WorldWideScience

Sample records for cubic ysz ceramics

  1. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  2. Preparation and properties of highly porous, biomorphic YSZ ceramics

    International Nuclear Information System (INIS)

    Rambo, C.R.; Cao, J.; Sieber, H.

    2004-01-01

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl 2 ·8H 2 O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO 3 ) 3 ·5H 2 O) was added to the sol to stabilize the tetragonal ZrO 2 phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N 2 atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO 2 ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained

  3. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  4. Preparation and properties of highly porous, biomorphic YSZ ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, C.R.; Cao, J.; Sieber, H

    2004-10-15

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl{sub 2}{center_dot}8H{sub 2}O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) was added to the sol to stabilize the tetragonal ZrO{sub 2} phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N{sub 2} atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO{sub 2} ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained.

  5. Electrophoretic deposition of 9-YSZ solid electrolyte on Ni- YSZ composite; Estudos de deposicao eletroforetica de ceramicas de 9-YSZ sobre Ni-YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.S.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V., E-mail: vussui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2010-07-01

    9-YSZ ceramic and Ni-YSZ metal/ceramic composite are the more commonly used materials for the fabrication of solid oxide fuel cell electrolyte and anode, respectively. The main challenges for these applications are the forming of both materials as superposed double thin layers. In the present work ceramic powder of 9- YSZ was synthesized by a coprecipitation technique and the Ni O-YSZ composite by a combustion technique. The later was formed by uniaxial pressing as cylindrical pellets of 15 mm diameter. Thin ceramic layers of 9-YSZ were deposited on composite pellets from a suspension with 10% solid content by an Electrophoretic Deposition technique. Applied voltage varied in the range of 30 to 200 V and deposition time from 15 to 90 seconds, evaluating the deposited mass, porosity on the interface and adhesion of layers. Resulted ceramics were characterized by X-ray diffraction and were observed in a scanning electron microscope. Results showed that deposited layers are thin ({approx}20{mu}m), dense and have good adhesion on the surface of composite substrate. (author)

  6. Electrophoretic deposition of 9-YSZ solid electrolyte on Ni- YSZ composite

    International Nuclear Information System (INIS)

    Santos, F.S.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V.

    2010-01-01

    9-YSZ ceramic and Ni-YSZ metal/ceramic composite are the more commonly used materials for the fabrication of solid oxide fuel cell electrolyte and anode, respectively. The main challenges for these applications are the forming of both materials as superposed double thin layers. In the present work ceramic powder of 9- YSZ was synthesized by a coprecipitation technique and the Ni O-YSZ composite by a combustion technique. The later was formed by uniaxial pressing as cylindrical pellets of 15 mm diameter. Thin ceramic layers of 9-YSZ were deposited on composite pellets from a suspension with 10% solid content by an Electrophoretic Deposition technique. Applied voltage varied in the range of 30 to 200 V and deposition time from 15 to 90 seconds, evaluating the deposited mass, porosity on the interface and adhesion of layers. Resulted ceramics were characterized by X-ray diffraction and were observed in a scanning electron microscope. Results showed that deposited layers are thin (∼20μm), dense and have good adhesion on the surface of composite substrate. (author)

  7. Conformation of LSM/YSZ and LSM ceramic films obtained by the citrate and solid mixture techniques; Conformacao de filmes ceramicos de LSM e LSM/YSZ obtidos pelas tecnicas citratos e mistura de solidos

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M., E-mail: rchiba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2009-07-01

    In this work, the ceramic films of LSM/YSZ (strontium-doped lanthanum manganite/Yttria-stabilized zirconia) and LSM used as cathodes of the solid oxide fuel cells (SOFC) are conformed by the wet powder spraying technique. The composite LSM/YSZ was obtained by the solid mixture technique and LSM by the citrate technique. For the formation of the LSM/YSZ and LSM ceramic films was necessary the preparation of dispersed ceramic suspensions for the deposition in YSZ substrate, used as electrolyte of the CaCOS. These powders were conformed using an aerograph for the deposition of the LSM/YSZ and LSM thin films of approximately 40 microns. The half-cells had been characterized by X-ray diffractometry (XRD), identifying the phases hexagonal (LSM) and cubica (YSZ). And electronic scanning electron microscopy (SEM) was used to evaluate the adherence and porosity of the ceramic films according to the characteristics of the cathode. (author)

  8. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    Science.gov (United States)

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. The Effect of adding pore formers on the microstructure of NiO-YSZ ceramic composite

    International Nuclear Information System (INIS)

    Silva, F.S.; Santos, F.S.; Medeiros, L.M.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V.

    2011-01-01

    The ceramic composite of nickel oxide (NiO) with zirconium stabilized with 8 mol% yttria (8-YSZ) is the most employed material for use as anode for solid oxide fuel cells (SOFC). The nickel oxide in the composite is reduced to metallic nickel and this result in a 15% of porosity although the porosity needed to a proper function of an anode is about 30%, demanding the use of a pore former. In this work, NiO-YSZ composite powders were synthesized by a combustion process with urea as fuel, and the effect of the addition of carbon black and corn and rice starch as pore former were investigated. Powders were pressed as cylindrical pellets, sintered at 1350 °C for 60 minutes and density were measured by an immersion method and microstructure were observed by scanning electron microscopy. Results showed that ceramic composite has homogeneous microstructure and pores have different morphology and size depending on the kind of the pore former employed. (author)

  10. Ni-YSZ graded coatings produced by dipping

    International Nuclear Information System (INIS)

    Ferrari, B.; Moreno, R.

    2004-01-01

    A new colloidal processing route for the shaping of a graded Ni-YSZ composite for applications in SOFC devices is described. A Ni foil is coated by Ni/YSZ layers by dipping in aqueous suspensions with an organic binder. Behind the metal-ceramic layers introduced to improve adhesion, an outer thin layer of nanosized YSZ is formed by electrophoretic deposition. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  11. Hydrothermal treatment of coprecipitated YSZ powders

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci

    2009-01-01

    Zirconia stabilized with 8.5 mol% yttria (YSZ) were synthesized by coprecipitation and resulting gels were hydrothermally treated at 200°C and 220 PSI for 4, 8 and 16 hours. Products were oven dried at 70°C for 24 hours, uniaxially pressed as pellets and sintered at 1500 °C for 1 hour. Powders were characterized for surface area with N 2 gas adsorption, X-ray diffraction, laser diffraction granulometric analysis and scanning and transmission electronic microscopy. Density of ceramics was measured by an immersion method based on the Archimedes principle. Results showed that powders dried at 70°C are amorphous and after treatment has tetragonal/cubic symmetry. Surface area of powders presented a significant reduction after hydrothermal treatment. Ceramics prepared from hydrothermally treated powders have higher green density but sintered pellets are less dense when compared to that made with powders calcined at 800°C for 1 hour due to the agglomerate state of powders. Solvothermal treatment is a promising procedure to enhance density. (author)

  12. Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Gerard Cadafalch Gazquez

    2017-01-01

    Full Text Available The fabrication process of ceramic yttria-stabilized zirconia (YSZ and nickel oxide nanofibers by electrospinning is reported. The preparation of hollow YSZ nanofibers and aligned nanofiber arrays is also demonstrated. The influence of the process parameters of the electrospinning process, the physicochemical properties of the spinning solutions, and the thermal treatment procedure on spinnability and final microstructure of the ceramic fibers was determined. The fiber diameter can be varied from hundreds of nanometers to more than a micrometer by controlling the solution properties of the electrospinning process, while the grain size and surface roughness of the resulting fibers are mainly controlled via the final thermal annealing process. Although most observed phenomena are in qualitative agreement with previous studies on the electrospinning of polymeric nanofibers, one of the main differences is the high ionic strength of ceramic precursor solutions, which may hamper the spinnability. A strategy to control the effective ionic strength of precursor solutions is also presented.

  13. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  14. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  15. Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method

    International Nuclear Information System (INIS)

    Tahari, M.; Shamanian, M.; Salehi, M.

    2012-01-01

    Highlights: ► The grain size of CoNiCrAlY decreased as milling time increased. Adding YSZ, delayed decrease of grain size of matrix alloy. ► Increase of milling time and YSZ percent resulted in spherical morphology and homogenous distribution of powders. Adding YSZ also delayed cold welding phenomenon. ► At initial stage of milling, CoNiCrAlY powder showed the greatest hardness but with increases milling time powders contained 15% YSZ showed the maximum hardness. - Abstract: This paper investigates CoNiCrAlY/YSZ composite materials produced by mechanical alloying process. Various amounts of YSZ particles (0%, 5%, 10% and 15 wt.%) were mixed with CoNiCrAlY powder and milled for 12, 24 and 36 h. The structural and mechanical evolutions of the mechanically milled powders were executed using X-ray diffractometry, scanning electron microscopy, optical microscopy and micro-hardness test. It was observed that by increasing milling time, the internal lattice strain of γ-phase matrix increased while grain size of this phase decreased. Also, addition of YSZ to CoNiCrAlY decreased the rate of grain size reduction. In comparison with milled CoNiCrAlY powders, CoNiCrAlY/YSZ milled powders exhibited more spherical morphology and narrower particle size range. Moreover, the increase in milling time caused the homogenous distribution of ceramic particles in CoNiCrAlY matrix, while the increase in YSZ percent decreased the homogenous distribution of ceramic particles in CoNiCrAlY matrix. Besides, micro-hardness tests illustrated that the effect of milling on hardness is more significant than that of ceramic particles addition.

  16. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-12-01

    Full Text Available The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al2O3-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  17. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration.

    Science.gov (United States)

    Wang, Bo; Lee, Melanie; Li, Kang

    2015-12-30

    The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ) reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al₂O₃-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  18. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  19. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Lee, Y.-H.; Hung, I-M.; Wang, M.-C.; Wen, S.-B.; Fung, K.-Z.; Shih, C.-J.

    2008-01-01

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO 2 . The activation energy for the crystallization of the cubic ZrO 2 formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO 2 formation. The TEM examination shows that the cubic ZrO 2 has a spherical-like morphology with a size ranging from 10 to 20 nm

  1. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Far-East Road, Chung-Li, Taoyuan, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: cjshih@kmu.edu.tw

    2008-04-03

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO{sub 2}. The activation energy for the crystallization of the cubic ZrO{sub 2} formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO{sub 2} formation. The TEM examination shows that the cubic ZrO{sub 2} has a spherical-like morphology with a size ranging from 10 to 20 nm.

  2. Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...... time in the same frequency range for both cells (~10 Hz), possibly indicating that the same physical process was affected in both types of cell. However, deconvolution of the impedance data was not straightforward. When n-values of the constant phase elements in the otherwise identical equivalent...

  3. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    International Nuclear Information System (INIS)

    Wang, Chaohui; Wang, You; Fan, Shan; You, Yuan; Wang, Liang; Yang, Changlong; Sun, Xiaoguang; Li, Xuewei

    2015-01-01

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La 2 Zr 2 O 7 /8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La 2 Zr 2 O 7 (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior

  4. Cationic hetero diffusion and mechanical properties of yttria-stabilized zirconia: influence of irradiation; Heterodiffusion cationique et proprietes mecaniques de la zircone stabilisee a l'oxyde d'yttrium: influence de l'irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Menvie Bekale, V

    2007-12-15

    Cubic yttria-stabilized zirconia (YSZ) is a promising material as target for the transmutation of radioactive waste. In this context, the present work is dedicated to the study of the atomic transport and the mechanical properties of this ceramic, as well as the influence of irradiation on these properties. The preliminary step concerns the synthesis of YSZ cubic zirconia ceramic undoped and doped with rare earths to form homogeneous Ce-YSZ or Gd-YSZ solid solutions with the highest density. The diffusion experiments of Ce and Gd in YSZ or Ce-YSZ were performed in air from 900 to 1400 C, and the depth profiles were established by SIMS. The bulk diffusion decreases when the ionic radius of diffusing element increases. The comparison with literature data of activation energies for bulk diffusion suggests that the cationic diffusion occurs via a vacancy mechanism. The diffusion results of Ce in YSZ irradiated with 4 or 20 MeV Au ions show a bulk diffusion slowing-down at 1000 and 1100 C when the radiation damage becomes important (30 dpa). The mechanical properties of YSZ ceramics irradiated with 944 MeV Pb ions and non irradiated samples were studied by Vickers micro indentation and Berkovitch nano indentation techniques. The hardness of the material increases when the average grain size decreases. Furthermore, the hardness and the toughness increase with irradiation fluence owing to the occurrence of compressive residual stresses in the irradiated area. (author)

  5. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  6. NiCoCrAl/YSZ laminate composites fabricated by EB-PVD

    International Nuclear Information System (INIS)

    Shi Guodong; Wang Zhi; Liang Jun; Wu Zhanjun

    2011-01-01

    Highlights: → The metal-ceramic laminate composites were fabricated by EB-PVD. → Both metal and ceramic layers consisted of straight columns with banded structures. → Columnar grain size was limited by the periodic layer interfaces in the laminates. → Effect of columns on fracture property was decreased by limiting layer thickness. → Laminates showed greater specific strength than monolithic metal foil. - Abstract: Two NiCoCrAl/YSZ laminate composites (A and B) with different metal-layer thickness (∼35 μm and 14 μm, respectively) were fabricated by electron beam physical vapor deposition (EB-PVD). Their microstructure was examined and their mechanical properties were compared with the 289 μm thick NiCoCrAl monolithic foil produced by EB-PVD. Both the YSZ and NiCoCrAl layers of the laminate composites had columnar grain structure. But the periodic layer interfaces limited the columnar grain size. Some pores between the columns were also observed. It was found that the strength of the laminate A was equal approximately to that of the NiCoCrAl monolithic foil, and that laminate B had the greater strength. Moreover, the density of the foils decreased with the increasing thickness ratio of YSZ/NiCoCrAl layers and the increasing the layer number. Thus, comparing with the NiCoCrAl monolithic foil, the NiCoCrAl/YSZ laminate composites not only had the equal or greater strength, but also had the much greater specific strength.

