1处理下的比叶质

  9. Effects of Exogenous Polyamines on Photosynthetic Characteristics and Membrane Lipid Peroxidation of Cucumis sativus Seedlings under Hypoxia Stress%外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响

    Institute of Scientific and Technical Information of China (English)

    周国贤; 郭世荣; 王素平

    2006-01-01

    以抗低氧能力不同的2个黄瓜(Cucumis sativus)品种为试材,研究了外源多胺对黄瓜幼苗植株生长、光合特性和膜脂过氧化的影响.结果表明,外源多胺能显著提高低氧胁迫下黄瓜幼苗叶片的净光合速率和水分利用率,降低叶片中丙二醛含量和质膜透性,使幼苗鲜重和干重明显增加.因此在低氧胁迫下,外源喷施多胺能提高幼苗叶片的净光合速率,促进植株生长,缓解胁迫对黄瓜幼苗的伤害.此外,与抗低氧能力较强的品种绿霸春4号相比,外源多胺对抗低氧能力较弱的品种中农8号的影响更明显.

  10. Ca2+对苯丙烯酸胁迫下黄瓜种子萌发特性的影响%EFFECTS OF GERMINATION PROPERTIES OF Cucumis sativus L.SEEDS SOAKED IN CA2 + SOLUTION UNDER CINNAMIC ACID STRESS

    Institute of Scientific and Technical Information of China (English)

    李延; 谢丽静; 焦存来; 吴克珍

    2010-01-01

    以黄瓜(Cucumis Sativus L.)种子为材料,研究钙浸种对苯丙烯酸(CA)胁迫下黄瓜种子萌发的影响及其机理.结果表明,CA对黄瓜种子萌发有明显的抑制作用,且抑制程度随CA浓度(0.25~1.0mmol·L-1)的增加而提高.CA胁迫下,黄瓜种子的发芽势、发芽率下降,膜结构受损,透性增大,呼吸速率、α-淀粉酶和蛋白酶活性降低,淀粉、蛋白质消耗率下降,钙浸种(500 mg·L-1CaCl2)可以缓解CA对种子萌发的抑制作用,表现为发芽率提高,膜透性降低,呼吸速率、α-淀粉酶、蛋白酶活性以及淀粉和蛋白质消耗率提高.

  11. ALA和CaCl2处理对黄瓜植株初花期、结果期盐胁迫的缓解效应%The effects of ALA and CaCl2 on cucumbers during initial bloom and fruit-bearing (Cucumis sativus L.) under salt stress

    Institute of Scientific and Technical Information of China (English)

    杨蕊; 邹志荣; 祁向玲

    2008-01-01

    试验以津春4号黄瓜(Cucumis sativus L.)为材料,研究了ALA(5-aminole-vulinic acid)和CaCl2两种外源物质对150 mmol/L和250 mmol/L NaCl胁迫下黄瓜植株在初花期和结果期生理生化指标的影响.结果表明,ALA的作用效果较CaCl2显著,可显著提高黄瓜叶片中可溶性蛋白合量、叶绿素b/a值,降低细胞膜透性,提高根系活力,抑制MDA产生,增加黄瓜植株对盐胁迫的抵抗能力,显著提高盐胁迫下黄瓜产量,与盐胁迫下的对照相比小区产量分别提高24.9%和52.3%.

  12. Molecular Mapping and Candidate Gene Analysis of Black Fruit Spine Gene in Cucumber (Cucumis sativus L.)%黄瓜黑色果刺基因染色体定位及候选基因分析

    Institute of Scientific and Technical Information of China (English)

    刘书林; 顾兴芳; 苗晗; 王烨; Yiqun Weng; Todd C Wehner; 张圣平

    2014-01-01

    [Objective]Cucumber (Cucumis sativus L.) is an important fruit vegetables. Fruit quality is always getting more attention in cucumber breeding program. Fruit quality includes inner quality and exterior quality, and fruit exterior quality of cucumber has important influences on its commodification. Spine color is one of the important fruit quality traits in cucumber. The clarification of the inheritance and identification of molecular markers for the fruit spine color gene will provide a theoretical basis for breeding of fruit quality and lay a foundation for fine mapping and gene cloning. [Method] Cucumber inbred lines GY14 with white fruit spines and NC76 with black fruit spines were used as the experiment materials for genetic analysis and gene mapping for black fruit spine in this study. Bulked segregation analysis (BSA) was performed in the F2 population using 2112 SSR markers. The sequence and re-sequencing information of 9930 and 100 core germplasms were used to develop new SSR and Indel markers in the primary mapping region of the black spine color gene (B). JoinMap 4.0 and MapInspect software were employed to construct a linkage map for the B gene with SSR markers. Bio-informatics was adopted to predict candidate genes in the genomic region harboring the B gene. A set of 156 recombinant inbred lines (RILs) were used to test the veracity for marker-assisted selection (MAS) of flanking molecular markers linked to the B gene.[Result]Genetic analysis showed that the trait of black fruit spine in NC76 was qualitative, and a single dominant nuclear gene (B) controlled this trait. Black was dominant to white. In the primary genetic mapping of the B gene, eight SSR markers were screened to be linked with the black fruit spine color locus. The B gene was mapped on the chromosome 4 (Chr.4) of cucumber. The closest linked marker SSR22231 was 10.8 cM away from B. A total of 212 pairs of new SSR primer and 25 pairs of Indel primer were developed based on the sequence

  13. 24-表油菜素内酯对低氧胁迫下黄瓜幼苗碳水化合物代谢的影响%Effects of 24-Epibrassinolide on Carbohydrate Metabolism and Enhancement of Tolerance to Root-Zone Hypoxia in Cucumber(Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    康云艳; 杨暹; 郭世荣; 张营营

    2011-01-01

    [Objective] The aim of the work was to study the effects of 24-epibrassinolide (EBR) added to nutrient solution on carbohydrate metabolism of cucumber {Cucumis sativus L.) under root-zone hypoxia. [Method] Seedlings of a relatively hypoxia-resistant cultivar, 'L(u)bachun No.4', and a relatively hypoxia-sensitive cultivar, 'Zhongnong No.8', were hydroponically grown for 8 days in normoxic and hypoxic nutrient solutions with and without addition of EBR at 1 μg L-1. And the effects of EBR on contents of carbohydrates in leaves and roots and activities of glycolytic enzymes in the roots were investigated. [Result] Application of EBR to normoxic nutrient solution promoted the accumulation of total soluble sugars in leaves and roots, but had no effects on activities of glycolytic enzymes in the roots. Changes in contents of starch and glucose, and activities of acid invertase and ATP-dependent phosphofructokinase enzymes in the roots showed obviously different between two genotypes cucumber in response to root-zone hypoxia. EBR added to hypoxic nutrient solution caused an increase in the concentrations of fructose and sucrose and activities of major glycolytic enzymes in the roots, but exerted little influence on carbohydrate concentrations in the leaves. [Conclusion] These results suggest that EBR added to hypoxic nutrient solution may stimulate the photosynthate allocation down to roots and activities of major glycolytic enzymes, and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.%[目的]探讨外源EBR(24-表油菜素内酯)对低氧胁迫下黄瓜(Cucumis sativus L.)幼苗碳水化合物代谢的影响.[方法]采用营养液水培法,以耐低氧能力较强的黄瓜品种'绿霸春4号'和耐低氧能力较弱的品种'中农8号'为材料,研究根际低氧胁迫下外源施用EBR对黄瓜幼苗碳水化合物含量及根系糖酵解代谢酶活性的影响.[结果]通气条件下正常栽培,EBR处理显著促进两黄瓜品种叶片和

  14. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumber sativus L.)

    NARCIS (Netherlands)

    Balkema-Boomstra, A.G.; Zijlstra, S.; Verstappen, F.W.A.; Inggamer, H.; Mercke, P.

    2003-01-01

    Cucurbitacins are bitter triterpenoid compounds that are toxic to most organisms and occur widely in wild and cultivated Cucurbitaceae. The only cucurbitacin identified in Cucumis sativus is cucurbitacin C. The bitter taste of cucumber has been correlated with resistance to the spider mite

  15. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis

    Science.gov (United States)

    In the family of Cucurbitaceae, cucumber (Cucumis sativus) is the only species with 14 chromosomes. The majority of the remaining species, including melon and the sister species of cucumber, C. hystrix, have 24 chromosomes. To understand the underlying mechanisms of chromosome reduction from n=12 to...

  16. 应用改良TAIL-PCR克隆黄瓜6PGDH基因上游序列%Isolation upstream sequence of 6PGDH gene from cucumber (Cucumis sativus L.) by modified TAIL-PCR

    Institute of Scientific and Technical Information of China (English)

    魏跃; 陈啸寅; 王全智; 陈劲枫

    2011-01-01

    运用改良的热不对称交错PCR( thermal asymmetric interlaced PCR,TAIL-PCR)对黄瓜6-磷酸葡萄糖酸脱氢酶基因(6-phosphogluconate dehydrogenase gene,6PGDH)的上游序列进行了克隆.与最初的TAIL-PCR相比较,主要改进之处有:(1)根据Primer 5.0软件计算结果从随机RAPD引物库中筛选出合适的上游引物,低严谨和高严谨反应中的退火温度也分别进行了调整;(2)将热不对称交替反应继续应用到第3轮PCR扩增反应中以提高特异目的条带和减少非目的条带.经过3轮PCR扩增反应最终获得位于黄瓜6PGDH起始密码子ATG上游长度为517 bp新序列.试验结果表明,应用改良TAIL-PCR能快速、有效地克隆与已知区域相邻的序列.%The upstream sequence of the 6-phosphogluconate dehydrogenase (6PGDH) gene from cucumber (C. Sati-vus L. ) was isolated using modified TAIL-PCR method. Compared with the original protocol, the main modifications of the TAIL-PCR were introduced here: ( 1) among the battery of random 10 bp primers originally developed for RAPD analysis, suitable primers were selected as short arbitrary upstream primers according to the Primer 5. 0 software prediction prior to PCR, and the annealing temperatures of two different stringency circles were also adjusted to be optimal accordingly. ( 2) the asymmetric interlaced thermal cycle was also applied in tertiary PCR so that the target product could be further preferentially amplified over non-target products. A 517 bp sequence upstream to the start codon of the 6PGDH gene of cucumber was successfully isolated after three rounds of amplification. The final result demonstrated that the modified of TAIL-PCR was an instant and efficient method to clone the flanking sequences from known region.

  17. Cloning of Homologous Auxin Receptor Genes in Cucumber (Cucumis sativus L.), and Analysis of Their Sequence Characteristics and Expression Patterns%黄瓜生长素受体同源基因的克隆、序列特征及表达模式分析

    Institute of Scientific and Technical Information of China (English)

    陈哲皓; 鲍林文; 王利琳

    2013-01-01

    Work had been done with the purpose to illustrate the regulation mechanism and function of auxin receptors and their signaling pathway in cucumber(Cucumis sativus L.),and also with the wish to find new approaches for enhancing production.Compared with the sequences of auxin receptor gene TIR1/AFBs in Arabidopsis,two highly conserved sequences were selected by screening the cucumber genome database,which were named Cs TIR and CsAFB.cDNAs of both CsTIR and CsAFB genes were cloned and verified by sequencing.Overexpression vectors were constructed for further reverse genetic research in cucumber.Their sequences were submitted to GenBank and recruited with the accession of KC414935.1 and KC414934.1,respectively.The basic physical and chemical properties,as well as functional protein domains,of CsTIR and CsAFB were predicted by bioinformatics analysis.Phylogenetic and conservation analysis were taken between sequences from different plants,which made these two genes putative auxin receptors in cucumber.The expression patterns of the two genes were analyzed by semi-q RT-PCR.CsAFB and CsTIR both accumulated more in roots and leaves than in stems in 10-day-old plants while CsTIR was undetectable in stems.Expressions of both genes were detected in every tissue from 70-day-old flowering plants and showed no tissue specificity.This work provides new evidence of auxin receptors in cucumber,and will contribute to the further study of their functions and regulation mechanisms.%为了解生长素受体及其信号通路在黄瓜(Cucumis sativus L.)中的调控机制和生物学功能,寻找提高产量的新途径并指导农业生产,我们以拟南芥(Aabidopsis)生长素受体家族AtTIR1/AFBs基因序列为参照进行比对,从黄瓜全基因组数据库中筛选出2条具有很高同源性的基因序列,分别命名为Cs TIR和CsAFB.克隆和测定了这2个基因的cDNA序列,构建了过表达载体,拟在黄瓜中开展反向遗传学研究.基因序列提交至GenBank

  18. 外源亚精胺对盐胁迫下黄瓜幼苗光合作用和根叶碳水化合物积累的影响%Effects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber( Cucumis sativus L.)seedlings under salt stress

    Institute of Scientific and Technical Information of China (English)

    陈丽芳; 陆巍; 孙锦; 郭世荣; 张振兴; 阳燕娟

    2011-01-01

    采用营养液水培,以盐敏感黄瓜品种'津春2号'为试材,研究外源亚精胺(Spd)对盐胁迫下黄瓜幼苗光合作用及根叶碳水化合物积累的影响.结果表明:与对照相比,50 mmol·L-1NaCl抑制了幼苗生长和光合作用;盐胁迫提高了叶片可溶性总糖、蔗糖、淀粉含量及根系可溶性总糖和蔗糖含量,降低根系淀粉含量;盐胁迫提高了根系磷酸蔗糖合酶(SPS)、蔗糖合酶(SS)和淀粉水解酶活性及叶片SPS、SS活性,降低叶片淀粉水解酶活性.与单纯盐胁迫相比,外施Spd显著提高了幼苗生长及光合作用,降低了叶片碳水化合物含量及根系可溶性总糖、蔗糖含量,提高了根系淀粉含量,降低了叶片中SPS、SS活性和根系SPS、SS和淀粉水解酶活性,提高叶片淀粉水解酶活性.推测外源Spd可能参与了盐胁迫下气孔调控,并调节相关酶活性以减少碳水化合物积累对光合作用的负反馈抑制,从而缓解了盐胁迫对光合作用的伤害,提高了植株盐胁迫耐性.%We investigated the effects of salt stress and spermidine(Spd) application to salinized nutrient solution on photosynthesis and carbohydrate accumulation in roots and leaves with a salt-sensitive cucumber( Cucumis sativus L.) cultivar Jinchun 2.The results showed that compared with control,seedlings grown in nutrient solution salinized with 50 mmol· L-1 NaC1 displayed restrained growth and photosynthesis.Salt stress induced an increase on total soluble sugar,sucrose and starch levels in cucumber leaves,also the levels of sugar and sucrose in cucumber roots, but a decrease on starch level on roots.Salt stress enhanced the activities of phosphate sucrose synthase(SPS) and sucrose synthase(SS) in leaves as well as SPS,SS and amylase activities in roots, while reduced amylase activity in leaves.The growth and photosynthesis of salt-stressed cucumber seedlings were significantly improved by exogenous Spd application to salinized nutrient

  19. Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress%干旱胁迫下外源水杨酸对黄瓜幼苗膜脂过氧化和光合特性的影响

    Institute of Scientific and Technical Information of China (English)

    郝敬虹; 易旸; 尚庆茂; 董春娟; 张志刚

    2012-01-01

    为了探讨外源水杨酸(SA)提高植物抗旱性的相关机制,研究了干旱胁迫下(基质含水量为饱和持水量的60%和50%),根际施用外源SA对黄瓜幼苗生长、膜脂过氧化、脯氨酸积累、水分利用效率、净光合速率(Pn)和叶绿素荧光参数的影响.结果表明:SA处理能够缓解干旱胁迫对黄瓜幼苗生长、Pn和水分利用效率的抑制,减小膜脂过氧化程度,促进脯氨酸的积累;添加外源SA显著减小了干旱胁迫下黄瓜幼苗的PSⅡ最大光化学效率、PSⅡ实际光化学效率、PSⅡ潜在活性、PSⅡ有效光化学效率和光化学猝灭系数的下降幅度,抑制了非光化学猝灭系数的升高.添加外源SA可以缓解干旱胁迫造成的膜脂过氧化对膜系统的氧化损伤,并通过增强PSⅡ反应中心活性提高了Pn,有助于水分的利用,同时增大渗透调节能力,减少水分的散失,提高水分利用效率,从而增强植株对干旱的适应能力.%To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photo-synthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS E , actual photochemical efficiency of PS Ⅱ , potential activity of PS Ⅱ, effective photochemical efficiency of PS Ⅱ, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results

  20. Proteomic Analysis of Fruit Bending in Cucumber (Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    WANG Li-li; ZHANG Peng; QIN Zhi-wei; ZHOU Xiu-yan

    2014-01-01

    In cucumber, fruit shape is an important quality criterion, and fruit bending is known to limit growth, yield, and taste. To investigate the post-transcriptional changes that regulate fruit bending and to better understand the underlying molecular mechanisms, we generated a proteomic proifle of the abdomen and back of cucumber bending fruit. Two-dimensional gel electrophoresis (2-DE) allowed the detection of approximately 900 distinct protein spots in each gel, 32 of which were differentially expressed in the abdomen and back of bending cucumber fruit. Ten of the differentially expressed proteins were analyzed using matrix-assisted laser ionization time of lfight mass spectrometry (MALDI-TOF/MS). A search of primary databases showed that the identiifed proteins are involved in various metabolic processes and cellular responses, including photosynthesis metabolism, energy metabolism, defense and stress response, and regulation. The identiifed proteins included large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, which are involved in photosynthesis and photorespiratory metabolism, and isocitrate dehydrogenase, which is involved in the tricarboxylic acid cycle. It is possible that imbalances in catabolic and anabolic processes directly affect the bending of cucumber fruit. The predicted function of the cobalamin-independent methionine synthase isozyme is closely related to ethylene biosynthesis; fruit bending may be regulated by ethylene, or by ethylene signaling crosstalk during fruit development. The 14-3-3 protein is usually considered to be a regulation-related protein, which plays a role in regulating cell hyperplasia, cell differentiation during growth, and apoptosis during senescence. Involvement of guanosine triphosphate (GTP)-binding proteins in signal transmission is known to regulate the development of cells in cucumber fruits and to play a role in fruit shape variation. Patterns of protein expression showed high repeatability. We hypothesize that these proteins may play an important role in growth and bending of cucumber fruits. The results of our study provide insight into the genetic mechanism underlying fruit bending in cucumber, and may help to promote cultivation of new varieties with superior fruits.

  1. Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus.

    Science.gov (United States)

    Xia, Xiao-Jian; Zhou, Yan-Hong; Ding, Ju; Shi, Kai; Asami, Tadao; Chen, Zhixiang; Yu, Jing-Quan

    2011-08-01

    • Brassinosteroids (BRs) are a new class of plant hormones that are essential for plant growth and development. Here, the involvement of BRs in plant systemic tolerance to biotic and abiotic stresses was studied. • The effects of 24-epibrassinolide (EBR) on plant stress tolerance were studied through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation, the analysis of gene expression using quantitative real-time PCR and the measurement of hydrogen peroxide (H₂O₂) production using a spectrophotometric assay or confocal laser scanning microscopy. • Treatment of primary leaves with EBR induced systemic tolerance to photooxidative stress in untreated upper and lower leaves. This was accompanied by the systemic accumulation of H₂O₂ and the systemic induction of genes associated with stress responses. Foliar treatment of EBR also enhanced root resistance to Fusarium wilt pathogen. Pharmacological study showed that EBR-induced systemic tolerance was dependent on local and systemic H₂O₂ accumulation. The expression of BR biosynthetic genes was repressed in EBR-treated leaves, but elevated significantly in untreated systemic leaves. Further analysis indicated that EBR-induced systemic induction of BR biosynthetic genes was mediated by systemically elevated H₂O₂. • These results strongly argue that local EBR treatment can activate the continuous production of H₂O₂, and the autopropagative nature of the reactive oxygen species signal, in turn, mediates EBR-induced systemic tolerance.

  2. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  3. Diploidization of cucumber (Cucumis sativus L. haploids by colchicine treatment

    Directory of Open Access Journals (Sweden)

    Vesselina Nikolova

    2014-02-01

    Full Text Available Haploid cucumber plants are totally infertile and do not undergo spontaneous diploidization. The use of haploids depends on the possibility of doubling the chromosome number and the obtaining of stable doubled haploids (DH. Four haploids of different genotypes propagated vegetatively were treated with colchicine in order to obtain DH. The following procedures were used: 1 apical shoot meristem treatment, 2 soaking of shoot explants, 3 placing of shoot explants on medium with colchicine. Plants of the C1 generation were evaluated in respect to morphological and cytological characters and fertility. The best result of 20.9% DH was obtained after repeated treatment of the meristem with colchicine. A large group of chimeras (28.5% was also distinguished as were haploids and tetraploids. DH plants were fertile and gave uniform progeny. Chimeras had a decreased fertility and showed disturbances in meiotic divisions.

  4. Estimating Time of Weed Emergence in Cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Nihat Tursun

    2015-02-01

    Full Text Available Modelling is carried out for eleven major weeds in cucumber to develop estimated models for weed emergence time. Weed species were grouped according to their emergence patterns. Amaranthus retroflexus, Chenopodium album, Heliotropium europaeum, Polygonum aviculare and Solanum nigrum were early emerging, Convolvulus arvensis, Cyperus rotundus, Cynodon dactylon, Portulaca oleracea and Sorghum halepense were season long emerging Tribulus terrestris was the late emerging weed species. Different non-linear growth curves (Chapman-Richard, Weibull, logistic, Gompertz and cubic spline fitted to the data of cumulative percent emergence for the different species and years. Cubic spline seemed the best model for many species.

  5. Genetic diversity and population structure of cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Jing Lv

    Full Text Available Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.

  6. Resistance in Cucumis sativus L. to tetranychus urticae Koch

    NARCIS (Netherlands)

    Ponti, de O.M.B.

    1980-01-01

    Chapter 1The role of plant breeding and particularly of host plant resistance in integrated control is discussed. Host plant resistance to insects and mites, especially to Tetranychus urticae is reviewed. A standard terminology for disease and pest resistance is recommended.Chapter 2The relationship

  7. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    NARCIS (Netherlands)

    Lv, J.; Qi, J.; Shi, Q.; Shen, D.; Zhang, S.; Shao, G.; Li, H.; Sun, Z.; Weng, Y.; Shang, Y.; Gu, X.; Li, X.; Zhu, X.; Zhang, J.; Treuren, van R.; Dooijeweert, van W.; Zhang, Z.; Huang, S.

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also incl

  8. Cucumber (Cucumis sativus L.) Anther Culture%黄瓜(Cucumis sativus L.)花药培养

    Institute of Scientific and Technical Information of China (English)

    Nguyen Thi Thanh Van; 陈劲枫

    2012-01-01

    Based on the protocols by Kumar et al,Song et al and Zhan,the anthers of three cucumbers genotypes"Kaluoer", "HHl-8-57"and"Jinlu Nongjiale" were used as test materials to investigate the factors of anther pretreatment(temperature and duration ) , medium composition (embryonic callus induction medium and embryo induction medium ) and cucumber genotype on cucumber anther culture. The results showed that pretreatment of anthers at 4 ℃ for 2 d significantly increased the embryonic callus induction ratio;the highest rate(81.3%)of embryonic callus induction was obtained on Zhan's medium (MS + 1.0 mg·L-1 2,4-D + 0.5 mg·L-1 6-BA + 3% sucrose + 0.8% agar) ;the highest rate(40.0%) of embryoids induction was obtained on Song's embryo induction medium(MS + 0.1 mg-L"1 NAA + 3.0 mg-L"' 6-BA + 3% sucrose + 0.8% agar). The embryonic callus and embryoid induction ratios were significantly different among tested varieties. Variety "Jinlu Nongjiale" had the highest embryonic callus induction rate(81.1%)and"HHl-8-57"had the highest embryoid induction rate(40.0%). Embryogenesis and haploid plants were obtained from two of three tested genotypes.%以卡罗尔、HH1-8-57与津绿农家乐3个不同基因型黄瓜品种为试材,在Kumar等、Song等和詹艳等试验研究基础上,设计试验分别探讨低温预处理时间、培养基成分(胚性愈伤组织诱导培养基、胚状体诱导培养基)和基因型等因素对黄瓜花药培养的影响.结果表明:在4℃低温预处理2d时,胚性愈伤组织诱导率显著高于其他处理;在MS+1.0 mg·L-1 2,4-D+ 0.5 mg· L-1 6-BA+ 3%蔗糖+0.8%琼脂培养基上胚性愈伤组织诱导率最高,达到81.3%;在MS+ 0.1 mg·L-1 NAA+ 3.0 mg·L-1 6-BA+ 3%蔗糖+0.8%琼脂培养基上胚状体诱导率最高,为40.0%;基因型间胚性愈伤组织诱导率及胚状体诱导率差异显著,津绿农家乐品种胚性愈伤组织诱导率最高,达到81.1%,HH1-8-57胚状体诱导率最高,为40.0%.本研究从2份试材中成功地诱导出胚状体并获得了黄瓜单倍体再生植株.

  9. Melon (Cucumis melo).

    Science.gov (United States)

    Nonaka, Satoko; Ezura, Hiroshi

    2015-01-01

    Genetic transformation is an important technique used in plant breeding and to functionally characterize genes of interest. The earliest reports of Agrobacterium-mediated transformation in the melon (Cucumis melo) were from the early 1990s (Fang and Grumet, Plant Cell Rep, 9: 160-164, 1990; Dong et al., Nat Biotechnol 9: 858-863, 1991; Valles and Lasa, Plant Cell Rep 13: 145-148, 1994). These early studies described three problems that decreased the efficiency of transformation: tetraploidy, chimeras, and escape. Using a liquid culture system for somatic embryogenesis, Akasaka-Kenedy et al. (Plant Sci 166: 763-769, 2004) overcame these problems and established an efficient transformation system; the protocol introduced in this chapter is based on this method.

  10. Effects of. gamma. -radiation on vitality and competitive ability of Cucumis pollen

    Energy Technology Data Exchange (ETDEWEB)

    Boom, J.M.A. van den; Nijs, A.P.M. den (Instituut voor de Veredeling van Tuinbouwgewassen, Wageningen (Netherlands))

    1983-11-01

    Pollen of 4 Cucumis sativus genotypes and of the related species C. metuliferus and C. zeyheri 2x was irradiated with four doses of ..gamma..-rays: 1, 2, 4 and 5 kGy. Higher radiation doses were found to inhibit germination and pollen tube growth in vitro with C. sativus, the most sensitive species. Irradiated pollen of cucumber never performed normal fertilization. However, after radiation with 1 kGy, cucumber pollen was able to occupy all available ovules, of which about 50% developed into empty seeds without embryo. This makes 1 kGy-irradiated maternal pollen less suitable to serve as mentor pollen in interspecific hybridizations. Doses of 2 kGy and more appeared to eliminate the ability to compete for ovules, while fruit set after a 2 kGy radiation was still high.

  11. Medieval herbal iconography and lexicography of Cucumis (cucumber and melon, Cucurbitaceae) in the Occident, 1300–1458

    Science.gov (United States)

    Paris, Harry S.; Janick, Jules; Daunay, Marie-Christine

    2011-01-01

    Background The genus Cucumis contains two species of important vegetable crops, C. sativus, cucumber, and C. melo, melon. Melon has iconographical and textual records from lands of the Mediterranean Basin dating back to antiquity, but cucumber does not. The goal of this study was to obtain an improved understanding of the history of these crops in the Occident. Medieval images purportedly of Cucumis were examined, their specific identity was determined and they were compared for originality, accuracy and the lexicography of their captions. Findings The manuscripts having accurate, informative images are derived from Italy and France and were produced between 1300 and 1458. All have an illustration of cucumber but not all contain an image of melon. The cucumber fruits are green, unevenly cylindrical with an approx. 2:1 length-to-width ratio. Most of the images show the cucumbers marked by sparsely distributed, large dark dots, but images from northern France show them as having densely distributed, small black dots. The different size, colour and distribution reflect the different surface wartiness and spininess of modern American and French pickling cucumbers. The melon fruits are green, oval to serpentine, closely resembling the chate and snake vegetable melons, but not sweet melons. In nearly all manuscripts of Italian provenance, the cucumber image is labelled with the Latin caption citruli, or similar, plural diminuitive of citrus (citron, Citrus medica). However, in manuscripts of French provenance, the cucumber image is labelled cucumeres, which is derived from the classical Latin epithet cucumis for snake melon. The absence of melon in some manuscripts and the expropriation of the Latin cucumis/cucumer indicate replacement of vegetable melons by cucumbers during the medieval period in Europe. One image, from British Library ms. Sloane 4016, has a caption that allows tracing of the word ‘gherkin’ back to languages of the geographical nativity of C

  12. (lathyrus sativus l.) in ethiopia

    African Journals Online (AJOL)

    Preferred Customer

    concentration in Lathyrus sativus genotypes .... marketing and social interactions among the rural ... on the effect of environment on ODAP content are ... wheat and maize through the Extension Program. .... M.Sc. Thesis, Addis Ababa Uni-.

  13. COMPARATIVE STUDY OF POLLEN AND PISTIL IN CROCUS SATIVUS L. (IRIDACEAE) AND ALLIED SPECIES

    OpenAIRE

    P. LAURETTI; D. DI SOMMA; M. GRILLI CAIOLA

    2000-01-01

    Crocus sativus L. is mainly known for the production of the drug saffron. Because of its sterility, it is propagated vegetatively by means of corms. To gain information on the reproductive biology of saffron and allied species, a comparative study on pollen and pistil of Crocus sativus L., C. cartwrightianus Herb., C. thomasii Ten. and C. hadriaticus Herb. was carried out. Pollen and pistils gathered at anthesis were examined by light (LM) and scanning electron microscopy (SEM). Pollen shape ...

  14. Tolerance to salinity in Cucumis with neutron activation and autoradiography of sodium in seedlings of selected species of the genus

    Energy Technology Data Exchange (ETDEWEB)

    Lathrop, B.L.

    1985-01-01

    Part I. Nineteen species of Cucumis were compared for tolerance to sodium chloride in solution and sand culture. C. sativus L., and C. hardwickii died at 270 meq/I NaCl, while C. melo L. can tolerate up to 340 meq/I. C. myriocarpus, C. ficifolius, C. membranifolius, and C. meeusii are the most tolerant, surviving up to about 500 meq/I NaCl. The initial response of all species to gradually increasing levels of salinization is a bluish-green deepening of foliage color and reduction in growth, followed by intervenal chlorosis of older leaves and more pronounced chlorosis of new growth. Death occurred first in the mesic species in about 12-18 days and was characterized by general wilting and necrosis. In more tolerant species which were generally more xeric and woody, death occurred in about 18-28 days as the leaf blades became necrotic on wilted petioles. Part II. A cyclotron generated proton beam was used to induce a high density thermal neutron flux from a NaI target for conversion of /sup 23/Na/sup 24/ to Na in living and dried seedlings of Cucumis sativus (sensitive to salinity) and C. myriocarpus (tolerant). There was little difference in movement of salt in the living seedlings of the cultivated and wild species of Cucumis during a 10 hour period following neutron activation and before autoradiography. Some suggestion of transport of Na in main vascular bundles occurred during this period in C. myriocarpus. The creation of /sup 24/Na in air-dried seedlings of this taxon that had been salinized also permitted autoradiography of sodium distribution and provided results similar to in vivo studies.

  15. Alternativas para el control de la cenicilla (Oidium sp. en pepino (Cucumis sativus L. Alternatives for the control of powdery mildew (Oidium sp. in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Moisés Gilberto Yáñez Juárez

    2012-04-01

    Full Text Available Esta investigación se realizó para conocer el efecto de sales de fosforo y potasio en el desarrollo y control de la cenicilla (Oidium sp. en pepino. Plantas de pepino var. Poinset 76 con signos de la enfermedad fueron asperjadas con soluciones de bicarbonato de potasio, bicarbonato de sodio, fosfato monopotásico, nitrato de potasio, cloruro de potasio y fosfito de potasio. La aplicación de sales no presentó efectos significativos (p≤ 0.05 en la altura y número de hojas en las plantas evaluadas. Con fosfito de potasio la incidencia de la enfermedad varió entre el 27.9 y 32.4%, con bicarbonato de potasio entre 19.9 y 29.5% y en el testigo la variación fue entre 44.1 y 47.4%. Veintiséis días después de la primera aplicación (dda las plantas tratadas con bicarbonato de potasio y fosfito de potasio mostraron 67.7 y 62.0% menor severidad que las testigo. Cuarenta y dos dda con bicarbonato de potasio y fosfito de potasio se logró 49.4 y 44.5% menos severidad que el testigo. Los resultados obtenidos mostraron que fosfito de potasio y bicarbonato de potasio a 5 y 4.7 g L, respectivamente, redujeron de manera significativa (p≤ 0.05 la incidencia y severidad de la enfermedad.This research was conducted to know the effect of phosphorous and potassium salts in the growth and control of powdery mildew (Oidium sp. in cucumbers. Cucumber plants of the variety Poinset 76 with signs of the disease were sprayed with potassium bicarbonate, sodium bicarbonate, monopotassium sulphate, potassium nitrate, potassium chloride and potassium phosphite solutions. The application of salts showed no significant effects (p≤ 0.05 on the height and number of leaves of plants evaluated. With potassium phosphite, the incidence of the disease varied between 27.9 and 32.4%; with potassium bicarbonate, it was between 19.9 and 29.5%, and in the control, variation went between 44.1 and 47.4%. Twenty-six days after the first application (dda, plants treated with potassium bicarbonate and potassium phosphite showed 67.7 and 62.0% less severity than the controls. Forty-two dda with potassium bicarbonate and potassium phosphite, there was 49.4 and 44.5% less severity than in the control. Results showed that the potassium phosphite and potassium bicarbonate at 5 and 4.7 g L, respectively, reduced significantly (p≤ 0.05 the incidence and severity of the disease.