  7. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  8. Optimized functionally graded La{sub 2}Zr{sub 2}O{sub 7}/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaohui [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, You, E-mail: wangyou@hit.edu.cn [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Fan, Shan; You, Yuan [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, Liang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899 (China); Yang, Changlong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Sun, Xiaoguang [National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co. Ltd., Qingdao 266111 (China); Li, Xuewei [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La{sub 2}Zr{sub 2}O{sub 7}/8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La{sub 2}Zr{sub 2}O{sub 7} (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior.

  9. The Influence Of The Way Of Alumina Addition On Properties Improvement Of 3YSZ Material

    Directory of Open Access Journals (Sweden)

    Drożdż E.

    2015-06-01

    Full Text Available Yttria-stabilized zirconia (YSZ is the best known ceramic-oxide material employed as a component of either solid electrolyte or anode cermet material for intermediate solid oxide fuel cell (IT - SOFC. The properties of traditionally produced (by mechanical mixing of oxides Al2O3/3YSZ composite with the same composition materials obtained by citrate and impregnation methods and with properties of pure tetragonal zirconia (3YSZ were compared. The materials were characterised by X-ray diffraction, SEM observations with EDX analysis, density and impedance spectroscopy measurements. The results shown that Al2O3/3YSZ composites reveals higher conductivity than pure 3YSZ and that addition of alumina (regardless of methods improve electric properties of resulting materials. Taking into account application of this materials as anode in IT-SOFC the determined values of energy activation of conductivity and microstructural properties of composites show that materials obtained by citric method are the most promising.

  10. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  11. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  12. Effect of grit blasting on the thermal cycling behavior of diffusion aluminide/YSZ TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com; Huang, Guanghong; He, Limin; Mu, Rende; Wang, Kai; Dai, Jianwei

    2014-02-15

    Highlights: • TBCs including of CVD NiAl bond coat and EB-PVD YSZ ceramic coating with and without grit blasting process. • Grain boundary ridges are the sites for spallation damage initiation in aluminide/YSZ TBCs. • Ridges are removed, and no cavity formation and this damage initiation mode are suppressed. • Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. -- Abstract: Thermal barrier coating system (TBCs) including of chemical vapor deposited NiAl bond coat and electron beam physical vapor deposited Y{sub 2}O{sub 3}–stabilized-ZrO{sub 2} (YSZ) ceramic coating with and without grit blasting process were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors of these coatings were studied in detail. Grain boundary ridges form on the surface of aluminide bond coat prior to the deposition of the ceramic coating by EB-PVD, which are shown to be the sites for spallation damage initiation in aluminide/YSZ TBCs. When these ridges are removed, there is no cavity formation and this damage initiation mode is suppressed. Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface with additional cycling. From the result of thermal cycling, an averaged four folds lifetime improvement can be achieved with samples after grit blasting of bond coat surface as compared with those samples existence in ridges on the bond coats’ surface.

  13. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Science.gov (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  14. LaSrMnO{sub 3} thin films on YSZ/YSZ - NiO by the spin coating method: synthesis and microstructural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Laurenia Martins Pereira; Souza, Graziele Lopes de [Universidade Federal do Rio Grande do Norte (NUPEG/UFRN), Natal, RN (Brazil). Nucleo de Pesquisa em Petroleo e Gas], Email: lauengmat@hotmail.com; Macedo, Daniel Araujo de; Cela, Beatriz; Paskocimas, Carlos Alberto; Nascimento, Rubens Maribondo do [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Cesario, Moises Romolos [Universidade Federal do Rio Grande do Norte (PPGQ/UFRN), Natal, RN (Brazil). Programa de Pos Graduacao em Quimica

    2010-07-01

    Fuel cells are devices which work by electrochemical mechanism directly converting the chemical energy, by fuel the oxidizing, in electric energy. The Solid Oxide Fuel Cell - SOFC consist an anode, an electrolyte and one cathode made with ceramic materials. The most widely known functional materials used in SOFC are Yttria-stabilized zirconia electrolyte (YSZ), composite anode of YSZ-Ni O and strontium-doped lanthanum manganite cathode (La{sub 1-x}Sr{sub x}MnO{sub 3} - LGSM). In this work the thin films of cathode LSM were deposited by spin coating in a half cell YSZ/YSZ - Ni O. The polymeric resin of 22% strontium-doped lanthanum manganite (LSM 22) was attained by the polymeric precursor method. This resin was directly used for the deposition process. The deposition of 2 or 4 layers occurred by spin coating method with the following conditions: 500 rpm during 15 s and 300 rpm during 40 s. Each layer was thermally treated at 500 deg C for 2 h and heating rate equal to 1 deg C/min. The multi layers were sintered at 1000 deg C for 2 h, heating rate of 3 deg C/min and characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The LSM 22 thin films presented microstructure with thin particles and thickness of 1 {mu}m. The surface cracks' quantity and size reduction tendency was observed with the increase of the layers deposition number. (author)

  15. The studies of a new ceramic composite — (Zr0.92Y0.08)O1.96 dispersed lanthanum titanium aluminium oxide

    International Nuclear Information System (INIS)

    Zhang, Peng; Choy, Kwang-leong

    2016-01-01

    A new ceramic composite (Zr 0.92 Y 0.08 )O 1.96 dispersed in LaTi 2 Al 9 O 19 as a thermal barrier material was synthesized by the hybrid sol–gel method. The composite ceramic has good thermochemical stability up to 1500 °C. The thermal conductivity of composite ceramic is circa. 1.0 W/m·K at ambient temperature and the coefficients of thermal expansion are very stable and comparable to (Zr 0.92 Y 0.08 )O 1.96 about 10.7 × 10 −6 K −1 at 1223 K. The sintering resistance and mechanical properties become better after being dispersed. Therefore, the new ceramic composite synthesized by hybrid sol–gel method can be a promising candidate as a thermal barrier material on Ni-based superalloy. - Highlights: • New composite 4 mol% yttria stabilized zirconia (4YSZ) dispersed LaTi 2 Al 9 O 19 (LTA) is synthesized by a hybrid sol-gel method. • The new ceramic composite shows good thermochemical stability up to 1500 o C. • The thermal conductivity of the new ceramic composite is lower than each component at ambient temperature. • The coefficient of thermal expansion of 4YSZ dispersed in LTA (LTA-4YSZ) is comparable to 4YSZ. • Compared with LTA and 4YSZ, LTA-4YSZ has the best sintering resistance. • The Young’s Modulus of LTA-4YSZ composite becomes lower while the hardness becomes higher.

  16. Novel thermal barrier coatings based on La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua, E-mail: zhxuciac@yahoo.com.cn [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Shimei; He Limin; Mu Rende; Huang Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-03-17

    Research highlights: > LZ7C3 and YSZ have good chemical compatibility for the formation of DCL coating. > DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. > Similar TECs of LZ7C3 with YSZ coatings and YSZ coating with TGO layer. > Unique growth modes of columns within DCL coating. > Outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ7C3 coating, and even longer than that of the single layer YSZ coating. The superior sintering-resistance of LZ7C3 coating, the similar thermal expansion behaviors of YSZ interlayer with LZ7C3 coating and thermally grown oxide (TGO) layer, and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the crack initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t'-phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating.

  17. Effect of grain mobility on ionic conductivity of Ceria added YSZ electrolyte

    International Nuclear Information System (INIS)

    Gupta, Alka; Omar, Shobit; Balani, Kantesh

    2012-01-01

    In an effort to develop novel electrolyte materials, the present work explores the effect of grain boundary mobility on ionic conductivity of CeO 2 -YSZ electrolyte. For cubic zirconia in general, the higher the grain boundary mobility, the lower the activation energy for oxide ion migration and judicious doping can be an effective method for mobility control. The two main directions for fabricating 8 mol. % YSZs (8YSZ) with 0,5 and 10 wt % CeO 2 are being followed: (i) co doping by conventional sintering (CS, 1400 ℃, 4h holding, ∼98 % theoretical density), and (ii) nano composite approach by spark plasma sintering (SPS, 1200 ℃, 5 min holding, ∼96 % theoretical density). Phase analysis by XRD, indicates that CeO 2 forms the complete solid solution with YSZ when synthesized by CS and both solid solution and composite formation (seen as isolated ceria rich zones in YSZ matrix by EDS analysis via TEM) by SPS. The grain boundary mobility for CS samples of pure and 10%CeO 2 added YSZ are 6.69 x 10 -18 to 10.35 X 10 -18 m 3 /N/s respectively. While for SPS sintered samples of pure and 10% CeO 2 added YSZ the grain boundary mobility comes out to be ∼0.032 X 10 -18 to 0.039 X 10 18 m 3 /N/s respectively. Grain mobility does not show any marginal change with increasing ceria content, elicit that the defect concentration is nearly constant in 8YSZ and is insensitive to ceria content. Remarkable increase of grain mobility in the SPS samples is attributed to rapid grain coarsening in the nano-grains limited to shorter sintering times. As expected, grain mobility for longer-times average out the transient phase and lower the net grain mobility such as in CS samples. The enhanced mobility in CeO 2 -YSZ SPS sintered electrolytes must be due to lower cation migration energy (activation energy for oxide ion migration), promoting enhanced ionic conductivity. (author)

  18. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Frandsen, Henrik Lund; Kaiser, Andreas

    2010-01-01

    for the dimensional change arises from the volumetric change related to the phase change NiO ↔ Ni. The measurable change in bulk length is given by the ceramic YSZ backbone as a response to the stress created by the chemical strain. The different subprocesses described in the model for YSZ were elastic and anelastic...... expansion, diffusional creep, grain boundary sliding (GBS) and microcracking due to excessive stress. In the Ni/NiO phase, nonelastic strains in terms of diffusional and power law creep were implemented, and additionally for NiO deformation due to microcracking and/or pseudoplasticity. Semi...

  19. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  20. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    Science.gov (United States)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  1. Thermal cycling behavior of YSZ and La2(Zr0.7Ce0.3)2O7 as double-ceramic-layer systems EB-PVD TBCs

    International Nuclear Information System (INIS)

    Xu Zhenhua; He Limin; Mu Rende; Lu Feng; He Shimei; Cao Xueqiang

    2012-01-01

    Highlights: ► DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. ► The unique growth modes of columns within DCL coating. ► The presence of cerium in both Ce 3+ and Ce 4+ oxidation states within the coating surface. ► The spallation of DCL coating induced by transverse cracks may be the first emergence of delamination followed by spalling layer by layer. ► The outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La 2 (Zr 0.7 Ce 0.3 ) 2 O 7 (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1573 K in burner-rig with a coal gas flame indicates the thermal cycling life of DCL coating is not only much longer than that of LZ7C3 coating, but also approximately 27% longer than that of YSZ coating. The superior sintering-resistance of LZ7C3 coating and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction–oxidation of cerium oxide, the re-crystallization of some LZ7C3 fine grains, the cracks initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t′-phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  2. Effects of co-sintering in self-standing CGO/YSZ and CGO/ ScYSZ dense bi-layers

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Brodersen, Karen

    2014-01-01

    -layers are critical due to the mismatch of thermo-mechanical and sintering properties among the materials. Despite the better sinteractivity of ScYSZ, the self-standing CGO/ScYSZ bilayer presents more challenges in terms of densification compared with the CGO/YSZ bi-layer. In particular, above 1200 C, ScYSZ and CGO......-standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi...

  3. Phase evaluation of YSZ upon doping with Ta"5"+, Ti"4"+ and Ca"2"+ with combined Raman and XRD analysis

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Shklover, V.; Wermelinger, T.