  16. Alternativas para el control de la cenicilla (Oidium sp.) en pepino (Cucumis sativus L.) Alternatives for the control of powdery mildew (Oidium sp.) in cucumbers (Cucumis sativus L.)

    OpenAIRE

    2012-01-01

    Esta investigación se realizó para conocer el efecto de sales de fosforo y potasio en el desarrollo y control de la cenicilla (Oidium sp.) en pepino. Plantas de pepino var. Poinset 76 con signos de la enfermedad fueron asperjadas con soluciones de bicarbonato de potasio, bicarbonato de sodio, fosfato monopotásico, nitrato de potasio, cloruro de potasio y fosfito de potasio. La aplicación de sales no presentó efectos significativos (p≤ 0.05) en la altura y número de hojas en las plantas ...

  17. Cucumis zambianus (Cucurbitaceae): A New Species from Northwestern Zambia

    Science.gov (United States)

    During germplasm explorations within Zambia in 1984, seven Cucumis accessions were collected that could not be identified to species. Two of the accessions were studied in-depth. Based on phenotypic characters, they were closest to Cucumis pustulatus. In ITS analyses of all available Cucumis spec...

  18. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae)

    Science.gov (United States)

    Paris, Harry S.; Amar, Zohar; Lev, Efraim

    2012-01-01

    Background Sweet melons, Cucumis melo, are a widely grown and highly prized crop. While melons were familiar in antiquity, they were grown mostly for use of the young fruits, which are similar in appearance and taste to cucumbers, C. sativus. The time and place of emergence of sweet melons is obscure, but they are generally thought to have reached Europe from the east near the end of the 15th century. The objective of the present work was to determine where and when truly sweet melons were first developed. Methods Given their large size and sweetness, melons are often confounded with watermelons, Citrullus lanatus, so a list was prepared of the characteristics distinguishing between them. An extensive search of literature from the Roman and medieval periods was conducted and the findings were considered in their context against this list and particularly in regard to the use of the word ‘melon’ and of adjectives for sweetness and colour. Findings Medieval lexicographies and an illustrated Arabic translation of Dioscorides' herbal suggest that sweet melons were present in Central Asia in the mid-9th century. A travelogue description indicates the presence of sweet melons in Khorasan and Persia by the mid-10th century. Agricultural literature from Andalusia documents the growing of sweet melons, evidently casabas (Inodorous Group), there by the second half of the 11th century, which probably arrived from Central Asia as a consequence of Islamic conquest, trade and agricultural development. Climate and geopolitical boundaries were the likely causes of the delay in the spread of sweet melons into the rest of Europe. PMID:22648880

  19. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis.

    Science.gov (United States)

    Zhang, Zhen-Tao; Yang, Shu-Qiong; Li, Zi-Ang; Zhang, Yun-Xia; Wang, Yun-Zhu; Cheng, Chun-Yan; Li, Ji; Chen, Jin-Feng; Lou, Qun-Feng

    2016-07-01

    Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.

  20. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences

    NARCIS (Netherlands)

    Koo, D.H.; Nam, Y.W.; Choi, D.; Bang, J.W.; Jong, de J.H.S.G.M.; Hur, Y.

    2010-01-01

    Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes ap

  1. Climatic Risk of Field Cultivation of Cucumber (Cucumis sativus L. in Poland

    Directory of Open Access Journals (Sweden)

    Robert KALBARCZYK

    2010-12-01

    Full Text Available The goal of the present work was to separate zones of pickling cucumber field cultivation in Poland according to the various degrees of climatic risk. The study used 40-years of (1966-2005 data from 28 experimental stations of the Research Centre for Cultivar Testing. The data characterised the course of the growth, development, cucumber crop productivity and also the agrotechnical dates. Additionally, the work considered agrometeorological data of 7 development stages of the analysed plant: sunshine duration, soil temperature at a height of 5 cm, air temperature at a height of 2 m and 5 cm above ground level and atmospheric precipitation. The agrometeorological data was collected from 53 meteorological stations, in the Polish network of the Institute of Meteorology and Water Management. Weather-yield regression equations were used to determine unfavourable agrometeorological elements which is the best way to determined the quantity of the cucumber total and marketable yield. The highest climatic risk of pickling cucumber field cultivation occurred in about 7% of Poland’s area. This is the area covering the southwestern, southeastern, the northern and northeastern parts of the country. In these areas, very high occurrence frequency of agrometeorological elements was noted. These elements were: air and soil temperatures that were too low during the whole growing season and, too short of a duration of the period without frost, lasting ≤120 days.

  2. Climatic Risk of Field Cultivation of Cucumber (Cucumis sativus L.) in Poland

    OpenAIRE

    2010-01-01

    The goal of the present work was to separate zones of pickling cucumber field cultivation in Poland according to the various degrees of climatic risk. The study used 40-years of (1966-2005) data from 28 experimental stations of the Research Centre for Cultivar Testing. The data characterised the course of the growth, development, cucumber crop productivity and also the agrotechnical dates. Additionally, the work considered agrometeorological data of 7 development stages of the analysed plant:...

  3. CeO₂ and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus).

    Science.gov (United States)

    Zhao, Lijuan; Peralta-Videa, Jose R; Rico, Cyren M; Hernandez-Viezcas, Jose A; Sun, Youping; Niu, Genhua; Servin, Alia; Nunez, Jose E; Duarte-Gardea, Maria; Gardea-Torresdey, Jorge L

    2014-04-02

    There is lack of information about the effects of nanoparticles (NPs) on cucumber fruit quality. This study aimed to determine possible impacts on carbohydrates, proteins, mineral nutrients, and antioxidants in the fruit of cucumber plants grown in soil treated with CeO2 and ZnO NPs at 400 and 800 mg/kg. Fourier transform infrared spectroscopy (FTIR) was used to detect changes in functional groups, while ICP-OES and μ-XRF were used to quantify and map the distribution of nutrient elements, respectively. Results showed that none of the ZnO NP concentrations affected sugars; however at 400 mg/kg, CeO2 and ZnO NPs increased starch content. Conversely, CeO2 NPs did not affect starch content but impacted nonreducing sugar content (sucrose). FTIR data showed changes in the fingerprint regions of 1106, 1083, 1153, and 1181, indicating that both NPs altered the carbohydrate pattern. ZnO NPs did not impact protein fractionation; however, CeO2 NPs at 400 mg/kg increased globulin and decreased glutelin. Both CeO2 and ZnO NPs had no impact on flavonoid content, although CeO2 NPs at 800 mg/kg significantly reduced phenolic content. ICP-OES results showed that none of the treatments reduced macronutrients in fruit. In case of micronutrients, all treatments reduced Mo concentration, and at 400 mg/kg, ZnO NPs reduced Cu accumulation. μ-XRF revealed that Cu, Mn, and Zn were mainly accumulated in cucumber seeds. To the best of the authors' knowledge this is the first report on the nutritional quality of cucumber fruit attributed to the impact of CeO2 and ZnO NPs.

  4. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-05-11

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns.

  5. The Effect of Salt Priming on the Performance of Differentially Matured Cucumber (Cucumis sativus Seeds

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2008-08-01

    Full Text Available The influence of salt priming (3% KNO3 for 3 days and 1% NaCl for 2 days at 20 degree on germination, seedling emergence and seedling dry weight of two Iranian cucumber cultivars of Basmenj and Varamin harvested at 25, 35 and 45 days after anthesis (DAA was investigated in an unheated glasshouse. Seed germination and seedling emergence and growth were significantly affected by seed maturity and priming. Maximum advantage of priming seedling vigour was observed in seeds harvested at 25 DAA. Smaller effects of priming were also seen in the decreased mean germination and emergence times and increased seedling dry weight of seeds harvested at 35 and 45 DAA. Priming reduced percentage of seeds that germinated, but failed to emerge. In all cases, KNO3 priming was more effective than NaCl priming. Therefore, KNO3 priming can be used to improve cucumber seedling emergence and establishment, particularly in early spring sowings at low temperatures.

  6. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development.

    Science.gov (United States)

    Zhao, Jun-Long; Pan, Jun-Song; Guan, Yuan; Nie, Jing-Tao; Yang, Jun-Jun; Qu, Mei-Ling; He, Huan-Le; Cai, Run

    2015-05-01

    The regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been studied intensively, but that of multicellular remains unclear. In the present study, we characterized cucumber trichomes as representative multicellular and unbranched structures, but in a spontaneous mutant, mict (micro-trichome), all trichomes showed a micro-size and stunted morphologies. We revealed the transcriptome profile using Illumina HiSeq 2000 sequencing technology, and determined that a total of 1391 genes exhibited differential expression. We further validated the accuracy of the transcriptome data by RT-qPCR and found that 43 genes encoding critical transcription factors were likely involved in multicellular trichome development. These 43 candidate genes were subdivided into seven groups: homeodomain, MYB-domain, WRKY-domain, bHLH-domain, ethylene-responsive, zinc finger and other transcription factor genes. Our findings also serve as a powerful tool to further study the relevant molecular networks, and provide a new perspective for investigating this complex and species-specific developmental process.

  7. The Effects of Silver Nitrate Applications on the Flower Quantity of Cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Deniz KARAKAYA

    2011-05-01

    Full Text Available This study was conducted to investigate the effects of silver nitrate (AgNO3 on the flower quantity of cucumbers. The seeds used in this study, which was carried out in a plastic greenhouse, in the Gazi village of Antalya Province (Turkey the during spring and autumn 2005 breeding periods, were ‘Mostar F1’ (designated as ‘GND1’ and ‘Vesco Seeds Beith Alpha F1 (26.50 F1’, designated as ‘GND2’ and those are the types having common production. The silver nitrate application was performed by the method of spraying on the growth tips of plants and 0, 250, 500, 750, and 1000 ppm silver nitrate doses were administered. The research was conducted with 4 repetitions having 5 plants in each repetition according to the Random Parcel Trial Pattern. In order to determine the effects of the applications, the effects of a number of female flowers and male flowers on generative characteristics of planting periods (spring and fall were identified and the results were statistically evaluated. According to the results obtained in this research, AgNO3 has led to the formation of male flowers (no male flower formation in control, has increased the number of male flowers, and has led to a decrease in the number of female flowers. The increase in the number of male flowers varied according to the periods (in ‘GND2’.

  8. Assessment of chilling injury and molecular marker analysis in cucumber cultivars (Cucumis sativus L.)

    Science.gov (United States)

    The responses to chilling temperature of 12 Korean cucumber varieties were compared to those of two U.S.A. (previously determined cold tolerant NC76 and 'Chipper'), and Chinese and Japanese germplasms. Seedlings of each entry were exposed to 4 degrees C (Experiment 1) and 1 degree C (Experiments 2 ...

  9. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    WANG Shun-li; Seong Sub Ku; YE Xing-guo; HE Cong-fen; Suk Yoon Kwon; Pil Son Choi

    2015-01-01

    Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cu-cumber, and its frequency has been up to 23%. For example, signiifcantly enhancement of the transformation efifciency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efifcient positive selection system in lots of experiments. This review is to summarize some key factors in-lfuencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efifciency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.

  10. Competition for ovules between irradiated and fresh pollen in Cucumis sativus L

    Energy Technology Data Exchange (ETDEWEB)

    den Nijs, A.P.M. (Landbouwhogeschool Wageningen (Netherlands). Inst. for Horticultural Plant Breeding)

    1981-01-01

    Differences in the competitive fertilizing ability between self-pollen irradiated with 100 or 500 krad, and fresh cross-pollen, were assessed in five genotypes of cucumber, using mixed and double pollinations. Following mixed pollinations fruits contained very low percentages of empty developed seeds, with one exception. For three genotypes the percentage empty seeds increased following double pollination when the second pollination with fresh pollen was delayed for a longer time. The delay may give the irradiated pollen a greater chance to occupy ovules, resulting in empty seeds. For two other genotypes the percentages of empty seeds were similiar and low regardless of the interval between the pollinations. This was also true when 500 krad irradiated self-pollen was used. The pollen in these combinations may have been damaged to such extent, that its competitive fertilizing ability is extremely low.

  11. Inheritance and quantitative trait locus analysis of low-light tolerance in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Li, D D; Qin, Z W; Lian, H; Yu, G B; Sheng, Y Y; Liu, F

    2015-09-09

    The low-light tolerance index was investigated in a set of 123 F2:3 lines during the seedling stage across 2 seasons, and the heredity of low-light tolerance was assessed via different ge-netic analysis methods. The results of the classical analysis showed that low-light tolerance is controlled by an additive-dominant poly-gene, and the polygenic inheritance rate of separate generations was >30%. In addition, 5 quantitative trait loci (QTLs) exhibited a low-light tolerance index across both seasons, including 2 QTLs (Llti1.1 and Llti1.2) on the 1st linkage group (variances of 6.0 and 9.5%) and 3 QTLs (Llti2.1, Llti2.1, and Llti2.1) on the 2nd linkage group (variances of 10.1-14.0%). The classical analysis method and QTL information on the heredity of low-light tolerance showed that it is controlled by several major genes and a mini-polygene. The results will facilitate the breeding of resistance to low-light stress in cucumber.

  12. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.)

    Science.gov (United States)

    The chloroplhyll gives the green color in plants. Any mutations in chloroplhyll biosynthesis or regulation may result in color changes. Leaf color mutants are common in higher plants, which can be used as markers in crop breeding or as a tool in understanding regulatory mechanisms in chlorophyll bio...

  13. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L)

    Science.gov (United States)

    Powdery mildew is a serious fungal disease of cucumber and other cucurbot crops in the US and many other parts of the world. Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of powdery mildew resistance in cucumber are not well understood. In a three-y...

  14. Cloning and Sequence Analysis of Lipoxygenase Gene cDNA from Cucumber Fruit (Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    Z.K. Wang; Z.W. Qin; X.Y. Zhou; D.Y. Song

    2007-01-01

    @@ Lipoxygenases are nonheme-iron-containing dioxygenases that catalyze the hydroperoxidation of unsatrated fatty acids containing a cis, cis-1,4-pentadiene structure producing hydroperoxy acids with conjugated dienes.

  15. Transcriptomic and QTL analysis suggest candidate fruit shape factors in cucumber (Cucumis sativus)

    Science.gov (United States)

    Fruit size and shape are important determinants of market class and value in cucumber; however, underlying mechanisms regulating size and shape have not been identified. To gain insight into possible factors regulating cucumber fruit growth, we used a combined QTL and transcriptome approach to exami...

  16. A New Glabrous Gene (csgl3) Identified in Trichome Development in Cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Cui, Jin-Ying; Miao, Han; Ding, Li-Hong; Wehner, Todd C; Liu, Pan-Na; Wang, Ye; Zhang, Sheng-Ping; Gu, Xing-Fang

    2016-01-01

    Spines or trichomes on the fruit of cucumbers enhance their commercial value in China. In addition, glabrous mutants exhibit resistance to aphids and therefore their use by growers can reduce pesticide residues. Previous studies have reported two glabrous mutant plants containing the genes, csgl1 and csgl2. In the present study, a new glabrous mutant, NCG157, was identified showing a gene interaction effect with csgl1 and csgl2. This mutant showed the glabrous character on stems, leaves, tendrils, receptacles and ovaries, and there were no spines or tumors on the fruit surface. Inheritance analysis showed that a single recessive gene, named csgl3, determined the glabrous trait. An F2 population derived from the cross of two inbred lines 9930 (a fresh market type from Northern China that exhibits trichomes) and NCG157 (an American processing type with glabrous surfaces) was used for genetic mapping of the csgl3 gene. By combining bulked segregant analysis (BAS) with molecular markers, 18 markers, including two simple sequence repeats (SSR), nine insertion deletions (InDel) and seven derived cleaved amplified polymorphism sequences (dCAPs), were identified to link to the csgl3 gene. All of the linked markers were used as anchor loci to locate the csgl3 gene on cucumber chromosome 6. The csgl3 gene was mapped between the dCAPs markers dCAPs-21 and dCAPs-19, at genetic distances of 0.05 cM and 0.15 cM, respectively. The physical distance of this region was 19.6 kb. Three markers, InDel-19, dCAPs-2 and dCAPs-11, co-segregated with csgl3. There were two candidate genes in the region, Csa6M514860 and Csa6M514870. Quantitative real-time PCR showed that the expression of Csa6M514870 was higher in the tissues of 9930 than that of NCG157, and this was consistent with their phenotypic characters. Csa6M514870 is therefore postulated to be the candidate gene for the development of trichomes in cucumber. This study will facilitate marker-assisted selection (MAS) of the smooth plant trait in cucumber breeding and provide for future cloning of csgl3.

  17. Genetic and environmental effects on production of spontaneous tetraploids in cucumber (Cucumis sativus L.)

    Science.gov (United States)

    The appearance of spontaneous tetraploid (4x) plants is a serious problem for cucumber growers and the seed industry. These plants produce unacceptable fruits with poor quality that do not meet market standards, and result in substantial losses. A higher frequency of spontaneous 4x plants has been a...

  18. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  19. Effects of exogenous spermidine on the photosynthesis of Cucumis sativus L. seedlings under rhizosphere hypoxia stress

    Institute of Scientific and Technical Information of China (English)

    Tian WANG; Suping WANG; Shirong GUO; Yanjun SUN

    2008-01-01

    With water culture, this paper studied the effects of exogenous spermidine (Spd) on the net photosynthetic rate (Pn),intercellular CO2 concentra-tions (Ci),stomatal conductance(Gs),transpiration rate efficiency (CE) of cucumber seedlings under hypoxia stress. The results showed that Pn decreased gradually under the hypoxia stress, and reached the minimum 10 days later, which was 63.33% of the control. Compared with that of the hypoxia-stressed plants, the Pn 10 days after the application of exogenous Spd increased by 1.25 times. A negative correlation (R2=0.473-0.7118) was found between Pn and Ci, and Gs and Tr changed in wider ranges, which decreased under the hypoxia-stress, but increased under the hypoxia-stress plus exogenous Spd application. There was a significant positive correlation between Gs and Tr (R2=0.7821-0.9458), but these two parameters had no significant correlation with Pn. The 63.01% and 72.33%, respectively, while the hypoxia stress by 23% and 14%, respectively. The photo-inhibition of cucumber seedlings under hypoxia stress was mainly caused by non-stomatal inhibition, while the exogenous Spd alleviating the hypoxia stress by repairing photosyn-thesis systems.

  20. Mechanism of Aulacophora femoralis chinensis Weise feeding behavior and chemical response of host Cucumis sativus L.

    Institute of Scientific and Technical Information of China (English)

    KONG Chuihua; LIANG Wenju; YANG Xiao; ZHANG Maoxin; HU Fei

    2004-01-01

    When beetle Aulacophora femoralis chinensis Weise fed on cucumber seedlings, it first chewed a circular trench on their leaves and then nibbled the leaf tissues isolated by the trench, but when it was fed with the detached fresh cotyledons of cucumber, such an interesting trenching behavior did not occur, which indicated that the feeding behavior of the beetle was obviously correlated with the chemical response of the cucumber to the herbivory. Within 60 min after feeding, the level of cucurbitacin C in fed cotyledons of the cucumber seedling increased 10 fold or more.Cucurbitacin I was also detected 15 min after feeding, which reached 75 μg/g within 60 min. The high levels of cucurbitacins C and Ⅰ in fed cotyledons could be maintained for at least 24 h. A. Femoralis chinensis was strongly stimulated to take food by cucurbitacin C at a concentration between 10and 250 μg/g, and the feeding deterrent activity was observed at >250 μg/g, while the feeding deterrent threshold of A.femoralis chinensis to cucurbitacin I was 50 μg/g. The mixture of cucurbitacins C and Ⅰ had a much stronger feeding deterrent activity than single cucurbitacin I. The results suggested that cucumber could elicit chemical response to the beetle herbivory, its leaf being induced to produce more kinds of cucurbitacins and make them reach the levels of feeding deterrent activity on the beetle, while the trenching behavior of A. Femoralis chinensis was its strategy to answer the chemical response of cucumber. The trenching behavior of the beetle not only stopped the cucurbitacins biosynthesis in cucumber leaf tissues, but also blocked the translocation of cucurbitacins to the feeding sites. The trenching behavior of the beetle and the chemical response of host cucumber were the mutual adaptive strategies for protecting the host plant and the beetle themselves.

  1. Production of human tissue plasminogen activator (tPA) in Cucumis sativus.

    Science.gov (United States)

    Asgari, Mishaneh; Javaran, Mokhtar Jalali; Moieni, Ahmad; Masoumiasl, Asad; Abdolinasab, Maryam

    2014-01-01

    Tissue plasminogen activator (tPA) as a serine protease with 72 kD molecular mass and 527 amino acids plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The collective production of this drug in plants such as cucumber, one of the most important vegetables in the world, could reduce its production costs. In this study, after scrutiny of the appropriate regeneration of cucumber plant (Isfahan variety) on MS medium with naphthalene acetic acid hormone (NAA; 0/1 mg L⁻¹) and benzyl amino purine hormone (BAP; 3 mg L⁻¹) hormones, the cloned human tPA gene under the CaMV 35S promoter and NOS terminator into pBI121 plasmid was transferred into cotyledon explants by Agrobacterium tumefaciens strain LBA4404. Subsequent to the regeneration of inoculated explants on the selective medium, the persistence of tPA gene in recombinant plants was confirmed by polymerase chain reaction (PCR) with specific primers. To evaluate the tPA gene expression in transgenic plants, RNA was extracted and the tPA gene transcription was confirmed by reverse-transcription (RT) PCR. Followed the extraction of protein from the leaves of transgenic plants, the presence of tPA protein was confirmed by dot blot and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) analysis in order to survey the production of recombinant tPA protein. The enzyme-linked immunosorbent assay (ELISA) test was used for recombinant tPA protein level in transgenic cucumber plants. It was counted between 0.8 and 1%, and based on this, it was concluded that the presence of three expressions of regulatory factors (CaMV 35S, Kozak, NOS) and KDEL signal in the construct caused the increase of the tPA gene expression in cucumber plants.

  2. The localization of vanadium- and nitrate-sensitive ATPases in Cucumis sativus L. root cells

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-02-01

    Full Text Available Distinct separation of plasma membrane and tonoplast membranes was attained by centrifugation of cucumber root microsomes in a sucrose density gradient. The fractions enriched in plasma membranes, identified on the basis of the sensitivity of ATPases to VO43- sedimented at a specific density of 1. 1463-1. 1513 g x cm-3. They did not exhibit cytochrome oxidase activity and there was only trace activity of the azide-sensitive ATPase in these fractions. The fractions enriched in tonoplast membranes, having peak activity of nitrate-sensitive ATPase, were found in the region of specific densities of 1. 1082-1.1175. The presence of vanadium-sensitive and azide-sensitive ATPases was not found in these fractions. The ATPase inhibitors, DCCD, DES and EDAC, inhibited the activity of both vanadium-sensitive and nitrate-sensitive ATPases.

  3. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Ding, Lian; Yan, Shuangshuang; Jiang, Li; Liu, Meiling; Zhang, Juan; Zhao, Jianyu; Zhao, Wensheng; Han, Ying-Yan; Wang, Qian; Zhang, Xiaolan

    2015-12-01

    The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber.

  4. Response to chilling in cucumber (Cucumis sativus L. plants treated with triacontanol and Asahi SL.

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In pot experiments on cucumber cv. Śremski F1, the effect of short-term chilling on plants earlier treated with triacontanol (TRIA and Asahi SL was investigated. These plants were grown in a phytotron at an air temperature of 27/22°C (day/night, using fluorescent light with far flux density of 220 µmol × m-2 × s-1, with a photoperiod 16/8. At the 4th true leaf stage, the respective experimental series were sprayed with: 1 H2O - control, 2 TRIA 0.01, 3 TRIA 0.1, 4 TRIA 1.0 mg × dm-3, 5 Asahi SL 0.2, 6 Asahi SL 0.3%. After 24 hours one half of the plants from each experimental series was treated for a period of 3 days at a temperature of 12/6°C, with all the other growth conditions unchanged. The obtained results have shown that short-term chilling stress caused a significant increase in electrolyte leakage, free proline content and in the activity of guaiacol peroxidase in leaves, but a decrease in chlorophyll a+b content, stomatal conductance, transpiration, photosynthesis, leaf area and in the activity of catalase in leaves. The application of TRIA or ASAHI SL on leaves in the pre-stress period reduced the values of the traits which had been increased as a result of chilling and increased those which had reduced. Generally, TRIA was most effective at a concentration of 0.1 mg × dm-3, and Asahi SL at a concentration of 0.3%.

  5. [Effects of exogenous spermidine on Cucumis sativus L. seedlings photosynthesis under root zone hypoxia stress].

    Science.gov (United States)

    Wang, Tian; Wang, Suping; Guo, Shirong; Sun, Yanjun

    2006-09-01

    With water culture, this paper studied the effects of exogenous spermidine (Spd) on the net photosynthetic rate (Pn), intercellular CO2 concentrations (Ci), stomatal conductance (Gs), transpiration rate (Tr), apparent quantum yield (phi c), and carboxylation efficiency (CE) of cucumber seedlings tinder hypoxia stress. The results showed that the Pn decreased gradually under hypoxia stress, and reached the minimum 10 days after by 63. 33% of the control. Compared with that of hypoxia-stressed plants, the Pn after 10 days application of exogenous Spd increased 1.25 times. A negative correlation (R2 = 0.4730 - 0.7118) was found between Pn and Ci. Gs and Tr changed in wider ranges, which decreased under hypoxia-stress, but increased under hypoxia-stress plus exogenous Spd application. There was a significant positive correlation between Gs and Tr (R2 = 0.7821 - 0.9458), but these two parameters had no significant correlation with Pn; Hypoxia stress induced a decrease of phi c and CE by 63.01% and 72.33%, respectively, while hypoxia stress plus exogenous Spd application made phi c and CE increase by 23% and 14%, respectively. The photo-inhibition of cucumber seedlings under hypoxia stress was mainly caused by non-stomatal limitation, while exogenous Spd alleviated the hypoxia stress by repairing photosynthesis system.

  6. PENGUJIAN ISOLAT MIKORIZA ARBUSKULA (GLOMUS GEOSPORUM PADA TANAMAN MENTIMUN (CUCUMIS SATIVUS L.

    Directory of Open Access Journals (Sweden)

    Rita Tri Puspitasari

    2016-01-01

    Full Text Available The use of arbuscular mycorrhizal (MA in various studies has been able to save up to 50% fertilizer, because the MA can help the absorption of nutrients, especially P. In addition, the MA can help plant resistance, pest attack and can help plants cope with extreme circumstances, such as drought, high salinity, toxic materials and heavy metals. The study aims to test the potential of arbuscular Mycorrhizal isolates (Glomusgeosporum in cucumbers. The test of isolates arbuscular Mycorrhizae (Glomusgeosporum is still in its early stages laboratory scale, because of the limitation in producing the isolate. The test parameters were the number of leaves, the number of male and female flowers, fruit length, fruit diameter and fruit weight. The results showed that mycorrhizal (Glomusgeosporum tested NPK + 50% compared with mycorrhizae of an institution which has proven + 50% of the recommended NPK fertilizers (NPK 100%, has no significant different at all the parameters. Therefore Isolates Glomusgeosporum can save less than 50% of the recommended NPK on crop Cucumber (Cucumissativus L., which is sufficient potential for field-scale test on other plants.

  7. QTL molecular marker location of powdery mildew resistance in cucumber (Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cucumber lines, S94 (Northern China open-field type, powdery mildew (PM) susceptible) and S06 (European greenhouse type, PM resistant), and their F6:7 populations were used to investigate PM re-sistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was under-taken based on a constructed molecular linkage map of the corresponding F6 population using com-posite interval mapping. A total of four QTLs (pm1.1, pm2.1, pm4.1 and pm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, respectively, explaining 5.2%-21.0% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm4.1) were detected under the two test conditions. The QTL pm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring, respectively. Anchor markers tightly linked to those loci (<5 cM) could lay a basis for both molecular marker-assisted breeding and map-based gene cloning of the PM-resistance gene in cucumber.

  8. Progresses in the Mechanism of Resistance to Fusarium Wilt in Cucumber(Cucumis sativus L.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xingang; WU Fengzhi; WANG Xuezheng; YUAN Ye

    2008-01-01

    Fusarium wilt caused by Fusarium oxysporum f.sp.cucumerinum (Owen) is one of the most devastating diseases in cucumber production worldwide.Recent progresses in the mechanism of resistance to Fusarium wilt in cucumber were reviewed in this paper,including pathogenic mechanism of Fusarium oxysporum,the resistance mechanism of cucumber,the heredity of resistance,and the location of resistance genes.Following works should be the location and cloning of resistance genes with molecular biologic methods.

  9. Alternativas para el control de la cenicilla (Oidium sp.) en pepino (Cucumis sativus L.)

    OpenAIRE

    2012-01-01

    Esta investigación se realizó para conocer el efecto de sales de fosforo y potasio en el desarrollo y control de la cenicilla (Oidium sp.) en pepino. Plantas de pepino var. Poinset 76 con signos de la enfermedad fueron asperjadas con soluciones de bicarbonato de potasio, bicarbonato de sodio, fosfato monopotásico, nitrato de potasio, cloruro de potasio y fosfito de potasio. La aplicación de sales no presentó efectos significativos (p¿ 0.05) en la altura y número de hojas en las plantas evalua...

  10. Comparative studies on the soluble and plasma membrane associated nitrate reductase from Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-02-01

    Full Text Available The biochemical comparison between two forms of nitrate reductase from cucumber roots: the soluble enzyme and the plasma membrane-associated one was made. Soluble nitrate reductase was purified on the blue-Sepharose 4B. The nitrate reductase bound with plasma membranes was isolated from cucumber roots by partition of microsomes in the 6.5% dextran-PEG two phase system. The molecular weight of native enzyme estimated with HPLC was 240 kDa and 114 kDa for the soluble and membrane bounded enzyme, respectively. Temperature induced phase separation in Triton X-114 indicated a huge difference in hydrophobicity of the plasma membrane associated nitrate reductase and soluble form of enzyme. Small differences were observed in partial activities of plasma membrane nitrate reductase and soluble nitrate reductase. Also experiments with polyclonal antiserum raised against the native nitrate reductase showed some differences in the immunological properties of both forms of the nitrate reductase. The above results indicated that in cucumber roots two different forms of the nitrate reductase are present.

  11. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  12. Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots

    Directory of Open Access Journals (Sweden)

    Espen Luca

    2010-12-01

    Full Text Available Abstract Background Iron deficiency induces in Strategy I plants physiological, biochemical and molecular modifications capable to increase iron uptake from the rhizosphere. This effort needs a reorganization of metabolic pathways to efficiently sustain activities linked to the acquisition of iron; in fact, carbohydrates and the energetic metabolism has been shown to be involved in these responses. The aim of this work was to find both a confirmation of the already expected change in the enzyme concentrations induced in cucumber root tissue in response to iron deficiency as well as to find new insights on the involvement of other pathways. Results The proteome pattern of soluble cytosolic proteins extracted from roots was obtained by 2-DE. Of about two thousand spots found, only those showing at least a two-fold increase or decrease in the concentration were considered for subsequent identification by mass spectrometry. Fifty-seven proteins showed significant changes, and 44 of them were identified. Twenty-one of them were increased in quantity, whereas 23 were decreased in quantity. Most of the increased proteins belong to glycolysis and nitrogen metabolism in agreement with the biochemical evidence. On the other hand, the proteins being decreased belong to the metabolism of sucrose and complex structural carbohydrates and to structural proteins. Conclusions The new available techniques allow to cast new light on the mechanisms involved in the changes occurring in plants under iron deficiency. The data obtained from this proteomic study confirm the metabolic changes occurring in cucumber as a response to Fe deficiency. Two main conclusions may be drawn. The first one is the confirmation of the increase in the glycolytic flux and in the anaerobic metabolism to sustain the energetic effort the Fe-deficient plants must undertake. The second conclusion is, on one hand, the decrease in the amount of enzymes linked to the biosynthesis of complex carbohydrates of the cell wall, and, on the other hand, the increase in enzymes linked to the turnover of proteins.