    2012-01-01

    To improve the phase stability of 7YSZ (7 wt%-Y_2O_3-doped ZrO_2), it has been doped with larger (Ca"2"+) and smaller (Ti"4"+ or Ta"5"+) ions. Complementary Raman and XRD studies of these stabilized systems have been performed. The tetragonal symmetry of the Ta"5"+-ion-doped YSZ sample and the Ti"4"+-doped YSZ sample, and the cubic symmetry of Ca"2"+-doped YSZ have been confirmed both by means of XRD and Raman analyses. Raman scattering measurements show shifts of characteristic peaks when the YSZ is doped with Ta"5"+, Ti"4"+ and Ca"2"+ cations. The peak shift increased with increasing dopant concentration in the ZrO_2 lattice. The Ta-doped YSZ sample heat-treated below 1500 C contained some YTaO_4 phase, which was confirmed by means of XRD as well as by Raman spectroscopy. The effect of Ca"2"+ ion doping on the Raman peak shift was much higher than that of Y"3"+ ion doping. In this work it has been highlighted that Raman spectroscopy is a useful tool complementing XRD, for qualitative comparison of the doping effect on the lattice parameters of ZrO_2.

  4. Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Michaela Klotz

    2018-05-01

    Full Text Available In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ and atomic layer deposition (ALD of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  5. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  6. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  7. Pengaruh komposisi komposit al2o3/ysz dan variasi feed rate terhadap ketahanan termal dan kekuatan lekat pada Ysz-al2o3/ysz double layer tbc

    Directory of Open Access Journals (Sweden)

    Parindra Kusriantoko

    2014-03-01

    Full Text Available TBC (Thermal Barrier Coating dengan YSZ-Al2O3/YSZ top coat (TCdan MCrAlY sebagai bond coat (BC yang selanjutnya disebut sebagai YSZ-Al2O3/YSZ double layer TBC dibuat dengan menggunakan metode flame spray.Hasil pelapisan sebelum dan sesudah diuji termal dikarakterisasi menggunakan SEM, EDX dan XRD.Dari hasil penelitian didapatkan bahwa semakin tinggi powder feed rate akan berpengaruh pada morfologi permukaan lapisan. Feed rate makin rendah menyebabkan struktur yang cenderung kasar dan tidak padat dan cenderung berporos. Lapisan komposit Al2O3/YSZ juga sangat berpengaruh pada pertumbuhan TGO (Thermally Grown Oxide setelah dilakukan uji termal, dimana komposisi paling bagus dengan pertumbuhan TGO paling rendah adalah 15%Al2O3/8YSZ. Hasil pengujian TGA menunjukkan semua sampel mulai teroksidasi pada temperatur 1000-1030oC dan didapatkan sampel paling stabil adalah 15% Al2O3/8YSZ 14 dan 20 gr/min. Dari pengujian XRD sampel yang memiliki fasa yang paling stabil adalah 15%Al2O3/8YSZ dengan fasa t-ZrO2 dan m-ZrO2. Dari pengujian Thermal Torch dan Pull Off komposisi 15%Al2O3/8YSZjuga memiliki ketahanan terhadap pengerusakan yang paling baik dan kelekatan yang baik sebesar 10 MPa.

  8. Sintering study of NiO-YSZ composite obtained by coprecipitation route; Estudo de sinterabilidade do composito de NiO-YSZ obtido pela rota de coprecipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, W K; Resitivo, T A.G.; Ussui, V; Lazar, D R.R.; Paschoal, J O.A., [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2009-07-01

    NiO-YSZ composite is a widely used anode material for solid oxide fuel cell. The main purpose of the present work was the evaluation of the appropriate conditions of ceramic processing, by sintering behavior study of NiO-YSZ pressed powders, synthesized by hydroxide coprecipitation route. Using the empirical rate equation developed by Makipirtti-Meng, it was analyzed shrinkage rate in the temperature ranges of 900-1400 deg C as function of time. The powders were characterized by X-ray diffraction, scanning electron microscopy, gas adsorption, laser diffraction and helium picnometry. The microstructural characterization of the samples was evaluated by X-ray diffraction, scanning electron microscopy and relative density by the Archimedes method. It was found that activation energy value is 48,3 kJ.mol{sup -1} in the temperature range of 900-950 deg C and 604,83 kJ.mol{sup -1} for 1000-1200 deg C. These values correspond to the change that occurs in the microstructure during the heat treatment process. The sintering process was evaluated by the dilatometry date treatment. (author)

  9. Evaluation of interfacial bonding in dissimilar materials of YSZ-alumina composites to 6061 aluminium alloy using friction welding

    International Nuclear Information System (INIS)

    Uday, M.B.; Ahmad Fauzi, M.N.; Zuhailawati, H.; Ismail, A.B.

    2011-01-01

    Research highlights: → Friction-welding process. → Joining between ceramic composite and metal alloy. → Slip casting of the yttria stabilized zirconia/alumina composite samples. - Abstract: The interfacial microstructures characteristics of alumina ceramic body reinforced with yttria stabilized zirconia (YSZ) was evaluated after friction welding to 6061 aluminum alloy using optical and electron microscopy. Alumina rods containing 25 and 50 wt% yttria stabilized zirconia were fabricated by slip casting in plaster of Paris (POP) molds and subsequently sintered at 1600 deg. C. On the other hand, aluminum rods were machine down to the required dimension using a lathe machine. The diameter of the ceramic and the metal rods was 16 mm. Rotational speeds for the friction welding were varied between 900 and 1800 rpm. The friction pressure was maintained at 7 MPa for a friction time of 30 s. Optical and scanning electron microscopy was used to analyze the microstructure of the resultant joints, particularly at the interface. The joints were also examined with EDX line (energy dispersive X-ray) in order to determine the phases formed during the welding. The mechanical properties of the friction welded YSZ-Al 2 O 3 composite to 6061 alloy were determined with a four-point bend test and Vickers microhardness. The experimental results showed the degree of deformation varied significantly for the 6061 Al alloy than the ceramic composite part. The mechanical strength of friction-welded ceramic composite/6061 Al alloy components were obviously affected by joining rotational speed selected which decreases in strength with increasing rotational speed.

  10. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  11. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    Science.gov (United States)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  12. Surface Segregation in YSZ

    DEFF Research Database (Denmark)

    Bay, Lasse; Zachau-Christiansen, Birgit; Jacobsen, Torben

    1998-01-01

    The space charge layer formed due to segregation of yttria and oxygen ion vacancies in YSZ is described by a simple model. Effects of impurities segregation are omitted.......The space charge layer formed due to segregation of yttria and oxygen ion vacancies in YSZ is described by a simple model. Effects of impurities segregation are omitted....

  13. Characterization of cubic yttria-stabilized zirconia obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, Cibele M.; Nunes, Marilia; Vieira, Ramaugusto; Bergmann, Carlos Perez; Falcade, Tiago; Malfatti, Celia de Fraga

    2009-01-01

    Yttria-stabilized-zirconia (YSZ) has been the object of many studies as a SOFC electrolyte. The aim of this work is to produce, by spray pyrolysis process, thin and dense films of YSZ. A disk of steel 316L, previously heated, was used as substrate. The film was obtained with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3.6 H 2 O), dissolved in a mixture of ethanol + butyl carbitol with volume ratio (1:1). ZrO 2 amorphous films were deposited in the substrate heated at many temperatures. After thermal treatment at 700 deg C the films were changed into cubic yttria-stabilized-zirconia structure. The thin films obtained were characterized by thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and micro-Raman spectroscopy. (author)

  14. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  15. Thermal cycling behavior of YSZ and La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} as double-ceramic-layer systems EB-PVD TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua, E-mail: zhxuciac@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin; Mu Rende; Lu Feng; He Shimei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. Black-Right-Pointing-Pointer The unique growth modes of columns within DCL coating. Black-Right-Pointing-Pointer The presence of cerium in both Ce{sup 3+} and Ce{sup 4+} oxidation states within the coating surface. Black-Right-Pointing-Pointer The spallation of DCL coating induced by transverse cracks may be the first emergence of delamination followed by spalling layer by layer. Black-Right-Pointing-Pointer The outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1573 K in burner-rig with a coal gas flame indicates the thermal cycling life of DCL coating is not only much longer than that of LZ7C3 coating, but also approximately 27% longer than that of YSZ coating. The superior sintering-resistance of LZ7C3 coating and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the re-crystallization of some LZ7C3 fine grains, the cracks initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t Prime -phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  16. Electrochemical Characterization of Ni/(Sc)YSZ Electrodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Thydén, Karl Tor Sune; Mogensen, Mogens Bjerg

    2010-01-01

    Investigations of Ni/(Sc)YSZ cermets for solid oxide cells (SOCs) were performed by electrochemical impedance spectroscopy (EIS), under varying experimental conditions and upon redox cycling, using three different designs of symmetric cells. The deconvolution and fitting of the obtained impedance...... parameters. Initial degradation results for both Ni/ScYSZ and Ni/YSZ based anodes under very high steam content are also reported. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  17. (YSZ) powders

    Indian Academy of Sciences (India)

    Unknown

    109–114. © Indian Academy of Sciences. 109 ... Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India .... pensions of 900°C calcined YSZ powders. .... The sintered density data of the compacts (sintered at.

  18. Study of the formation of secondary phases in the composite LSM/YSZ; Estudo da formacao de fases secundarias no composito LSM/YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ranieri Andrade

    2007-07-01

    The composite of strontium-doped lanthanum manganite (La{sub 1-x}SrxMnO{sub 3} - LSM) and Yttria-stabilized zirconia (ZrO{sub 2}/Y{sub 2}O{sub 3} - YSZ), is indicated as cathode of the Solid Oxide Fuel Cells (SOFC). It presents better acting as cathode due to the Triple Phase Boundary (TPB) formed in the interface area between the cathode and the electrolyte. For the temperatures up to 1100 deg C, LSM and YSZ can react producing lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7} - LZO) and strontium zirconate (SrZrO{sub 3} - SZO). In this sense, the present work intends to contribute in the study of the formation of phases LZO and SZO, studying different massic proportions between LSM and YSZ with sintering temperatures varying between 1000 deg C and 1400 deg C. For the obtention of the precursory powders the co-precipitation routes were adopted to obtain YSZ and conventional powder mixture for the preparation of LSM. The composite LSM/YSZ, studied in this work, is prepared with two concentrations of Sr for LSM (30 mol por cent - LSM7 and 40 mol por cent - LSM6) and one concentration of Yttria for YSZ (10 mol por cent). The results obtained by X-ray fluorescence showed that the routes adopted for synthesis of powders were effective in the obtention of the compositions LSM6, LSM7 and YSZ, with close values to the stoichiometric. The studied massic proportions were: 50 por cent of LSM and 50 por cent of YSZ (1:1), 25 por cent of LSM and 75 por cent of YSZ (1:3), and 75 por cent of LSM and 25 por cent of YSZ (3:1). Such proportions of mixtures were conformed and submitted at different conditions of temperatures and times of sintering: 1000 deg C, 1200 deg C, 1300 deg C, 1350 deg C and 1400 deg C for 4 and 8 hours. The values of medium size of the particles and the specific surface area values for the mixture of LSM6/YSZ and LSM7/YSZ, are of the same order of largeness after the mixture in a attrition mill and in different massic proportions. Secondary phases like LZO and

  19. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  20. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  1. LSM-YSZ Reactions in Different Atmospheres

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Hagen, Anke

    2009-01-01

    -powder reaction. LSM reacts differently with YSZ in different atmospheres. In air, m-ZrO2 (monoclinic) is formed; while in N2, SrZrO3 and/or La2Zr2O7 are formed depending on the initial LSM/YSZ ratio. The reactions are reversible with varying P(O2) i.e. treating the sample in air after the heat treatment in N2...

  2. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  3. Microstructural and chemical changes at the Ni/YSZ interface

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Primdahl, Søren; Chorkendorff, Ib

    2001-01-01

    A bent nickel wire was pressed against a yttria-stabilised zirconia (YSZ) surface, creating a small contact area. The Ni/YSZ interface was investigated and characteristic microstructures were found to develop during 200-300 h heat treatment at 1000 degreesC in 97% H-2/3% H2O with and without...... contact area on the YSZ developed a hill and valley structure with an amplitude of 100 nm. The nickel wires showed negative imprints of the YSZ structures. (C) 2001 Elsevier Science B.V. All rights reserved....... polarisation. A ridge of impurities up to 1.6 mum high was seen to develop along the Ni/YSZ/H-2 boundary. The impurity phase can be characterised as an alkali silicate phase containing Mn, Na, Ti, Mg, K, Al and Si. Most of these elements seem to be coming from impurities in the nickel. The initially flat...

  4. Investigation of the degradation of LSM-YSZ SOFC cathode by electrochemical impedance spectroscopy

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura

    The aim of this PhD study was to investigate degradation of the LSM-YSZ cathode of anode supported Ni-YSZ/YSZ/LSM-YSZ solid oxide fuel cells. The chosen cathode materials LSM25 and 8YSZ were investigated for their compatibility and stability, to confirm that expansion/contraction or decreasing......, at different operating conditions. An equivalent circuit was developed for the symmetrical cell, describing the processes taking place at the LSM-YSZ cathode. This equivalent circuit was applied in degradation studies, where the processes affected by degradation over time could be pinpointed. Furthermore......, it was discovered that impurities in air cause significant degradation of the cathode. Humidity was found to increase the degradation rate, but other impurities might also be present and increasing degradation. Then the anode supported Ni-YSZ/YSZ/LSM-YSZ single cells were prepared and tested. It was found...

  5. Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Søgaard, Martin; Mogensen, Mogens Bjerg

    2014-01-01

    Investigations of Ni/ScYSZ cermets were performed by electrochemical impedance spectroscopy (EIS) using different symmetric designs: electrolyte supported (ESC) and anode supported (ASC) cells. The obtained spectra were analyzed using distribution of relaxation times (DRT), and complex non......-linear least squares fitting (CNLS). Depending on the cell design, one or two low frequency gas transport related processes have been identified, and fitted with generalized finite Warburg (GFW) elements. One was related to gas diffusion in a stagnant layer above the anode (ESC+ASC), and the other to gas...... diffusion in the anode support layer (ASC). A higher frequency process has also been identified, and correlated to the charge transfer (CT) combined with ionic conduction in the ceramic matrix. This has been fitted using a transmission line model (TML), which correlates the exhibited responses...

  6. SOFC mini-tubulares basadas en YSZ

    Directory of Open Access Journals (Sweden)

    Campana, R.

    2008-08-01

    Full Text Available Tubular SOFC have the advantage over planar SOFC of the low temperature sealing and more resistance to thermal shock. On the other hand the volumetric power density of tubular Fuel Cells goes with the inverse of the tube diameter which added to the faster warm-up kinetics makes low diameter tubular SOFC favorable for low power applications. Anode supported tubular SOFC of 3mm diameter and 150 mm length with YSZ electrolyte were fabricated and tested by V-I measurements using H2-Ar (5, 10, 100 vol% as fuel and air for the cathode. The NiO-YSZ tubes of about 400 μm thickness were produced by hydrostatic pressure and then coated with an YSZ film of 15-20 μm. The electrolyte was deposited using a manual aerograph. After sintering either Pt paste or LSF (with YSZ or SDC coatings of about 20-50 μm thickness were deposited for the cathode. The OCV of the cells were excellent, very close to the expected Nernst law prediction indicating that there were not gas leaks. The maximun electrical power of the cell was near to 500mW/cm2 at 850ºC operation temperature. Complex impedance measurements of the cells were performed in order to determine the resistance of the different cell components.

    La principal ventaja de las SOFC tubulares frente a las planares es el sellado de la cámara anódica y catódica a bajas temperaturas. Además la densidad de energía volumétrica de las pilas tubulares es inversamente proporcional al diámetro del tubo, que añadido a los tiempos cortos de encendido y apagado hacen que las mini-tubulares sean interesantes para usos de baja potencia. Se han fabricado y caracterizado SOFC tubulares soportadas en ánodo de 3mm de diámetro y de 150 mm de longitud, 400μm de espesor, con electrolito de YSZ depositado por spray de 15-20 μm. Los tubos de NiO-YSZ son producidos por prensado isostático. La caracterización eléctrica se ha realizado empleando H2-Ar como combustible an

  7. Femtosecond laser additive manufacturing of YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bai, Shuang [PolarOnyx, Inc., San Jose, CA (United States)

    2017-04-15

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa. (orig.)

  8. Effects of impurities of microstructure in Ni/YSZ-YSZ half-cells for SOFC

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Primdahl, S.; Mogensen, Mogens Bjerg

    2003-01-01

    degreesC over 1500-1800 h in H-2 with 1-3% H2O under an anodic load of 300 mA cm(-2). The anodes containing, among others, SiO2 and Na2O at a concentration level of hundreds ppm degrade faster (within a period of 150-400 h) than those with a few tens ppm of SiO2. The impurity phase is characterized...... as a type of sodium silicate glass phase and is found to segregate and accumulate at the anode/electrolyte interface causing serious damage to the YSZ electrolyte in the vicinity of the interface. In the center region of the circular pellet, the YSZ grains are separated by silicate glass. The distribution...

  9. Continuous Process for Low-Cost, High-Quality YSZ Powder

    Energy Technology Data Exchange (ETDEWEB)

    Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

    2006-03-31

    This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

  10. Structure and Thermal Expansion of YSZ and La2Zr2O7 Above 1500°C from Neutron Diffraction on Levitated Samples

    International Nuclear Information System (INIS)

    Ushakov, Sergey V.; Neuefeind, Joerg C.

    2015-01-01

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5 ) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6 /K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZ are similar and within (7 ± 2) × 10 -6 /K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6 /K at 2350°C–2550°C with oxygen displacement parameters (U iso ) reaching 0.1 Å 2 , similar to behavior observed in UO 2 . Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.

  11. Ni-YSZ Substrate Degradation during Carbon Deposition

    Directory of Open Access Journals (Sweden)

    Marinšek, Marjan

    2011-06-01

    Full Text Available Carbon deposition on various Ni-YSZ catalytic composites with average Ni particle size from 0.44 mm to 0.98 μm was studied under dry CH4-Ar and humidified CH4-Ar conditions. The change in the catalytic activity was monitored both as a mass gain due to carbon deposition and hydrogen evolution due to CH4 dehydrogenation on Ni-YSZ. Regarding the start of methane decomposition and subsequent catalyst deactivation rate, composites with smaller Ni-grains were much more active in comparison to those with relatively large grains. Dry methane conditions always caused coking of the catalyst substrate with substantial activity loss. In contrast, under humidified methane atmosphere conditions with a steam to carbon (S/C ratio of 0.82, catalytic activity of the Ni-YSZ composites remained nearly undiminished after 2,000 minutes at chosen deposition temperatures (600–800 °C. On the catalyst surface, some encapsulation of Ni with the deposited carbon was noticed while carbon filaments grew inside the treated samples. The dimensions of C-filaments were influenced by treatment conditions and Ni-YSZ substrate morphology.

    La deposición de carbón en diferentes compuestos catalizadores Ni-YSZ con un tamaño promedio de partícula Ni de 0.44 mm a 0.98 μm fue estudiado bajo condiciones secas: CH4-Ar y húmedas: CH4-Ar. El cambio de la actividad catalítica fue monitoreado tanto como una ganancia de masa debida a la deposición de carbón y una evolución de hidrógeno debido a la deshidrogenación de CH4 en Ni-YSZ. En cuanto al comienzo de descomposición del metano y a la subsiguiente desactivación del catalizador, aquellos compuestos con granos Ni menores fueron mucho más activos en comparación a aquellos con granos relativamente mayores. Las condiciones secas del metano siempre causaron coquificación del sustrato del catalizador con una sustancial pérdida de actividad. Por el

  12. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  13. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  14. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation

    Directory of Open Access Journals (Sweden)

    Ziqian DENG

    2018-04-01

    Full Text Available Plasma spray-physical vapor deposition (PS-PVD as a novel coating process based on low-pressure plasma spray (LPPS has been significantly used for thermal barrier coatings (TBCs. A coating can be deposited from liquid splats, nano-sized clusters, and the vapor phase forming different structured coatings, which shows obvious advantages in contrast to conventional technologies like atmospheric plasma spray (APS and electron beam-physical vapor deposition (EB-PVD. In addition, it can be used to produce thin, dense, and porous ceramic coatings for special applications because of its special characteristics, such as high power, very low pressure, etc. These provide new opportunities to obtain different advanced microstructures, thus to meet the growing requirements of modern functional coatings. In this work, focusing on exploiting the potential of gas-phase deposition from PS-PVD, a series of 7YSZ coating experiments with various process conditions was performed in order to better understand the deposition process in PS-PVD, where coatings were deposited on different substrates including graphite and zirconia. Meanwhile, various substrate temperatures were investigated for the same substrate. As a result, a deposition mechanism of heterogeneous nucleation has been presented showing that surface energy is an important influencing factor for coating structures. Besides, undercooling of the interface between substrate and vapor phase plays an important role in coating structures. Keywords: 7YSZ, Deposition mechanism, Heterogeneous nucleation, PS-PVD, TBC

  15. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2016-11-01

    Full Text Available The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ, and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80% H2–(80%–20% CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas.

  16. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    OpenAIRE

    Giftymol Varghese; Mónica Moral; Miguel Castro-García; Juan José López-López; Juan Ramón Marín-Rueda; Vicente Yagüe-Alcaraz; Lorena Hernández-Afonso; Juan Carlos Ruiz-Morales; Jesus Canales-Vázquez

    2018-01-01

    A stereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP) projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60 wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500 °C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given ...

  17. Study of the formation of secondary phases in the composite LSM/YSZ

    International Nuclear Information System (INIS)

    Rodrigues, Ranieri Andrade

    2007-01-01

    The composite of strontium-doped lanthanum manganite (La 1-x SrxMnO 3 - LSM) and Yttria-stabilized zirconia (ZrO 2 /Y 2 O 3 - YSZ), is indicated as cathode of the Solid Oxide Fuel Cells (SOFC). It presents better acting as cathode due to the Triple Phase Boundary (TPB) formed in the interface area between the cathode and the electrolyte. For the temperatures up to 1100 deg C, LSM and YSZ can react producing lanthanum zirconate (La 2 Zr 2 O 7 - LZO) and strontium zirconate (SrZrO 3 - SZO). In this sense, the present work intends to contribute in the study of the formation of phases LZO and SZO, studying different massic proportions between LSM and YSZ with sintering temperatures varying between 1000 deg C and 1400 deg C. For the obtention of the precursory powders the co-precipitation routes were adopted to obtain YSZ and conventional powder mixture for the preparation of LSM. The composite LSM/YSZ, studied in this work, is prepared with two concentrations of Sr for LSM (30 mol por cent - LSM7 and 40 mol por cent - LSM6) and one concentration of Yttria for YSZ (10 mol por cent). The results obtained by X-ray fluorescence showed that the routes adopted for synthesis of powders were effective in the obtention of the compositions LSM6, LSM7 and YSZ, with close values to the stoichiometric. The studied massic proportions were: 50 por cent of LSM and 50 por cent of YSZ (1:1), 25 por cent of LSM and 75 por cent of YSZ (1:3), and 75 por cent of LSM and 25 por cent of YSZ (3:1). Such proportions of mixtures were conformed and submitted at different conditions of temperatures and times of sintering: 1000 deg C, 1200 deg C, 1300 deg C, 1350 deg C and 1400 deg C for 4 and 8 hours. The values of medium size of the particles and the specific surface area values for the mixture of LSM6/YSZ and LSM7/YSZ, are of the same order of largeness after the mixture in a attrition mill and in different massic proportions. Secondary phases like LZO and SZO were not found in the analysis for

  18. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  19. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  20. Synthesis and characterization of nanocrystalline Ni-YSZ cermet anode for SOFC

    International Nuclear Information System (INIS)

    Priyatham, T.; Bauri, Ranjit

    2010-01-01

    Ni-YSZ cermet anode has been synthesized in one step using a simple and cost effective combustion synthesis process. The processed powder of NiO-YSZ is found to be nanocrystalline with crystallite sizes of 29 and 22 nm for NiO and YSZ respectively by X-ray diffraction and transmission electron microscopy analysis. X-ray diffraction analysis also shows that the precursor salts are converted to highly crystalline phases of NiO and YSZ (8 mol% Y 2 O 3 ) without any intermediate calcination step and no undesirable phases are present. Comparison with the X-ray diffraction pattern of a commercial YSZ sample shows that the process is also effective in maintaining a close compositional control. The microstructure of the sintered and reduced sample shows a well defined network of pores which is necessary for the effective functioning of the anode. The electrical conductivity as a function of temperature shows metallic behavior.

  1. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  2. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  3. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application

    Science.gov (United States)

    Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing

    2018-03-01

    Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.

  4. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2009-01-01

    from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds...

  5. Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructures

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2015-01-01

    This paper investigates the effective steady-state creep response of porous Ni–YSZ composites used in solid oxide fuel cell applications by numerical homogenization based on three-dimensional microstructural reconstructions and steadystate creep properties of the constituent phases. The Ni phase...... is found to carry insignificant stress in the composite and has a negligible role in the effective creep behavior. Thus, when determining effective creep, porous Ni–YSZ composites can be regarded as porous YSZ in which the Ni phase is counted as additional porosity. The stress exponents of porous YSZ...... are the same as that of dense YSZ, but the effective creep rate increases by a factor of 8–10 due to porosity. The relationship of creep rate and volume fraction of YSZ computed by numerical homogenization is underestimated by most existing analytical models. The Ramakrishnan–Arunchalam creep model provides...

  6. Ni/YSZ microstructure optimization for long-term stability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Karas, Filip

    2014-01-01

    of keeping the Ni particles in their required positions in the porous Ni/YSZ cermet close to the electrolyte. In this work we report cell tests and microstructures from reference and long-term tested SOEC with varied initial Ni/YSZ ratio with the aim of investigating the effect of changed Ni/YSZ ratio...