  13. Impact of Methyl Jasmonate on Enhancing Chilling Tolerance of Cucumber (Cucumis sativus L. Seedlings

    Directory of Open Access Journals (Sweden)

    F. Saydpour

    2016-12-01

    Full Text Available Cucumber is a warm season crop that suffers from chilling injury at temperatures below 10°C. In recent years, jasmonates have been used for reduction of chilling injuries in plants. An experiment was, therefore, conducted to test whether methyl jasmonate (MeJA application at various concentrations (0, 0.05, 0.1 and 0.15 mM through seed soaking or foliar spray would protect cucumber seedlings, subjected to chilling stress. Results showed that MeJA application decreased chilling index, ion leakage, malondialdehyde content and hydrogen peroxide free radical and increased growth parameters, proline contents, chlorophylls contents and antioxidant activity. Although, seed soaking method provided better protection compared to foliar spray method, the highest cold tolerance was obtained with 0.15mM MeJA application in both application methods that caused low level of chilling index (1.67, malondialdehyde content (0.11 nm g-1 FW, hydrogen peroxide free radical (0.22 nm g-1 FW and ion leakage (32.87%. In general, it may be concluded that MeJA could be used effectively to protect cucumber seedling from damaging effects of chilling stress at the early stages of growth.

  14. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Science.gov (United States)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  15. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron-copper crosstalk.

    Science.gov (United States)

    Waters, Brian M; McInturf, Samuel A; Amundsen, Keenan

    2014-09-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe-regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu-deficient plants was independent of the normal Fe-uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe-regulated, and one was Cu-regulated. Simultaneous Fe and Cu deficiency synergistically up-regulated Fe-uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe-Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, and thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants.

  16. COMPARATIVE STUDY OF POLLEN AND PISTIL IN CROCUS SATIVUS L. (IRIDACEAE AND ALLIED SPECIES

    Directory of Open Access Journals (Sweden)

    M. GRILLI CAIOLA

    2000-04-01

    Full Text Available Crocus sativus L. is mainly known for the production of the drug saffron. Because of its sterility, it is propagated vegetatively by means of corms. To gain information on the reproductive biology of saffron and allied species, a comparative study on pollen and pistil of Crocus sativus L., C. cartwrightianus Herb., C. thomasii Ten. and C. hadriaticus Herb. was carried out. Pollen and pistils gathered at anthesis were examined by light (LM and scanning electron microscopy (SEM. Pollen shape and size, anomalous pollen grain percentage, pollen viability, pollen germination in vitro and on self-, and cross-pollinated stigmas were examined. Pistils at different developmental stages were examined by light microscopy. C. hadriaticus had the smallest pollen; C. sativus showed a higher percentage of anomalous and aborted grains and a lower percentage of viable grains. Pollen germination in vitro as well as on differently pollinated stigmas was lowest in C. sativus. Pistil organization was similar in all the species, but ovule number and integuments varied. Embryo sacs mature early, and female gametophyte development is regular for some days after flower anthesis. Capsules with seeds were obtained from all diploid species as well as in saffron after free- and cross-pollination. Results confirm that sterility in C. sativus is mainly confined to pollen.

  17. COMPARATIVE STUDY OF POLLEN AND PISTIL IN CROCUS SATIVUS L. (IRIDACEAE AND ALLIED SPECIES

    Directory of Open Access Journals (Sweden)

    P. LAURETTI

    2000-01-01

    Full Text Available Crocus sativus L. is mainly known for the production of the drug saffron. Because of its sterility, it is propagated vegetatively by means of corms. To gain information on the reproductive biology of saffron and allied species, a comparative study on pollen and pistil of Crocus sativus L., C. cartwrightianus Herb., C. thomasii Ten. and C. hadriaticus Herb. was carried out. Pollen and pistils gathered at anthesis were examined by light (LM and scanning electron microscopy (SEM. Pollen shape and size, anomalous pollen grain percentage, pollen viability, pollen germination in vitro and on self-, and cross-pollinated stigmas were examined. Pistils at different developmental stages were examined by light microscopy. C. hadriaticus had the smallest pollen; C. sativus showed a higher percentage of anomalous and aborted grains and a lower percentage of viable grains. Pollen germination in vitro as well as on differently pollinated stigmas was lowest in C. sativus. Pistil organization was similar in all the species, but ovule number and integuments varied. Embryo sacs mature early, and female gametophyte development is regular for some days after flower anthesis. Capsules with seeds were obtained from all diploid species as well as in saffron after free- and cross-pollination. Results confirm that sterility in C. sativus is mainly confined to pollen.

  18. Acclimation to high CO/sub 2/ in monoecious cucumbers. I. Vegetative and reproductive growth. [Cucmuis sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Peet, M.M.

    1986-01-01

    CO/sub 2/ concentrations of 1000 compared to 350 microliters per liter in controlled environment chambers did not increase total fruit weight or number in a monoecious cucumber (Cucumis sativus L. cv Chipper) nor did it increase biomass, leaf area, or relative growth rates beyond the first 16 days after seeding. Average fruit weight was slightly, but not significantly greater in the 1000 microliters per liter CO/sub 2/ treatment because fruit numbers were changed more than total weight. Plants grown at 1000 and 350 microliters per liter CO/sub 2/ were similar in distribution of dry matter and leaf area between mainstem, axillary, and subaxillary branches. Early flower production was greater in 1000 microliters per liter plants. Subsequent flower numbers were either lower in enriched plants or similar in the two treatments, except for the harvest at fruiting when enriched plants produced many more male flowers than the 350 microliters per liter treatments.

  19. Asynchronous meiosis in Cucumis hystrix–cucumber synthetic tetraploids resulting in low male fertility

    Directory of Open Access Journals (Sweden)

    Yonghua Han

    2016-08-01

    Full Text Available Interspecific hybridization and allopolyploidization contribute to the improvement of many important crops. Recently, we successfully developed an amphidiploid from an interspecific cross between cucumber (Cucumis sativus, 2n = 2x = 14 and its relative C. hystrix (2n = 2x = 24 followed by chemical induction of chromosome doubling. The resulting allotetraploid plant was self-pollinated for three generations. The fertility and seed set of the amphidiploid plants were very low. In this study, we investigated the meiotic chromosome behavior in pollen mother cells with the aid of fluorescence in situ hybridization, aiming to identify the reasons for the low fertility and seed set in the amphidiploid plants. Homologous chromosome pairing appeared normal, but chromosome laggards were common, owing primarily to asynchronous meiosis of chromosomes from the two donor genomes. We suggest that asynchronous meiotic rhythm between the two parental genomes is the main reason for the low fertility and low seed set of the C. hystrix–cucumber amphidiploid plants

  20. Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves.

    Science.gov (United States)

    Song, Xing-Shun; Wang, Yan-Jie; Mao, Wei-Hua; Shi, Kai; Zhou, Yan-Hong; Nogués, Salvador; Yu, Jing-Quan

    2009-03-01

    We examined the responses of the photosynthetic and respiratory electron transport and antioxidant systems in cell organelles of cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum Mill.) leaves to infection of cucumber mosaic virus (CMV) by comparing the gas exchange, Chl fluorescence, respiratory electron transport, superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate-glutathione (AsA-GSH) cycle enzymes and the production of H(2)O(2) in chloroplasts, mitochondria and soluble fraction in virus-infected and non-infected leaves. Long-term CMV infection resulted in decreased photosynthesis and respiration rates. Photosynthetic electron flux to carbon reduction, respiratory electron transport via both complex I and complex II and also the Cyt respiration rate all significantly decreased, while photosynthetic alternative electron flux and alternative respiration significantly increased. These changes in electron transport were accompanied by a general increase in the activities of SOD/AsA-GSH cycle enzymes followed by an increased H(2)O(2) accumulation in chloroplasts and mitochondria. These results demonstrated that disturbance of photosynthetic and respiratory electron transport by CMV also affected the antioxidative systems, thereby leading to oxidative stress in various organelles.

  1. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus

    Science.gov (United States)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.

    2011-12-01

    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  2. Botany, Taxonomy and Cytology of Crocus sativus series

    OpenAIRE

    Saxena, R. B.

    2010-01-01

    Saffron is produced from the dried styles of Crocus sativus L. (Iridaceae) which is unknown as wild plant, representing a sterile triploid. These belong to subgenus Crocus series Crocus sativus – series are closely related species; and are difficult to be separated taxonomically and have a complex cytology. Botany of C. sativus – series, taxonomy of their species and their infraspecific taxa are presented, and their distribution, ecology and phenology; full description and chromosome counts a...

  3. Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphid-borne yellows virus Infecting Cucumis Species in Korea.

    Science.gov (United States)

    Choi, Seung-Kook; Yoon, Ju-Yeon; Choi, Gug-Seoun

    2015-12-01

    Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.

  4. Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphid-borne yellows virus Infecting Cucumis Species in Korea

    Directory of Open Access Journals (Sweden)

    Seung-Kook Choi

    2015-12-01

    Full Text Available Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo, oriental melon (C. melo cultivar oriental melon, and cucumber (C. sativus were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii transmission of CABYV. The complete coat protein (CP gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.

  5. An Approach to the Chemosystematics of the Genus Cucumis L.

    Directory of Open Access Journals (Sweden)

    A. J. A. Petrus

    2014-03-01

    Full Text Available Phylogenetic relationships in the order Cucurbitales as well as the phylogeny and classification of its taxonomically most problematic family, Cucurbitaceae, have been the focus of several studies. Taxonomists over the years have differed on the delimitation of Cucumis L. and numerous taxonomic treatments have been proposed since the pioneering work of Linnaeus (1753. Using maximum parsimony, maximum likelihood, and Bayesian inference analyses of sequence data from the nuclear and chloroplast genomes, the genus Cucumis has recently been recircumscribed. Among the various chemical classes elaborated in plants, the foliar phenolics express greater stability in general and contribute significantly to the chemosystematics of both, angiosperms and gymnosperms. Hence, it is felt that an evaluation of the available literature on the foliar flavonoid constitution of the recently defined Cucumis would be relevant. This paper, therefore, analyses the distribution of the phytophenols in the taxa to ascertain the characteristically common foliar marker biochemical of the genus in addition to an attempt to justify the inclusion of the genus Mukia within Cucumis.

  6. Somatic Embryogenesis in Crocus sativus L.

    Science.gov (United States)

    Sevindik, Basar; Mendi, Yesim Yalcin

    2016-01-01

    Saffron (Crocus sativus L.) is one of the most important species in Crocus genus because of its effective usage. It is not only a very expensive spice, but it has also a big ornamental plant potential. Crocus species are propagated by corm and seed, and male sterility is the most important problem of this species. Hence, somatic embryogenesis can be regarded as a strategic tool for the multiplication of saffron plants. In this chapter, the production of saffron corms via somatic embryogenesis is described.

  7. Trichome-related mutants provide a new perspective on the multicellular trichome initiation and development in cucumber (Cucumis sativus. L

    Directory of Open Access Journals (Sweden)

    Xingwang Liu

    2016-08-01

    Full Text Available Trichomes are specialized epidermal cells located in aerial parts of plants that function in plant defense against biotic and abiotic stresses. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study the molecular mechanism of cell differentiation and pattern formation in plants. Loss-of-function mutations in Arabidopsis thaliana have suggested that the core genes GL1 (which encodes a MYB transcription factor and TTG1 (which encodes a WD40 repeat-containing protein are important for the initiation and spacing of leaf trichomes, while for normal trichome initiation, the genes GL3 and EGL3 (which encode a bHLH protein are needed. However, the positive regulatory genes involved in multicellular trichrome development in cucumber remain unclear. This review focuses on the phenotype of mutants (csgl3, tril, tbh, mict and csgl1 with disturbed trichomes in cucumber and then infers which gene(s play key roles in trichome initiation and development in those mutants. Evidence indicates that MICT, TBH and CsGL1 are allelic with alternative splicing. CsGL3 and TRIL are allelic and override the effect of TBH, MICT and CsGL1 on the regulation of multicellular trichome development; and affect trichome initiation. CsGL3, TRIL, MICT, TBH and CsGL1 encode HD-Zip proteins with different subfamilies. Genetic and molecular analyses have revealed that CsGL3, TRIL, MICT, TBH and CsGL1 are responsible for the differentiation of epidermal cells and the development of trichomes. Based on current knowledge, a positive regulator pathway model for trichome development in cucumber was proposed and compared to a model in Arabidopsis. These data suggest that trichome development in cucumber may differ from that in Arabidopsis.

  8. Fine genetic mapping of Cp, a recessive gene for compact (dwarf) plant architecture in cucumber, cucumis sativus L

    Science.gov (United States)

    The compact or dwarf plant architecture is an important trait in cucumber breeding. Compact cucumber has the potential to be used in once-over mechanical harvest of pickling cucumber production. Compact growth habit is controlled by a simply inherited recessive gene. To facilitate markers assisted s...

  9. Carbon dioxide enrichment of greenhouse vegetable through the use of diesel exhaust gas. [Cucumis sativus; Lactuca sp

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.H.; Hodges, C.N.

    1970-01-01

    Two cucumber and eight lettuce varieties were grown in two air-supported, closed-environment plastic greenhouses, one with approximately ambient CO2 levels, and the other enriched with 1400 ppm CO2. Diesel exhaust gas was the source of the carbon dioxide. Once the exhaust gases were scrubbed through seawater and put through an activated charcoal filter, essentially no other gases entered the greenhouse along with the CO2. Cucumbers grown in the enriched environment came into production one week earlier, and one variety produced significantly higher yields, than those grown at near ambient levels of CO2. Lettuce grown in the CO2 enriched greenhouse weighed, at market maturity, nearly twice as much as lettuce grown at ambient levels.

  10. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Gholamabbas, E-mail: ghs@iaushiraz.net; Ranjbar, Morteza [Shiraz Branch, Islamic Azad University, Department of Physics (Iran, Islamic Republic of); Amiri, Aliasghar [Shiraz Branch, Islamic Azad University, Department of Chemistry (Iran, Islamic Republic of)

    2013-05-15

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  11. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    Science.gov (United States)

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  12. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus.

    Science.gov (United States)

    Liu, Wei; Fu, Rao; Li, Qiang; Li, Jing; Wang, Lina; Ren, Zhonghai

    2013-12-01

    The HD-Zip proteins comprise one of the largest families of transcription factors in plants. HD-Zip genes have been grouped into four different classes: HD-Zip I to IV. In this study, we described the identification and structural characterization of Class I HD-Zip genes in cucumber. A complete set of 13 HD-Zip I genes were identified in the cucumber genome using Blast search tools and phylogeny. The cucumber HD-Zip I family contained a smaller number of identified genes compared to other higher plants such as Arabidopsis and maize due to the absence of recent gene duplication events. Chromosomal location of these genes revealed that they are distributed unevenly across 5 of 7 chromosomes. Tissue-specific expression profiles showed that 13 cucumber HD-Zip I genes were expressed in at least one of the tissues, which suggested that cucumber HD-Zip I genes took part in many cellular processes. The transcript abundance level analysis during abiotic stress conditions (NaCl, ABA and low temperature treatments) identified a group of HD-Zip I genes that responded to one or more treatments.

  13. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  14. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency.

    Science.gov (United States)

    Gonzalo, María José; Lucena, Juan J; Hernández-Apaolaza, Lourdes

    2013-09-01

    Silicon is considered an essential element in several crops enhancing growth and alleviating different biotic and abiotic stresses. In this work, the role of Si in the alleviation of iron deficiency symptoms and in the Fe distribution in iron deficient plants has been studied. Thus, soybean and cucumber plants grown in hydroponic culture under iron limiting conditions were treated with different Si doses (0.0, 0.5 and 1.0 mM). The use of a strong chelating agent such as HBED avoided Fe co-precipitation in the nutrient solution and allowed for the first time the analysis of Si effect in iron nutrition without the interference of the iron rhizospheric precipitation. SPAD index, plant growth parameters and mineral content in plant organs were determined. For soybean, the addition of 0.5 mM of Si to the nutrient solution without iron, initially or continuously during the experiment, prevented the chlorophyll degradation, slowed down the growth decrease due to the iron deficiency and maintained the Fe content in leaves. In cucumber, Si addition delayed the decrease of stem dry weight, stem length, node number and iron content in stems and roots independently of the dose, but no-effect was observed in chlorosis symptoms alleviation in leaves. The observed response to Si addition in iron deficiency was plant-specific, probably related with the different Fe efficiency strategies developed by these two species.

  15. Cytohistological analysis of somatic embryogenesis in cucumber (Cucumis sativus L. II. Natural fluorescence and direct somatic embryogenesis from protoplasts

    Directory of Open Access Journals (Sweden)

    W. Burza

    2014-02-01

    Full Text Available The development of protoplast derived from somatic embryos and some of their characteristics were compared with embryos from suspension and in vivo in the same B line. Embryos formed in a protoplast culture differed from others that their younger stages contained vacuolated cells, and older ones had altered morphological and histological structure. Somatic embryogenesis is more regular from suspension then from protoplasts. No distinct differences were observed in the rate of embryo development in vivo and in vitro, and in vitro embryos show a larger variation in size at the same stage. Embryos in vitro with fluorescence are generally larger than zygotic ones at each stage. The use of fluorescence is suggested for the selection of heterokariocytes after protoplast fusion.

  16. Potential use of RAPD markers in characteristics of cucumber (Cucumis sativus L. haploids and double-haploids

    Directory of Open Access Journals (Sweden)

    Katarzyna Niemirowicz-Szczytt

    2011-04-01

    Full Text Available A study was designed to obtain hapolid and double haploid (DH plants from cucumber cultivars tolerant to Pseudoperonospora cubensis. The main goal was to identify RAPD molecular markers associated with downy mildew resistance. On average, 20% of embryos generated in two experiments, were converted to haploid plants. RAPD markers that differentiated susceptible and resistant H and DH plants were identified. Somaclonal variation in DH lines was seldom detected.

  17. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus.

    Science.gov (United States)

    Jiang, Yu-ping; Cheng, Fei; Zhou, Yan-hong; Xia, Xiao-jian; Mao, Wei-hua; Shi, Kai; Chen, Zhi-xiang; Yu, Jing-quan

    2012-10-01

    Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO(2) assimilation, hydrogen peroxide (H(2)O(2)) accumulation, and leaf area in cucumber. H(2)O(2) treatment induced increases in CO(2) assimilation whilst inhibition of the H(2)O(2) accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO(2) assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H(2)O(2)-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (Φ(PSII)) and photochemical quenching coefficient (q(P)). EBR and H(2)O(2) both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO(2) response curve and in vitro measurement of Rubisco activities. Moreover, EBR and H(2)O(2) increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H(2)O(2). However, the effects of EBR on carbohydrate metabolisms were reversed by the H(2)O(2) generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H(2)O(2) functions as a secondary messenger for EBR-induced CO(2) assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H(2)O(2) mediates the regulation of photosynthesis by BRs and suggests that EBR and H(2)O(2) regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

  18. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping

    Science.gov (United States)

    Cucumber and melon are two economically important vegetable species. Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon, where twelve melon chromosomes are thought to have undergone chromosome fusion to result in the ...

  19. Long-term in vitro system for maintenance and amplification of root-knot nematodes in Cucumis sativus roots

    Directory of Open Access Journals (Sweden)

    Fernando E. eDíaz-Manzano

    2016-02-01

    Full Text Available Root-knot nematodes (RKN are polyphagous plant-parasitic roundworms that produce large crop losses, representing a relevant agricultural pest worldwide. After infection, they induce swollen root structures called galls containing giant cells (GCs indispensable for nematode development. Among efficient control methods are biotechnology-based strategies that require a deep knowledge of underlying molecular processes during the plant-nematode interaction. Methods of achieving this knowledge include the application of molecular biology techniques such as transcriptomics (massive sequencing or microarray hybridization, proteomics or metabolomics. These require aseptic experimental conditions, as undetected contamination with other microorganisms could compromise the interpretation of the results. Herein, we present a simple, efficient and long-term method for nematode amplification on cucumber roots grown in vitro. Amplification of juveniles (J2 from the starting inoculum is around 40-fold. The method was validated for three Meloidogyne species (M. javanica, M. incognita and M. arenaria, producing viable and robust freshly hatched J2s. These can be used for further in vitro infection of different plant species such as Arabidopsis, tobacco and tomato, as well as enough J2s to maintain the population. The method allowed maintenance of around 90 Meloidogyne spp. generations (one every two months from a single initial female over 15 years.

  20. Molecular cloning and expression analysis of the ethylene insensitive3 (EIN3) gene in cucumber (Cucumis sativus).

    Science.gov (United States)

    Bie, B B; Pan, J S; He, H L; Yang, X Q; Zhao, J L; Cai, R

    2013-10-07

    The plant gaseous hormone ethylene regulates many aspects of plant growth, development, and responses to the environment. Ethylene insensitive3 (EIN3) is a key transcription factor involved in the ethylene signal transduction pathway. To gain a better understanding of this particular pathway in cucumber, the full-length cDNA encoding EIN3 (designated as CsEIN3) was cloned from cucumber for the first time by rapid amplification of cDNA ends. The full length of CsEIN3 was 2560 bp, with an open reading frame of 1908 bp encoding 635 amino acids. Sequence alignment and phylogenetic analyses revealed that CsEIN3 has high homology with other plant EIN3/EIL proteins that were derived from a common ancestor during evolution, and CsEIN3 was grouped into a cluster along with melon. Homology modeling demonstrated that CsEIN3 has a highly similar structure to the specific DNA-binding domain contained in EIN3/EIL proteins. Based on quantitative reverse transcription-polymerase chain reaction analysis, we found that CsEIN3 was constitutively expressed in all organs examined, and was increased during flower development and maturation in both male and female flowers. Our results suggest that CsEIN3 is involved in processes of flower development. In conclusion, this study will provide the basis for further study on the role of EIN3 in relevant biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  1. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  2. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Chen, Chunhua; Liu, Meiling; Jiang, Li; Liu, Xiaofeng; Zhao, Jianyu; Yan, Shuangshuang; Yang, Sen; Ren, Huazhong; Liu, Renyi; Zhang, Xiaolan

    2014-09-01

    Trichomes are epidermal hair-like structures that function in plant defence against biotic and abiotic stresses. Extensive studies have been performed on foliar trichomes development in Arabidopsis and tomato, but the molecular mechanism of fruit trichome formation remains elusive. Cucumber fruit is covered with trichomes (spines) that directly affect the appearance and quality of cucumber products. Here, we characterized the fruit spine development in wild-type (WT) cucumber and a spontaneous mutant, tiny branched hair (tbh). Our data showed that the cucumber trichome was multicellular and non-glandular, with malformed organelles and no endoreduplication. Fruit spine development was generally homogenous and marked by a rapid base expansion stage. Trichomes in the tbh mutant were tiny and branched, with increased density and aberrant cell shape. Transcriptome profiling indicated that meristem-related genes were highly enriched in the upregulated genes in the tbh versus the WT, as well as in WT spines after versus before base expansion, and that polarity regulators were greatly induced during spine base expansion. Quantitative reverse transcription PCR and in situ hybridization confirmed the differential expression of CUP-SHAPED COTYLEDON3 (CUC3) and SHOOT MERISTEMLESS (STM) during spine development. Therefore, cucumber trichomes are morphologically different from those of Arabidopsis and tomato, and their development may be regulated by a distinct pathway involving meristem genes and polarity regulators.

  3. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Sun, Hongyan; Dai, Huaxin; Wang, Xiaoyun; Wang, Guohui

    2016-11-01

    Selenium can mitigate cadmium toxicity in plants. However, the mechanism of this alleviation has not been fully understood. In the present study, the role of Se in inducing tolerance to Cd stress in cucumber was elucidated. Results showed that Se significantly alleviated Cd-induced growth inhibition, reduced Cd concentration, increased SPAD value and improved photosynthetic performance. Through proteomic analysis by two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry, 26 protein spots were identified, which were significantly influenced by Cd stress and/or Se application. Among these proteins, the abundance of 21 spots (10 in leaves and 11 in roots) were repressed in Cd-treated and up-accumulated or no-changed in Cd+Se-treated cucumber. These altered proteins were involved in the response to stress, metabolism, photosynthesis and storage, they were including glutathione S-transferase F8, heat shock protein STI-like, peroxidase, ascorbate oxidase, fructose-bisphosphate aldolase 2, NiR, Rieske type ion sulfur subunit and PsbP domain-containing protein 6. Furthermore, we identified five proteins with an increase in relative abundance after Cd treatment, they were involved in the functional groups active in response to stress and transport. The present study provided novel insights into Se-mediated tolerance of cucumber seedlings against Cd toxicity at the proteome level.

  4. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L. using a single-nucleotide polymorphism genotyping array.

    Directory of Open Access Journals (Sweden)

    Mor Rubinstein

    Full Text Available Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs or on combinations of SSRs and sequence-related amplified polymorphism (SRAP. In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs. These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.

  5. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    Yu-ping JIANG; Fei CHENG; Yan-hong ZHOU; Xiao-jian XIA; Wei-hua MAO; Kai SHI; Zhi-xiang CHEN; Jing-quan YU

    2012-01-01

    Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops;however,the mechanism by which BRs increase photosynthesis is not fully understood.Here,we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO2 assimilation,hydrogen peroxide (H2O2) accumulation,and leaf area in cucumber.H2O2 treatment induced increases in CO2 assimilation whilst inhibition of the H2O2 accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO2 assimilation.Increases of light harvesting due to larger leaf areas in EBR- and H2O2-treated plants were accompanied by increases in the photochemical efficiency of photosystem Ⅱ (ΦPSⅡ) and photochemical quenching coefficient (qp).EBR and H2O2 both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO2 response curve and in vitro measurement of Rubisco activities.Moreover,EBR and H2O2 increased contents of total soluble sugar,sucrose,hexose,and starch,followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase,sucrose synthase,and invertase.Interestingly,expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H2O2.However,the effects of EBR on carbohydrate metabolisms were reversed by the H2O2 generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment.All of these results indicate that H2O2 functions as a secondary messenger for EBR-induced CO2 assimilation and carbohydrate metabolism in cucumber plants.Our study confirms that H2O2 mediates the regulation of photosynthesis by BRs and suggests that EBR and H2O2 regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

  6. Inheritance of Powdery Mildew Resistance in Cucumber (Cucumis sativus L.) and Development of an AFLP Marker for Resistance Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-1-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross Ⅰ. In cross Ⅱ, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross Ⅲ were similar to those in cross Ⅱ. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated,which indicated that it was unique to the cucumber genome.

  7. The impact of light and gravity on growth directions in a root system of Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Piotr Otręba

    2011-01-01

    Full Text Available While each individual root responds to such environmental factors as light or gravity the question arises how these reactions subordinate to the whole root system, which is supposed to maintain its primary functions. Data presented here confirm that in cucumber the gravity and light modulate the growth direction of the lateral roots subunits of the system. Another important factor affecting behavior of lateral roots is an orientation of the main root. These facts all together suggest that the root system functions as an integrated entity, capable of adapting its architecture to changing environmental conditions. Its flexibility, based on unknown signaling network, guarantees optimal functioning of the system.

  8. Obtention of in vitro Haploid Plants From in situ Induced Haploid Embryos in Cucumber (Cucumis sativus L.)

    OpenAIRE

    1999-01-01

    In this study the obtention of in vitro haploid plants from haploid embryos induced by pollination with irradiated pollen was investigated. The haploid embryos of four cucumber genotypes obtained in different season of the year were cultured on the E20A medium under aseptic condition in 1992-1994. The percentage of embryos that turned into plantlets, duration needed for plant formation, and in situ plantlet development were investigated. Also, the micropropagation possibility with clonning an...

  9. Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus)

    Indian Academy of Sciences (India)

    Defang Gan; Dan Zhuang; Fei Ding; Zhenzhou Yu; Yang Zhao

    2013-12-01

    Aux/IAA is an important gene family involved in many aspects of growth and development. Aux/IAA proteins are short-lived nuclear proteins that are induced primarily by various phytohormones. In this study, 29 Aux/IAA family genes (CsIAA01–CsIAA29) were identified and characterized in cucumber, including gene structures, phylogenetic relationships, conserved protein motifs and chromosomal locations. These genes show distinct organizational patterns of their putative motifs. The distributions of the genes vary: except for five CsIAA genes in cucumber that were not located, seven CsIAA genes were found on scaffold, while the other 17 CsIAA genes were distributed on seven other chromosomes. Based on a phylogenetic analysis of the Aux/IAA protein sequences from cucumber, Arabidopsis and other plants, the Aux/IAA genes in cucumber were categorized into seven subfamilies. To investigate whether the expression of CsIAA genes is associated with auxin induction, their transcript levels were monitored in seedlings treated with IAA (indole-3-acetic acid), and their expression patterns were analysed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed that 11/29 CsIAA genes were expressed in leaves whether treated with IAA or not and the time course of processing and compared with the control, five CsIAA genes showed low expression only after 60 min treatment with IAA, while 11 genes showed no expression. These results provide useful information for further functional analysis of Aux/IAA gene family in cucumber.

  10. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  11. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [H-3]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial......Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  12. cDNA cloning and characterization of a gibberellin-responsive gene in hypocotyls of Cucumis sativus L.

    Science.gov (United States)

    Chono, M; Yamauchi, T; Yamaguchi, S; Yamane, H; Murofushi, N

    1996-07-01

    A cDNA clone corresponding to a gibberellin-responsive gene (CRG16) was isolated from cucumber hypocotyls. CRG16 was deduced to encode an extremely hydrophobic protein of 65 amino acids. The deduced sequence exhibited no significant homology to other proteins. Levels of CRG16 mRNA reflected the gibberellin-induced elongation of cucumber hypocotyls.

  13. Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H(+)-ATPase activity.

    Science.gov (United States)

    Dell'Orto, M; Santi, S; De Nisi, P; Cesco, S; Varanini, Z; Zocchi, G; Pinton, R

    2000-04-01

    One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H(+)-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H(+)-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H(+)-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide.

  14. A unique approach to demonstrating that apical bud temperature specifically determines leaf initiation rate in the dicot Cucumis sativus

    NARCIS (Netherlands)

    Savvides, Andreas; Dieleman, Anja; Ieperen, van Wim; Marcelis, Leo F.M.

    2016-01-01

    Main conclusion: Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs.We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies

  15. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.;

    1995-01-01

    was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite......An experiment was set up to test the ability of arbuscular mycorrhizal (AM) roots and hyphae to produce extracellular phosphatases and to study the relationship between phosphatase activity and soil organic P (P-o). Non-mycorrhizal cucumber and cucumber in symbiosis with either of two mycorrhizal...... fungi were grown in a sandy loam-sand mixture in three-compartment pots. Plant roots were separated from two consecutively adjoining compartments, first by a 37 m mesh excluding roots and subsequently by a 0.45 m membrane excluding mycorrhizal hyphae. Soil from the two root-free compartments...

  16. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Uroic, M Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (As(V)) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under As(V) stress. Produced xylem sap was quantified and absolute arsenic transported was determined. As(V) exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by As(V) exposure. The compound down-regulated was identified to be isoleucine. Furthermore, As(V) exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg(-1) As(V). No difference to control plants was observed when plants were exposed to 1000 μg kg(-1) DMA. Absolute arsenic amount in xylem sap was the lowest at high As(V) exposure. These results show that As(V) has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  17. Effects and Mechanisms of Oil Cakes on the Growth of Cucumber (Cucumis sativus L. ) Under Continuous Cropping System

    Institute of Scientific and Technical Information of China (English)

    RUAN Wei-bin; LIU Mo-han; PAN Jie; Wang Jing; LU Wen-long; MA Cheng-cang; WANG Jing-guo; SHEN Yue; GAO Yu-bao

    2003-01-01

    Fxperiments on the effect of soil amendment with rape (Brassica chinensis L. ) seed cake, cot-ton (Gossypium hirsutum L. ) seed or sesame (Sesamum indieum L. ) seed cake on the growth of cucumberseedlings under a continuous cropping system were conducted in a greenhouse environment. The results indica-ted that two applications of sesame seed cake (0.1 and 0.5 %, w/w) increased the growth of cucumber, but therape oil cake showed a negative effect at a rate of 1.5% (w/w). The sesame seed cake was separated into four fractious(Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the polarity, and all four fractious had a positive effect on the growth of cucumbers un-der a continuous cropping system. Fraction number Ⅲii was isolated into 25 proportions by silicon column, and only ole-ic acid, palmitic acid and octadecanoic acid were identified in proportion 10 by GC-MS in which 93.3% was oleic acidand palmitic acid. The oleic acid had a significant and positive effect on cucumber growth under salt stress at the level30 mmol and showed slight resistance to several pathogenic fungi.

  18. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA₄ interaction in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Zhang, Hai-Jun; Zhang, Na; Yang, Rong-Chao; Wang, Li; Sun, Qian-Qian; Li, Dian-Bo; Cao, Yun-Yun; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2014-10-01

    Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 μM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the inhibitory effects of NaCl stress on germination mainly by regulating the biosynthesis and catabolism of ABA and GA4.

  19. Comparative toxicity of nanoparticulate/bulk Yb₂O₃ and YbCl₃ to cucumber (Cucumis sativus).

    Science.gov (United States)

    Zhang, Peng; Ma, Yuhui; Zhang, Zhiyong; He, Xiao; Guo, Zhi; Tai, Renzhong; Ding, Yayun; Zhao, Yuliang; Chai, Zhifang

    2012-02-01

    With the increasing utilization of nanomaterials, there is a growing concern for the potential environmental and health effects of them. To assess the environmental risks of nanomaterials, better knowledge about their fate and toxicity in plants are required. In this work, we compared the phytotoxicity of nanoparticulate Yb(2)O(3), bulk Yb(2)O(3), and YbCl(3)·6H(2)O to cucumber plants. The distribution and biotransformation of the three materials in plant roots were investigated in situ by TEM, EDS, as well as synchrotron radiation based methods: STXM and NEXAFS. The decrease of biomass was evident at the lowest concentration (0.32 mg/L) when exposed to nano-Yb(2)O(3), while at the highest concentration, the most severe inhibition was from YbCl(3). The inhibition was dependent on the actual amount of toxic Yb uptake by the cucumber plants. In the intercellular regions of the roots, Yb(2)O(3) particles and YbCl(3) were all transformed to YbPO(4). We speculate that the dissolution of Yb(2)O(3) particles induced by the organic acids exuded from roots played an important role in the phytotoxicity. Only under the nano-Yb(2)O(3) treatment, YbPO(4) deposits were found in the cytoplasm of root cells, so the phytotoxicity might also be attributed to the Yb internalized into the cells.