  7. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    OpenAIRE

    Jin, Lei; Li, Peizhong; Zhou, Haibin; Zhang, Wei; Zhou, Guodong; Wang, Chun

    2015-01-01

    In this paper, air plasmas spray (APS) was used to prepare YSZ and Sc2O3–YSZ (ScYSZ) coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2...

  8. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.

    Science.gov (United States)

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-07-29

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

  9. Effects of strong cathodic polarization of the Ni-YSZ interface

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Chen, Ming; Jacobsen, Torben

    2016-01-01

    Long-term strong cathodic polarization experiments of down to -2.4 V vs. E°(O2) of the Ni-YSZ interface were performed at 900°C in 97% H2/3% H2O on model electrodes. The Ni-YSZ interface underwent extensive changes and a large affected volume with a complex microstructure and phase distribution r...

  10. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2015-04-01

    Full Text Available In this paper, air plasmas spray (APS was used to prepare YSZ and Sc2O3–YSZ (ScYSZ coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2 aerogel are 0.553, 0.539 and 0.2097×10−6 m2/s, respectively. Then, the thermal insulation performances of three kinds of coating were investigated from 20 °C to 400 °C using high infrared radiation heat flux technology. The experimental results indicated that the corresponding temperature difference between the top TC4 alloy (400 °C and the bottom surface of YSZ is 41.5 °C for 0.6 mm thickness coating. For 1 mm thickness coating, the corresponding temperature difference between the top TC4 alloys (400 °C and the bottom surface of YSZ, ScYSZ, SiO2 aerogel three specimens is 54, 54.6 and 208 °C, respectively. The coating thickness and species were found to influence the heat insulation ability. In these materials, YSZ and ScYSZ exhibited a little difference for heat insulation behavior. However, SiO2 aerogel was the best one among them and it can be taken as protection material on TC4 alloys. In outer space, SiO2 aerogel can meet the need of thermal insulation of TC4 of high-speed aircraft.

  11. Fabricating Pinhole-Free YSZ Sub-Microthin Films by Magnetron Sputtering for Micro-SOFCs

    Directory of Open Access Journals (Sweden)

    T. Hill

    2011-01-01

    Full Text Available Submicron thin yttria stabilized zirconia (YSZ films were prepared on a variety of substrates with different surface morphologies by magnetron sputtering followed by thermal oxidation. Pinholes were observed in the films deposited on nanoporous alumina substrates. Initial dense Y/Zr films developed nanocracks after thermal oxidation on smooth Si wafer substrates. At optimal sputtering and oxidation conditions, smooth and crack/pore-free films were achieved on Si wafer substrates. The thin YSZ films exhibited fully ionic conduction with ionic conductivities, and activation energy corroborated well with the values from commercial YSZ plates. The thin YSZ films can be utilized in Solid Oxide Fuel Cells (SOFCs for intermediate temperature operations.

  12. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  13. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  14. Electrophoretic deposition of thin film zirconia electrolyte on non-conducting NiO-YSZ substrate

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2014-01-01

    Eight (8) mol% yttria stabilized zirconia (YSZ), an electrolyte material for solid oxide fuel cell (SOFC), has been deposited onto porous non-conducting NiO-YSZ substrate using electrophoretic deposition technique (EPD) from a stable non-aqueous suspension of YSZ. Normally, EPD cannot be performed on a non-conducting substrate, but, in this present study, YSZ particulate film has been successfully deposited on a non-conducting NiO-YSZ substrate following two different EPD approaches:(a) using a conducting metallic plate on the reverse side of the porous NiO-YSZ anode substrate and (b) using a conducting polymer coated NiO-YSZ substrate. The deposited films are then formed dense coatings of 5-15 μm after sintering at 1400℃ for 6 h in air. Surface and cross-sectional morphologies of green and sintered films deposited by different EPD approaches are investigated using SEM. La 0.65 Sr 0.3 MnO 3 (LSM), a cathode for SOFC, is then screen-printed onto the electrolyte layer of such sintered half cells (anode+electrolyte) prepared by both the above approaches to construct SOFC single cells. A maximum output power density of 0.37 W.cm -2 is obtained using single cells prepared by conducting metallic plate assisted EPD compared to that of 0.73 W.cm -2 for polymer coated at 800℃ using H 2 as fuel and O 2 as oxidant. (author)

  15. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...

  16. Flexible Mixed-Potential-Type (MPT NO2 Sensor Based on An Ultra-Thin Ceramic Film

    Directory of Open Access Journals (Sweden)

    Rui You

    2017-07-01

    Full Text Available A novel flexible mixed-potential-type (MPT sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency.

  17. Thermochemistry of brazing ceramics and metals in air

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Schlaefer, Thomas; Kopp, Nils [RWTH Aachen (DE). Surface Engineering Inst. (IOT)

    2011-08-15

    Reactive air brazing offers economically and technologically advantageous joining of ceramics to metals. Solid oxide fuel cells and membranes for oxyfuel combustion are recent fields of application. However, it remains a problem that strong metallurgical reactions between brazes and base materials occur. These reactions were analysed by differential scanning calorimetry tests to get a better understanding. Therefore, three braze alloys (Ag8Cu, Ag8Cu0.5Ti and Ag4Cu4Ni) and five base materials (alumina, 3YSZ partially stabilised zirconia, BSCF perovskite ceramic, X1CrTi-La22 and X15CrNiSi25-20) were investigated. The reaction peaks correlate with the formation of reaction layers, which were observed in metallographic analysis of brazed specimens. The results help to explain the reaction mechanisms and allow optimised selection of filler metals and brazing temperature. (orig.)

  18. Net shape manufacturing of ceramic micro parts with tailored graded layers

    Science.gov (United States)

    Hassanin, H.; Jiang, K.

    2014-01-01

    Presented in this paper is a novel net shape manufacturing technology for making three-dimensional micro parts with functionally graded layers. Alumina/zirconia micro parts with either core-shell or top-bottom functionally graded material (FGM) profiles have been successfully fabricated by altering both the surface characteristics of polydimethylsiloxane (PDMS) micro moulds and ceramic suspensions composition. PDMS surface modifications were performed to achieve moulds with hydrophilic surfaces, which were used to form core/shell FGM green layers. On the other hand, moulds with hydrophobic surfaces were used to form top-bottom green layers. Cracks have been found between consecutive layers in both the green and sintered micro parts. It was found that, at dispersant concentration of about 9.0 mg g-1, the differences in the drying shrinkage between layers is less than 0.5%. In addition, layers of composition of 100% Al2O3-0% YSZ, 20% Al2O3-80% YSZ and 40% Al2O3-60% YSZ were found to produce less shrinkage difference during sintering. After optimization of both green and sintering layers, crack free core/shell and top-bottom alumina/zirconia FGM micro parts were successfully obtained. The proposed process enables the production of micro patterns tailored with functionally graded microstructures to locally enhance properties and performance.

  19. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  20. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  1. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process

    International Nuclear Information System (INIS)

    Ning Xianjin; Li Chengxin; Li Changjiu; Yang Guanjun

    2006-01-01

    4.5 mol% yttria-stabilized zirconia (YSZ) coating was deposited by atmospheric plasma spraying (APS) as an electrolyte for solid oxide fuel cells (SOFCs) applications. The post treatment was employed using zirconium and yttrium nitrate solution infiltration to densify the coating microstructure for improvement of gas permeability. The deposition of YSZ through nitrate in voids of the coating was examined. Microstructure of the as-sprayed and densified coatings was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of infiltrating treatment on coating microstructure and electrical conductivity was examined. The electrical conductivity of APS-sprayed YSZ coating at the direction perpendicular to coating surface was much lower than that of bulk materials. Post-densification treatment improved the electrical conductivity of YSZ coating by about 25% compared with as-sprayed coating. It was found that the deposition of YSZ resulting from decomposition of nitrate in the lamellar interface gaps was different from that in vertical cracks in lamella owing to the orthogonal feature of those two types of gaps. The nanopores were formed in the deposited YSZ in nonbonded interface gaps while large pores were residued in vertical cracks in splats. The microstructural examination suggests that nanopores in the deposited YSZ in nonbonded interfaces in the coating were isolated from each other, which led to the significant reduction of gas permeability after densification. Moreover, the nanocontacts between lamellae resulted in high contact resistance and limit improvement of electrical conductivity of the coating after densification

  2. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  3. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr......It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore......, it was illustrated through a literature review on SOFC electrodes that porous electrode theory not only describes the classic LSM:YSZ SOFC cathode well, but SOFC electrodes in general. The extensive impedance spectroscopy study of LSM:YSZ cathodes consisted of measurements on cathodes with three different sintering...... temperatures and hence different microstructures and varying degrees of LSM/YSZ solid state interactions. LSM based composite cathodes, where YSZ was replaced with CGO was also studied in order to acquire further knowledge on the chemical compatibility between LSM and YSZ. All impedance measurements were...

  4. Electrochemical performances of LSM/YSZ composite electrode for high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Kyu-Sung Sim; Ki-Kwang Bae; Chang-Hee Kim; Ki-Bae Park

    2006-01-01

    The (La 0.8 Sr 0.2 ) 0.95 MnO 3 /Yttria-stabilized Zirconia composite electrodes were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvano-dynamic and galvano-static polarization method. For this study, the LSM perovskites were fabricated in powders by the co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composite electrodes were deposited on 8 mol% YSZ electrolyte disks by screen printing method, followed by sintering at temperature above 1100 C. From the experimental results, it is concluded that the electrochemical properties of pure and composite electrodes are closely related to their micro-structure and operating temperature. (authors)

  5. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  6. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    International Nuclear Information System (INIS)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung

    2015-01-01

    Ni-YSZ (Y_2O_3-stabilized ZrO_2) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  7. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung [Korea Institute of Ceramic Engineering and Technology (KICET), Seoul (Korea, Republic of)

    2015-04-15

    Ni-YSZ (Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  8. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    Science.gov (United States)

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. YSZ thin films deposited on NiO-CSZ anodes by pulsed injection MOCVD for intermediate temperature-SOFC applications

    International Nuclear Information System (INIS)

    Garcia, G.; Pardo, J.A.; Santiso, J.; Merino, R.I.; Orera, V.M.; Larrea, A.; Pena, J.I.; Laguna-Bercero, M.A.; Figueras, A.

    2004-01-01

    Yttria-stabilized zirconia (YSZ) films are prepared on NiO-CaSZ by PIMOCVD (pulsed injection metal organic chemical vapor deposition). High quality, 5 to 10 μm thick, totally dense YSZ layers are prepared by controlling the oxygen partial pressure during the deposition. YSZ solid electrolyte deposition onto Ni-YSZ eutectic substrate is found to be a promising combination with regard to intermediate-temperature solid-oxide fuel cell applications. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  10. LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

    International Nuclear Information System (INIS)

    Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ.; De Jonghe, Lutgard C.

    2006-01-01

    To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are ∼20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed

  11. Effect of Aging on the Electrochemical Performance of LSM-YSZ Cathodes

    DEFF Research Database (Denmark)

    Baqué, L. C.; Jørgensen, Peter Stanley; Zhang, Wei

    2015-01-01

    resistance shows no clear tendency with aging time, while the ionic conductivity decreases up to ∼79%. Accordingly, the electrochemically active thickness contracts from 60–135 μm to 45–60 μm. The changes observed in the cathode transport and electrochemical properties are mostly explained by the evolution......Investigations of degradation mechanisms of solid oxide fuel cells are crucial for achieving a widespread commercialization of the technology. In this work, electrochemical impedance spectroscopy (EIS) was applied for studying the aging effect on LSM-YSZ cathodes exposed to humidified air at 900°C...... for up to 3000 h. EIS spectra were fitted by a transmission line model for estimating relevant parameters associated with the LSM/YSZ charge transfer reaction and the oxide ion conduction through the YSZ network. For the reference non-aged sample, the ionic conductivity values are the expected ones...

  12. Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

    Science.gov (United States)

    Rose, Klint Aaron; Kuntz, Joshua D.; Worsley, Marcus

    2016-09-27

    A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.

  13. Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, T.; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Chráska, Tomáš; Curry, N.

    2017-01-01

    Roč. 26, 1-2 (2017), s. 37-46 ISSN 1059-9630. [ISTC 2016: International Thermal Spray Conference. Shanghai, 10.05.2016-12.05.2016] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : alumina * ceramics * dense * hybrid plasma torch * suspension plasma spraying * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007/s11666-016-0493-6

  14. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  15. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose

    2015-01-01

    stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst...

  16. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  17. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  18. Fabrication and characterization of Ni-YSZ anode functional coatings by electron beam physical vapor deposition

    International Nuclear Information System (INIS)

    Meng, B.; Sun, Y.; He, X.D.; Peng, J.H.

    2009-01-01

    Two kinds of NiO-YSZ (yttria-stabilized zirconia) coatings, respectively with uniform and gradient distributions of NiO content along the coating thickness direction, were prepared by electron beam physical vapor deposition (EB-PVD) via adjusting electron beam currents. Then uniform and graded Ni-YSZ coatings were obtained from corresponding NiO-YSZ coatings after a reduction treatment. For uniform Ni-YSZ coating, the composition and porosity distributions along the coating thickness were uniform. The specific surface area and total pore volume for this coating could reach up to 4.330 m 2 g -1 and 0.0346 cm 3 g -1 respectively. The area specific resistance (ASR) of this coating kept increasing with the rise in temperature and an ASR of 2.1 x 10 -5 Ω cm 2 was obtained at 600 o C. For graded Ni-YSZ coating, a gradient in Ni content and porosity was realized along the coating thickness. A high porosity of up to 33% was achieved in the part of the coating close to the substrate, while a low porosity of 10% was obtained in the part close to coating surface.

  19. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... with a LSM:CGO composite cathode on a CGO interdiffusion barrier layer. It was found that both types of cathodes showed similar electrochemical characteristics towards the presence of moisture during operation. Upon addition and removal of moisture in the fed air the impedance study showed a change...... in the high frequency cathode arc, which is associated with the charge transport/transfer at the LSM/YSZ interface. On prolonged operation with the presence of moisture an ongoing increase in the high frequency cathode arc resulted in a permanent loss of cathode/electrolyte contact and thus increase...

  20. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  1. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  2. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)

  3. Hydrogen Solubility in Pr-doped and Un-doped YSZ for One Chamber Fuel Cell

    DEFF Research Database (Denmark)

    Bay, Lasse; Horita, T.; Sakai, N.

    1998-01-01

    SIMS analysis. Doping of Pr in the YSZ resulted in a higher intensity of the D ion, which indicated that hydrogen solubility was raised by the doping. The solubility of hydrogen in the electrolyte may affect the performance of one chamber fuel cells. (C) 1998 Elsevier Science B.V. All rights reserved.......Yttria-stabilised zirconia electrolytes (YSZ and Pr-doped YSZ) and yttria-doped strontium cerate (SYC) were tested in a one chamber fuel cell fed with a mixture of methane and air at 1223 K. The obtained performances were 4 mW cm(-2), 3 mW cm(-2), 2.5 mW cm(-2), and 0.15 mW cm(-2) for SYC, 1.8 mol...

  4. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    International Nuclear Information System (INIS)

    Varghesea, G.; Moral, M.; Castro-García, M.; López-López, J.J.; Marín-Rueda, J.R.; Yagüe-Alcaraz, V.; Hernández-Afonso, L.; Ruiz-Morales, J.C.; Canales-Vázquez, J.

    2018-01-01

    Astereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP) projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500°C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given sintering temperature. The limit of solid loading in the resin is approximately 60% and beyond those contents, the extra ceramic appears as powder loosely adhered to the sintered objects. Photogrammetry was used to evaluate the accuracy of the 3D printing process and highlighted a marked deviation between the CAD model and the resulting object, particularly in the top part of the specimens, possibly due to the use of volatile solvents which cause changes in the photoresins used. Nevertheless, that problem may be overcome by thermostatising the printer vat and/or using solvents with higher boiling point. The results obtained suggest the potential application of low cost DLP 3D printing techniques to process ceramics for a number of applications including ceramic fuel cells, piezoelectrics, dental applications, etc. [es

  5. Accelerated creep of Ni-YSZ anodes during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Greco, Fabio; Ni, De Wei

    2014-01-01

    by the thermomechanical history of the stack (e.g. sintering temperature, time at temperature etc.). During operation the stress state will depend on time as stresses are relaxed by creep processes. Creep has mainly been studied at operating conditions, where the Ni-YSZ anode is in the reduced state and YSZ is the main......To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation the stress field must be known at all times. This is influenced by external loads, the operating conditions, the particular design of the stack components and their mechanical properties and finally...... load-carrying component. In this work we report on a new creep-reduction phenomenon observed to take place during the reduction process itself, where stresses are relaxed at a rate much faster (~×104) than during operation where the anode is in fully reduced state. Furthermore, samples exposed...

  6. Advanced Materials Development of Ionic Ceramics Using Ions Beam and its Suitable Applications as Stress Environment Sensor

    International Nuclear Information System (INIS)

    Lee, K. H.; Cho, D. H.; Won, J. O.; Cho, J. H.; Kim, J. Y.

    2008-04-01

    The perovskite oxides La 2 CuO 4 was prepared by auto-ignition method with citric acid as reductant and nitrate as oxidant at low temperatures. Single crystals of phase lanthanum copper oxide were implanted with 70-120 KeV argon and nitrogen ions at room temperature. The prepared materials have investigated the energy transition distribution and ion distribution for N 2 and Ar ion-implantation depth. Also, this ionic ceramic of ion implanted with N + and N 2 + energy 70 keV, dose 5 x 10 16 ions/cm 2 , and beam current density 8.91μm/cm 2 were studied on physio-chemical and characteristic. We have studied on the effect of ion implantation for ionic ceramics materials surface modification for the first year. The ion beam treated ionic ceramics were investigated into its chemical structure and its characteristics as observed by XRD, SEM-EDS, BET and DTA. The oxygen gas sensors based on lanthanum copper oxide were fabricated by screen-printing method an YSZ substrate using the powder prepared by the ion implanted ionic state ceramics. The sensor's response was evaluated by periodic variation of oxygen partial pressure. Recently, the oxygen gas sensors using concentration cells consisting of oxygen-ion-conductor have been currently used as the oxygen gas sensors to measure oxygen concentration of exhaust gas. And, Resistive response behavior with varying oxygen gas concentration on lanthanum copper oxide have been studied. Oxygen sensor was measured in the temperature range of 400 .deg. C ∼700 .deg. C and different concentrations of oxygen. The results show that the resistance of oxygen sensor using YSZ-La 2 CuO 4 decreases with an increase of temperature at given oxygen concentration, and it is good linearity. Also its sensor has faster response property at more than 500 .deg. C.

  7. Synthesis and characterization of NiO-YSZ-CeO_2 composites with microwave-assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Pinheiro, Lucas Batochi

    2013-01-01

    In the present work, it was evaluated the effects of a microwave-assisted hydrothermal (MWH) treatment on structural, thermal and electrical properties of NiO-YSZ- CeO_2 composites synthesized by hydroxide coprecipitation method. Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) in conjunction with x-ray diffraction (XRD) measurements showed that MWH treatment contributed to enhanced nickel hydroxide crystallization. The linear shrinkage of the ceramic compacts was observed by thermomechanical analysis (TMA) and the results indicated a higher sinterability for the samples MWH-treated. The compacts were sintered in a conventional resistive and in a microwave furnace. This sintered compacts had their microstructure analyzed by scanning electron microscopy (SEM) and electrical properties investigated by impedance spectroscopy (IS). The SEM images showed phase homogeneity and sub-micrometric grains with irregular shapes. The IS data revealed that the MWH-treated samples have a conductivity increase for temperatures above 500 deg C regardless the sintering process. (author)

  8. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  9. Ni-YSZ cermet substrate supported thin SDC and YSZ+SDC bi-layer SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Robertson, M.; Deces-Petit, C.; Xie, Y.; Hui, R.; Yick, S.; Styles, E.; Roller, J.; Kesler, O.; Qu, W.; Jankovic, J.; Tang, Z.; Perednis, D.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    One of the disadvantages of a ceria-based electrolyte is that it becomes a mixed conductor at anode conditions, which causes cell voltage loss and fuel efficiency loss due to internal shorting. Chemical and mechanical stability is another concern for long-term service. To lower manufacturing costs, efforts have been made to bring proven semiconductor manufacturing technology to Solid Oxide Fuel Cells (SOFCs). This study employed Tape casting of cermet substrates, Screen-printing of functional layers and Co-firing of cell components (TSC) to fabricate nickel (Ni)-cermet supported cells with mainly ceria-based thin electrolytes. Ni-Yttria-Stabilized Zirconia (YSZ) cermet supported cell with Samaria Doped Ceria (SDC) single layer electrolytes and YSZ+SDC bi-layer electrolytes were successfully developed for low-temperature performance characterization. The elemental distribution at the cell interface was mapped and the electrochemical performance of the cells was recorded. Many high-Zr-content micro-islands were found on the thin SDC surface. The influence of co-firing temperature and thin-film preparation methods on the Zr-islands' appearance was also investigated. Using in-situ sintered cathodes, high performance of the SDC cells was obtained. It was concluded that the bi-layer cells did show higher Open Circuit Voltage (OCV) values, with 1180 mW/cm{sup 2} at 650 degrees C, as well as good performance at 700-800 degrees C, with near OCV value. However, their performance was much lower than those of the SDC cells at low operating temperature. Zr-micro-islands formation on the SDC electrolyte was observed and investigated. 6 refs., 5 tabs., 7 figs.

  10. Measurement of properties of sealant materials for solid oxide fuel cell systems

    International Nuclear Information System (INIS)

    Boersma, R.J.; Sammes, N.M.; Zhang, Y.

    1998-01-01

    Thermal expansion of ceramic materials, ceramic cements and steels was studied, and their compatibility with materials used in the SOFC system was evaluated. A number of ceramic cements, a glass paste and a glass ceramic were examined to identify their potential as a sealing material in a tubular fuel cell system. Thermal expansion coefficients of these materials were compared for thermal matching with materials employed in the fuel cell construction, such as yttria stabilised with 8 mole% zirconia (8YSZ) and stainless steel. A reasonable match was found for Macor, a glass ceramic, with one of the steel samples studied and with 8YSZ. Candidate sealants were tested for bonding quality, which made it evident that the ceramic cements had to be discarded. Good bonds between Macor and one of the steel samples and Macor and 8YSZ were formed, resulting in a gas tight seal. Uncertainty remains regarding the long term effect of the interface reactions between steel and Macor. Exposure of the Macor and a steel-Macor-8YSZ assembly to the different fuel cell gas atmospheres revealed that the Macor reacts with hydrogen, the long term effect of which is also unknown. Copyright (1998) Australasian Ceramic Society

  11. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  12. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  13. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  14. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  15. Nature and strength of defect interactions in cubic stabilized zirconia

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.

    2003-01-01

    The intrinsic ordering tendencies that limit ionic conduction in doped zirconia electrolytes are fully elucidated using first-principles calculations. A detailed analysis of nearly 300 yttria- and scandia-stabilized cubic-zirconia-ordered vacancy compounds reveals a delicate balance between competing elastic and electrostatic interactions. These results explain several outstanding experimental observations and provide substantial insight needed for improving ionic conduction and enabling low-temperature operation of zirconia-based electrolytes. We show that the surprising vacancy ordering in dilute solid solutions is a consequence of repulsive electrostatic and attractive elastic interactions that balance at third-neighbor vacancy separations. In contrast, repulsive elastic vacancy-dopant interactions prevail over electrostatic attraction at all probed defect separations in YSZ and lead to very weak ordering preferences in ScSZ. The total electronic contribution to the defect interactions is shown to be strongly dominated by simple point-charge electrostatics, leaving speciation of defect ordering for a given class of aliovalent dopants to the elastic term. Thus, ion size becomes a critical parameter in controlling the ionic conductivity of doped oxide electrolytes

  16. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  17. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  18. Fabrication and characterisation of ceramics via low-cost DLP 3D printing

    Directory of Open Access Journals (Sweden)

    Giftymol Varghese

    2018-01-01

    Full Text Available A stereolithography-based additive manufacturing technique has been used for the fabrication of advanced ceramics. A customised 3D printer using a Digital Light Processing (DLP projector as UV source has been built to fabricate green bodies from photosensitive resins loaded with 25–60 wt% of alumina, 3- and 8-YSZ. The 3D-printed bodies were then sintered in the 1200–1500 °C and exhibited thermal stability. As expected, higher ceramic loadings rendered objects with higher density for a given sintering temperature. The limit of solid loading in the resin is approximately 60% and beyond those contents, the extra ceramic appears as powder loosely adhered to the sintered objects. Photogrammetry was used to evaluate the accuracy of the 3D printing process and highlighted a marked deviation between the CAD model and the resulting object, particularly in the top part of the specimens, possibly due to the use of volatile solvents which cause changes in the photoresins used. Nevertheless, that problem may be overcome by thermostatising the printer vat and/or using solvents with higher boiling point. The results obtained suggest the potential application of low cost DLP 3D printing techniques to process ceramics for a number of applications including ceramic fuel cells, piezoelectrics, dental applications, etc.