  20. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Hamayun, Muhammad; Khan, Sumera Afzal; Khan, Abdul Latif; Rehman, Gauhar; Kim, Youn-Ha; Iqbal, Ilyas; Hussain, Javid; Sohn, Eun-Young; Lee, In-Jung

    2010-01-01

    Gibberellin (GA) production by soil fungi has received little attention, although substantial work has been carried out on other aspects of plant growth promoting fungi (PGPF). In our studies we investigated GA production and growth-promoting capacity of a novel fungal strain isolated from the roots of soil-grown cucumber. Pure cultures of 19 endophytic fungi were tested for shoot length promotion of Waito-C rice to identify the GA production capacity of these fungal isolates. Isolate MH-6 significantly increased shoot length (12.9 cm) of Waito-C, in comparison to control treatments. Bioassay with culture filtrate (CF) of MH-6 also significantly promoted growth attributes of cucumber plants. Analysis of MH-6 CF showed the presence of physiologically active (GA1, 1.97 ng/mL; GA3, 5.18 ng/mL; GA4, 13.35 ng/mL and GA7, 2.4 ng/ mL) in conjunction with physiologically inactive (GA9 [0.69 ng/mL], GA12 [0.24 ng/mL], GA15 [0.68 ng/ mL, GA19 [1.94 ng/mL and GA20 [0.78 ng/mL]) gibberellins. The CF of MH-6 produced greater amounts of GA3, GA4, GA7 and GA19 than wild type Fusarium fujikuroi, a fungus known for high production of GA. The fungal isolate MH-6 was identified as a new strain of Cladosporium sp. on the basis of sequence homology (99%) and phylogenetic analysis of 18S rDNA sequence.

  1. Inheritance Analysis of Mitochondrial (mt) DNA in the Interspecific Crossing of Genus Cucumis%甜瓜属种间杂交线粒体DNA的遗传分析

    Institute of Scientific and Technical Information of China (English)

    魏跃; 赵桂华; 杨鹤同; 陈劲枫

    2011-01-01

    为探讨甜瓜属种间杂交线粒体DNA的遗传规律,对甜瓜属人工杂交合成的异源四倍体S5代新种(Cucumis hytivusChen and Kirkbride.)及其杂交母本甜瓜属野生种(Cucumis hystrix Chakr.)和父本黄瓜栽培种北京截头(Cucumis sativus L.)的线粒体中apocytochrome b (cob),NADH dehydrogenase subunit 1(had 1),NADH dehydrogenase subunit7(had 7)基因序列片断进行了测序与分析,结果显示3个种长度为909 bp cob、943 bp nad 1和880 bp nad 7基因片断序列中分别存在着相应的1、7和17个多态性核苷酸位点,其中新种与父本北京截头相同而与母本野生种不同的多态性碱基位点分别有1、6和14个,nad 1和had 7中分别只有1和3个多态性位点与双亲不相同.结果表明,甜瓜属hystrix与sativus种间杂交后代线粒体DNA的多态性碱基位点主要来源于父本而不是母本,线粒体DNA主要表现为父系遗传.

  2. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis.

    Science.gov (United States)

    Yang, Luming; Koo, Dal-Hoe; Li, Dawei; Zhang, Tao; Jiang, Jiming; Luan, Feishi; Renner, Susanne S; Hénaff, Elizabeth; Sanseverino, Walter; Garcia-Mas, Jordi; Casacuberta, Josep; Senalik, Douglas A; Simon, Philipp W; Chen, Jinfeng; Weng, Yiqun

    2014-01-01

    In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2n = 2x = 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2n = 2x = 24 chromosomes, implying a reduction from n = 12 to n = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage-specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1-AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian-like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., , Nat. Genet. 41, 1275-1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia-Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine-scale understanding of the

  3. Saffron (Crocus sativus L., a monomorphic or polymorphic species?

    Directory of Open Access Journals (Sweden)

    Zahra Nemati

    2014-07-01

    Full Text Available Saffron (Crocus sativus L. which contains exceptional anti-cancer properties is presently the world's most expensive spice. Iran is known as the original habitat of Crocus L. and a significant source of high-quality cultivated saffron production and export. Considering the importance of this species, we used 27 microsatellite markers to assess molecular variability and discriminating capacity of markers regarding their effectiveness in establishing genetic relationships in Iranian Crocus ecotypes. Thirty eight Iranian cultivated saffron ecotypes and 29 wild allies were evaluated in this research. The results from molecular analyses, including a molecular phylogenetic network and RB analysis, revealed two major groups and five subgroups, regardless of their geographical origins. Also, the results showed a clear distinction between C. sativus and other species of Crocus genus, taking into account their close relationship with C. speciosus and C. hausknechtii, which are assumed to be the two closest relatives of Iranian cultivated saffron among species studied. In this paper, we observed for the first time extensive genetic diversity among Iranian C. sativus despite their asexual reproduction. Considering suitable climatic conditions in Iran for cultivating saffron and the country’s leading high-quality production of Crocus sativus worldwide, studies on great genetic variability among Iranian C. sativus ecotypes as well as wild relatives native to Iran will further highlight the value of this crop. In addition, our results provide valuable information for genetic improvement, reduction of strong genetic erosion, and conservation of costly heritable resources of C. sativus in future breeding programs.

  4. Crocin Synthesis Mechanism in Crocus sativus

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; GUO Zhigang; LIU Ruizhi

    2005-01-01

    Saffron (Crocus sativus) cells can synthesize crocin, crocetin digentiobiosyl ester, in suspension cultures. The crocin family biosynthesis mechanism was studied using high pressure liquid chromatography (HPLC) to determinate the glucosyltransferase activity and to develop a method for synthesizing medicine from saffron cells. Previous studies indicated that two glucosyltransferases might be involved in the formation of crocetin glucosyl- and gentiobiosyl-esters. GTase1 formed an ester bond between crocetin carboxyl groups and glucose moieties while GTase2 catalyzed the formation of glucosidic bonds with glucosyl ester groups at both ends of the molecule. These enzymes can catalyze the formation of crocetin glucosides in vitro. GTase1 activity is higher during the first four days of crocin glucosides biosynthesis, but decreases after four days. The formation and accumulation of crocin increase during the first six days and stabilized on the eighth day.

  5. Bioinformatics for saffron (Crocus sativus L. improvement

    Directory of Open Access Journals (Sweden)

    Ghulam A. Parray

    2009-02-01

    Full Text Available Saffron (Crocus sativus L. is a sterile triploid plant and belongs to the Iridaceae (Liliales, Monocots. Its genome is of relatively large size and is poorly characterized. Bioinformatics can play an enormous technical role in the sequence-level structural characterization of saffron genomic DNA. Bioinformatics tools can also help in appreciating the extent of diversity of various geographic or genetic groups of cultivated saffron to infer relationships between groups and accessions. The characterization of the transcriptome of saffron stigmas is the most vital for throwing light on the molecular basis of flavor, color biogenesis, genomic organization and biology of gynoecium of saffron. The information derived can be utilized for constructing biological pathways involved in the biosynthesis of principal components of saffron i.e., crocin, crocetin, safranal, picrocrocin and safchiA

  6. 采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系%Phylogenetic relationships in Cucumis (Cucurbitaceae) revealed by SSR and RAPD analyses

    Institute of Scientific and Technical Information of China (English)

    陈劲枫; 庄飞云; 逯明辉; 钱春桃; 任刚

    2003-01-01

    野黄瓜Cucumis hystrix (2n=24)是在亚洲发现的第一个染色体基数为12的黄瓜属物种.这一发现对现行的以染色体基数和地理分布为基础的黄瓜属分类系统提出了质疑.采用SSR和RAPD两种分子标记对黄瓜属22份不同类型材料的亲缘关系进行了研究.结果表明,野黄瓜C. hystrix与黄瓜C. sativus var. sativus(2n=14)间的遗传距离(SSR: 0.59, RAPD: 0.57)小于其与甜瓜C. melo var. melo(2n=24)间的距离(SSR: 0.87, RAPD: 0.70).SSR计算的各物种间遗传距离值高于RAPD的结果,线性方程为y=0.859x+0.141,但两者相关性较好,r=0.94.综合109个SSR位点和398个RAPD条带对22份材料进行聚类分析,共分为两群:CS群(黄瓜、西南野黄瓜C. sativus var. hardwickii、C. hytivus及野黄瓜C. hystrix)和CM群(甜瓜、菜瓜C. melo var. conomon、野生小甜瓜C. melo ssp. agrestis及非洲角黄瓜C. metuliferus).

  7. Cucumis melo endornavirus: Genome organization, host range and codivergence with the host

    Science.gov (United States)

    A high molecular weight dsRNA was isolated from a Cucumis melo plant (referred to as“CL01”) of an unknown cultivar and completely sequenced. Sequence analyses showed similarities with members of the Endornaviridae. The name Cucumis melo endornavirus (CmEV) is proposed. The genome of CmEV-CL01 consis...

  8. Azafrán I (Crocus sativus L.)

    OpenAIRE

    Martín Martín, Gema; Pérez-Urria Carril, Elena

    2014-01-01

    El presente trabajo muestra una recopilación sobre las características de Crocus sativus L., el azafrán, una especie, muy apreciada desde la antigüedad. Se consideran aspectos básicos botánicos y bioquímicos así como datos sobre el cultivo, y su comercialización.

  9. Moisturizing effect of stable cream containing Crocus sativus extracts.

    Science.gov (United States)

    Akhtar, Naveed; Khan, Haji Muhammad-Shoaib; Ashraf, Shoaib; Mohammad, Imran Shair; Saqib, Najam-us; Bashir, Kamran

    2014-11-01

    The present study is about to prepare stable cream of water-in-oil emulsion containing extracts of Crocus sativus against its base (without extracts) taken as control, to determine its stability on different storage conditions and effects on skin moisture contents and transepidermal water loss. The formulation contains 3% Crocus sativus (Saffron) concentrated extracts, and the base containing no extract, were formulated. Different stability tests were done on samples, which placed at 8°C, 25°C, 40°C and 40°C with 75% relative humidity, for 4 week period. These formulations (Creams) were applied on the cheeks of human volunteers for 8week period. To evaluate any effect produced by these formulations different skin parameters were monitored every week. The significant results of this study explored the fact that water-in-oil emulsion topical cream of saffron formulated from Crocus sativus extract has absolute physical stability at different storage conditions. The increase in skin moisture contents and changes in transepidermal water loss were significant (pCrocus sativus showed significant moisturizing effects on human skin.

  10. 7 CFR 319.56-36 - Watermelon, squash, cucumber, and oriental melon from the Republic of Korea.

    Science.gov (United States)

    2010-01-01

    ... the Republic of Korea. Watermelon (Citrullus lanatus), squash (Cucurbita maxima), cucumber (Cucumis sativus), and oriental melon (Cucumis melo) may be imported into the United States from the Republic...

  11. Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle

    Science.gov (United States)

    Zhao, Hailiang; Ye, Lin; Wang, Yuping; Zhou, Xiaoting; Yang, Junwei; Wang, Jiawei; Cao, Kai; Zou, Zhirong

    2016-01-01

    The aim of the study was to monitor the effects of exogenous melatonin on cucumber (Cucumis sativus L.) chloroplasts and explore the mechanisms through which it mitigates chilling stress. Under chilling stress, chloroplast structure was seriously damaged as a result of over-accumulation of reactive oxygen species (ROS), as evidenced by the high levels of superoxide anion (O2−) and hydrogen peroxide (H2O2). However, pretreatment with 200 μM melatonin effectively mitigated this by suppressing the levels of ROS in chloroplasts. On the one hand, melatonin enhanced the scavenging ability of ROS by stimulating the ascorbate–glutathione (AsA–GSH) cycle in chloroplasts. The application of melatonin led to high levels of AsA and GSH, and increased the activity of total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) dehydroascorbate reductase (DHAR, EC 1.5.5.1), glutathione reductase (GR, EC1.6.4.2) in the AsA–GSH cycle. On the other hand, melatonin lessened the production of ROS in chloroplasts by balancing the distribution of photosynthetic electron flux. Melatonin helped maintain a high level of electron flux in the PCR cycle [Je(PCR)] and in the PCO cycle [Je(PCO)], and suppressed the O2-dependent alternative electron flux Ja(O2-dependent) which is one important ROS source. Results indicate that melatonin increased the chilling tolerance of chloroplast in cucumber seedlings by accelerating the AsA–GSH cycle to enhance ROS scavenging ability and by balancing the distribution of photosynthetic electron flux so as to suppress ROS production. PMID:27999581

  12. 甜瓜属种间杂交质体DNA多态性遗传分析%Polymorphic inheritance analysis of plastid DNA in interspecific crossing of Genus Cucumis

    Institute of Scientific and Technical Information of China (English)

    魏跃; 颜志明; 王全智; 薄凯亮; 吴志明; 陈劲枫

    2013-01-01

    为研究甜瓜属种间杂交质体DNA的遗传规律,利用PCR直接测序法对甜瓜属异缘四倍体新种(Cucumis ×hytivus Chen and Kirkbride.)S5自交后代及其杂交母本甜瓜属野生种(Cucumish ystrix Chakr.)和父本栽培黄瓜‘北京截头’(Cucumis sativus cv.‘Beijingjietou’)叶绿体基因Matk-trnK和rbc L-accD区域的部分DNA序列进行比较分析.结果显示在长度为2 036 bp Matk-trnK区域中存在着18个多态性位点,其中有16个多态性位点的碱基子代与母本相同,只有2个位点与父本相同;在长度为945 bp的rbcL-accD区域中存在着19个多态性位点,其中有18个多态性位点的碱基子代与母本相同,只有1个多态性位点与父本相同.这表明甜瓜属h ystrix×sativus种间杂交中质体DNA遗传主要表现为母系遗传.

  13. 黄瓜属Ty1-copia类逆转座子逆转录酶序列的克隆及分析%The Cloning and Analysis of Reverse Transcriptase of Ty1-copia-like Retrotransposons in Cucumis

    Institute of Scientific and Technical Information of China (English)

    江彪; 娄群峰; 刁卫平; 陈龙正; 张万萍; 陈劲枫

    2008-01-01

    根据Ty1-copia类逆转座子逆转录酶的保守区设计简并引物,通过PCR扩增,从黄瓜属野生种酸黄瓜(Cucumis hystrix Chakr.)和栽培黄瓜(Cucumis sativus L.)中均扩增出260 bp左右的目标条带.扩增产物经纯化后克隆于pGEM-T Easy质粒载体,选择阳性克隆,再经菌落PCR鉴定,然后进行测序及序列分析,获得了21条来源于酸黄瓜和栽培黄瓜的逆转录酶序列,通过核苷酸聚类分为5个家族.这些核苷酸序列具有较高的异质性,主要表现为缺失突变,序列长度变化范围为255~272 bp,同源性范围为27.0%~98.1%.翻译成氨基酸后,有4条序列出现终止密码子突变,6条序列表现出移框突变.将这些逆转录酶的氨基酸序列与已登录的不同物种同一类型逆转录酶的氨基酸序列进行聚类分析,表明它们可能有共同的起源.

  14. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  15. Sucrose accumulation in mature sweet melon fruits. [Cucumis melo

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, A.A.; Aloni, B.

    1987-04-01

    Mesocarp tissue from sucrose-accumulating sweet melon (Cucumis melo cv. Galia) showed sucrose synthase activity (ca 1 nkat/gfw) while soluble acid invertase and sucrose phosphate synthase activities were not observed. Sucrose uptake into mesocarp discs was linear with sucrose concentration (1-500 mM) and unaffected by PCMBS and CCCP. Sucrose compartmentation into the vacuole also increased linearly with sucrose concentration as indicated by compartmental efflux kinetics. Mesocarp discs incubated in /sup 14/C-fructose + UDP-glu synthesized /sup 14/C-sucrose and efflux kinetics indicated that the /sup 14/C-sucrose was compartmentalized. These data support the hypothesis that two mechanisms are involved in sucrose accumulation in sweet melon: (1) compartmentation of intact sucrose and (2) synthesis of sucrose via sucrose synthase and subsequent compartmentation in the vacuole.

  16. Application of silver nanoparticles synthesized from Raphanus sativus for catalytic degradation of organic dyes

    Directory of Open Access Journals (Sweden)

    Singh Tej

    2016-01-01

    Full Text Available Biosynthesis of metal nanoparticles is gaining more importance owing to its simplicity, economical, sustainable route of synthesis of nanoparticles and ecofriendliness. Based on the search to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications, the present article reports an environment friendly and unexploited methods for biofabrication of silver nanoparticles (AgNPs using Raphanus sativus leaf extract. The synthesized AgNPs were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM. The absorption spectrum of the dark brown color silver colloids showed a single and prominent peak at 431nm, indicating the presence of AgNPs. Further, catalytic degradation of methylene blue (organic dye by using AgNPs was measured spectrophotometrically. The results revealed that biosynthesized AgNPs was found to be impressive in degrading methylene blue and can be used in water purification systems.

  17. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2010-08-01

    Full Text Available Abstract Background Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L., an introgression line (IL5211S was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S. Results Degenerate primers that were designed based on the conserved motifs in the NBS domain of resistance (R proteins were used to isolate NBS-type sequences from IL5211S. A total of 28 sequences were identified and named as cucumber (C. sativus = CS resistance gene analogs as CSRGAs. Polygenetic analyses separated these sequences into four different classes. Quantitative real-time polymerase chain reaction (qRT-PCR analysis showed that these CSRGAs expressed at different levels in leaves, roots, and stems. In addition, introgression from C. hystrix induced expression of the partial CSRGAs in cultivated cucumber, especially CSRGA23, increased four-fold when compared to the backcross parent CC3. Furthermore, the expression of CSRGA23 under P. cubensis infection and abiotic stresses was also analyzed at different time points. Results showed that the P. cubensis treatment and four tested abiotic stimuli, MeJA, SA, ABA, and H2O2, triggered a significant induction of CSRGA23 within 72 h of inoculation. The results indicate that CSRGA23 may play a critical role in protecting cucumber against P. cubensis through a signaling the pathway triggered by these molecules. Conclusions Four classes of NBS-type RGAs were

  18. Improvement of Xylanase Production by Cochliobolus sativus in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2008-01-01

    Full Text Available The xylanase production by a new Cochliobolus sativus Cs5 strain was improved under submerged fermentation. The xylanase was induced by xylan and repressed by glucose, sucrose, maltose, xylose, starch and cellulose. Highest enzyme production (98.25 IU/mL was recorded when wheat straw (4 % by mass per volume was used as a carbon source after 120 h of incubation. NaNO3 increased xylanase production 5.4-fold as compared to the control. Optimum initial pH was found to be 4.5 to 5. The C. sativus Cs5 strain grown under submerged culture in a simple medium proved to be a promising microorganism for xylanase production.

  19. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients

    OpenAIRE

    Saeed Samarghandian; Abasalt Borji

    2014-01-01

    Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties Crocus sativus L., commonly known as saffron, is the...

  20. Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

    Directory of Open Access Journals (Sweden)

    Mohammad Imad Eddin Arabi

    2015-03-01

    Full Text Available Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

  1. CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research.

    Science.gov (United States)

    Bhawna; Chaduvula, Pavan K; Bonthala, Venkata S; Manjusha, Verma; Siddiq, Ebrahimali A; Polumetla, Ananda K; Prasad, Gajula M N V

    2015-01-01

    Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.

  2. The effects of Crocus sativus (saffron and its constituents on nervous system: A review

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khazdair

    2015-08-01

    Full Text Available Saffron or Crocus sativus L. (C. sativus has been widely used as a medicinal plant to promote human health, especially in Asia. The main components of saffron are crocin, picrocrocin and safranal. The median lethal doses (LD50 of C. sativus are 200 mg/ml and 20.7 g/kg in vitro and in animal studies, respectively. Saffron has been suggested to be effective in the treatment of a wide range of disorders including coronary artery diseases, hypertension, stomach disorders, dysmenorrhea and learning and memory impairments. In addition, different studies have indicated that saffron has anti-inflammatory, anti-atherosclerotic, antigenotoxic and cytotoxic activities. Antitussive effects of stigmas and petals of C. sativus and its components, safranal and crocin have also been demonstrated. The anticonvulsant and anti-Alzheimer properties of saffron extract were shown in human and animal studies. The efficacy of C. sativus in the treatment of mild to moderate depression was also reported in clinical trial. Administration of C. sativus and its constituents increased glutamate and dopamine levels in the brain in a dose-dependent manner. It also interacts with the opioid system to reduce withdrawal syndrome. Therefore, in the present article, the effects of C. sativus and its constituents on the nervous system and the possible underlying mechanisms are reviewed. Our literature review showed that C. sativus and its components can be considered as promising agents in the treatment of nervous system disorders.

  3. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review.

    Science.gov (United States)

    Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein; Hosseini, Mahmoud; Rezaee, Ramin; M Tsatsakis, Aristidis

    2015-01-01

    Saffron or Crocus sativus L. (C. sativus) has been widely used as a medicinal plant to promote human health, especially in Asia. The main components of saffron are crocin, picrocrocin and safranal. The median lethal doses (LD50) of C. sativus are 200 mg/ml and 20.7 g/kg in vitro and in animal studies, respectively. Saffron has been suggested to be effective in the treatment of a wide range of disorders including coronary artery diseases, hypertension, stomach disorders, dysmenorrhea and learning and memory impairments. In addition, different studies have indicated that saffron has anti-inflammatory, anti-atherosclerotic, antigenotoxic and cytotoxic activities. Antitussive effects of stigmas and petals of C. sativus and its components, safranal and crocin have also been demonstrated. The anticonvulsant and anti-Alzheimer properties of saffron extract were shown in human and animal studies. The efficacy of C. sativus in the treatment of mild to moderate depression was also reported in clinical trial. Administration of C. sativus and its constituents increased glutamate and dopamine levels in the brain in a dose-dependent manner. It also interacts with the opioid system to reduce withdrawal syndrome. Therefore, in the present article, the effects of C. sativus and its constituents on the nervous system and the possible underlying mechanisms are reviewed. Our literature review showed that C. sativus and its components can be considered as promising agents in the treatment of nervous system disorders.

  4. Transcriptome analysis of leaf tissue of Raphanus sativus by RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Libin Zhang

    Full Text Available Raphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R. sativus. In this study, the transcriptome sequencing of leaf tissues in R. sativus was performed for the first time. Approximately 22 million clean reads were generated and used for transcriptome assembly. The generated unigenes were subsequently annotated against gene ontology (GO database. KEGG analysis further revealed two important pathways in the bolting stage of R.sativus including spliceosome assembly and alkaloid synthesis. In addition, a total of 6,295 simple sequence repeats (SSRs with various motifs were identified in the unigene library of R. sativus. Finally, four unigenes of R. sativus were selected for alignment with their homologs from other plants, and phylogenetic trees for each of the genes were constructed. Taken together, this study will provide a platform to facilitate gene discovery and advance functional genomic research of R. sativus.

  5. Transcriptome analysis of leaf tissue of Raphanus sativus by RNA sequencing.

    Science.gov (United States)

    Zhang, Libin; Jia, Haibo; Yin, Yongtai; Wu, Gang; Xia, Heng; Wang, Xiaodong; Fu, Chunhua; Li, Maoteng; Wu, Jiangsheng

    2013-01-01

    Raphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R. sativus. In this study, the transcriptome sequencing of leaf tissues in R. sativus was performed for the first time. Approximately 22 million clean reads were generated and used for transcriptome assembly. The generated unigenes were subsequently annotated against gene ontology (GO) database. KEGG analysis further revealed two important pathways in the bolting stage of R.sativus including spliceosome assembly and alkaloid synthesis. In addition, a total of 6,295 simple sequence repeats (SSRs) with various motifs were identified in the unigene library of R. sativus. Finally, four unigenes of R. sativus were selected for alignment with their homologs from other plants, and phylogenetic trees for each of the genes were constructed. Taken together, this study will provide a platform to facilitate gene discovery and advance functional genomic research of R. sativus.

  6. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  7. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  8. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa.

    Science.gov (United States)

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-02-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

  9. Transcriptome profiling of Cucumis melo fruit development and ripening.

    Science.gov (United States)

    Zhang, Hong; Wang, Huaisong; Yi, Hongping; Zhai, Wenqiang; Wang, Guangzhi; Fu, Qiushi

    2016-01-01

    Hami melon (Cucumis melo) is the most important melon crop grown in the north-western provinces of China. In order to elucidate the genetic and molecular basis of developmental changes related to size, flesh, sugar and sour content, we performed a transcriptome profiling of its fruit development. Over 155 000 000 clean reads were mapped to MELONOMICS genome, yielding a total of 23 299 expressed genes. Of these, 554 genes were specifically expressed in flowers, and 3260 genes in fruit flesh tissues. The 7892 differentially expressed genes (DEGs) were related to fruit development and mediated diverse metabolic processes and pathways; 83 DEGs and 13 DEGs were possibly associated with sucrose and citric acid accumulation, respectively. The quantitative real-time PCR results showed that six out of eight selected candidate genes displayed expression trends similar to our DEGs. This study profiled the gene expression related to different growing stages of flower and fruit at the whole transcriptome level to provide an insight into the regulatory mechanism underlying Hami melon fruit development.

  10. New chromone and triglyceride from Cucumis melo seeds.

    Science.gov (United States)

    Ibrahim, Sabrin R M

    2014-02-01

    Re-investigation of the MeOH extract of the seeds of Cucumis melo L. var. reticulatus (Cucurbitaceae) led to the isolation of a new chromone derivative (5,7- dihydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]chromone (5) and a triglyceride (1,3-di-(6Z,9Z)-docosa-6,9-dienoyl-2-(6Z) hexacos-6-enoylglycerol (1), together with three known compounds; alpha-spinasterol (2), stigmasta-7,22,25-trien-3-ol (3), and D:B-friedoolean-5-ene-3-beta-ol (4), are reported from this species for the first time. Their structures were determined by extensive 1D (1H, 13C, and DEPT) and 2D (1H-1H COSY, HMQC, and HMBC) NMR and mass spectral measurements. Compound 5 displayed significant cytotoxic activity against L5178Y cells, with an ED50 of 5 microM. The MeOH extract and 5 showed antioxidant activity using the DPPH assay.

  11. Mapping Resistance to Alternaria cucumerina in Cucumis melo.

    Science.gov (United States)

    Daley, James; Branham, Sandra; Levi, Amnon; Hassell, Richard; Wechter, Patrick

    2017-04-01

    Infection with Alternaria cucumerina causes Alternaria leaf blight (ALB), a disease characterized by lesion formation on leaves, leading to substantial yield and quality losses in Cucumis melo (melon). Although fungicides are effective against ALB, reduction in the frequency of application would be economically and environmentally beneficial. Resistant melon lines have been identified but the genetic basis of this resistance has not been determined. A saturated melon genetic map was constructed with markers developed through genotyping by sequencing of a recombinant inbred line population (F6 to F10; n = 82) derived from single-seed descent of a F2 population from a cross between the ALB-resistant parent MR-1 and the ALB-susceptible parent Ananas Yokneum. The population was evaluated for A. cucumerina resistance with an augmented block greenhouse study using inoculation with the wounded-leaf method. Multiple quantitative trait loci (QTL) mapping identified two QTL that explained 33.9% of variation in lesion area. Several candidate genes within range of these QTL were identified using the C. melo v3.5 genome. Markers linked to these QTL will be used to accelerate efforts to breed melon cultivars resistant to ALB.

  12. Crocus sativus L. protects against SDS‑induced intestinal damage and extends lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Liu, Zonglin; Chen, Yuchen; Zhang, Hong; Jin, Li Hua

    2016-12-01

    Medicinal plants are important sources of potentially therapeutic biochemical drugs. Crocus sativus L. has been used to treat various diseases in China, the Republic of Korea and Japan. The present study investigated the protective effect of C. sativus L. extract in Drosophila melanogaster intestinal immunity. Wild‑type flies were fed standard cornmeal‑yeast medium and used as controls, and flies supplemented with 1% C. sativus L. aqueous extract in standard medium were used as the experimental group. Following the ingestion of the various toxic compounds, the survival rate of the flies was determined. Cell viability and levels of reactive oxygen species (ROS) were detected using 7‑amino‑actinomycin D and dihydroethidium staining, respectively. The present study demonstrated that aqueous extracts of C. sativus L. may significantly increase the lifespan and survival rate of adult flies. Additionally, C. sativus L. may decrease epithelial cell death and ROS levels, resulting in improved intestinal morphology. These findings indicated that C. sativus L. had a protective effect against intestinal injury and may extend the lifespan of Drosophila. Therefore, the findings of the present study may improve the understanding of clinical researchers on the complex effects of C. sativus L. in intestinal disorders.

  13. Antiinflammatory, Antioxidant, and Immunomodulatory Effects of Crocus sativus L. and its Main Constituents.

    Science.gov (United States)

    Boskabady, Mohammad Hossein; Farkhondeh, Tahereh

    2016-07-01

    Crocus sativus L. (C. sativus), commonly known as saffron, is used as a food additive, preservative, and medicinal herb. Traditionally, it has been used as an alternative treatment for different diseases. C. sativus' medicinal effects are related to its major constituents like crocins, crocetin, and safranal. According to the literature, C. sativus and its constituents could be considered as an effective treatment for neurodegenerative disorders, coronary artery diseases, asthma, bronchitis, colds, fever, diabetes, and so on. Recently, numerous studies have reported such medicinal properties and found that the underlying mechanisms of action may be mediated by antioxidant, inflammatory, and immunomodulatory effects. C. sativus enhances the antioxidant capacity and acts as a free radical scavenger. As an antiinflammatory and immunomodulatory agent, it modulates inflammatory mediators, humoral immunity, and cell-mediated immunity responses. This review highlights in vitro and animal findings regarding antiinflammatory, antioxidant, and immunomodulatory effects of C. sativus and its constituents. Present review found that the C. sativus and its main constituents such as safranal, crocins, and crocetin could be effective against various diseases because of their antioxidant, anti-inflammation, and immunomodulatory effects. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome.

    Science.gov (United States)

    Wu, Gang; Zhang, Libin; Yin, Yongtai; Wu, Jiangsheng; Yu, Longjiang; Zhou, Yanhong; Li, Maoteng

    2015-01-01

    Raphanus sativus is an important Brassicaceae plant and also an edible vegetable with great economic value. However, currently there is not enough transcriptome information of R. sativus tissues, which impedes further functional genomics research on R. sativus. In this study, RNA-seq technology was employed to characterize the transcriptome of leaf tissues. Approximately 70 million clean pair-end reads were obtained and used for de novo assembly by Trinity program, which generated 68,086 unigenes with an average length of 576 bp. All the unigenes were annotated against GO and KEGG databases. In the meanwhile, we merged leaf sequencing data with existing root sequencing data and obtained better de novo assembly of R. sativus using Oases program. Accordingly, potential simple sequence repeats (SSRs), transcription factors (TFs) and enzyme codes were identified in R. sativus. Additionally, we detected a total of 3563 significantly differentially expressed genes (DEGs, P = 0.05) and tissue-specific biological processes between leaf and root tissues. Furthermore, a TFs-based regulation network was constructed using Cytoscape software. Taken together, these results not only provide a comprehensive genomic resource of R. sativus but also shed light on functional genomic and proteomic research on R. sativus in the future.

  15. Spanish melons (Cucumis melo L.) of the Madrid provenance: A unique germplasm reservoir

    Science.gov (United States)

    Melon (Cucumis melo L.) landraces of the Madrid provenance, Spain, have received national distinction for their high fruit quality and sensorial attributes. More specifically, a unique array of Group Inodorus landraces have been continuously cultivated and conserved by farmers in the municipality o...

  16. A golden SNP in CmOr governs fruit flesh color of melon (cucumis melo)

    Science.gov (United States)

    Melon (Cucumis melo) flesh color is genetically determined and can be white, light green or orange with B-carotene being the predominant pigment. We associated carotenoid accumulation in melon fruit flesh with polymorphism within CmOr, a homolog of the cauliflower BoOr gene, and identified CmOr as t...

  17. Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto cucumis metulifer

    Science.gov (United States)

    Interest in specialty melons (Cucumis melo) with distinctive fruit characteristics has grown in the United States in recent years. However, disease management remains a major challenge in specialty melon production. In this study, grafting experiments were conducted to determine the effectiveness of...

  18. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.)

    Science.gov (United States)

    Compact and dwarfing vining habits in melon (Cucumis melo L.; 2n = 2x = 24) may have commercial importance since they can contribute to the promotion of concentrated fruit set and can be planted in higher plant densities than standard vining types. A diminutive (dwarf) melon mutant line (PNU-D1) wi...

  19. Superoxide dismutase activity in mesocarp tissue from divergent Cucumis melo L. genotypes

    Science.gov (United States)

    Muskmelon (Cucumis melo L.) fruit matrix is unique among plant foods in being able to provide a protective medium in which the antioxidant activity of the enzyme superoxide dismutase (SOD) is preserved during the digestive process, and therefore, being able to elicit in vivo pharmacological effects ...

  20. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Science.gov (United States)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  1. Asynchronous meiosis in Cucumis hystrix-cucumber synthetic tetraploids resulting in low male fertility

    Science.gov (United States)

    Wide hybridization is an important tool for crop improvement. Recently, we successfully developed a synthetic allotetraploid from interspecific cross between cucumber and its relative Cucumis hystrix-(2n = 2x =24) followed by chemical induction of chromosome doubling. The resulting allotetraploid wa...

  2. First Report of Zucchini yellow mosaic virus Infecting Gherkin (Cucumis anguira) in India.

    Science.gov (United States)

    Anthony Johnson, A M; Vidya, T; Papaiah, S; Srinivasulu, M; Mandal, Bikash; Sai Gopal, D V R

    2013-09-01

    A field visit in September 2011 to the Cucumis anguira (Gherkin) growing regions of Kuppam, Chittoor district of Andhra Pradesh, India revealed occurrence of mosaic, blistering and fruit malformation leading to the crop losses. Analysis of field samples revealed association of Zucchini yellow mosaic virus (ZYMV) with the disease. This is the first confirmed report of natural occurrence of ZYMV on Gherkin in India.

  3. Reduction of nitrates in Cucumis sativus L. seedlings II. Influence of tungsten and vanadium on nitrate reductase and adenosine triphosphatase activities

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-02-01

    Full Text Available ATPases isolated from the roots of cucumber seedlings activated by Mg+2 ions in experiments in vitro, were fairly distinctly inhibited by Ca-2 ions, very slightly inhibited by fluorides and molybdenum ions while NO3- anions had no effect on the level of ATPase activity studied. Introduction into the nutrient of 10-4 M Na2WO4 or 10-3 M Na VO3 (inhibitors of nitrate reductase NR distinctly inhibited activity of the ATPase under study especially of fractions IIa and III, and inhibited NR activity and lowered uptake of NO3-. WO4-2 and VO3 inhibited to the same extent absorption and reduction of NO3- in the initial phase of NR induction, whereas at a later stage both inhibitors checked reduction to a greater degree than uptake of NO3-. The results indicate the possibility of certain ATPase participation in assimilating nitrates, and suggest that in the initial stage of biosynthesis of the NR enzyme system, activity of the enzyme is distinctly dependent upon NO3- transport and the level of NR activity limited by the amount of nitrate taken up. At a later an additional mechanism of NO3- transport probably functions, not connected with simultaneous reduction of nitrates. On the basis of results the Butz and Jackson (1977 hypothesis concerning a model for the absorption and reduction of NO3- by plant tissues is discussed.

  4. A High-Density Genetic Map for Cucumber (Cucumis Sativus L. Based on Specific Length Amplified Fragment (SLAF Sequencing and QTL Analysis of Fruit Traits in Cucumber

    Directory of Open Access Journals (Sweden)

    Wenying eZhu

    2016-04-01

    Full Text Available High-density genetic linkage map plays an important role in genome assembly and QTL fine mapping. Since the coming of next-generation sequencing (NGS, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using specific length amplified fragment sequencing, using 153 F2 populations of S1000×S1002. The high-density genetic map composed 3,057 SLAFs, including 4,475 SNP markers on 7 chromosomes, and spanned 1061.19cM. The average genetic distance is 0.35cM. Based on this high-density genome map, QTL analysis was performed on two cucumber fruit traits, fruit length and fruit diameter. There are 15 QTLs for the two fruit traits were detected.

  5. Basipetal auxin versus acropetal cytokinin transport, and their interaction with NO3 fertilisation in cotyledon senescence and sink:source relationships in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Bangerth, K-F

    2015-11-01

    The paramount role of cytokinins (CKs) in initiation, as well as prevention, of senescence is well established. In recent years, experimental methods have become available to raise and lower the CK concentration and experimentally manipulate senescence. Decapitating the apical shoot and adding the synthetic auxin naphthylacetic acid to the cut stem reduced endogenous CKs to low levels. Conversely, if no auxin was applied, xylem and leaf CK levels increased dramatically, indicating that basipolar auxin transport is a key determinant in the synthesis of CKs and is potentially more important than NO(3). Manipulating the concentration of applied NO(3) caused considerable variation in leaf CK levels and concomitant changes in senescence. These and other results suggest that the frequently discussed decrease in nitrogen use efficiency (NUE) may be more highly regulated by CKs than by NO(3). Analysis of the re-metabolisation and re-allocation of chlorophyll, proteins, amino acids and starch in three different cucumber cultivars indirectly showed that these metabolites were significantly affected by the concentration of CKs in the leaves. Further research in this area may allow leaf senescence and plant yield to be more efficiently regulated by manipulating CKs and/or basipolar auxin transport instead of nitrate.

  6. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine.

    Science.gov (United States)

    Shu, Sheng; Guo, Shi-Rong; Sun, Jin; Yuan, Ling-Yun

    2012-11-01

    With the objective to clarify the physiological significance of polyamines (PAs) in the photosynthetic apparatus, the present study investigated the effects of salt stress with and without foliar application of putrescine (Put) on the structure and function of the photosynthetic apparatus in cucumber. Salt stress at 75 mM NaCl for 7 days resulted in a severe reduction of photosynthesis. The fast chlorophyll afluorescence transient analysis showed that salt stress inhibited the maximum quantum yield of PSII photochemistry (F(v)/F(m)), mainly due to damage at the receptor side of PSII. In addition, salt stress decreased the density of active reaction centers and the structure performance. The microscopic analysis revealed that salt stress-induced destruction of the chloroplast envelope and increased the number of plastoglobuli along with aberrations in thylakoid membranes. Besides, salt stress caused a decrease in the content of endogenous PAs, conjugated and bound forms of spermidine and spermine in particular, in thylakoid membranes. However, applications of 8 mM Put alleviated the salt stress-mediated decrease in net photosynthetic rates (Pn) and actual efficiency of PSII(Φ(PSII)). Put increased PAs in thylakoid membranes and overcame the damaging effects of salt stress on the structure and function of the photosynthetic apparatus in salt-stressed plant leaves. Put application to control plants neither increased PAs in thylakoid membranes nor affected photosynthesis. These results indicate that PAs in chloroplasts play crucial roles in protecting the thylakoid membranes against the deleterious influences of salt stress. In addition, the present results point to the probability that the salt-induced dysfunction of photosynthesis is largely attributable to the loss of PAs in the photosynthetic apparatus.

  7. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance.

    Science.gov (United States)

    Yundaeng, Chutintorn; Somta, Prakit; Tangphatsornruang, Sithichoke; Chankaew, Sompong; Srinives, Peerasak

    2015-09-01

    Sequence analysis revealed that an SNP (A1855G) in CsBADH of cucumber accession PK2011T202 causes amino acid change in a highly conserved motif, Y163C. Gene mapping showed association between the SNP and the fragrance. Pandan-like fragrance is a value-added trait in several food crops such as rice, vegetable soybean and sorghum. The fragrance is caused by the volatile chemical 2-acetyl-1-pyrroline (2AP). Mutation(s) in betaine aldehyde dehydrogenase 2 (BADH2; also known as aminoaldehyde dehydrogenase 2) gene causes defective BADH2 and results in biosynthesis of 2AP. Recently, cucumber cultivars possessing pandan-like fragrance were discovered in Thailand. In this study, we report an association between CsBADH and the fragrance in cucumber accession "PK2011T202". Gene expression analysis of CsBADH in leaves of PK2011T202 and "301176" (non-fragrant) at various growth stages revealed that CsBADH was expressed in both accessions. Sequence comparison of CsBADH showed that PK2011T202 possesses a single base substitution (A1855G) in exon 5 which causes an amino acid change in a highly conserved motif of BADH, Y163C. Single nucleotide-amplified polymorphism markers were developed to detect the SNP polymorphism between the wild-type and fragrance alleles. Since CsBADH is located on chromosome 1, quantitative trait locus (QTL) mapping was conducted for this chromosome using an F2 and a backcross populations developed from the cross between PK2011T202 and 301176. QTL analysis in both populations showed that the major QTL for fragrance, qFgr, was co-localized with the CsBADH. We concluded that the defect function of CsBADH is responsible for fragrance in cucumber PK2011T202.

  8. A linkage map of cultivated cucumber (cucumis sativus l.) with 248 microsatellite marker loci and seven genes for horticulturally important traits

    Science.gov (United States)

    Marker assisted selection (MAS) is playing an increasingly important role in expedite and increase the efficiency of classical plant breeding. In cucumber, MAS is lagging behind as compared with other field crops. In the present study, a genetic map was developed with microsatellite (or simple seque...

  9. 黄瓜(Cucumis sativus L)组织培养与诱导四倍体再生植株

    Institute of Scientific and Technical Information of China (English)

    张承妹; 陆家安

    1995-01-01

    应用杨行黄瓜、长春密刺、农大秋光和杂种群丰、津研四号、津杂四号等黄瓜的子叶、真叶、茎段为外植体,离体培养诱导再生植株。比较了细胞分裂素(KT)与不同浓度的2,4-D和NAA配比对诱导黄瓜愈伤组织的影响,及其所产生的愈伤组织分化培养的成苗率。所得结果表明:黄瓜在组织培养再生植株时,对生长激素极为敏感,只需极低浓度的2,4-D或NAA即能诱导大量愈伤组织。激素浓度增高,出愈率提高,愈伤组织增殖加快,但

  10. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Li, Zheng; Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run

    2012-07-01

    It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the 'one-hormone hypothesis', which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified 'one-hormone hypothesis' for sex determination in cucumber is proposed.

  11. Abscisic acid and hydrogen peroxide induce modification of plasma membrane H(+)-ATPase from Cucumis sativus L. roots under heat shock.

    Science.gov (United States)

    Janicka-Russak, Małgorzata; Kabała, Katarzyna

    2012-11-01

    We examined the effect of heat shock (HS), for 2 h at 48°C, on plasma membrane H(+)-ATPase (PM-H(+)-ATPase) measured as the hydrolytic and H(+)-pumping activity. Some of the plants were transferred after 2 h HS to control temperature for another 24 h, as post-stressed (PS) plants. A significant increase of PM-H(+)-ATPase in plants subjected to HS was observed. The stimulation of PM-H(+)-ATPase was higher in PS plants. Estimation of transcript levels of cucumber PM-H(+)-ATPase in roots indicated that the action of HS affected gene expression levels. Transcript levels of two isoforms, CsHA4 and CsHA8, in PS plants were elevated. The expression of PM-H(+)-ATPase genes was not affected in plants treated for 2 h with HS. HS elevated the endogenous level of abscisic acid (ABA) both in plants treated for 2 h with HS and in PS plants. Moreover, in PS plants, a distinctly higher level of H(2)O(2) was observed. It was also demonstrated that transcript levels of PM-H(+)-ATPase were elevated in cucumber roots after 24-h treatment of plants with ABA or H(2)O(2). Both of these compounds seem to play an important role in increasing ATPase activity during heat stress, because the use of the inhibitors tungstate and DPI restrained stimulation of PM-H(+)-ATPase activity by heat. Moreover, protein blot analysis with an antibody against phosphothreonine and 14-3-3 protein indicated that increased activity of PM-H(+)-ATPase under HS resulted from phosphorylation of the enzyme. Taken together, the data presented here suggest that, under post-heat stress conditions, abscisic acid and hydrogen peroxide are involved in PM-ATPase modification, through stimulation of gene expression of that PM proton pump. Moreover, heat treatment of cucumber plants results in increased phosphorylation of PM-ATPase and thus fast post-translational modification, leading to activation of the enzyme protein.

  12. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies.

  13. QTL mapping of flowering time and fruit shape in Xishuangbana cucumber WI767 (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan)

    Science.gov (United States)

    The Xishuangbanna cucumber (XIS) is a semi-wild landrace growing in the tropical southwest China, which has some unique traits that are useful for cucumber breeding. One such accession is WI7167 that exhibits dark green leaves, short hypocotyl, round fruit shape, orange flesh color in mature fruits,...

  14. Expression analysis of argonaute, Dicer-like, and RNA-dependent RNA polymerase genes in cucumber (Cucumis sativus L.) in response to abiotic stress

    Indian Academy of Sciences (India)

    DEFANG GAN; MENGDAN ZHAN; FENG YANG; QIQI ZHANG; KELING HU; WENJUAN XU; QINGHUI LU; LING ZHANG; DANDI LIANG

    2017-06-01

    Posttranscriptional control of gene expression can be achieved through RNA interference when the activities of Dicer-like (DCL), argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins are significant. In this study, we analysed the expression of seven AGO, five DCL and eight RDR genes in cucumber under cold, heat, hormone, salinity and dehydration treatments using quantitative reverse-transcription PCR (qRT-PCR). All CsAGO, CsDCL and CsRDR genes were differentially expressed under abiotic stress treatment. In response to abiotic stress treatment, most genes were expressed at higher levels in flowers or stems than in other organs, whereas some CsAGOs (CsAGO1c, CsAGO6 and CsAGO7) and CsRDRs (CsRDR1d andCsRDR2) were highly expressed in roots during dehydration treatment. The expression patterns indicate that most CsDCLs, CsAGOs and CsRDRs respond to abiotic stress, and stems or flowers are the most sensitive organs, followed by roots. This is the first report of expression analysis of all CsDCL, CsAGO and CsRDR family genes in cucumber under abiotic stress, whichprovides basic information and insights into the putative roles of these genes in abiotic stress. The results of this study should serve as a basis for further functional characterization of these gene families in cucumber and related Cucurbitaceae species.

  15. Serological and molecular detection of an isolate of Cucumber Mosaic Virus (CMV infecting cucumber (Cucumis sativus and cloning of its coat protein gene

    Directory of Open Access Journals (Sweden)

    Prashant Shetti

    2012-08-01

    Full Text Available Cucumber mosaic virus (CMV is a widely prevalent plant virus infecting important vegetable, plantation and flower crops. Methods for early detection of viruses in plants and vectors transmitting them play a critical role in plant virus disease management. Direct plate and Dot- Enzyme Linked Immunosorbent Assay (ELISA was standardized for detection of CMV. Optimum OD of 1.249 (1.9 ng/μl and 1.242 (1.52 ng/μl was observed in 1:20 and 1:50 dilution of crude and ultrapurified antigen respectively, at a dilution of 1:1000 of both primary and secondary antibody. Polymerase Chain Reaction (PCR using CMV coat protein (CMV CP gene specific primers amplified a 657 base pair (bp fragment, which was then  cloned in pTZ57R/T cloning vector and positive clones were identified by band shift assay and colony PCR. This will aid in developing field diagnostic kits for detection of CMV in different crops and also in developing transgenics with the CP gene. 

  16. The Expression Profiling of the Lipoxygenase (LOX Family Genes During Fruit Development, Abiotic Stress and Hormonal Treatments in Cucumber (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Hong-Jun Yu

    2012-02-01

    Full Text Available Lipoxygenases (LOXs are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids and lipids to initiate the formation of a group of biologically active compounds called oxylipins. Plant oxylipins play important and diverse functions in the cells. In the current study, expression analysis during cucumber development using semi-quantitative RT-PCR revealed that 13 of 23 CsLOX genes were detectable, and were tissue specific or preferential accumulation. In total, 12 genes were found to be differentially expressed during fruit development and have different patterns of expression in exocarp, endocarp and pulp at day 5 after anthesis. The expression analysis of these 12 cucumber LOX genes in response to abiotic stresses and plant growth regulator treatments revealed their differential transcript in response to more than one treatment, indicating their diverse functions in abiotic stress and hormone responses. Results suggest that in cucumber the expanded LOX genes may play more diverse roles in life cycle and comprehensive data generated will be helpful in conducting functional genomic studies to understand their precise roles in cucumber fruit development and stress responses.

  17. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

    NARCIS (Netherlands)

    Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Ieperen, van W.; Harbinson, J.

    2010-01-01

    The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an eq

  18. Dinámica de impregnación al vacío en apio (Apium graveolens L. y pepino (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Yisell Martelo C.

    2011-05-01

    Full Text Available Objetivo. Evaluar la respuesta a la impregnación al vacio (IV en apio y pepino, con soluciones isotónicas de NaCl. Materiales y métodos. Se determinaron variables de impregnación en troncos de apio y rodajas de pepino (3 posiciones diferentes a lo largo de su estructura, considerando, fracción y deformación volumétrica en la etapa de vacío (X1 y g1 y atmosférica (X y g, y la porosidad disponible (Ee al proceso IV. Resultados. El apio y pepino no presentaron diferencias estadísticas por efecto de la posición. En las etapas de proceso se obtuvieron para el apio y el pepino valores de X1 (-14.32 ± 2.75 y -5.51±1.76%, g1 (-0.587±0.69 y -0.079±0.99%, X(13.49±2.32 y 6.72±2.72%, g (-1.40±1.042% y -2.33±1.26% y Ee (15.73±2.31 y 9.35±2.57%, respectivamente. Estos resultados indicaron una salida de líquido nativo (X1<0 y una ligera contracción volumétrica de las estructuras (g y g1<0, lo cual se evidenció microestructuralmente. Conclusiones. La respuesta a la IV en apio y pepino, permite identificar estas matrices alimentarias, como aptas para la incorporación de componentes que le proporcionen un valor agregado a estos productos.

  19. Dinámica de impregnación al vacío en apio (Apium graveolens L.) y pepino (Cucumis sativus L.)

    OpenAIRE

    Yisell Martelo C.; Misael Cortés R.; Diego Restrepo M.

    2011-01-01

    Objetivo. Evaluar la respuesta a la impregnación al vacio (IV) en apio y pepino, con soluciones isotónicas de NaCl. Materiales y métodos. Se determinaron variables de impregnación en troncos de apio y rodajas de pepino (3 posiciones diferentes a lo largo de su estructura), considerando, fracción y deformación volumétrica en la etapa de vacío (X1 y g1) y atmosférica (X y g), y la porosidad disponible (Ee) al proceso IV. Resultados. El apio y pepino no presentaron diferencias estadísticas por e...

  20. Effect of optimal daily fertigation on migration of water and salt in soil, root growth and fruit yield of cucumber (Cucumis sativus L.) in solar-greenhouse.

    Science.gov (United States)

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (Pgreenhouse.

  1. Dinámica de impregnación al vacío en apio (Apium graveolens L.) y pepino (Cucumis sativus L.)

    OpenAIRE

    Yisell Martelo C.; Misael Cortés R.; Diego Restrepo M

    2011-01-01

    Objetivo. Evaluar la respuesta a la impregnación al vacio (IV) en apio y pepino, con soluciones isotónicas de NaCl. Materiales y métodos. Se determinaron variables de impregnación en troncos de apio y rodajas de pepino (3 posiciones diferentes a lo largo de su estructura), considerando, fracción y deformación volumétrica en la etapa de vacío (X1 y g1) y atmosférica (X y g), y la porosidad disponible (Ee) al proceso IV. Resultados. El apio y pepino no presentaron diferencias estadísticas por e...

  2. Effects of polyamines on K+,Na+ and Cl- content and distribution in different organs of cucumber (Cucumis sativus L.) seedlings under NaCl stress

    Institute of Scientific and Technical Information of China (English)

    WANG Suping; JIA Yongxia; GUO Shirong; ZHOU Guoxian

    2007-01-01

    Seedlings from the salt-sensitive cucumber cultivar Jinchun No.2 and the salt-tolerant cucumber cultivar Changchun Mici were exposed for 8 days to 50 mmol/L NaCl in the absence or in the presence of exogenous foliar spraying PAs [putrescine (Put),spermidine (Spd),and spermine (Spin)1 mmol/L] to compare the effects of different kinds of polyamines (PAs) on plant tolerance to salinity.This paper studied the effects of exogenous PAs on K+,Na+ and Cl- in different organs of cucumber seedlings.The results showed that K+ content as well as the ratios of K/Na and Cl/Na decreased,while Na+ and Cl- concentrations increased in salt-treated cucumber seedlings.The differences in K+,Na+ and Cl- content and the K/Na and Cl/Na ratios were greater for the salt sensitive cultivar Jinchun No.2 than for the salt-tolerant cultivar Changchun Mici.Cucumber seedlings treated with exogenous polyamines and combined with salinity exhibited a higher level of K+ accumulation and lower levels of Na+ and Cl- accumulation compared with the seedlings treated only with salt stress.Among the three kinds of polyamines,Spd and Spm were more effective in inhibiting the accumulation of Na+ and reduction of K+.However,Put was more effective in reducing Cl- accumulation.Furthermore,all of the three kinds of exogenous polyamines could increase the ratio of K/Na,improving the absorption and transport selectivities of K+ and Na+ from stems to leaves for both cultivars.In conclusion,exogenous polyamines could alleviate salt damage to some extent and enhance the accumulation of biomass.Among the three kinds of polyamines,spermidine was most effective.Exogenous polyamines could improve tolerance of cucumber seedlings under salt stress by regulating the absorption and distribution of ions in different organs.

  3. The relationship between powdrey mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in single seed descent lines

    NARCIS (Netherlands)

    Zijlstra, S.; Jansen, R.C.; Groot, S.P.C.

    1995-01-01

    The genetic relation between powdery mildew resistance and sensitivity for leaf chlorosis of glasshouse cucumber was investigated. The powdery mildew resistant, leaf chlorosis sensitive hybrid variety 'Profito' was crossed with the powdery mildew susceptible, non chlorosis sensitive hybrid variety '

  4. The relationship between powdery mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus) studied in single seed descent lines

    NARCIS (Netherlands)

    Zijlstra, S.; Jansen, R.C.; Groot, S.P.C.

    1995-01-01

    The genetic relation between powdery mildew resistance and sensitivity for leaf chlorosis of glasshouse cucumber was investigated. The powdery mildew resistant, leaf chlorosis sensitive hybrid variety 'Profito' was crossed with the powdery mildew susceptible, non chlorosis sensitive hybrid variety '

  5. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  6. Radiation processing to ensure safety of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus): optimization of dose for the elimination of Salmonella Typhimurium and Listeria monocytogenes.

    Science.gov (United States)

    Dhokane, V S; Hajare, S; Shashidhar, R; Sharma, A; Bandekar, J R

    2006-02-01

    Minimally processed vegetables are in demand, because they offer convenience to consumers. However, these products are often unsafe because of possible contamination with pathogens, such as Salmonella, Escherichia coli O157:H7, and Shigella species. Therefore, this study was carried out to optimize the radiation dose necessary to ensure the safety of precut carrot and cucumber. Decimal reduction doses (D-values) of Salmonella Typhimurium MTCC 98 were ca. 0.164 kGy in carrot samples and 0.178 kGy in cucumber samples. D-values of Listeria monocytogenes were determined to be 0.312 and 0.345 kGy in carrot and cucumber samples, respectively. Studies of inoculated, packaged, minimally processed carrot and cucumber samples showed that treatment with a 1-kGy dose of gamma radiation eliminated up to 4 log CFU/g of Salmonella Typhimurium and 3 log CFU/g of L. monocytogenes. However, treatment with a 2-kGy dose was necessary to eliminate these pathogens by 5 log CFU/g. Storage studies showed that both Salmonella Typhimurium and L. monocytogenes were able to grow at 10 degrees C in inoculated control samples. Neither of these pathogens could be recovered from radiation-processed samples after storage for up to 8 days.

  7. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    Science.gov (United States)

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  8. [Clinical analysis of Cervus and Cucumis Polypeptide injection based on real world hospital information system].

    Science.gov (United States)

    Sun, Shuai-Ling; Xie, Yan-Ming; Li, Yuan-Yuan; Zhang, Yin; Yi, Dan-Hui; Zhuang, Yan

    2016-11-01

    To analyze the clinical application of Cervus and Cucumis Polypeptide injection in the real world, in order to define the characteristics of clinical drug use and correlation, and provide reference for risk management and further study for Cervus and Cucumis Polypeptide injection. Descriptive analysis and association rules analysis were performed on 37 721 cases using Cervus and Cucumis Polypeptide injection in 26 hospitals nationwide. Cervus and Cucumis Polypeptide injection were mostly adopted by patients aged between 45 and 64(39.84%); mainly used to treat fracture patients in clinic(17 362 cases, 33.97%); 12 mL(41.81%) was the commonest dosage. And the course of treatment mainly lasted for 1-3 days(28 467 cases, 76.26%), which was basically consistent with the description of package insert. In clinic, traditional Chinese medicines, such as blood activating and stasis removing agents and Bushen Zhuanggu agents, were frequently combined with it(rule support degree of 19.38%). Such western medicine as antibiotics and nutritional drugs were frequently combined with it(rule support 39.9%). The main single combined medicine were vitamin C(13 202 cases, 35%), and Jintiange capsule(7 285 cases, 19.31%). The commonly used combined drug pairs were Hulisan capsule and Jintiange capsule (rule support 4.458%), phenobarbital and ceftazidime azole oxazoline(rule support degree of 10.62%). Cervus and Cucumis Polypeptide injection is mainly adopted by elderly patients in clinic, used to treat fracture patients, and often combined with blood activating and stasis removing agents, Bushen Zhuanggu agents, antibiotics, and nutritional medicine to enhance fracture healing. In clinical application, attention shall be paid to drug safety of elderly patients and types of combined medicines and their interaction, so as to prevent adverse reactions. Copyright© by the Chinese Pharmaceutical Association.

  9. Polyphenolics profile and antioxidant properties of Raphanus sativus L.

    Science.gov (United States)

    Beevi, Syed Sultan; Mangamoori, Lakshmi Narasu; Gowda, Bandi Boje

    2012-01-01

    Raphanus sativus, a common cruciferous vegetable has been attributed to possess a number of pharmacological properties. Antioxidant and radical scavenging activity of R. sativus root extracted with solvents of varying polarity were evaluated using different model systems. Polyphenolic content was estimated to be in the range 13.18-63.54 mg g⁻¹ dry weight, with a considerable amount being obtained with polar solvents. High-performance liquid chromatography analysis indicated the presence of an array of polyphenolics. Catechin was found to be the most abundant phenolic compound in water extract and sinapic acid, the predominant phenolic compound in methanolic, ethyl acetate and hexane extracts. The methanolic extract showed significant ferric reducing ability, moderate metal chelating activity and strong radical scavenging activity. The methanolic extract could be successfully utilised as an ingredient in functional foods. However, water extract could be more pertinent to human nutrition as it contained a significant amount of catechin, which was comparable to traditional sources like green and black tea.

  10. Detection of Papaya ringspot virus type W infecting the cucurbit weed Cucumis melo var. dudaim in Florida

    Science.gov (United States)

    This is the first report of Papaya ringspot virus type W infecting Cucumis melo var. dudaim, a cucurbit weed, in Florida. It provides an overview of this virus reservoir for growers, extension workers, crop consultants and research and regulatory scientists....

  11. Nephrotoxicity and hepatotoxicity evaluation of Crocus sativus stigmas in neonates of nursing mice

    OpenAIRE

    Bahmani, Mahmoud; Rafieian, Mortaza; Baradaran, Azar; Rafieian, Samira; Rafieian-Kopaei, Mahmoud

    2014-01-01

    Background: Crocus sativus, known as saffron crocus, is best known for the spice saffron. Saffron use spans more than 3500 years, however, its toxicity on neonates during lactation has not yet evaluated.

  12. Raphanus sativus, Germination, and Inquiry: A Learning Cycle Approach for Novice Experimenters.

    Science.gov (United States)

    Rillero, Peter

    1999-01-01

    Describes open-ended experiments with seeds from the common garden radish (Raphanus sativus). The phases of the 5-E learning cycle--Engagement, Exploration, Explanation, Extension, and Evaluation--guide this activity series. (Author/MM)

  13. The Effect of Crocus sativus L. and Its Constituents on Memory: Basic Studies and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Nikolaos Pitsikas

    2015-01-01

    Full Text Available Memory-related disorders are a common public health issue. Memory impairment is frequent in degenerative diseases (such as Alzheimer’s disease and Parkinson disease, cerebral injuries, and schizophrenia. The dried stigma of the plant Crocus sativus L. (C. sativus, commonly known as saffron, is used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus and its constituents are implicated in cognition. Here we critically review advances in research of these emerging molecular targets for the treatment of memory disorders, and discuss their advantages over currently used cognitive enhancers as well remaining challenges. Current analysis has shown that C. sativus and its components might be a promising target for cognition impairments.

  14. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation

    Directory of Open Access Journals (Sweden)

    Ahrazem Oussama

    2009-08-01

    Full Text Available Abstract Background Flavonol glucosides constitute the second group of secondary metabolites that accumulate in Crocus sativus stigmas. To date there are no reports of functionally characterized flavonoid glucosyltransferases in C. sativus, despite the importance of these compounds as antioxidant agents. Moreover, their bitter taste makes them excellent candidates for consideration as potential organoleptic agents of saffron spice, the dry stigmas of C. sativus. Results Using degenerate primers designed to match the plant secondary product glucosyltransferase (PSPG box we cloned a full length cDNA encoding CsGT45 from C. sativus stigmas. This protein showed homology with flavonoid glucosyltransferases. In vitro reactions showed that CsGT45 catalyses the transfer of glucose from UDP_glucose to kaempferol and quercetin. Kaempferol is the unique flavonol present in C. sativus stigmas and the levels of its glucosides changed during stigma development, and these changes, are correlated with the expression levels of CsGT45 during these developmental stages. Conclusion Findings presented here suggest that CsGT45 is an active enzyme that plays a role in the formation of flavonoid glucosides in C. sativus.

  15. Constituents of Saffron (Crocus sativus L.) as Potential Candidates for the Treatment of Anxiety Disorders and Schizophrenia.

    Science.gov (United States)

    Pitsikas, Nikolaos

    2016-03-02

    Anxiety disorders and schizophrenia are common public health issues. The dried stigma of the plant Crocus sativus L., (C. sativus) commonly known as saffron are used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus, crocins and safranal are implicated in anxiety and schizophrenia. Here, I intend to critically review advances in research of these emerging molecules for the treatment of anxiety and schizophrenia, discuss their advantages over currently used anxiolytics and neuroleptics, as well remaining challenges. Current analysis shows that C. sativus and its components might be a promising class of compounds for the treatment of the above mentioned psychiatric diseases.

  16. Constituents of Saffron (Crocus sativus L. as Potential Candidates for the Treatment of Anxiety Disorders and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Nikolaos Pitsikas

    2016-03-01

    Full Text Available Anxiety disorders and schizophrenia are common public health issues. The dried stigma of the plant Crocus sativus L., (C. sativus commonly known as saffron are used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus, crocins and safranal are implicated in anxiety and schizophrenia. Here, I intend to critically review advances in research of these emerging molecules for the treatment of anxiety and schizophrenia, discuss their advantages over currently used anxiolytics and neuroleptics, as well remaining challenges. Current analysis shows that C. sativus and its components might be a promising class of compounds for the treatment of the above mentioned psychiatric diseases.

  17. Razi's Al-Hawi and saffron (Crocus sativus): a review.

    Science.gov (United States)

    Mollazadeh, Hamid; Emami, Seyyed Ahmad; Hosseinzadeh, Hossein

    2015-12-01

    Traditional knowledge can be used as a source for development of new medicines. In the present study, we compare the data on saffron in Razi's Al-Hawi book with modern scientific studies. A computerized search of published articles was performed using MEDLINE, Scopus as well as native references. The search terms used were saffron, Crocus sativus, crocetin, crocin, safranal, Razi, and Al-Hawi. A variety of properties of saffron including diuretic, analgesic, anti-inflammatory, hepatoprotective, appetite suppressant, hypnotic, antidepressant, and bronchodilator effects were mentioned in Al-Hawi. Modern studies also confirmed most of these characteristics. This review indicates that the pharmacological data on saffron and its constituents are similar to those found in Razi's Al-Hawi monograph and it can be concluded that ethnobotanical information and ancient sources have precious data about medicinal plants that lead to finding new compounds for treatment of several diseases.

  18. The use of cultivars of Raphanus sativus for cytokinin bioassay

    Directory of Open Access Journals (Sweden)

    Dorota Kubowicz

    2013-12-01

    Full Text Available Six cultivars of radish (Raphanus sativus were tested for their usefulness in radish cytokinin bioassay by the method of Letham (1971. The best cultivar was found to be 'Sopel Lodu' which responds well to both zeatin and 2iP over a wide range of concentrations. The fresh weight of cotyledons increased at most by 71.5% (if treated with zeatin or 101.0% (if treated with 2iP compared to untreated cotyledons. This cultivar is also sensitive to the partially purified cytokinin-like fraction isolated from the pine (Pinus silvestris cambial region. The cultivar 'Sopel Lodu' is therefore proposed to be a suitable plant for cytokinin bioassays.