  19. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  20. Study of synthesis routes and processing of NiO-YSZ ceramic composite for use as anode in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji

    2011-01-01

    This study aim the definition of synthesis and ceramic processing conditions of the anodic component suitable for operation of SOFC, i.e, homogeneous distribution of NiO in YSZ matrix and porosity after reduction above 30%. The selected synthesis routes included the co-precipitation in ammonia media, mechanical mixing of powders and combustion reaction from nitrate salts. The characterization techniques of powders included the X-ray diffraction, scanning and transmission electron microscopy, laser diffraction, nitrogen gas adsorption technique (BET) and Helium pycnometry. The obtained results indicated that the loss of Ni 2+ in co-precipitation process, due to the formation of complex [Ni(NH 3 ) n ] 2+ , can be minimized by controlling the pH around 9.3, keeping the concentration of nickel cation in the solution to be precipitated around 0.1M. In the mechanical mixing method the best condition of powder dispersion, without differential sedimentation, was obtained for zeta potential values at pH around 8.0, fixing the dispersant concentration at 0.8%. For the combustion synthesis it was observed that when stoichiometric and twofold stoichiometric urea was used, amorphous phase was formed and a higher surface area was attained in the final products. Employing the fuel-rich solution condition, crystallization of the powder was observed and the relative intensity of reflections of XRD patterns increased with excess of fuel, due to increasing the reaction temperature. Sinterability studies of pellets prepared from powder synthesized by the three routes described above showed the temperature around 1300 deg C for maximum rate densification and porosity between 6.0 and 14%. Reduction results of the composites confirmed that the reduction kinetics occurs in two steps. The first one with a linear behavior and controlled by chemical reaction on the surface. The second reduction step is the reduction that is controlled by gas diffusion in micro pores, generated by reduction

  1. Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Chen, Ming

    2016-01-01

    ) the three phases (Ni, YSZ and pore phase) shall be size-matched and well-dispersed. Applying such microstructure optimized Ni/YSZ electrode we show SOEC test results with long-term degradation rate as low as 0.3-0.4%/kh at - 1 A/cm2, 800 °C and inlet gas mixture of p(H2O)/p(H2):90/10. This enables SOEC...... and the resulting electrochemical performance both initially and during long-term electrolysis testing at high current density and high p(H2O) inlet. Especially, this work focuses on microstructure optimization to hinder Ni mobility and migration during long-term operation and illustrates the key-role of electrode...

  2. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    Science.gov (United States)

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  3. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Omar M. Pecho

    2015-10-01

    Full Text Available 3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB length and polarization resistance (Rpol. Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  4. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  5. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    Science.gov (United States)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    The chemical and microstructural behavior of steels (304, 310, 316, and 1018), nickel-based alloys (beta-NiAl, G30, and 625), gold, coatings (4YSZ, SilcoNert(TradeMark) 1040 (SilcoTek Co.), Dursan(TradeMark)? (SilcoTek Co.), and porcelain), and bulk ceramics (alpha-Al2O3, fused quartz, beta-SiC, and alpha-Si3N4) were probed after exposure to supercritical fluid with temperature, pressure, and composition mimicking the Venus lower atmosphere. Exposures were carried out in the Glenn Extreme Environments Rig (GEER) chamber with the Venusian gas mixture (96.5% CO2, 3.5% N2, 30 ppm H2O, 150 ppm SO2, 28 ppm CO, 15 ppm OCS, 3 ppm H2S, 0.5 ppm HCl, and 5 ppb HF) at 92 bar (1330 psi) and 467 C (873 F) for durations of 10 and 42 days. An additional 21-day exposure was done to stainless steel uncoated and coated with SilcoNert(TradeMark) and Dursan(TradeMark). Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction, X-ray photoelectron and Auger electron spectroscopies, and cross section electron microscopy analysis. All steels exposed for 10 and 42 days formed double-layered scales consisting mainly of metal (Cr, Fe, Ni) oxides and sulfides showing different chemistry, microstructure, and crystalline phases. The alloys G30 and 625 formed double-layered scales consisting mainly of nickel sulfides. After 10 days, the beta-NiAl exhibited no detectable scale, suggesting only a very thin film was formed. The 304 and 316 stainless steels coated with 4YSZ that were exposed for 10 and 42 days exhibited no significant oxidation. Steel 1018 coated with 4YSZ exhibited a corrosion scale of iron and/or chromium oxide formed at the base of the alloy. The 304 steel coated with porcelain did not exhibit corrosion, although the coating exhibited recession. SilcoNert(TradeMark) exposed for 10 and 42 days exhibited recession, although no oxidation was found to occur at the base of the alloy. Stainless steel 316 coated with Dursan

  6. Effect of impurities on structural and electrochemical properties of the Ni-YSZ interface

    DEFF Research Database (Denmark)

    Jensen, Karin Vels; Wallenberg, R.; Chorkendorff, I.

    2003-01-01

    . The results were compared to earlier investigations of a less pure nickel/YSZ interface. The pure interface developed different structures depending on whether or not the samples were polarised. Despite,the purity of the nickel, impurities were found in the interfacial region. The pure electrodes......The changes in interface structure and chemical composition of a 99.995% pure nickel/yttria-stabilised zirconia (YSZ) interface were examined after heat treatment at 1000degreesC in 97% H-2/3% H2O with and without polarisation. Impedance spectroscopy was used for electrochemical characterisation...

  7. Catalysts characteristics of Ni/YSZ core-shell according to plating conditions using electroless plating

    Science.gov (United States)

    Park, Hyun-Wook; Jang, Jae-Won; Lee, Young-Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Jong-Heun; Hwang, Hae-jin; Lee, Mi-Jai

    2017-11-01

    This study aims to develop an anode catalyst for a solid oxide fuel cell (SOFC) using electroless nickel plating. We have proposed a new method for electroless plating of Ni metal on yttria-stabilized zirconia (YSZ) particles. We examine the uniformity of the Ni layer on the plated core-shell powder, in addition to the content of Ni and the reproducibility of the plating. We have also evaluated the carbon deposition rate and characteristics of the SOFC anode catalyst. To synthesize Ni-plated YSZ particles, the plated powder is heat-treated at 1200 °C. The resultant particles, which have an average size of 50 μm, were subsequently used in the experiment. The size of the Ni particles and the Ni content both increase with increasing plating temperature and plating time. The X-ray diffraction pattern reveals the growth of Ni particles. After heat-treatment, Ni is oxidized to NiO, leading to the co-existence of Ni and NiO; Ni3P is also observed due to the presence of phosphorous in the plating solution. Following heat treatment for 1 h at 1200 °C, Ni is mostly oxidized to NiO. The carbon deposition rate of the reference YSZ powder is 135%, while that of the Ni-plated YSZ is 1%-6%.

  8. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O+ ion beam assistance

    International Nuclear Information System (INIS)

    Huang Xintang; Huazhong Normal Univ., Wuhan, HB; Wang Youqing; Wang Qiuliang; Chen Qingming

    1999-01-01

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O + ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.)

  9. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Arima, T.; Tateyama, T.; Idemitsu, K.; Inagaki, Y.

    2003-01-01

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  11. Preparation of YBCO on YSZ layers deposited on silicon and sapphire by MOCVD: influence of the intermediate layer on the quality of the superconducting film

    International Nuclear Information System (INIS)

    Garcia, G.; Casado, J.; Llibre, J.; Doudkowski, M.; Santiso, J.; Figueras, A.; Schamm, S.; Dorignac, D.; Grigis, C.; Aguilo, M.

    1995-01-01

    YSZ buffer layers were deposited on silicon and sapphire by MOCVD. The layers deposited on silicon were highly oriented along [100] direction without in-plane orientation, probably because the existence of the SiO 2 amorphous interlayer. In contrast, epitaxial YSZ was obtained on (1-102) sapphire showing an in-plane texture defined by the following relationships: (100) YSZ // (1-102) sapphire and (110) YSZ // (01-12) sapphire. Subsequently, YBCO films were deposited on YSZ by MOCVD. Structural, morphological and electrical characterization of the superconducting layers were correlated with the in-plane texture of the buffer layers. (orig.)

  12. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    Science.gov (United States)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  13. Investigations in the mechanism of carbothermal reduction of yttria stabilized zirconia for ultra-high temperature ceramics application and its influence on yttria contained in it

    Science.gov (United States)

    Sondhi, Anchal

    Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in current commercial and future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC system and the resulting structural changes across multiple size scales. A series of experiments were conducted to understand the mechanisms and species involved in the carbothermal reduction of ZrO2 to form ZrC. 3 mol% YSZ and graphite powders were uniaxially pressed into pellets and reacted in a graphite (C) furnace. Rietveld x-ray diffraction phase quantification determined that greater fractions of ZrC were formed when carbon was the majority mobile species. These results were validated by modeling the process thermochemically and were confirmed with additional experiments. Measurements were

  14. Synthesis and characterization of Yttria-stabilized zirconia (YSZ) thin films using spray pyrolysis technique

    International Nuclear Information System (INIS)

    Jamale, A.P.; Chourasiya, M.G.; Chavan, A.U.; Patil, S.P.; Jadhav, L.D.

    2009-01-01

    Micro solid oxide fuel cells (SOFC) are of great potential, which require components in film form. We are reporting the spray pyrolysis of 8YSZ films as solid electrolyte for micro-SOFC. The process parameters of the technique were optimized to get stoichiometric films of YSZ. The micro-structural and electrical properties of the films were studied. The elemental analysis of the film showed the desired composition in the film. The conductivity of the film was 0.05 S/cm at 500 deg C with activation energy of 0.90eV. (author)

  15. In situ X-ray Rietveld analysis of Ni-YSZ solid oxide fuel cell anodes during NiO reduction in H2

    International Nuclear Information System (INIS)

    Reyes Rojas, A; Esparza-Ponce, H E; Fuentes, L; Lopez-Ortiz, A; Keer, A; Reyes-Gasga, J

    2005-01-01

    A synthesis and characterization of solid oxide fuel cell (SOFC) anodes of nickel with 8%mol yttrium stabilized zirconia (Ni-YSZ) is presented. Attention was focused on the kinetics and phase composition associated with the transformation of NiO-YSZ to Ni-YSZ. The anodes were prepared with an alternative synthesis method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 deg. C and oxide reduction (NiO-YSZ → Ni-YSZ) at 800 deg. C for 8 h in a tubular reactor furnace using 10% H 2 /N 2 . The obtained material was compressed by unidirectional axial pressing into 1 cm-diameter discs with 15-66 wt% Ni and calcinated from room temperature to 800 deg. C. A heating rate of 1 deg. C min -1 showed the best results to avoid any anode cracking. Their structural and chemical characterization during the isothermal reduction were carried out by in situ time-resolved X-ray diffraction, refined with the Rietveld method (which allowed knowing the kinetic process of the reduction), scanning electron microscopy and X-ray energy dispersive spectroscopy. The results showed the formation of tetragonal YSZ 8%mol in the presence of nickel, a decrement in the unit cell volume of Ni and an increment of Ni in the Ni-YSZ anodes during the temperature reduction. The analysis indicated that the Johnson-Mehl-Avrami equation is unable to provide a good fit to the kinetics of the phase transformation. Instead, an alternative equation is presented

  16. In situ time-of-flight neutron imaging of NiO-YSZ anode support reduction under influence of stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata Grazyna; Strobl, Markus; Lauridsen, Erik M.

    2016-01-01

    This article reports on in situ macroscopic scale imaging of NiO-YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress - a phase transition taking place in solid oxide electrochemical cells in a reducing atmosphere of a hydrogen/nitrogen mixture and at operation temperatures of u...... of applying energy-resolved neutron imaging with both approaches to the NiO-YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of the authors’ previous research....

  17. The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics

    International Nuclear Information System (INIS)

    Wang, Yanfei; Xiao, Ping

    2014-01-01

    The low fracture toughness of lanthanum zirconate (La 2 Zr 2 O 7 , LZ) greatly impedes its wide application as thermal barrier coatings (TBC). The 3 mol% Y 2 O 3 -stabilized tetragonal zirconia polycrystals (3Y-TZP) have been introduced to toughen the brittle LZ ceramics. The dispersive 3Y-TZP undergoes a simultaneous t–m transformation upon cooling below a critical volume fraction x of 3Y-TZP, above which its tetragonal phases can however be preserved. The different stabilities of 3Y-TZP second phases arise from a variation of residual tensile stress within them. The fracture toughness has been greatly improved by dispersing the tetragonal particulates (t-3YSZ) in the LZ matrix and the primary toughening mechanisms are phase transformations of the dispersive second phases and the residual compressive stress within the matrix. An anticipated increase of fracture toughness from the ferroelastic toughening and the residual compressive stress toughening highlights the great potentials to improve coating durability by depositing t′-3YSZ/LZ composite TBCs by the industrial non-equilibrium route

  18. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  19. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O{sup +} ion beam assistance

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xintang [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.]|[Huazhong Normal Univ., Wuhan, HB (China). Dept. of Physics; Wang Youqing; Wang Qiuliang; Chen Qingming [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.

    1999-08-16

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O{sup +} ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.) 8 refs.