  19. Transcriptome sequencing for SNP discovery across Cucumis melo

    Directory of Open Access Journals (Sweden)

    Blanca José

    2012-06-01

    Full Text Available Abstract Background Melon (Cucumis melo L. is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. Results The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines yielded about 300 M reads. Short reads were mapped to the recently generated draft genome assembly of the DHL line Piel de Sapo (inodorus x Songwhan Charmi (conomon and to a new version of melon transcriptome. Regions with at least 6X coverage were used in SNV calling, generating a melon collection with 303,883 variants. These SNVs were dispersed across the entire C. melo genome, and distributed in 15,064 annotated genes. The number and variability of in silico SNVs differed considerably between pools. Our finding of higher genomic diversity in wild

  20. The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus)

    OpenAIRE

    Graham Brodie; Carmel Ryan; Carmel Lancaster

    2012-01-01

    The growing list of herbicide-resistant biotypes and environmental concerns about chemical use has prompted interest in alternative methods of managing weeds. This study explored the effect of microwave energy on paddy melon (Cucumis myriocarpus) plants, fruits, and seeds. Microwave treatment killed paddy melon plants and seeds. Stem rupture due to internal steam explosions often occurred after the first few seconds of microwave treatment when a small aperture antenna was used to apply the mi...

  1. Transcriptome sequencing for SNP discovery across Cucumis melo

    OpenAIRE

    2012-01-01

    Background: Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this...

  2. Effect of desiccation and salinity stress on seed germination and initial plant growth of Cucumis melo

    OpenAIRE

    Sohrabikertabad,S.; A. Ghanbari; Mohassel, Mohamad,H.R.; Mahalati,M.N.; Gherekhloo, J.

    2013-01-01

    Smellmelon, an annual invasive weed of soybean production fields in the north of Iran, reproduces and spreads predominately through seed production. This makes seed bank survival and successful germination essential steps in the invasive process. To evaluate the potential of Smellmelon to invade water-stressed environments, laboratory studies were conducted to investigate the effect of desiccation and salinity at different temperatures on seed germination and seedling growth of Cucumis melo. ...

  3. Penetration, Post-penetration Development, and Reproduction of Meloidogyne incognita on Cucumis melo var. texanus.

    Science.gov (United States)

    Faske, T R

    2013-03-01

    Cucumis melo var. texanus, a wild melon commonly found in the southern United States and two accessions, Burleson Co. and MX 1230, expressed resistance to Meloidogyne incognita in preliminary experiments. To characterize the mechanism of resistance, we evaluated root penetration, post-penetration development, reproduction, and emigration of M. incognita on these two accessions of C. melo var. texanus. Additionally, we evaluated 22 accessions of C. melo var. texanus for their reaction against M. incognita in a greenhouse experiment. Fewer (P ≤ 0.05) J2 penetrated the root system of C. melo var. texanus accessions (Burleson Co. and MX 1230) and C. metuliferus (PI 482452) (resistant control), 7 days after inoculation (DAI) than in C. melo 'Hales Best Jumbo' (susceptible control). A delayed (P ≤ 0.05) rate of nematode development was observed at 7, 14, and 21 DAI that contributed to lower (P ≤ 0.05) egg production on both accessions and C. metuliferus compared with C. melo. Though J2 emigration was observed on all Cucumis genotypes a higher (P ≤ 0.05) rate of J2 emigration was observed from 3 to 6 DAI on accession Burleson Co. and C. metuliferus than on C. melo. The 22 accessions of C. melo var. texanus varied relative to their reaction to M. incognita with eight supporting similar levels of nematode reproduction to that of C. metuliferus. Cucumis melo var. texanus may be a useful source of resistance against root-knot nematode in melon.

  4. Divergence between C. melo and African Cucumis Species Identified by Chromosome Painting and rDNA Distribution Pattern.

    Science.gov (United States)

    Li, Kunpeng; Wang, Huaisong; Wang, Jiming; Sun, Jianying; Li, Zongyun; Han, Yonghua

    2016-01-01

    The 5S and 45S rDNA sites are useful chromosome landmarks and can provide valuable information about karyotype evolution and species interrelationships. In this study, we employed fluorescence in situ hybridization (FISH) to determine the number and chromosomal location of 5S and 45S rDNA loci in 8 diploid Cucumis species. Two oligonucleotide painting probes specific for the rDNA-bearing chromosomes in C. melo were hybridized to other Cucumis species in order to investigate the homeologies among the rDNA-carrying chromosomes in Cucumis species. The analyzed diploid species showed 3 types of rDNA distribution patterns, which provided clear cytogenetic evidence on the divergence between C. melo and wild diploid African Cucumis species. The present results not only show species interrelationships in the genus Cucumis, but the rDNA FISH patterns can also be used as cytological markers for the discrimination of closely related species. The data will be helpful for breeders to choose the most suitable species from various wild species for improvement of cultivated melon.

  5. Neuropharmacological Aspects of Crocus sativus L.: A Review of Preclinical Studies and Ongoing Clinical Research.

    Science.gov (United States)

    Singh, Damanpreet

    2015-01-01

    Crocus sativus L. (Iridaceae) is an important member of the genus Crocus having high medicinal value. Its dried stigmas, known as "saffron" are being widely used form past many centuries as a food additive, coloring agent, flavoring agent and a potential source of traditional medicine. The stigmas along with other botanical parts of Crocus sativus are being extensively used in ethnomedical treatment of varied central nervous system diseases. In line with its ethnomedical importance, several preclinical studies have been carried out to validate its traditional uses, identify active principle(s), understand pharmacological basis of therapeutic action and explore novel medicinal uses. The bioactive components of Crocus sativus have been found to modulate several synaptic processes via direct/indirect interplay with neurotransmitter receptor functions, interaction with neuronal death/survival pathways and alteration in neuronal proteins expression. Many clinical studies proving beneficial effect of Crocus sativus in depressive disorders, Alzheimer's disease and some other neurological abnormalities have also been carried out. Based on the vast literature reports available, an attempt has been made to comprehend the fragmented information on neuropharmacological aspects, chemistry and safety of Crocus sativus. Although the plant has been well explored, but still a large scope of future preclinical and clinical research exist to explore its potential in neurological diseases, that has been discussed in depth in the present review.

  6. Porównanie wpływu opryskiwania roztmorem NAA i Ethrelu na wzrost i kwitnienie ogórka (Cucumis sativus L.) odm. 'Monastyrski' [Comparison of the influence of sprays with NAA and Enthrel solution on the growth and flowering of cucumber (Cucumis sativus L.) Monastyrski variety

    OpenAIRE

    Borkowski, J.

    2015-01-01

    The effects of NAA and Ethrel (2-chloroethanephosphonic acid) spray on the growth and flowering of cucumber plants were compared. The influence of NAA spray on the appearance of the pistillate flowers and on male sterility was considerably lower and less successful than that of Ethrel.

  7. Porównanie wpływu opryskiwania roztmorem NAA i Ethrelu na wzrost i kwitnienie ogórka (Cucumis sativus L. odm. 'Monastyrski' [Comparison of the influence of sprays with NAA and Enthrel solution on the growth and flowering of cucumber (Cucumis sativus L. Monastyrski variety

    Directory of Open Access Journals (Sweden)

    J. Borkowski

    2015-06-01

    Full Text Available The effects of NAA and Ethrel (2-chloroethanephosphonic acid spray on the growth and flowering of cucumber plants were compared. The influence of NAA spray on the appearance of the pistillate flowers and on male sterility was considerably lower and less successful than that of Ethrel.

  8. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety.

    Science.gov (United States)

    Pitsikas, N; Boultadakis, A; Georgiadou, G; Tarantilis, P A; Sakellaridis, N

    2008-12-01

    Crocus sativus L. is a plant cultivated in various parts of the world. Crocins are among the active components of Crocus sativus L. The present study was designed to investigate in the rat whether or not crocins possess anxiolytic properties. For this aim, the light/dark test was selected. Either crocins, at a dose which did not influence animals' motor activity (50mg/kg), or diazepam (1.5 mg/kg), significantly increased the latency to enter the dark compartment and prolonged the time spent in the lit chamber in the rats. Conversely, lower doses of crocins (15-30 mg/kg) did not substantially modify animals' behaviour. The present results indicate that treatment with these active constituents of Crocus sativus L. induce anxiolytic-like effects in the rat.

  9. Green Route for Silver Nanoparticles Synthesis by Raphanus Sativus Extract in a Continuous Flow Tubular Microreactor

    Science.gov (United States)

    Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.

    The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.

  10. Toxicity identification evaluation of anaerobically treated swine slurry: a comparison between Daphnia magna and Raphanus sativus.

    Science.gov (United States)

    Villamar, Cristina A; Silva, Jeannette; Bay-Schmith, Enrique; Vidal, Gladys

    2014-01-01

    Anaerobic digestion does not efficiently reduce ionic compounds present in swine slurry, which could present a potential risk to aquatic ecosystems (surface runoff) and terrestrial ambient (irrigation). The objective of this study was to evaluate the ecotoxicological characteristics of anaerobically treated swine slurry using acute and chronic (epicotyl elongation) toxicity tests with Daphnia magna and Raphanus sativus and identification of suspected toxic compounds using the Toxicity Identification Evaluation (TIE) method. The evaluation was performed in three phases: physicochemical characterization of the slurry; acute/chronic toxicity testing with Daphnia magna and Raphanus sativus for each fraction of the TIE (cation and anion exchange columns, activated carbon, pH modification/aeration and EDTA) and identification of suspected toxic compounds. The anaerobically treated slurry contained concentrations of ammonium of 1,072 mg L(-1), chloride of 815 mg L(-1) and metals below 1 mg L(-1) with a D. magna acute toxicity (48h-LC50) of 5.3% and R. sativus acute toxicity (144h-LC50) of 48.1%. Epicotyl elongation of R. sativus was inhibited at concentrations above 25% (NOEC). The cation exchange reduced the toxicity and free ammonia by more than 90% for both bio-indicators. Moreover, this condition stimulated the epicotyl growth of R. sativus between 10% and 37%. In conclusion, the main compound suspected of causing acute toxicity in D. magna and acute/chronic toxicity in R. sativus is the ammonium. The findings suggest the need the ammonium treatment prior to the agricultural reuse of swine slurry given the high risk to contaminate the aquatic environment by runoff and toxicity of sensitive plants.

  11. An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae.

    Science.gov (United States)

    Shirasawa, Kenta; Oyama, Maki; Hirakawa, Hideki; Sato, Shusei; Tabata, Satoshi; Fujioka, Takashi; Kimizuka-Takagi, Chiaki; Sasamoto, Shigemi; Watanabe, Akiko; Kato, Midori; Kishida, Yoshie; Kohara, Mitsuyo; Takahashi, Chika; Tsuruoka, Hisano; Wada, Tsuyuko; Sakai, Takako; Isobe, Sachiko

    2011-08-01

    Raphanus sativus (2n = 2x = 18) is a widely cultivated member of the family Brassicaceae, for which genomic resources are available only to a limited extent in comparison to many other members of the family. To promote more genetic and genomic studies and to enhance breeding programmes of R. sativus, we have prepared genetic resources such as complementary DNA libraries, expressed sequences tags (ESTs), simple sequence repeat (SSR) markers and a genetic linkage map. A total of 26 606 ESTs have been collected from seedlings, roots, leaves, and flowers, and clustered into 10 381 unigenes. Similarities were observed between the expression patterns of transcripts from R. sativus and those from representative members of the genera Arabidopsis and Brassica, indicating their functional relatedness. The EST sequence data were used to design 3800 SSR markers and consequently 630 polymorphic SSR loci and 213 reported marker loci have been mapped onto nine linkage groups, covering 1129.2 cM with an average distance of 1.3 cM between loci. Comparison of the mapped EST-SSR marker positions in R. sativus with the genome sequence of A. thaliana indicated that the Brassicaceae members have evolved from a common ancestor. It appears that genomic fragments corresponding to those of A. thaliana have been doubled and tripled in R. sativus. The genetic map developed here is expected to provide a standard map for the genetics, genomics, and molecular breeding of R. sativus as well as of related species. The resources are available at http://marker.kazusa.or.jp/Daikon.

  12. Interferência de Raphanus sativus na produtividade de cultivares de soja Interference of Raphanus sativus in soybean cultivars' yield

    Directory of Open Access Journals (Sweden)

    M.A Bianchi

    2011-12-01

    Full Text Available A forte dependência de herbicidas para o controle de plantas daninhas em soja tem como consequência a seleção de espécies daninhas tolerantes e resistentes. O manejo integrado considera, além do uso de herbicidas, técnicas como a habilidade competitiva do cultivar para controlar plantas daninhas. Com os objetivos de avaliar a resposta de cultivares à competição com nabo (Raphanus sativus e identificar aqueles portadores de habilidade competitiva superior, foi conduzido experimento em campo, em Cruz Alta-RS, na safra 2000/01. Testaram-se duas condições de competição (ausência ou presença de nabo forrageiro durante a fase de desenvolvimento vegetativo da soja, combinadas com 11 cultivares da cultura. O efeito da competição com nabo é variável entre os cultivares, caracterizando variabilidade genética que permite selecionar genótipos portadores de habilidade competitiva superior. A competição com nabo reduz a estatura de planta, o comprimento médio dos ramos e a produtividade de grãos de soja. Entre os genótipos de soja utilizados, o cultivar MSoy 6101 destaca-se quanto à habilidade competitiva pela maior produtividade potencial de grãos na ausência de competição e pela capacidade de mantê-la diante da competição com nabo.The strong dependence on herbicides for weed control in soybean has led to the selection of tolerant and/or resistant weed plants. Besides the use of herbicides, integrated management includes techniques such as cultivar competitive ability to control weed plants. This work aimed to evaluate cultivar response to competition with forage turnip (Raphanus sativus and to identify carriers of superior competitive ability. The experiment was carried out under field conditions in Cruz Alta-RS, during the 2000/01 season. Two competition conditions (absence and presence of forage turnip during the soybean vegetative growth stage were tested in combination with 11 soybean cultivars. The effect of forage

  13. Chemical investigation of gamma-irradiated saffron (Crocus sativus L.).

    Science.gov (United States)

    Zareena, A V; Variyar, P S; Gholap, A S; Bongirwar, D R

    2001-02-01

    Changes in aroma and coloring properties of saffron (Crocus sativus) after gamma-irradiation at doses of 2.5 and 5 kGy (necessary for microbial decontamination) were investigated. The volatile essential oil constituents responsible for aroma of the spice were isolated by steam distillation and then subsequently analyzed by gas chromatography/mass spectrometry (GC/MS). No significant qualitative changes were observed in these constituents upon irradiation, although a trained sensory panel could detect slight quality deterioration at a dose of 5 kGy. Carotene glucosides that impart color to the spice were isolated by solvent extraction and then subjected to thin-layer chromatography and high-performance liquid chromatography (HPLC). Fractionation of the above pigments into aglycon and glucosides was achieved by using ethyl acetate and n-butanol, respectively. Analysis of these fractions by HPLC revealed a decrease in glucosides and an increase in aglycon content in irradiated samples. The possibility of degradation of pigments during gamma irradiation is discussed.

  14. Crocus sativus L. (saffron) for cancer chemoprevention: A mini review.

    Science.gov (United States)

    Bhandari, Prasan R

    2015-04-01

    Cancer is one of the most feared diseases globally and there has been a sustained rise in its incidence in both developing and developed countries. Despite the growing therapeutic options for patients with cancer, their efficacy is time-limited and non-curative. Hence to overcome these drawbacks, an incessant screening for superior and safer drugs has been ongoing for numerous decades, resulting in the detection of anti-cancer properties of several phytochemicals. Chemoprevention using readily available natural substances from vegetables, fruits, herbs and spices is one of the significantly important approaches for cancer prevention in the present era. Among the spices, Crocus sativus L. (saffron; fān hóng huā) has generated interest because pharmacological experiments have established numerous beneficial properties including radical scavenging, anti-mutagenic and immuno-modulating effects. The more powerful components of saffron are crocin, crocetin and safranal. Studies in animal models and with cultured human malignant cell lines have demonstrated antitumor and cancer preventive activities of saffron and its main ingredients. This review provides a brief insight into the anticancer properties of saffron and its components.

  15. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients.

    Science.gov (United States)

    Samarghandian, Saeed; Borji, Abasalt

    2014-04-01

    Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties Crocus sativus L., commonly known as saffron, is the raw material for one of the most expensive spice in the world, and it has been used in folk medicine for centuries. Chemical analysis has shown the presence of more than 150 components in saffron stigmas. The more powerful components of saffron are crocin, crocetin and safranal. Studies in animal models and with cultured human malignant cell lines have demonstrated antitumor and cancer preventive activities of saffron and its main ingredients, possible mechanisms for these activities are discussed. More direct evidence of anticancer effectiveness of saffron as chemo-preventive agent may come from trials that use actual reduction of cancer incidence as the primary endpoint. This review discusses recent literature data and our results on the cancer chemopreventive activities of saffron and its main ingredients.

  16. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers.

    Science.gov (United States)

    Modaghegh, Mohammad-Hadi; Shahabian, Masoud; Esmaeili, Habib-Allah; Rajbai, Omid; Hosseinzadeh, Hossein

    2008-12-01

    Saffron (Crocus sativus) stigma tablets were evaluated for short-term safety and tolerability in healthy adult volunteers. The study was a double-blind, placebo-controlled design consisting of a 1 week treatment of saffron tablets. Volunteers were divided into 3 groups of 10 each (5 males and 5 females). Group I received placebo; groups 2 and 3 received 200 and 400mg saffron tablets, respectively, for 7 days. General measures of health were recorded during the study such as hematological, biochemical and electrocardiographic parameters done in pre- and post-treatment periods. Clinical examination showed no gross changes in all volunteers after intervention. Saffron with higher dose (400mg) decreased standing systolic blood pressure and mean arterial pressures significantly. Saffron decreased slightly some hematological parameters such as red blood cells, hemoglobin, hematocrit and platelets. Saffron increased sodium, blood urea nitrogen and creatinine. This study showed that saffron tablets may change some hematological and biochemical parameters. However, these alterations were in normal ranges and they were not important clinically.

  17. Anticarcinogenic effect of saffron (Crocus sativus L. and its ingredients

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2014-01-01

    Full Text Available Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties Crocus sativus L., commonly known as saffron, is the raw material for one of the most expensive spice in the world, and it has been used in folk medicine for centuries . Chemical analysis has shown the presence of more than 150 components in saffron stigmas. The more powerful components of saffron are crocin, crocetin and safranal. Studies in animal models and with cultured human malignant cell lines have demonstrated antitumor and cancer preventive activities of saffron and its main ingredients, possible mechanisms for these activities are discussed. More direct evidence of anticancer effectiveness of saffron as chemo-preventive agent may come from trials that use actual reduction of cancer incidence as the primary endpoint. This review discusses recent literature data and our results on the cancer chemopreventive activities of saffron and its main ingredients.

  18. A new indole glycoside from the seeds of Raphanus sativus.

    Science.gov (United States)

    Jin, Hong-Guang; Ko, Hae Ju; Chowdhury, Md Anisuzzaman; Lee, Dong-Sung; Woo, Eun-Rhan

    2016-06-01

    A new indole glycoside, β-D-glucopyranosyl 2-(methylthio)-1H-indole-3-carboxylate, named raphanuside A (1), as well as eight known compounds, β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (2), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside (3), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (4), (3,4-O-disinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (5), isorhamnetin 3,4'-di-O-β-D-glucoside (6), isorhamnetin 3-O-β-D-glucoside-7-O-α-L-rhamnoside (7), isorhamnetin 3-O-β-D-glucoside (8) and 3'-O-methyl-(-)-epicatechin 7-O-β-D-glucoside (9) were isolated from the seeds of Raphanus sativus. Furthermore, compounds 1-3 and 6-9, were isolated from this plant for the first time. The structures of compounds 1-9 were identified using 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. The inhibitory activity of these isolated compounds against interleukin-6 (IL-6) production in TNF-α stimulated MG-63 cells was also examined.

  19. Draft sequences of the radish (Raphanus sativus L.) genome.

    Science.gov (United States)

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-10-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥ 300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.

  20. AcEST: DK961784 [AcEST

    Lifescience Database Archive (English)

    Full Text Available in OS=Cucumis sativus PE=1 ... 69 2e-11 sp|P29602|CPC_CUCSA Cucumber peeling cupredoxin OS=Cucumis sativ... ...CNFPGHC 85 >sp|P29602|CPC_CUCSA Cucumber peeling cupredoxin OS=Cucumis sativus PE

  1. Brachypodium distachyon-Cochliobolus sativus Pathosystem is a New Model for Studying Plant-Fungal Interactions in Cereal Crops.

    Science.gov (United States)

    Zhong, Shaobin; Ali, Shaukat; Leng, Yueqiang; Wang, Rui; Garvin, David F

    2015-04-01

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) causes spot blotch, common root rot, and kernel blight or black point in barley and wheat. However, little is known about the molecular mechanisms underlying the pathogenicity of C. sativus or the molecular basis of resistance and susceptibility in the hosts. This study aims to establish the model grass Brachypodium distachyon as a new model for studying plant-fungus interactions in cereal crops. Six B. distachyon lines were inoculated with five C. sativus isolates. The results indicated that all six B. distachyon lines were infected by the C. sativus isolates, with their levels of resistance varying depending on the fungal isolates used. Responses ranging from hypersensitive response-mediated resistance to complete susceptibility were observed in a large collection of B. distachyon (2n=2x=10) and B. hybridum (2n=4x=30) accessions inoculated with four of the C. sativus isolates. Evaluation of an F2 population derived from the cross between two of the B. distachyon lines, Bd1-1 and Bd3-1, with isolate Cs07-47-1 showed quantitative and transgressive segregation for resistance to C. sativus, suggesting that the resistance may be governed by quantitative trait loci from both parents. The availability of whole-genome sequences of both the host (B. distachyon) and the pathogen (C. sativus) makes this pathosystem an attractive model for studying this important disease of cereal crops.

  2. Qualidade fisiológica e sanitária de sementes de melão (Cucumis melo Physiological and health quality of melon (Cucumis melo seeds

    Directory of Open Access Journals (Sweden)

    Marlove Fátima Brião Muniz

    2004-06-01

    Full Text Available O objetivo do trabalho foi avaliar a eficiência de diferentes testes na identificação do nível de vigor e da qualidade sanitária de lotes de sementes de melão (Cucumis melo L.. Foram avaliados quatro lotes de sementes das cultivares Gaúcho e Carvalho, submetidas aos testes de primeira contagem de germinação, emergência em campo, deterioração controlada, envelhecimento acelerado e sanidade. Os resultados indicaram que os testes de deterioração controlada e envelhecimento acelerado apresentam sensibilidade suficiente para avaliação do potencial fisiológico de sementes de melão, mas os testes de avaliação de plântulas não mostraram sensibilidade suficiente para realizar uma estratificação dos lotes pelo vigor. Aspergillus spp. e Fusarium oxysporum foram encontrados associados às sementes.The objective of this work was to evaluate the efficiency of different vigour tests in the identification of vigour levels and health quality of melon (Cucumis melo L. seeds. Four seed lots of Gaúcho and Carvalho cultivars were evaluated. Seeds were submitted to the first germination counting, field emergence, controlled deterioration and aging, cold vigour and health tests. Results indicated that controlled deterioration and accelerated aging tests presented enough sensibility for evaluating the physiological potential of melon seeds. Tests of seedling evaluation did not show enough sensibility to identify hiht quality seed lots. Aspergillus ssp. and Fusarium oxysporum were detected associated with seeds.

  3. Superoxide dismutase activity in mesocarp tissue from divergent Cucumis melo L. genotypes.

    Science.gov (United States)

    Lester, Gene E; Jifon, John L; Crosby, Kevin M

    2009-09-01

    Muskmelons (Cucumis melo L.) are well-known as excellent sources of several vitamins, minerals and non-enzymatic antioxidant phytochemicals such as vitamin C and pro-vitamin A. Less well-studied is their potential role as sources of enzymatic antioxidants such as superoxide dismutase (SOD), which have been associated with enhanced reactive oxygen species scavenging capacity in some muskmelon fruits. In this study, we investigated the variability in SOD activities among diverse advanced breeding lines and commercial muskmelon cultivars grown in two different soil types-clay or sandy loam. Specific and total SOD activities varied significantly among the genotypes (P melo as a functional food with enhanced SOD content.

  4. Fatty acids and mineral composition of melon (Cucumis melo L. Inodorus) seeds from West Algeria

    OpenAIRE

    Joseph Kajima Mulengi; Naima Bouazzaoui; Wassila Drici; Wafaa Bouazzaoui; Wafaa Lemerini; Djamel Bendiabdellah; Zoheir Arrar

    2016-01-01

    Seeds of melon (Cucumis melo L. Inodorus) were analyzed for their mineral and lipid compositions. The seeds showed a 30.7%lipids content and ashes accounted for 4.08%. Freshly extracted oil showed acid and peroxide values respectively 4.01 mg KOH/g  and 2.25Meq (O2)/Kg. Iodine and saponification values were 104.52 g (I2)/100 g and 193.60 mg (KOH)/g respectively. Main fatty acids identified so far were linoleic, oleic, palmitic and stearic acids with respective contents 60.1%, 25.3%, 10.1% and...

  5. ANTIOXIDANT ACTIVITY OF CUCUMIS MELO VAR. AGRESTIS SEEDS FOR THEIR THERAPEUTIC POTENTIAL

    Directory of Open Access Journals (Sweden)

    Kaur Manpreet

    2011-04-01

    Full Text Available The present study was an endeavor to evaluate antioxidant activity of methanolic extract of Cucumis melo var. agrestis seeds for their therapeutic potential. In- vitro antioxidant activity was performed by 1, 1- diphenyl-2-picrylhydrazyl (DPPH and Hydrogen peroxide (H2O2. The methanolic seed extract was found to have significant scavenging activity 75.59% at 300 µg/ml by 1,1- diphenyl-2-picryl-hydrazyl method and 69.86% at 400 µg/ml by Hydrogen peroxide method as compared to standard (ascorbic acid. Presence of phytochemicals like triterpenoids, alkaloids, tannins, flavonoids, coumarin glycosides, carbohydrates might contribute to observed antioxidant activity.

  6. USDA, ARS EOM 402-10 high B-carotene cucumber

    Science.gov (United States)

    A high B-carotene cucumber (Cucumis sativus var. sativus L.) line EOM 402-10 is being released. This line was derived from a cross between the "Xishuangbanna gourd" (XIS; Cucumis sativus var. xishuangbannanesis Qi et Yuan; 2n = 2x = 14) that bears orange fruit and the non-orange-fruited cultivated c...

  7. KARAKTERISTIK ES KRIM HASIL MODIFIKASI DENGAN FORMULASI BUBUR TIMUN SURI (Cucumis melo L. DAN SARI KEDELAI [Characteristics of Modified Ice Cream Formulated with Cucumis melo L. Puree and Soybean Milk

    Directory of Open Access Journals (Sweden)

    Oksilia

    2012-06-01

    Full Text Available The objective of this research was to observe the physical and chemical characteristics of ice cream made with various formulations of Cucumis melo L. puree and soybean milk. The experiment was designed using Factorial Randomized Block Design with two treatments and each combination was replicated three times. The factors investigated were formulations of Cucumis melo L. puree (10, 12.5 and 15 % and soybean milk (40, 50 and 60%. The ice cream’s viscosity, overrun and melting time were determined, where as protein, fat and potassium content were analyzed. The results showed that the interaction of Cucumis melo L. puree and soybean milk formulation had significant effect on viscosity and overrun. Modified ice cream made with 12.5% Cucumis melo L. puree and 40% soybean milk was the best formula for producing modified ice cream. The resulted ice cream had viscosity of 1.03 cP, overrun 53.93% and melting time 23,58 minutes, while the protein, fat and potassium content were 5.18%, 70% and 1083.33 mg/L, respectively.

  8. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    Science.gov (United States)

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.

  9. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When t

  10. Can Saffron (Crocus sativus) be effective in the treatment of leishmaniasis?

    Science.gov (United States)

    Bagherani, Nooshin

    2013-10-01

    Leishmaniasis is a parasitic disease caused by Leishmania, transmitted by the bite of some sandfly species. It is endemic in 88 countries throughout the world. Pentavalent antimonials are the standard therapy for leismaniasis. Saffron (crocus sativus) belongs to the iridaceae family. This paper will outline the benefits and challenges of repurposing saffron for treating leishmaniasis.

  11. LC-DAD-MS (ESI+) analysis and antioxidant capacity of crocus sativus petal extracts.

    Science.gov (United States)

    Termentzi, Aikaterini; Kokkalou, Eugene

    2008-04-01

    In this study, various fractions isolated from the petals of Crocus sativus were assessed at first for their phenolic content both qualitatively and quantitatively and secondly for their antioxidant activity. The phytochemical analysis was carried out by LC-DAD-MS (ESI (+)) whereas the antioxidant potential was evaluated by applying two methodologies, the DPPH. radical scavenging activity test and the Co(II)-induced luminol chemiluminescence procedure. According to data obtained from these antioxidant tests, the diethyl ether, ethyl acetate and aqueous fractions demonstrated the strongest antioxidant capacity. Interestingly, the major constituents identified in these fractions correspond to kaempferol, quercetin, naringenin and some flavanone and flavanol derivatives glycosylated and esterified with phenylpropanoic acids. In addition, the presence of some nitrogen-containing substances, as well as other phenolics and phenylpropanoic derivatives was also traced. The identification and structural elucidation of all substances isolated in this study was achieved by both comparing available literature data and by proposed fragmentation mechanisms based on evaluating the LC-DAD-MS (ESI (+)) experimental data. The quantitative analysis data obtained thus far have shown that Crocus sativus petals are a rich source of flavonoids. Such a fact suggests that the good antioxidant capacity detected in the various fractions of Crocus sativus petals could be attributed to the presence of flavonoids, since it is already known that these molecules exert antioxidant capability. The latter, along with the use of Crocus sativus in food and pharmaceutical industry is discussed.

  12. Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm.

    Science.gov (United States)

    Rubio-Moraga, Angela; Trapero, Almudena; Ahrazem, Oussama; Gómez-Gómez, Lourdes

    2010-09-01

    Saffron, the desiccated stigmas of Crocus sativus, is highly appreciated by its peculiar colour, flavour and aroma. The main compounds that accumulated throughout stigma development in C. sativus are crocetin, its glucoside derivatives, crocins, and picrocrocin, all of which increased as stigmas reached a fully developed stage. After anthesis, and in the absence of fertilization, the flower enters in a senescence programme, which represents the ultimate stage of floral development and results in wilting of whole flower. The programmed senescence of flowers allows the removal of a metabolically active tissue. We studied the composition of saffron apocarotenoids during the senescence of C. sativus flowers, and observed that changes in crocins were due to their transport from the senescent stigma to the ovaries and the developing corm. Afterwards, deglucosylation of crocins in these tissues results in crocetin accumulation. This mobilization mimics the export to storage cells (resorbed) of different compounds during leaf senescence avoiding loss of nutrients in leaves that would otherwise be cycled back into the soil system through leaf litter decomposition. In C. sativus, the resorbed apocarotenoids are stored within the developing corm, where they are not further detected in the advanced stages of development, suggesting that they are metabolized during the early and active phases of corm development, where the glucose molecules from crocins might contribute to cell initiation and elongation.

  13. Oilseed Radish (Raphanus Sativus) Effects on Soil Structure and Soil Water Relations

    Science.gov (United States)

    Oilseed radish (Raphanus sativus spp. oleifera) reduces nematode populations. Fall-incorporated radish biomass may also improve soil physical and hydraulic properties to increase the yield and quality of subsequently grown sugarbeet (Beta vulgaris L.). This field study determined radish effects on...

  14. Nitrogen release from differently aged Raphanus sativus L. nitrate catch crops during mineralization at autumn temperatures

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Elsgaard, Lars; Olesen, Jørgen Eivind;

    2016-01-01

    radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost-sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates...

  15. Response of cucurbit rootstocks for grafted melon (Cucumis melo) to southern root-knot nematode, Meloidogyne incognita

    Science.gov (United States)

    Root-knot nematodes (RKN) are an important re-emerging pest of melon (Cucumis melo), due largely to the loss of methyl bromide as a pre-plant soil fumigant. Melon is highly susceptible to southern RKN, Meloidogyne incognita, which causes severe root galling and reduced melon fruit yields. Cucurbit...

  16. Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of beta-carotene bioaccessability and bioavailability

    Science.gov (United States)

    Muskmelons, both cantaloupe (Cucumis melo Reticulatus Group) and orange-fleshed honey dew (C. melo Inodorus Group), a cross between orange-fleshed cantaloupe and green-fleshed honey dew, are excellent sources of ß-carotene. Although ß-carotene from melon is an important dietary antioxidant and precu...

  17. Snapmelon (Cucumis melo L. subsp. agrestis var. momordica), indigenous cucurbitaceous vegetable species from India with immense breeding value: a review

    Science.gov (United States)

    Snapmelon (Cucumis melo L. Momordica Group; 2n = 2x = 24) is native to India, where it is widely cultivated and is commonly called ‘phut,’ which means to split. Immature fruits are cooked or eaten raw. In this paper we review the wealth of genetic resources in Indian snapmelon landraces for resistan...

  18. Snapmelon (Cucumis melo L. Momordica group), an indigenous cucurbit from India with immense value for melon breeding

    Science.gov (United States)

    Snapmelon [Cucumis melo L. subsp. agrestis var. momordica (Roxb.) Duthie et Fuller] is native to India, where it is cultivated in various states, and is commonly called ‘phut,’ which means to split. Immature fruits are cooked or eaten raw. In this paper we review the wealth of genetic resources in I...

  19. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities.

    Science.gov (United States)

    Khan, Mohammad Naved; Khan, Tabrez Alam; Khan, Zaheer; Al-Thabaiti, Shaeel Ahmed

    2015-12-01

    The present study explores the reducing and capping potentials of aqueous Raphanus sativus root extract for the synthesis of silver nanomaterials for the first time in the absence and presence of two stabilizers, namely, water-soluble starch and cetyltrimethylammonium bromide (CTAB). The surface properties of silver nanoparticles (AgNPs) were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The mean size of AgNPs, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial [extract], [CTAB], [starch], and [Ag(+)] ions. The agglomeration number, average number of silver atoms per nanoparticle, and changes in the fermi potentials were calculated and discussed. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The inhibition action was due to the structural changes in the protein cell wall.

  20. Pengaruh Kombinasi Komposisi Media Organik dan Konsentrasi Nutrisi terhadap Daya Hasil Tanaman Melon (Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Khoirul Bariyyah

    2015-08-01

    Full Text Available This research was addressed to study the effect of plant growth media composition and nutrients concentration on yield of Cucumis melo L. The research was designed in complete factorial test of 4x4 with three replicates. Mixed growth media of bokashi:cocopeat:husk charcoal were tested in four compositions, i.e. 90%:5%:5% (M1, 80%:10%:10%(M2, 70%:15%:15% (M3 and 60%:20%:20% (M4 respectively. The other tested factor was nutrients concentraion that consists of four levels, i.e. control/no nutrient given (K0, 2 g/L (K1, 4 g/L (K2 and 6 g/L (K3. The Action 434 variety of Cucumis melo L. seedlings were then transplanted into 10 kg’s polybag and allowed to grow till harvested. The results showed that Chlorophyll content of M1 plants were higher than others, but the highest sugar content was resulted by M3 plants, and the highest thick of flesh fruit was resulted by interaction 60% bokashi:20% cocopeat:20% husk charcoal with 4 g/L nutrient concentration.

  1. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus.

    Science.gov (United States)

    Leng, Yueqiang; Wu, Chengxiang; Liu, Zhaohui; Friesen, Timothy L; Rasmussen, Jack B; Zhong, Shaobin

    2011-04-01

    A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.

  2. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis

    OpenAIRE

    Mukesh Jain; Prabhakar Lal Srivastava; Mohit Verma; Rajesh Ghangal; Rohini Garg

    2016-01-01

    Saffron (Crocus sativus L.) is commonly known as world’s most expensive spice with rich source of apocarotenoids and possesses magnificent medicinal properties. To understand the molecular basis of apocarotenoid biosynthesis/accumulation, we performed transcriptome sequencing from five different tissues/organs of C. sativus using Illumina platform. After comprehensive optimization of de novo transcriptome assembly, a total of 105, 269 unique transcripts (average length of 1047 bp and N50 leng...

  3. Etude des caractéristiques botaniques, agronomiques et de la biologie florale du melon africain (Cucumis melo var. L. agrestis Naudin, Cucurbitaceae)

    OpenAIRE

    Baudoin JP.; Gnamien GY.; Zoro Bi AI.; Kouonon LC.; Djè Y.

    2006-01-01

    Study of botanic, agronomic characters and fl oral biology of African melon (Cucumis melo L. var. agrestis Naudin, Cucurbitaceae). African melon, Cucumis melo var. agrestis, is a cultivated crop for which dried seeds are used in preparation of sauce pistachio, a valuable food in Côte dʼIvoire. Few studies are concerned with this crop as compared to melon species cultivated in temperate countries. Agronomic and morphological characteristics of C. melo var. agrestis are studied based on eight c...

  4. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay.

    Science.gov (United States)

    Panda, Kamal K; Achary, V Mohan M; Phaomie, Ganngam; Sahu, Hrushi K; Parinandi, Narasimham L; Panda, Brahma B

    2016-08-01

    The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay

  5. 厚皮甜瓜(Cucumis melo var. reliculatus)的快速繁殖%Stem-segment Culture and Rapid Propagation of Cucumis melo var. reliculatus

    Institute of Scientific and Technical Information of China (English)

    赵建萍; 柏新富; 蒋小满; 毕可华

    2002-01-01

    以厚皮甜瓜(Cucumis melo var. reliculatus)西薄洛托带腋芽茎段为外植体进行离体快速繁殖研究.结果表明:在MS+BA 0.5~1.0 mg/L+IAA 0.1 mg/L 的培养基上利于诱导形成丛生芽, 芽的月增殖系数达到11以上; 在1/2 MS+IAA 0.5 mg/L培养基上并经暗处理3 d最易生根,生根率90%;在蛭石:草炭土=1:1(体积比)基质中移栽驯化效果好.试管植株定植大田后种性不变,生长和结果习性优于种子苗.

  6. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening.

    Science.gov (United States)

    Vallone, Simona; Sivertsen, Hanne; Anthon, Gordon E; Barrett, Diane M; Mitcham, Elizabeth J; Ebeler, Susan E; Zakharov, Florence

    2013-08-15

    Numerous and diverse physiological changes occur during fruit ripening and maturity at harvest is one of the key factors influencing the flavour quality of fruits. The effect of ripening on chemical composition, physical parameters and sensory perception of three muskmelon (Cucumis melo L. reticulatus group) cultivars was evaluated. Significant correlations emerging from this extensive data set are discussed in the context of identifying potential targets for melon sensory quality improvement. A portable ultra-fast gas-chromatograph coupled with a surface acoustic wave sensor (UFGC-SAW) was also used to monitor aroma volatile concentrations during fruit ripening and evaluated for its ability to predict the sensory perception of melon flavour. UFGC-SAW analysis allowed the discrimination of melon maturity stage based on six measured peaks, whose abundance was positively correlated to maturity-specific sensory attributes. Our findings suggest that this technology shows promise for future applications in rapid flavour quality evaluation.

  7. Construction of a molecular map for melon (Cucumis melo L.)based on SRAP

    Institute of Scientific and Technical Information of China (English)

    Jianshe WANG; Jianchun YAO; Wei LI

    2008-01-01

    A molecular map of melon (Cucumis melo L.) was constructed with SRAP (Sequence-Related Amplified Polymorphism) markers using a population consisting of 114F2 individuals derived from the cross of 4G21 (C. melo var. chinensis) and 3A832 (C. melo var. saccherinus). Twenty-nine primer pairs were used and 187 polymorphic loci were produced. The map consists of 12 linkage groups that include 152 genetic markers and cover 2077.1 cM with an average genetic distance of 13.67 cM. Every link-age group has 6-32 genetic markers with average genetic distance of 9.72-19.19 cM. The length of linkage group is 85.3-496.1 cM.

  8. Identification of Local Melon (Cucumis melo L. var. Bartek Based on Chromosomal Characters

    Directory of Open Access Journals (Sweden)

    BUDI SETIADI DARYONO

    2011-12-01

    Full Text Available Bartek is one of local melon varieties mainly cultivated in Pemalang, Central Java. Bartek has three variations of fruits; Long-Green, Ellips-Green, and Yellow. Chromosome characterization of the Bartek was investigated to determine the genetic variation. The main purpose of this research was to determine the genetic characters of Bartek including chromosome number, mitosis, cell cycle, and karyotype. Squash method was used for chromosome preparation. The results showed that all of Bartek observed in this study have similar diploid (2n chromosome number = 24. According to the total number of chromosome, Bartek is closer to melon than cucumber. The mitotic analysis exhibited that the Bartek has similar karyotype formula, 2n = 2x = 24m. Based on the R value of the three kinds of Bartek (R < 0.27, it indicated that three kinds of Bartek were considered to be originated from similar species and one of melon varieties (Cucumis melo L. var. Bartek.

  9. An experimental design approach to the chemical characterisation of pectin polysaccharides extracted from Cucumis melo Inodorus.

    Science.gov (United States)

    Denman, Laura J; Morris, Gordon A

    2015-03-06

    Extracted pectins have been utilised in a number of applications in both the food and pharmaceutical industries where they are generally used as gelling agents, thickeners and stabilisers, although a number of pectins have been shown to be bioactive. These functional properties will depend upon extraction conditions. A statistical experimental design approach was used to study the effects of extraction conditions pH, time and temperature on pectins extracted from Cucumis melo Inodorus. The results show that the chemical composition is very sensitive to these conditions and that this has a great influence on for example the degree of branching. Higher temperatures, lower pHs and longer extraction times lead to a loss of the more acid labile arabinofuranose residues present on the pectin side chain. The fitting of regression equations relating yield and composition to extraction conditions can therefore lead to tailor-made pectins for specific properties and/or applications.

  10. Flavour profiles of three novel acidic varieties of muskmelon (Cucumis melo L.).

    Science.gov (United States)

    Lignou, Stella; Parker, Jane K; Oruna-Concha, Maria Jose; Mottram, Donald S

    2013-08-15

    Novel acidic varieties of muskmelon (Cucumis melo L.) are emerging onto the UK market. These melons contain almost twice the amount of citric acid compared to standard melons and are described as 'zesty and fresh'. This study compared the flavour components of three acidic varieties with a standard Galia-type melon. The volatile and semivolatile compounds were extracted, using dynamic headspace extraction (DHE) or solid-phase microextraction (SPME) and solid phase extraction (SPE), respectively, followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). More than 50 volatile and 50 semivolatile compounds were identified in the headspace and the SPE extracts, respectively. GC-O revealed 15 odour-active components in the headspace, with esters being consistently higher in the acidic variety. This study showed quantitative and qualitative differences among all four varieties and key differences between acidic varieties and standard melons.

  11. Research and Development of Cucumis melo Yogurt%香瓜酸奶的研制

    Institute of Scientific and Technical Information of China (English)

    叶华; 占跃进

    2014-01-01

    以香瓜(Cucumis melo)和牛奶为原料制作香瓜酸奶,以感官评定为依据,采用单因素试验与正交试验对其配方工艺进行优化.结果表明,香瓜酸奶最佳配方工艺参数为:发酵剂添加量4%,香瓜汁添加量30%,白砂糖添加量8%,发酵温度43℃,发酵时间3.5 h,添加0.4%羧甲基纤维素钠和果胶复合稳定剂(比例为7∶3).在此条件下,酸奶具有独特的香瓜风味.

  12. The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available The growing list of herbicide-resistant biotypes and environmental concerns about chemical use has prompted interest in alternative methods of managing weeds. This study explored the effect of microwave energy on paddy melon (Cucumis myriocarpus plants, fruits, and seeds. Microwave treatment killed paddy melon plants and seeds. Stem rupture due to internal steam explosions often occurred after the first few seconds of microwave treatment when a small aperture antenna was used to apply the microwave energy. The half lethal microwave energy dose for plants was 145 J/cm2; however, a dose of at least 422 J/cm2 was needed to kill seeds. This study demonstrated that a strategic burst of intense microwave energy, focused onto the stem of the plant is as effective as applying microwave energy to the whole plant, but uses much less energy.

  13. Fatty acids and mineral composition of melon (Cucumis melo L. Inodorus seeds from West Algeria

    Directory of Open Access Journals (Sweden)

    Joseph Kajima Mulengi

    2016-01-01

    Full Text Available Seeds of melon (Cucumis melo L. Inodorus were analyzed for their mineral and lipid compositions. The seeds showed a 30.7%lipids content and ashes accounted for 4.08%. Freshly extracted oil showed acid and peroxide values respectively 4.01 mg KOH/g  and 2.25Meq (O2/Kg. Iodine and saponification values were 104.52 g (I2/100 g and 193.60 mg (KOH/g respectively. Main fatty acids identified so far were linoleic, oleic, palmitic and stearic acids with respective contents 60.1%, 25.3%, 10.1% and 4.5%. Mineral analysis revealed significant levels of potassium, magnesium, calcium and sodium, namely 509.80, 101.71, 55.39 and 41.17 mg/100g respectively

  14. Cucumin S, a new phenylethyl chromone from Cucumis melo var. reticulatus seeds

    Directory of Open Access Journals (Sweden)

    Sabrin R.M. Ibrahim

    2015-10-01

    Full Text Available ABSTRACTA new phenylethyl chromenone, cucumin S [(R-5,7-dihydroxy-2-[1-hydroxy-2-(4-hydroxy-3-methoxyphenylethyl]chromone] (1, along with five known compounds: 5,7-dihydroxy-2-[2-(4-hydroxyphenylethyl]chromone (2, 5,7-dihydroxy-2-[2-(3,4-dihydroxyphenylethyl]chromone (3, luteolin (4, quercetin (5, and 7-glucosyloxy-5-hydroxy-2-[2-(4-hydroxyphenylethyl]chromone (6 were isolated from the EtOAc fraction of Cucumis melo var. reticulatus Ser., Cucurbitaceae, seeds. Their structures were determined by spectroscopic means (1D and 2D NMR, as well as HRESIMS, optical rotation measurement, and comparison with literature data. The isolated compounds 1–6 were assessed for their antioxidant activity using DPPH assay. Compounds 3, 4, and 5 showed potent activities compared to propyl gallate at concentration 100 µM.

  15. Cucumis melo endornavirus: Genome organization, host range and co-divergence with the host.

    Science.gov (United States)

    Sabanadzovic, Sead; Wintermantel, William M; Valverde, Rodrigo A; McCreight, James D; Aboughanem-Sabanadzovic, Nina

    2016-03-02

    A high molecular weight dsRNA was isolated from a Cucumis melo L. plant (referred to as 'CL01') of an unknown cultivar and completely sequenced. Sequence analyses showed that dsRNA is associated with an endornavirus for which a name Cucumis melo endornavirus (CmEV) is proposed. The genome of CmEV-CL01 consists of 15,078 nt, contains a single, 4939 codons-long ORF and terminates with a stretch of 10 cytosine residues. Comparisons of the putative CmEV-encoded polyprotein with available references in protein databases revealed a unique genome organization characterized by the presence of the following domains: viral helicase Superfamily 1 (Hel-1), three glucosyltransferases (doublet of putative capsular polysaccharide synthesis proteins and a putative C_28_Glycosyltransferase), and an RNA-dependent RNA polymerase (RdRp). The presence of three glycome-related domains of different origin makes the genome organization of CmEV unique among endornaviruses. Phylogenetic analyses of viral RdRp domains showed that CmEV belongs to a specific lineage within the family Endornaviridae made exclusively of plant-infecting endornaviruses. An RT-PCR based survey demonstrated high incidence of CmEV among melon germplasm accession (>87% of tested samples). Analyses of partial genome sequences of CmEV isolates from 26 different melon genotypes suggest fine-tuned virus adaptation and co-divergence with the host. Finally, results of the present study revealed that CmEV is present in plants belonging to three different genera in the family Cucurbitaceae. Such diverse host range is unreported for known endornaviruses and suggests a long history of CmEV association with cucurbits predating their speciation.

  16. α-GLUCOSIDASE AND α -AMYLASE INHIBITORY ACTIVITIES OF RAPHANUS SATIVUS LINN.

    Directory of Open Access Journals (Sweden)

    R. Vadivelan et al

    2012-09-01

    Full Text Available Herbal medicine has been used for many years by different cultures around the world for the treatment of diabetes. There has been an enormous interest in the development of alternative medicines for type 2 diabetes, specifically screening for phytochemicals with the ability to delay or prevent glucose absorption. The goal of the present study is to evaluate the invitro antidiabetic activity of Raphanus sativus ethanolic extract and fractions by α-glucosidase and α -amylase inhibitory activity. Raphanus sativus ethanolic extract and fractions showed dose dependent inhibition of α-glucosidase and α -amylase enzyme and exhibited lower inhibitory activity than acarbose. The study revealed the antidiabetic potential and could be helpful to develop medicinal preparations and nutraceuticals and function foods for diabetes.

  17. SELF INCOMPATIBILITY MECHANISMS IN THE CROCUS SATIVUS AGGREGATE (IRIDACEAE: A PRELIMINARY INVESTIGATION

    Directory of Open Access Journals (Sweden)

    R. ZANIER

    2000-01-01

    Full Text Available Two molecular mechanisms responsible for SI (Self-Incompatibility in dicotyledons were tested in the C. sativus L. aggregate. RNase and peroxidase activity assays were carried out on crude extract from un-, self- and cross-pollinated styles of C. sativus (male-sterile, C. thomasii Ten. (outfertile and C. cartwrightianus Herb (out-fertile. Results on RNase activity indicate that in the Crocus species studied the rejection mechanism of SI is not based on stylar RNase. Data on peroxidase activity indicate a relationship between pollen tube presence in the style and stylar peroxidase activity. Stylar peroxidase activity increase is related to pollen tube presence but does not stop tube growth. Compatible and incompatible pollen tubes grow along the style and their discrimination occurs in another region of the gynoecium.

  18. SELF INCOMPATIBILITY MECHANISMS IN THE CROCUS SATIVUS AGGREGATE (IRIDACEAE: A PRELIMINARY INVESTIGATION

    Directory of Open Access Journals (Sweden)

    R. ZANIER

    2000-04-01

    Full Text Available Two molecular mechanisms responsible for SI (Self-Incompatibility in dicotyledons were tested in the C. sativus L. aggregate. RNase and peroxidase activity assays were carried out on crude extract from un-, self- and cross-pollinated styles of C. sativus (male-sterile, C. thomasii Ten. (outfertile and C. cartwrightianus Herb (out-fertile. Results on RNase activity indicate that in the Crocus species studied the rejection mechanism of SI is not based on stylar RNase. Data on peroxidase activity indicate a relationship between pollen tube presence in the style and stylar peroxidase activity. Stylar peroxidase activity increase is related to pollen tube presence but does not stop tube growth. Compatible and incompatible pollen tubes grow along the style and their discrimination occurs in another region of the gynoecium.

  19. The Research Progress of Crocus Sativus%西红花的研究进展

    Institute of Scientific and Technical Information of China (English)

    李伟平; 张云; 丁志山

    2011-01-01

    On the basis of several articles in domestic and international experimental literature,the resources shortage of Crocus sativus is analyzed and some solutions are put forward,and a review on the chemical composition and pharmacology of Crocus sativus is made.%在国内外多篇实验性文献和综述的基础上,重点对西红花资源短缺的问题进行了分析和探讨,提出一些解决西红花资源短缺问题的途径,并对西红花的化学成分、药理作用的研究进展进行了简略的论述。

  20. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    Science.gov (United States)

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se.

  1. Antidepressant properties of bioactive fractions from the extract of Crocus sativus L.

    Science.gov (United States)

    Wang, Yang; Han, Ting; Zhu, Yu; Zheng, Cheng-Jian; Ming, Qian-Liang; Rahman, Khalid; Qin, Lu-Ping

    2010-01-01

    The aim of this study was to investigate the antidepressant properties of stigmas and corms of Crocus sativus L. The aqueous ethanol extract of C. sativus corms was fractionated on the basis of polarity. Among the different fractions, the petroleum ether fraction and dichloromethane fraction at doses of 150, 300, and 600 mg/kg showed significant antidepressant-like activities in dose-dependent manners, by means of behavioral models of depression. The immobility time in the forced swimming test and tail suspending test was significantly reduced by the two fractions, without accompanying changes in ambulation when assessed in the open-field test. By means of a gas chromatography-mass spectrometry technique, twelve compounds of the petroleum ether fraction were identified. These data show that administration of C. sativus corms extract produces antidepressant-like effects. Aqueous stigmas extract also exerted antidepressive effects in the behavioral models. Crocin 1 and crocin 2 of the aqueous stigmas extract were identified by a reversed-phase HPLC analysis. In addition, the bioactive compound crocin 1 in this herb was quantitatively determined. The data indicate that antidepressant-like properties of aqueous stigma extracts may be due to crocin 1, giving support to the validity of the use of this plant in traditional medicine. All these results suggest that the low polarity parts of C. sativus corms should be considered as a new plant material for curing depression, which merit further studies regarding antidepressive-like activities of chemical compounds isolated from the two fractions and mechanism of action.

  2. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri as reviewed by deepSuperSAGE analysis

    Directory of Open Access Journals (Sweden)

    Nuno Felipe Almeida

    2015-03-01

    Full Text Available Lathyrus sativus (grass pea is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.

  3. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis.

    Science.gov (United States)

    Almeida, Nuno F; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.

  4. In vitro development of microcorms and stigma like structures in saffron (Crocus sativus L.)

    OpenAIRE

    Javid Iqbal MIR; Ahmed, Nazeer; Wani, Shabir H.; Rizwan RASHID; Mir, Hidayatullah; Sheikh, Muneer A.

    2010-01-01

    Saffron is an important spice derived from the stigmas of Crocus sativus, a species belonging to the family Iridaceae. Due to its triploid nature it is sterile and is not able to set seeds, so it is propagated only by corms. The natural propagation rate of most geophytes including saffron is relatively low. An in vitro multiplication technique like micropropagation has been used for the propagation of saffron. In the present study, various explants were cultured on different nutrient media su...

  5. Inhibitory Response of Raphanus sativus on Lipid Peroxidation in Albino Rats

    Directory of Open Access Journals (Sweden)

    P. Chaturvedi

    2008-01-01

    Full Text Available In the present study, inhibitory effect of the methanol extract of Raphanus sativus root on lipid peroxidation has been carried out in normal rats. Graded doses of methanol extract of root of the plant (40, 80 and 120 mg kg−1 body weight were administered orally for 15 days to experimental treated rats. Distilled water was administered to experimental control rats. At the end of experiment, rats were killed by decapitation after ether anesthesia. Blood and liver were collected to measure thiobarbituric acid reactive substance, reduced glutathione and activity of catalase. Results indicated that the extract of R. sativus root reduced the levels of thiobarbituric acid reactive substance significantly in all experimental treated groups (P < 0.05 as compared to the experimental control group. It also increased the levels of reduced glutathione and increased the activity of catalase. In vitro experiments with the liver of experimental control and experimental treated rats were also carried out against cumene hydroperoxide induced lipid peroxidation. The extract inhibited in vitro cumene hydroperoxide induced lipid peroxidation. R. sativus inhibits lipid peroxidation in vivo and in vitro. It provides protection by strengthening the antioxidants like glutathione and catalase. Inclusion of this plant in every day diet would be beneficial.

  6. Biondication of Shartashsky forest park urban soil of Ekaterinburg using Raphanus Sativus

    Directory of Open Access Journals (Sweden)

    Baglaeva Elena Mikhailovna

    2016-06-01

    Full Text Available Ekaterinburg is a large industrial center of Russia. The pollution of the environment with heavy metals is increasing due to the industrialization and human activities. Heavy metals present a very serious problem for all living beings. The aim of this paper is to identify the pollutant content changes in the environment using Raphanus Sativus. For bioindication of urbanized soil in Shartashsky forest park of Ekaterinburg city the growth of Raphanus Sativus was investigated at ten sample plots and a control one. The element concentration in the plants and soil samples was determined by X-ray analysis. The transition of zinc, titanium, iron and calcium from the soil into the Raphanus Sativus was assessed. The results of the correlation analysis of the content of chemical elements in the samples of plants and soil can be represented as a scheme: Ti (0.94> Zn (0.68> Ca (0.53> Fe (0.45. Spearman correlation coefficients are given in brackets. Zinc content in the soil and radish samples was found to be higher than the maximum allowable concentration defined in accordance with the Russian State Standard System. It is shown that radish can be used as an indicator of soil pollution with zinc.

  7. Lessons from neurolathyrism: A disease of the past & the future of Lathyrus sativus (Khesari dal

    Directory of Open Access Journals (Sweden)

    Surya S Singh

    2013-01-01

    Full Text Available Neurolathyrism is past history in India since Lathyrus sativus (khesari dal is no longer used as a staple. A consensus has evolved that khesari dal is harmless as part of a normal diet. L-ODAP (β-N-oxalyl-l-α-diamino propionic acid the neurotoxic amino acid, from this pulse, is detoxified in humans but not in animals but still no laboratory animal is susceptible to it under acceptable feeding regimens. L-ODAP is an activator of protein kinase C and consequential crucial downstream effects such as stabilization of hypoxia inducible factor-1 (HIF-1 could be extremely conducive to humans under a variety of situations. ODAP is gradually finding a place in several patents for this reason. Homoarginine the second amino acid from L. sativus can be a better substrate for endogenous generation of nitric oxide, a crucial signaling molecule associated with the cardiovasculature and control of hypertension. These features could make L. sativus a prized commodity as a functional food for the general cardiovasculature and overcome hypoxic events and is set to change the entire perception of this pulse and neurolathyrism.

  8. Molecular characterization of a trisegmented chrysovirus isolated from the radish Raphanus sativus.

    Science.gov (United States)

    Li, Liqiang; Liu, Jianning; Xu, Aixia; Wang, Ting; Chen, Jishuang; Zhu, Xiwu

    2013-09-01

    Radish (Raphanus sativus L.) is cultivated worldwide and is of agronomic importance. dsRNAs associated with partitiviruses were previously found in many R. sativus varieties. In this study, three large dsRNAs from radish were cloned using a modified single primer amplification technique. These three dsRNAs-of lengths 3638, 3517 and 3299 bp-shared conserved untranslated terminal regions, and each contained a major open reading frame putatively encoding the chrysoviral replicase, capsid protein and protease respectively. Isometric virus-like particles (VLP), approximately 45nm in diameter, were isolated from the infected radish plants. Northern blotting indicated that these dsRNAs were encapsidated in the VLP. The virus containing these dsRNA genome segments was named Raphanus sativus chrysovirus 1 (RasCV1). Phylogenetic analysis revealed that RasCV1 is a new species of the Chrysoviridae family and forms a plant taxon with another putative plant chrysovirus, Anthurium mosaic-associated virus (AmaCV). Furthermore, no fungal mycelia were observed in radish leaf tissues stained with trypan blue. These results indicated that RasCV1 is most likely a plant chrysovirus rather than a chrysovirus in symbiotic fungi. An exhaustive BLAST analysis of RasCV1 and AmaCV revealed that chrysovirus-like viruses might widely exist in eudicot and monocot plants and that endogenization of chrysovirus segments into plant genome might have ever happened.

  9. Histochemical characterization of early response to Cochliobolus sativus infection in selected barley genotypes.

    Science.gov (United States)

    Rodríguez-Decuadro, Susana; Silva, Paula; Bentancur, Oscar; Gamba, Fernanda; Pritsch, Clara

    2014-07-01

    Much effort is being made to breed barley with durable resistance to leaf spot blotch incited by Bipolaris sorokiniana (teleomorph: Cochliobolus sativus). We hypothesized that susceptibility and resistance traits in 11 diverse barley genotypes inoculated with a single C. sativus isolate might specify a range of distinct host cell responses. Quantitative descriptions of interaction microphenotypes exhibited by different barley genotype seedlings after infection with C. sativus are provided. Early oxidative responses occurring in epidermis and mesophyll leaf tissue were monitored by histochemical analysis of H2O2 accumulation at 8, 24, and 48 h after inoculation. Cell wall apposition (CWA) in epidermal cells and hypersensitive reaction (HR) of epidermal or mesophyll tissue were early defenses in both resistant and susceptible genotypes. There were differences in level, duration, and frequency of occurrence for CWA and HR for the different barley genotypes. Occurrence of HR in epidermal cells at post-penetration stages was indicative of compatibility. Patterns of cell responses were microphenotypically diverse between different resistant and susceptible genotypes. This suggests that timing and level of response are key features of microphenotypic diversity that distinguish different functional mechanisms of resistance and susceptibility present in barley.

  10. Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability.

    Science.gov (United States)

    Fleshman, Matthew K; Lester, Gene E; Riedl, Ken M; Kopec, Rachel E; Narayanasamy, Sureshbabu; Curley, Robert W; Schwartz, Steven J; Harrison, Earl H

    2011-05-11

    Muskmelons, both cantaloupe (Cucumis melo Reticulatus Group) and orange-fleshed honeydew (C. melo Inodorus Group), a cross between orange-fleshed cantaloupe and green-fleshed honeydew, are excellent sources of β-carotene. Although β-carotene from melon is an important dietary antioxidant and precursor of vitamin A, its bioaccessibility/bioavailability is unknown. We compared β-carotene concentrations from previously frozen orange-fleshed honeydew and cantaloupe melons grown under the same glasshouse conditions, and from freshly harvested field-grown, orange-fleshed honeydew melon to determine β-carotene bioaccessibility/bioavailability, concentrations of novel β-apocarotenals, and chromoplast structure of orange-fleshed honeydew melon. β-Carotene and β-apocarotenal concentrations were determined by HPLC and/or HPLC-MS, β-carotene bioaccessibility/bioavailability was determined by in vitro digestion and Caco-2 cell uptake, and chromoplast structure was determined by electron microscopy. The average β-carotene concentrations (μg/g dry weight) for the orange-fleshed honeydew and cantaloupe were 242.8 and 176.3 respectively. The average dry weights per gram of wet weight of orange-fleshed honeydew and cantaloupe were 0.094 g and 0.071 g, respectively. The bioaccessibility of field-grown orange-fleshed honeydew melons was determined to be 3.2 ± 0.3%, bioavailability in Caco-2 cells was about 11%, and chromoplast structure from orange-fleshed honeydew melons was globular (as opposed to crystalline) in nature. We detected β-apo-8'-, β-apo-10', β-apo-12'-, and β-apo-14'-carotenals and β-apo-13-carotenone in orange-fleshed melons (at a level of 1-2% of total β-carotene). Orange-fleshed honeydew melon fruit had higher amounts of β-carotene than cantaloupe. The bioaccessibility/bioavailability of β-carotene from orange-fleshed melons was comparable to that from carrot (Daucus carota).

  11. Densidade de plantio e rendimento de frutos do meloeiro (Cucumis melo L. Plant density and fruit yield of muskmelon(Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2003-08-01

    Full Text Available O objetivo do trabalho foi avaliar os efeitos da densidade de plantio (7; 10; 13; 16; 19; 22 e 25 mil plantas/ha sobre o rendimento de frutos do meloeiro, cv. Gold Pride. As densidades foram obtidas mantendo-se constante (2,0 m o espaçamento entre fileiras e variando-se o espaçamento entre covas. O trabalho foi realizado em Tibau-RN, com irrigação por gotejamento. Utilizou-se o delineamento de blocos ao acaso, com sete repetições. O aumento da densidade de plantio aumentou o número e a massa de frutos, totais, comercializáveis e não-comercializáveis, reduziu o comprimento e o diâmetro dos frutos comercializáveis, mas não influenciou o teor de sólidos solúveis dos frutos comercializáveis.The objective of this work was to evaluate the effects of plant density (7, 10, 13, 16, 19, 22 and 25 thousands plants ha-1 on fruit yield of yellow melon (Cucumis melo L., cv. Gold Pride. The plant densities were obtained using the same spacing (2.0 m between rows, but varying spacing between plants at same row. The experiment was carried out at Tibau-RN county, Brazil. The complete randomized design with seven replications was used. The increase of plant density increased the total number and the total weight of the fruit, the number and weight of marketable fruits and the number and weight of unmarketable fruits, but decreased length and diameter of marketable fruits, but did not influenced total soluble solid content of melon.

  12. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis.

    Science.gov (United States)

    Jain, Mukesh; Srivastava, Prabhakar Lal; Verma, Mohit; Ghangal, Rajesh; Garg, Rohini

    2016-03-03

    Saffron (Crocus sativus L.) is commonly known as world's most expensive spice with rich source of apocarotenoids and possesses magnificent medicinal properties. To understand the molecular basis of apocarotenoid biosynthesis/accumulation, we performed transcriptome sequencing from five different tissues/organs of C. sativus using Illumina platform. After comprehensive optimization of de novo transcriptome assembly, a total of 105, 269 unique transcripts (average length of 1047 bp and N50 length of 1404 bp) were obtained from 206 million high-quality paired-end reads. Functional annotation led to the identification of many genes involved in various biological processes and molecular functions. In total, 54% of C. sativus transcripts could be functionally annotated using public databases. Transcriptome analysis of C. sativus revealed the presence of 16721 SSRs and 3819 transcription factor encoding transcripts. Differential expression analysis revealed preferential/specific expression of many transcripts involved in apocarotenoid biosynthesis in stigma. We have revealed the differential expression of transcripts encoding for transcription factors (MYB, MYB related, WRKY, C2C2-YABBY and bHLH) involved in secondary metabolism. Overall, these results will pave the way for understanding the molecular basis of apocarotenoid biosynthesis and other aspects of stigma development in C. sativus.

  13. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats.

    Science.gov (United States)

    Yari, A; Sarveazad, A; Asadi, E; Raouf Sarshoori, J; Babahajian, A; Amini, N; Amidi, F; Bahadoran, H; Joghataei, M T; Asadi, M H; Shams, A

    2016-12-01

    Cadmium is a toxic heavy metal element, which probably cause infertility by impairment in spermatogenesis. The present work aimed (i) to study the toxic effect of cadmium on spermatogenesis in rat, as well as (ii) the protective effect of Crocus sativus L. on cadmium-intoxicated rats. Cadmium chloride was administered intraperitoneally during 16 days at intervals of 48 h between subsequent treatments. Crocus sativus L. was pre-treated in both of control and cadmium-injected rats. Animals were sacrificed on day 17 after the first treatment. The left cauda epididymis was removed and immediately immersed into Hank's balanced salt solution for the evaluation of sperm count and viability, and left testis was fixed in 10% formalin for histological evaluation. Following contamination with cadmium, a decrease was observed in the number and viability of cauda epididymis sperm, which were increased by Crocus sativus L. pre-treatment (P spermatogenesis.

  14. Allelopathic effect of Raphanus sativus on Urochloa decumbens and Lactuca sativa = Efeito alelopático de Raphanus sativus em Urochloa decumbens e Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Rafael Navas

    2016-10-01

    Full Text Available The aim of this study was to evaluate the allelopathic potential of an extract from the leaves and roots of Raphanus sativus, on the species Urochloa decumbens and Lactuca sativa L. To obtain the extract, the leaves and roots of R. sativus were used separately, crushed at a proportion of 200 g of leaves to 1 L of water to give a crude aqueous extract (100%. Dilutions of 60%, 40% and 20%, and the control were produced from this extract. Seeds of U. decumbens and L. sativa were evenly distributed over two sheets of germitest paper, with four replications of 40 seeds each. Germination was evaluated at 7 and 14 days after sowing, together with the germination speed index (GSI, length of the shoots and roots, and dry weight. The design was completely randomised, and the values submitted to analysis of variance by F-test and regression analysis. The leaf extract gave a reduction in the germination of L. sativa at all tested doses. With application of the root extract, an increase was seen in germination, in the GSI and length of the radicle in U. decumbens at doses of from 40%. Moreover, with application of the leaf extract, the length of the shoot and radicle were also greater, irrespective of the dose applied. There was no effect from the treatments on the dry mass of the species. = Objetivou-se com este trabalho avaliar o potencial alelopático de extrato de folhas e raízes de Raphanus sativus, nas espécies Urochloa decumbens e Lactuca sativa L. Para obtenção do extrato, foram utilizadas separadamente folhas e raízes de R. sativus, trituradas na proporção de 200 g de folhas para 1 L de água, resultando no extrato aquoso bruto (100%. A partir desse extrato, foram realizadas as diluições de 60%, 40% e 20% e testemunha. Sementes de U. decumbens e L. sativa foram distribuídas uniformemente sobre duas folhas de papel germitest, com quatro repetições, com 40 sementes cada. As avaliações de germinação foram realizadas aos 7 e aos 14 dias

  15. Effect of Electron Beam Irradiation on Degradability Coefficients and Ruminalpostruminal Digestibility of Dry Matter and Crude Protein of some Plant Protein Sources

    Directory of Open Access Journals (Sweden)

    gasem tahan

    2016-06-01

    Full Text Available Effect of electron beam irradiation on degradability coefficients and ruminal- postruminal digestibility of dry matter and crude protein of soybean meal, canola meal and Lathyrus sativus seed, irradiated at doses of 50, 100 and 150 kGy was investigated. Ruminal degradability of dry matter and crude protein was determined by in situ method using two cannulated Holstein heifers. Ruminal- postruminal digestibility of dry matter and crude protein was determined by in situ (nylon bag-in vitro (daisy digestor techniques. Data analyzed using SAS software as randomized completely design and the treatment means were compared using Tukey test. The results indicated that irradiation had no effect on dry matter, ether extract and ash content of feeds. In soybean meal, washout fraction and potentially degradable fraction of dry matter and crude protein was higher and lower at dose of 150 kGy irradiation than other treatments, respectively, and degradation rate constant and ruminal effective degradability of dry matter and crude protein was lower at all doses of irradiation than untreated soybean meal. In canola meal, irradiation at doses of 50 and 100 kGy decreased washout fraction and increased potentially degradable fraction of crude protein compared with untreated canola meal. In Lathyrus sativus seed, only potentially degradable fraction of dry matter and crude protein was lower at dose of 150 kGy irradiation than untreated Lathyrus sativus seed. Ruminal digestibility of crude protein decreased in soybean meal at doses of 100 and 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. Total tract digestibility of crude protein decreased in soybean meal at dose of 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. In Lathyrus sativus seed, ruminal-postruminal digestibility and total tract digestibility of dry matter increased at doses of 100 and 150 kGy irradiation than untreated

  16. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems.

    Science.gov (United States)

    Montalvo-Hernández, Bertha; Rito-Palomares, Marco; Benavides, Jorge

    2012-05-04

    Crocins are carotenoid derivates that have recently attracted the interest of the scientific community due to their nutraceutical properties. Saffron (dry Crocus sativus stigmas) is one of the main known sources of crocins. In this study the potential use of aqueous two-phase system (ATPS) for the extraction of crocins from C. sativus stigmas was evaluated. The partitioning behavior of crocins in different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt and ionic liquid-salt) was evaluated. Ethanol-potassium phosphate ATPS were selected based on their high top phase recovery yield and low cost of system constituents. The evaluation and optimization of system parameters rendered conditions (V(R)=3.2, ethanol 19.8% (w/w), potassium phosphate 16.5% (w/w), TLL of 25% (w/w), 0.1M NaCl and 2% (w/w) of sample load) under which more than 75% of total crocins were recovered in the top (ethanol rich) phase, whereas the wasted stigmas accumulated in the bottom phase. Lastly, a comparison between an optimized solid-liquid extraction using ethanol:water as solvent and ATPS was conducted demonstrating that similar yields are achieved with both strategies (76.89 ± 18% and 79.27 ± 1.6%, respectively). However, ATPS rendered a higher extraction selectivity of 1.3 ± 0.04 mg of crocins for each mg of phenolic compound, whereas ethanolic extraction showed a selectivity of 0.87 ± 0.01. The results reported herein demonstrate the potential application of ATPS, particularly ethanol-potassium phosphate systems, for the recovery of crocins from C. sativus stigmas.

  17. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Continenza, Maria A; Stagos, Dimitrios; Vegliò, Francesco; Arroo, Randolph R J

    2015-12-01

    Saffron from the province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October and November, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a waste material in the production of saffron spice, were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC-DAD, infrared (IR), and nuclear magnetic resonance ((1)H &(13)C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine.

  18. Stimulatory effect of Crocus sativus (saffron) on beta2-adrenoceptors of guinea pig tracheal chains.

    Science.gov (United States)

    Nemati, H; Boskabady, M H; Ahmadzadef Vostakolaei, H

    2008-12-01

    To study the mechanism(s) of the relaxant effects of Crocus sativus (Iridaceae), the stimulatory effect of aqueous-ethanolic extracts of this plant and one of its constituent, safranal was examined on beta-adrenoceptors in tracheal chains of guinea pigs. The beta(2)-adrenergic stimulatory was tested by performing the cumulative concentration-response curves of isoprenaline-induced relaxation of pre-contracted isolated guinea pig tracheal chains. The studied solutions were included two concentrations of aqueous-ethanolic extract from Crocus sativus (0.1 and 0.2g%), safranal (1.25 and 2.5 microg), 10nM propranolol, and saline. The study was done in two different conditions including: non-incubated (group 1, n=9) and incubated tissues with 1 microM chlorpheniramine (group 2, n=6). The results showed clear leftward shifts in isoprenaline curves obtained in the presence of only higher concentration of the extract in group 1 and its both concentrations in group 2 compared with that of saline. The EC(50) (the effective concentration of isoprenaline, causing 50% of maximum response) obtained in the presence of both concentrations of the extract (0.17+/-0.06 and 0.12+/-0.02) and safranal (0.22+/-0.05 and 0.22+/-0.05) in group 1 and only in the presence of two concentrations of the extract (1.16+/-0.31 and 0.68+/-0.21) in group 2 was significantly lower compared to saline (1.00+/-0.22 and 4.06+/-1.04 for groups 1 and 2, respectively) (pCrocus sativus on beta(2)-adrenoceptors which is partially due to its constituent, safranal. A possible inhibitory effect of the plant on histamine (H(1)) receptors was also suggested.

  19. Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus.

    Science.gov (United States)

    Tonosaki, K; Michiba, K; Bang, S W; Kitashiba, H; Kaneko, Y; Nishio, T

    2013-03-01

    A hybridization barrier leads to the inability of seed formation after intergeneric crossings between Brassica rapa and Raphanus sativus. Most B. rapa lines cannot set intergeneric hybrid seeds because of embryo breakdown, but a B. rapa line obtained from turnip cultivar 'Shogoin-kabu' is able to produce a large number of hybrid seeds as a maternal parent by crossings with R. sativus. In 'Shogoin-kabu' crossed with R. sativus, developments of embryos and endosperms were slower than those in intraspecific crossings, but some of them grew to mature seeds without embryo breakdown. Intergeneric hybrid seeds were obtained in a 'Shogoin-kabu' line at a rate of 0.13 per pollinated flower, while no hybrid seeds were obtained in a line developed from Chinese cabbage cultivar 'Chiifu'. F(1) hybrid plants between the lines of 'Shogoin-kabu' and 'Chiifu' set a larger number of hybrid seeds per flower, 0.68, than both the parental lines. Quantitative trait loci (QTLs) for hybrid seed formation were analyzed after intergeneric crossings using two different F(2) populations derived from the F(1) hybrids, and three QTLs with significant logarithm of odds scores were detected. Among them, two QTLs, i.e., one in linkage group A10 and the other in linkage group A01, were detected in both the F(2) populations. These two QTLs had contrary effects on the number of hybrid seeds. Epistatic interaction between these two QTLs was revealed. Possible candidate genes controlling hybrid seed formation ability in QTL regions were inferred using the published B. rapa genome sequences.

  20. Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction.

    Science.gov (United States)

    Sattar, Sampurna; Song, Yan; Anstead, James A; Sunkar, Ramanjulu; Thompson, Gary A

    2012-06-01

    Aphis gossypii resistance in melon (Cucumis melo) is due to the presence of a single dominant virus aphid transmission (Vat) gene belonging to the nucleotide-binding site leucine-rich repeat family of resistance genes. Significant transcriptional reprogramming occurs in Vat(+) plants during aphid infestation as metabolism shifts to respond to this biotic stress. MicroRNAs (miRNAs) are involved in the regulation of many biotic stress responses. The role of miRNAs was investigated in response to aphid herbivory during both resistant and susceptible interactions. Small RNA (smRNA) libraries were constructed from bulked leaf tissues of a Vat(+) melon line following early and late aphid infestations. Sequence analysis indicated that the expression profiles of conserved and newly identified miRNAs were altered during different stages of aphid herbivory. These results were verified by quantitative polymerase chain reaction experiments in both resistant Vat(+) and susceptible Vat(-) interactions. The comparative analyses revealed that most of the conserved miRNA families were differentially regulated during the early stages of aphid infestation in the resistant and susceptible interactions. Along with the conserved miRNA families, 18 cucurbit-specific miRNAs were expressed during the different stages of aphid herbivory. The comparison of the miRNA profiles in the resistant and susceptible interactions provides insight into the miRNA-dependent post-transcriptional gene regulation in Vat-mediated resistance.

  1. Genetic diversity among melon accessions (Cucumis melo) from Turkey based on SSR markers.

    Science.gov (United States)

    Kaçar, Y A; Simsek, O; Solmaz, I; Sari, N; Mendi, Y Y

    2012-12-19

    Melon (Cucumis melo) is an important vegetable crop in Turkey, where it is grown in many regions; the most widely planted lines are local winter types belonging to the var. inodorous. We examined 81 melon genotypes collected from different provinces of Turkey, compared with 15 reference melon genotypes obtained from INRA/France, to determine genetic diversity among Turkish melons. Twenty polymorphic primers were used to generate the SSR markers. PCR amplification was performed and electrophoresis was conducted. SSR data were used to generate a binary matrix. For cluster analysis, UPGMA was employed to construct a clustering dendrogram based on the genetic distance matrix. The cophenetic correlation was compared with the similarity matrix using the Mantel matrix correspondence test to evaluate the representativeness of the dendrogram. A total of 123 alleles were amplified using the 20 SSR primer sets. The number of alleles detected by a single primer set ranged from 2 to 12, with an average of 6.15. The similarity ranged from 0.22 to 1.00 in the dendrogram developed from microsatellite analysis. Based on this molecular data, we concluded that genetic diversity among these Turkish accessions is relatively high.

  2. A novel member of the genus Nepovirus isolated from Cucumis melo in Japan.

    Science.gov (United States)

    Tomitaka, Yasuhiro; Usugi, Tomio; Yasuda, Fumitoshi; Okayama, Hiroshi; Tsuda, Shinya

    2011-03-01

    An unusual virus was isolated from a Japanese Cucumis melo cv. Prince melon plant showing mild mottling of the leaves. The virus had a broad experimental host range including at least 19 plant species in five families, with most infected plants showing no symptoms on inoculated and uninoculated systemically infected leaves. The virus particles were spherical, approximately 28 nm in diameter, and the coat protein (CP) had an apparent molecular mass of about 55 kDa. The virus possessed a bi-partite genome with two RNA species, of approximately 8,000 and 4,000 nucleotides. Both genome components for the new virus were sequenced. Amino acid sequence identities in CP between the new virus and previously characterized nepoviruses were found to be low (less than 27%); however, in phylogenetic reconstructions the closest relationship was revealed between the new virus and subgroup A nepoviruses. These results suggest that the new virus represents a novel member of the genus Nepovirus. A new name, Melon mild mottle virus, has been proposed for this new virus.

  3. Efficient DNA extraction from nail clippings using the protease solution from Cucumis melo.

    Science.gov (United States)

    Yoshida-Yamamoto, Shumi; Nishimura, Sayaka; Okuno, Teruko; Rakuman, Miki; Takii, Yukio

    2010-09-01

    Owing to the increasing importance of genomic information, obtaining genomic DNA easily from biological specimens has become more and more important. This article proposes an efficient method for obtaining genomic DNA from nail clippings. Nail clippings can be easily obtained, are thermostable and easy to transport, and have low infectivity. The drawback of their use, however, has been the difficulty of extracting genomic material from them. We have overcome this obstacle using the protease solution obtained from Cucumis melo. The keratinolytic activity of the protease solution was 1.78-fold higher than that of proteinase K, which is commonly used to degrade keratin. With the protease solution, three times more DNA was extracted than when proteinase K was used. In order to verify the integrity of the extracted DNA, genotype analysis on 170 subjects was performed by both PCR-RFLP and Real Time PCR. The results of the genotyping showed that the extracted DNA was suitable for genotyping analysis. In conclusion, we have developed an efficient extraction method for using nail clippings as a genome source and a research tool in molecular epidemiology, medical diagnostics, and forensic science.

  4. [Effects of grafting on physiological characteristics of melon (Cucumis melo) seedlings under copper stress].

    Science.gov (United States)

    Tan, Ming-min; Zhang, Xin-ying; Fu, Qiu-shi; He, Zhong-qun; Wang, Huai-song

    2014-12-01

    The effects of grafting on physiological characters of melon (Cucumis melo) seedlings under copper stress were investigated with Pumpkin Jingxinzhen No. 3 as stock and oriental melon IVF09 as scion. The results showed that the physiological characters of melon seedlings were inhibited significantly under copper stress. Compared with self-rooted seedlings, the biomass, the contents of photosynthetic pigment, glucose and fructose, the photosynthetic parameters, the activities of sucrose phosphate synthase, neutral invertase and acid invertase in the leaves of the grafted seedlings were increased significantly. The uptake of nutrients was improved with the contents of K, P, Na increased and the content of Cu decreased. When the concentration of Cu2+ stress was 800 micromol L(-1), the contents of Cu in the leaves and roots of the grafted seedlings were decreased by 31.3% and 15.2%, respectively. Endogenous hormone balance of seedlings was improved by grafting. In the grafted seedlings, the content of IAA and peroxidase activity were higher, whereas the contents of ABA, maleicdialdehyde, the activities of superoxide dismutase and catalase were lower than that in the control. It was concluded that the copper stress on the physiological characters of melon seedlings was relieved by grafting which improved the resistance of the grafted seedlings.

  5. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Seif-Eldin N Ayyad

    2011-01-01

    Full Text Available Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D ( 1 H and 13 C and 2D (COSY, HMQC and HMBC NMR (Nuclear Magnetic Resonance Spectrometry and ESI-MS (Eelectrospray Ionization Mass Spectrometry spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3 and virally transformed form (KA3IT. Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1 and cucurbitacin B (2, had been obtained. Compounds 1 and 2 showed potent inhibitory activities toward NIH3T3 and KA31T with IC 50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug.

  6. Transcriptome analysis of the oriental melon (Cucumis melo L. var. makuwa) during fruit development

    Science.gov (United States)

    Shin, Ah-Young; Kim, Yong-Min; Koo, Namjin; Lee, Su Min; Nahm, Seokhyeon

    2017-01-01

    Background The oriental melon (Cucumis melo L. var. makuwa) is one of the most important cultivated cucurbits grown widely in Korea, Japan, and northern China. It is cultivated because its fruit has a sweet aromatic flavor and is rich in soluble sugars, organic acids, minerals, and vitamins. In order to elucidate the genetic and molecular basis of the developmental changes that determine size, color, and sugar contents of the fruit, we performed de novo transcriptome sequencing to analyze the genes expressed during fruit development. Results We identified a total of 47,666 of representative loci from 100,875 transcripts and functionally annotated 33,963 of the loci based on orthologs in Arabidopsis thaliana. Among those loci, we identified 5,173 differentially expressed genes, which were classified into 14 clusters base on the modulation of their expression patterns. The expression patterns suggested that the differentially expressed genes were related to fruit development and maturation through diverse metabolic pathways. Analyses based on gene set enrichment and the pathways described in the Kyoto Encyclopedia of Genes and Genomes suggested that the expression of genes involved in starch and sucrose metabolism and carotenoid biosynthesis were regulated dynamically during fruit development and subsequent maturation. Conclusion Our results provide the gene expression patterns related to different stages of fruit development and maturation in the oriental melon. The expression patterns give clues about important regulatory mechanisms, especially those involving starch, sugar, and carotenoid biosynthesis, in the development of the oriental melon fruit. PMID:28070461

  7. Effect of Cervus and Cucumis Peptides on Osteoblast Activity and Fracture Healing in Osteoporotic Bone

    Directory of Open Access Journals (Sweden)

    Ai-Yuan Wang

    2014-01-01

    Full Text Available Osteoporosis is associated with delayed and/or reduced fracture healing. As cervus and cucumis are the traditional Chinese treatments for rheumatoid arthritis, we investigated the effect of supplementation of these peptides (CCP on bone fracture healing in ovariectomized (OVX osteoporotic rats in vitro and in vivo. CCP enhanced osteoblast proliferation and increased alkaline phosphatase activity, matrix mineralization, and expression of runt-related transcription factor 2 (Runx2, bone morphogenetic protein 4 (BMP4, and osteopontin. In vivo, female Sprague-Dawley rats underwent ovariectomy and the right femora were fractured and fixed by intramedullary nailing 3 months later. Rats received intraperitoneal injections of either CCP (1.67 mg/kg or physiological saline every day for 30 days. Fracture healing and callus formation were evaluated by radiography, micro-CT, biomechanical testing, and histology. At 12 weeks after fracture, calluses in CCP-treated bones showed significantly higher torsional strength and greater stiffness than control-treated bones. Bones in CCP-treated rats reunified and were thoroughly remodeled, while two saline-treated rats showed no bone union and incomplete remodeling. Taken together, these results indicate that use of CCP after fracture in osteoporotic rats accelerates mineralization and osteogenesis and improves fracture healing.

  8. Identification of early response genes to salt stress in roots of melon (Cucumis melo L.) seedlings.

    Science.gov (United States)

    Wei, Shiwei; Wang, Linmin; Zhang, Yidong; Huang, Danfeng

    2013-04-01

    In order to better understand the mechanisms by which muskmelons (Cucumis melo L.) respond to salt stress, a cDNA library was constructed using suppression subtractive hybridization (SSH) from the root tissue of a salt-tolerant melon cultivar, Bingxuecui. A total of 339 clones were sequenced from the SSH library, leading to 312 high quality expressed sequence tags (ESTs), with an average size of 450 bp; representing 262 uni-ESTs comprising 29 contigs and 233 singletons. Blast analysis of the deduced protein sequences revealed that 283 ESTs had a high similarity to proteins in the non-redundant database, while 29 had low identity or no similarities. Many of the annotated sequences were homologous to genes involved in abiotic or biotic stress in plants. Functional categorization of the proteins revealed that salt tolerance could be largely determined by various proteins involved in metabolism, energy, transcription, signal transduction, protein fate, cell rescue and defense, implying a complex response to salt stress exists in melon plants. Twenty-seven ESTs were selected and analyzed by real-time PCR; the results confirmed that a high proportion of the ESTs were activated by salt stress. The complete sequences and a detailed functional analysis of these ESTs is required, in order to fully understand the broader impact of these genes in plants subjected to a high salinity environment.

  9. Effect of chromium on accumulation and antioxidants in Cucumis utillissimus L.: Response under enhanced bioavailability condition

    Institute of Scientific and Technical Information of China (English)

    Geetgovind Sinam; Sarita Sinha; Shekhar Mallick

    2011-01-01

    This study compares the accumulation of Ct(VI) and biochemical changes (total chlorophyll, carotenoid, protein, malondialdehyde (MDA) and cysteine contents) and roles of antioxidant enzymes (superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX)) in tolerance to metal induced stress in Cucumis utillissimus L. grown in Cr contaminated soil (CS) with garden soil (GS). Furthermore, Cr bioavailability was enhanced by ethylene diamine tetra-acetic acid (EDTA) addition to the soil to forecast the plant's accumulation pattern at elevated Cr environment. Accumulation of Cr in the leaves of the plant increased with increase in substrate metals concentration. It further increased with the addition of EDTA by 1437% and 487% in GS and CS, respectively at the highest treatment level. The lipid peroxidation increased proportionately with increase in Cr accumulation in the leaves. All the activity of antioxidant enzymes (SOD, GPX and APX) and the level of cysteine increased with dose dependant manner. SOD and cysteine were observed to be higher in the GS than in CS, but APX and GPX were found to be higher in CS than in GS. The increase in GPX and APX activities with the increase in Cr concentration could be assumed that these two enzymes have a major role in the defense mechanism towards stress induced by Cr in C. utillissimus.

  10. Cytogenetic Analysis of the Primary Amphidiploid Derived from Interspecific Hybridization in Cucumis and Its Selfed Progenies

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-feng; QIAN Chun-tao; J E Staub; LUO Xiang-dong; ZHUANG Fei-yun

    2005-01-01

    Studies on the reproduction and cytogenetic characterization of a primary amphidiploid Cucumis species C. hytivus Chen and Kirkbride (2n = 4x = 38) indicated that a more comprehensive cytogenetic analysis of this species and its first selfed progeny would increase its potential utility in cucumber improvement. With tendrils used as source materials for mitotic analysis, chromosome numbers in all selfed progenies were 2n = 38, confirming chromosomal stability in this synthetic amphidiploid species. Detailed meiotic processes were described by comparing the primary and the selfed amphidiploids.Meiotic abnormalities, such as chromosome lagging, unequal separation, chromosome multi-polarization and polyads were observed frequently in all amphidiploid plants except for the selfed no.8, in which meiosis was arrested prior to metaphase I. Generally, the frequency of multivalents was higher and the configurations were more complex in the selfed progenies, demonstrating a more extensive genetic exchange between cucumber and C. hystrix Chakr. Genome separation between cucumber and C. hystrix was observed through prophase ! to anaphase I in both generations of the amphidiploids. Consequently, in addition to n = 19, a new gamete with n = 7 was produced, which was confirmed by the chromosome counts 2n = 14 in the backcrossing progenies from cucumber × amphidiploid mating. Fertility varied among the selfed amphidiploid plants. The selfed plant no. 1 was found to have an improved fertility (e.g., pollen staining ability 40.8% and 25.6 seeds per fruit) and then was used as source germplasm in further introgression and gene exchange experiments.

  11. Chemical and nutritional study leaves radish, Raphanus sativus L., as food for human consumption

    OpenAIRE

    Huamán Malla, J.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Guerrero Aquino, M.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Tomás Chota, G.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Bravo Ayala, M.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Aguirre Medrano, R.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Carhuancho Acevedo, H.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú

    2014-01-01

    The presente work has been carried out with the leaves of tha rabanito Rsphanus Sativus L. The presence of tannins ot the catechol and coumarín was determined by qualitative analysis. The quantitative analysis showed the presence of minerals macronutrients: calcium, phosphorus,potasium,sodium and magnesíum; micronutrientes: iron; and traces of copper, aluminum manganese, boron, barium,chromium and zinc. The analysís ot vitamins determined the content on fresh sample of vitaminan A, 81 and C. ...

  12. Identification of safranal as the main allelochemical from saffron (Crocus sativus).

    Science.gov (United States)

    Mardani, Hossein; Sekine, Takayuki; Azizi, Majid; Mishyna, Maryia; Fujii, Yoshiharu

    2015-05-01

    Dried parts of 75 medicinal plant species collected from different regions in Iran were assayed by the Dish Pack Method for volatile allelopathic activity, using Lactuca sativa (lettuce) as the test plant. The highest (60%) inhibition was observed for saffron (stigma of Crocus sativus), followed by Dracocephalum kotschyi, Solanum nigrum and Artemisia aucheri. Safranal was identified as the main chemical by Headspace Gas Chromatography-Mass Spectrometry (HS- GC-MS) analyses of saffron. Moreover, the EC50 of safranal was evaluated as 1.2 μg/L (ppb). This is the first report on allelopathic activity of safranal as a bioactive compound identified from saffron.

  13. The complete mitochondrial genome of cultivated radish WK10039 (Raphanus sativus L.).

    Science.gov (United States)

    Jeong, Young-Min; Chung, Won-Hyung; Choi, Ah Young; Mun, Jeong-Hwan; Kim, Namshin; Yu, Hee-Ju

    2016-01-01

    We determined the complete nucleotide sequence of the mitochondrial genome of radish cultivar WK10039 (Raphanus sativus L.). The total length of the mtDNA sequence is 244,054 bp, with GC content of 45.3%. The radish mtDNA contains 82 protein-coding genes, 17 tRNA genes, and 3 rRNA genes. Among the protein-coding genes, 34 encode proteins with known functions. There are two 5529 bp repeats in the radish mitochondrial genome that may contribute to DNA recombination resulting in at least three different forms of mtDNA in radish.

  14. Necrotrophic fungi associated with epidermal microcracking caused by chilling injury in pickling cucumber fruit

    OpenAIRE

    2008-01-01

    The objective of this work was to visualize the association between microcracking and other epidermal chilling injury symptoms, and to identify rots in cucumber fruit (Cucumis sativus L.) by scanning electron microscopy (SEM). Depressed epidermal areas and surface cracking due to damages of subepidermal cells characterized the onset of pitting in cucumber fruit. The germination of conidia of Alternaria alternata, with some of them evident on the fractures in the cultivar Trópico, occurred aft...

  15. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins.

    Science.gov (United States)

    Terras, F R; Goderis, I J; Van Leuven, F; Vanderleyden, J; Cammue, B P; Broekaert, W F

    1992-10-01

    A basic 9-kD protein was purified from seeds of radish (Raphanus sativus L.). The 43 amino-terminal amino acids show extensive sequence identity with nonspecific lipid transfer proteins from other plant species. The radish seed nonspecific lipid transfer protein-like protein inhibits the growth of several fungi in vitro.

  16. First report of the crucifer pathogen Pseudomonas cannabina pv. alisalensis causing bacterial blight on radish (Raphanus sativus) in Germany

    Science.gov (United States)

    Pseudomonas cannabina pv. alisalensis is a severe pathogen of crucifers across the U.S. We compared a strain isolated from diseased radish (Raphanus sativus) in Germany to pathotypes and additional strains of P. cannabina pv. alisalensis and P. syringae pv. maculicola. We demonstrated that the patho...

  17. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties.

    Science.gov (United States)

    Barillari, Jessica; Cervellati, Rinaldo; Paolini, Moreno; Tatibouët, Arnaud; Rollin, Patrick; Iori, Renato

    2005-12-28

    The most promising among glucosinolates (GLs) are those bearing in their aglycon an extra sulfur function, such as glucoraphasatin (4-methylthio-3-butenyl GL; GRH) and glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE). The GRE/GRH redox couple is typically met among secondary metabolites of Raphanus sativus L. and, whereas GRE prevails in seeds, GRH is the major GL in full-grown roots. During the 10 days of sprouting of R. sativus seeds, the GRE and GRH contents were determined according to the Eurpean Union official method (ISO 9167-1). In comparison to the seeds, the GRE content in sprouts decreased from about 90 to about 12 micromol g(-1) of dry weight (dw), whereas a 25-fold increase--from about 3 to 76 micromol g(-1) of dw--of the GRH content was measured. An efficient pure GRH gram-scale production process from R. sativus (kaiware daikon) sprouts resulted in significant yield improvement of up to 2.2% (dw basis). The reaction of GRH with both H2O2 and ABTS*+ radical cation was investigated. Whereas H2O2 oxidation of GRH readily resulted in complete transformation into GRE, ABTS*+ caused complete decay of the GL. Even though not directly related to its radical scavenging activity, the assessed reducing capacity of GRH suggests that R. sativus sprouts might possess potential for health benefits.

  18. Clinical Applications of Saffron (Crocus sativus) and its Constituents: A Review.

    Science.gov (United States)

    Moshiri, M; Vahabzadeh, M; Hosseinzadeh, H

    2015-06-01

    Commonly known as saffron, Crocus sativus L and its active components have shown several useful pharmacological effects such as anticonvulsant, antidepressant, anti-inflammatory, antitumor, radical scavenger effects, learning and memory improving effects, etc. There has been an increasing body of data on saffron use in medical databases within the last 20 years. In the current review, the strengths and weaknesses of some of the clinical trials about different pharmacological effects of saffron will be discussed C. sativus extract has been studied in 8 anti-depressant clinical trials in comparison to placebo or some antidepressant drugs, in which saffron showed effectiveness as an antidepressant drug. Clinical trials on anti-Alzheimer effect of saffron demonstrated that it was more effective than the placebo, and as effective as donepezil. 2 clinical trials on antipruritic and complexion promoter in skin care effects of saffron both confirmed that saffron was more efficient than the placebo. In another clinical trial, it was proved that in addition to the weight loss treatment, saffron could reduce snacking frequency. Clinical trials conducted on women with premenstrual syndrome showed that saffron could reduce suffering symptoms more than the placebo and similar to standard treatments.Furthermore, additional clinical trials on effects of saffron on erection dysfunction, allergies, cardiovascular and immune system as well as its safety, toxicity and human pharmacokinetics are reviewed herein.

  19. Identification and possible role of a MYB transcription factor from saffron (Crocus sativus).

    Science.gov (United States)

    Gómez-Gómez, Lourdes; Trapero-Mozos, Almudena; Gómez, Maria Dolores; Rubio-Moraga, Angela; Ahrazem, Oussama

    2012-03-15

    The MYB family is the most abundant group of transcription factors described for plants. Plant MYB genes have been shown to be involved in the regulation of many aspects of plant development. No MYB genes are described for saffron, the dried stigma of Crocus sativus, utilized as a colorant for foodstuffs. In this study, we used RACE-PCR to isolate a full length cDNA of 894bp with a 591bp open reading frame, encoding a putative CsMYB1 from C. sativus. Comparison between gDNA and cDNA revealed no introns. Homology studies indicated that the deduced amino acid sequence is similar to members of the R2R3 MYB subfamily. Expression analysis showed the presence of high transcript levels in stigma tissue and low levels in tepals, whereas no signal was detected in either anthers or leaves. The RT-PCR analysis revealed that CsMYB1 expression is developmentally regulated during stigma development. Furthermore, expression analysis in stigmas from different Crocus species showed a correlation with stigma morphology. No transcripts were found in stigma tissues of Crocus species characterized by branched stigma morphology. Taken together, these results suggest that CsMYB1 may be involved in the regulation of stigma morphology in Crocus.

  20. Oxidative Stress Induction by Lead in Leaves of Radish (Raphanus sativus Seedlings

    Directory of Open Access Journals (Sweden)

    Nadjet BITEUR

    2011-11-01

    Full Text Available Oxidative stress was induced by lead acetate (Pb in Raphanus sativus seedlings grown in a hydroponic system using sand as substrate. Thirty day old acclimated seeds were treated for 7 days with five Pb levels (0 as control, 100, 200, 500 and 1000 mg l-1. Parameters such as growth, oxidative damage markers (lipid peroxidation, protein oxidation and hydrogen peroxide contents and enzymatic activities of catalase (CAT and peroxidase (POD were investigated. Lead concentration in plant tissues increased with increasing of Pb levels. Shoot fresh weight, chlorophyll and carotenoid concentration were significantly decreased at 100 mg l-1 Pb. Lipid peroxidation, protein oxidation and H2O2 levels were increased at 500 and 1000 mg l-1 Pb compared to control treatment, in shoots. Peroxidase activity showed a straight correlation with H2O2 concentration, whereas CAT activity decreased only in shoots. These changes in enzymatic and non-enzymatic antioxidants showed that the Pb exposition had a significant disturbance on Raphanus sativus plantlets and affect the biochemical and physiological processes.