  20. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  1. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  2. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  3. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    International Nuclear Information System (INIS)

    Liu, Q L; Fu, C J; Chan, S H; Pasciak, G

    2011-01-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm x 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO 3 -YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm 2 at 800 deg. C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  4. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    Science.gov (United States)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  5. The Ni-YSZ interface

    DEFF Research Database (Denmark)

    Jensen, Karin Vels

    The anode/electrolyte interface in solid oxide fuel cells (SOFC) is known to cause electrical losses. Geometrically simple Ni/yttria-stabilised zirconia (YSZ) interfaces were examined to gain information on the structural and chemical changes occurring during experiments at 1000°C in an atmosphere...... of 97% H2/3% H2O. Electrochemical impedance spectroscopy at open circuit voltage (OCV) and at anodic and cathodic polarisations (100 mV) was performed. A correlation of the electrical data with the structure development and the chemical composition was attempted. Nickel wires with different impurity...... between polarised and non-polarised samples. With pure nickel wires, however, the microstructures depended on the polarisation/non-polarisation conditions. At non-polarised conditions a hill and valley type structure was found. Anodic polarisation produced an up to 1 μm thick interface layer consisting...

  6. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion

    DEFF Research Database (Denmark)

    Primdahl, S.; Mogensen, Mogens Bjerg

    2002-01-01

    Five types of anodes for solid oxide fuel cells (SOFC) are examined on an yttria-stabilised zirconia (YSZ) electrolyte by impedance spectroscopy at 850 degreesC in hydrogen. The examined porous anodes are a Ni/Zr(0.92)Y(0.16)O(2.08) (Ni/YSZ) cermet, a Ni/Ce(0.9)Gd(0.1)O(1.95) (Ni/CGI) cermet, a Ce......(0.6)Gd(0.4)O(1.8) (CG4) ceramic, a La(0.75)Sr(0.25)Cr(0.97)V(0.03)O(3) (LSCV) ceramic and a Ti(0.22) Y(0.16)Zr(0.92)O(2.52) (TiYSZ) ceramic, Addition of small amounts ( approximate to I w/o) of Ni to the electrode surface is found to improve electrode performance on mixed electronic and ionic...

  8. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Garcia-Murillo, A.; Torres-Huerta, A.M.; Carrillo-Romo, F.J.; Onofre-Bustamante, E.; Yanez-Zamora, C.

    2009-01-01

    Sol-gel yttria-stabilized zirconia (YSZ) thin films were prepared on commercial carbon steel sheets by dip-coating technique followed by a low temperature heat treatment (473, 573, and 673 K for 1 h) in order to improve both corrosion properties and adhesion. For comparison, zirconia (ZrO 2 ) coatings have been also analyzed. Electrochemical techniques, Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the anticorrosion behavior of the coatings in a 3.5 wt% NaCl solution. The adhesion with a polyester organic coating was evaluated by the pull-off technique. The typical thickness of the deposited layers ranged from 1 to 1.3 μm depending on process parameters. The obtained results indicated that sol-gel ZrO 2 and YSZ coatings without an organic coating can act as protective barriers against wet corrosion during the first hours, but they fail when the time exposure is longer than 1 day. However, when synthesized films were used as a pre-treatment and an organic coating was added (top-coated), the anticorrosive and adhesion properties were strongly affected by the temperature of the treatment, and an increase in both properties was observed at higher temperatures. The structural and morphological characteristics of the coating provide an explanation of the role of each film in the electrochemical behavior in this aggressive medium. Comparing both systems, YSZ displayed greater protective and adhesion values than exhibited for ZrO 2 which can be correlated with the stabilization of the cubic phase

  9. All-chemical YBa2Cu3O7 coated conductors on IBAD-YSZ stainless steel substrates

    International Nuclear Information System (INIS)

    Pomar, A; Cavallaro, A; Coll, M; Gazquez, J; Palau, A; Sandiumenge, F; Puig, T; Obradors, X; Freyhardt, H C

    2006-01-01

    We report on the fabrication of all-chemical YBa 2 Cu 3 O 7 coated conductors on IBAD-YSZ (IBAD stands for ion beam assisted deposition; YSZ is yttrium stabilized zirconia) stainless steel substrates. YBCO films were grown by the trifluoroacetates route on top of CeO 2 buffer layers made by metal-organic decomposition. The achievement of atomically flat CeO 2 surfaces is found to be a key factor for obtaining clean interfaces with YBCO and high performance. Coated conductors with percolative critical currents of J c GB (65 K) = 1.8 MA cm -2 were achieved. The determination of the intra-grain critical current J c G from inductive measurements suggests that the limiting factor for J c GB is the YBCO in-plane texture, which is already of higher quality than that of the IBAD-YSZ cap layer. (rapid communication)

  10. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  11. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  12. Performance of a solid oxide fuel cell with cathode containing a functional layer of LSM/YSZ film; Desempenho de uma celula a combustivel de oxido solido com catodo contendo uma camada funcional de filme LSM/YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Filipe Oliveira; Domingues, Rosana Z.; Brant, Marcia C.; Silva, Charles L.; Matencio, Tulio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica]. E-mail: filipequiufmg@ufmg.br

    2008-07-01

    Performance of a SOFC may be evaluated by using the AC-Impedance and measuring power (P V x I). The objective of this study was to compare the performance of a fuel cell with LSM as a cathode and another one containing an additional functional composite film LSM/YSZ between the LSM and YSZ. Also it was studied variation in second cell resistance and power according to the temperature, hydrogen flux and operation time. For both cells platinum was used as anode. At 800 deg C was observed, in open current circuit, when the composite layer was introduced a decrease in resistance and high power. These results show an improvement of SOFC cathode performance with the introduction of composite LSM/YSZ layer. The maximum performance of the cell was achieved with 100 mL/min hydrogen flow at 800 deg C. The experiments also showed a performance improvement at 850 deg C. The cell behavior was stable during 318 hours of test. (author)

  13. Modifications of interface chemistry of LSM–YSZ composite by ceria nanoparticles

    DEFF Research Database (Denmark)

    Knöfel, Christina; Wang, Hsiang-Jen; Thydén, Karl Tor Sune

    2011-01-01

    crystal structure. Low concentrations of lanthanum and manganese originating from LSM were detected within SDC particles. It was also observed that the relative atomic concentration of strontium increased on the LSM–YSZ surface with increasing amount of SDC nanoparticles. These findings are related...

  14. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  15. Increased cathode performance using a thin film LSM layer on a structured 8YSZ electrolyte surface

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, D.; Weber, A.; Ivers-Tiffee, E. [Karlsruhe Univ. (T.H.) (DE). Inst. fuer Werkstoffkunde der Elektrotechnik (IWE); Guntow, U.; Mueller, G. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany)

    2000-07-01

    A considerable part of the power losses in a SOFC single cell occurs due to the polarization resistance of the cathode/electrolyte interface. The resulting high cathodic overvoltage corresponds to an enhanced degradation of the cell. In case of a screen printed LSM cathode layer (LSM: La{sub 1-x}Sr{sub x}MnO{sub 3}) on a YSZ electrolyte substrate (YSZ: Y{sub 2}O{sub 3} stabilised ZrO{sub 2}) the cathodic reaction is generally assumed to be restricted to the three phase boundary (tpb) between cathode, oxidant and the electrolyte surface. The electrochemical active area was increased by a modification of the cathode/electrolyte interface. Single cells with a thin film LSM layer on a structured 8YSZ electrolyte showed a power output of about 0.95 W/cm{sup 2} at 0.7 V cell voltage (950 C; oxidant: air, 0.7 1/min; fuel: hydrogen, 0.5 1/min, 15% fuel utilization). (orig.)

  16. Preparation and Characterization of Pu0.5Am0.5O2-x-MgO Ceramic/Ceramic Composites

    International Nuclear Information System (INIS)

    Jankowiak, A.; Jorion, F.; Donnet, L.; Maillard, C.

    2008-01-01

    This study describes the preparation and characterization of Pu 0.5 Am 0.5 O 2-x -MgO ceramic/ceramic (cercer) composites with 20 and 30 vol% of Pu 0.5 Am 0.5 O 2-x . The sintered materials demonstrated very different reduction behavior when exposed to a reducing sintering cycle. The composites were studied by combined X-ray diffraction (XRD) and oxygen-to-metal ratio measurements and exhibited various amounts of body-centered-cubic (bcc) and face-centered-cubic (fcc) phases corresponding to different reduction states of the mixed actinide oxide. The fcc phases correspond to a near stoichiometry phase while the bcc phases are attributed to most reduced phases, which demonstrate a greater similarity with the Am 2 O 3 bcc phase. The XRD results suggest a reduction of Am prior to Pu, which explains this greater similarity. In addition, the 30 vol% composite contains 65 wt% of the bcc phase while the 20 vol% composite exhibits only 29 wt%. This result can be explained by the percolation theory when applied to the oxygen diffusivity and indicates that a threshold value for Pu 0.5 Am 0.5 O 2-x content in the cercer composite exists where the reduction of the mixed oxide significantly increases. (authors)

  17. Aqueous metal–organic solutions for YSZ thin film inkjet deposition

    DEFF Research Database (Denmark)

    Gadea, Christophe; Hanniet, Q.; Lesch, A.

    2017-01-01

    Inkjet printing of 8% Y2O3-stabilized ZrO2 (YSZ) thin films is achieved by designing a novel water-based reactive ink for Drop-on-Demand (DoD) inkjet printing. The ink formulation is based on a novel chemical strategy that consists of a combination of metal oxide precursors (zirconium alkoxide...

  18. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  19. Theoretical investigations of the bulk modulus in the tetra-cubic transition of PbTiO3 material

    Directory of Open Access Journals (Sweden)

    Renan A. P. Ribeiro

    2014-01-01

    Full Text Available Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

  20. Processing microstructure property correlation of porous Ni-YSZ cermets anode for SOFC application

    International Nuclear Information System (INIS)

    Pratihar, Swadesh K.; Dassharma, A.; Maiti, H.S.

    2005-01-01

    The present paper investigates microstructural properties and electrical conductivity of cermets prepared by a solid-state technique, a liquid-dispersion technique and a novel electroless coating technique. The Ni-YSZ processed through different techniques shows varying temperature-conductivity behaviour. The cermets synthesised by electroless coating were found to be electronically conducting with 20 vol% nickel, which is substantially lower than that normally reported. The conductivity of Ni-YSZ cermets was found highest for the samples prepared by an electroless coating technique and lowest for the samples prepared by a solid-state technique, the samples prepared from liquid-dispersion show an intermediate value for a constant nickel content. The variation in electrical conductivity has been well explained from the microstructure of the samples

  1. Self-assembled nanostructures in oxide ceramics

    Science.gov (United States)

    Ansari, Haris Masood

    Self-assembled nanoislands in the gadolinia-doped ceria (GDC)/ yttria-stabilized zirconia (YSZ) system have recently been discovered. This dissertation is an attempt to study the mechanism by which these nanoislands form. Nanoislands in the GDC/YSZ system form via a strain based mechanism whereby the stress accumulated in the GDC-doped surface layer on the YSZ substrate is relieved by creation of self-assembled nanoislands by a mechanism similar to the ATG instability. Unlike what was previously believed, a modified surface layer is not required prior to annealing, that is, this modification can occur during annealing by surface diffusion of dopants from the GDC sources (distributed on the YSZ surface in either lithographically defined patch or powder form) with simultaneous breakup, which occurs at the hold temperature independent of the subsequent cooling. Additionally, we have developed a simple powder based process of producing nanoislands which bypasses lithography and thin film deposition setups. The versatility of the process is apparent in the fact that it allows us to study the effect of experimental parameters such as soak time, temperature, cooling rate and the effect of powder composition on nanoisland properties in a facile way. With the help of this process, we have shown that nanoislands are not peculiar to Gd containing oxide source materials on YSZ substrates and can also be produced with other source materials such as La2O3, Nd2O3, Sm 2O3, Eu2O3, Tb2O3 and even Y2O3, which is already present in the substrate and hence simplifies the system further. We have extended our work to include YSZ substrates of the (110) surface orientation and have found that instead of nanoisland arrays, we obtain an array of parallel nanobars which have their long axes oriented along the [1-10] direction on the YSZ-(110) surface. STEM EDS performed on both the bars and the nanoislands has revealed that they are solid YSZ-rich solid solutions with the dopant species and

  2. Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Shen, Y.-H.; Hung, I-M.; Wen, S.-B.; Lee, H.-E.; Wang, M.-C.

    2009-01-01

    The effect of Y 2 O 3 (8 mol% ≤ Y 2 O 3 ≤ 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 ± 0.68, 4.22 ± 0.51, and 5.24 ± 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth

  3. Microstructural and electrical characterization of Nb-doped SrTiO3YSZ composites for solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Reddy Sudireddy, Bhaskar; Blennow Tullmar, Peter; Nielsen, Karsten Agersted

    2012-01-01

    phases. However, microstructural analysis revealed segregation and formation of Nb enriched particles in the 50 vol.% 8YSZ composite. Chemical analysis by energy dispersive spectroscopy (EDS) also showed the inter-diffusion of elements (especially Ti from STN and Zr from 8YSZ) from both phases on small...

  4. Relation Between Ni Particle Shape Change and Ni Migration in Ni–YSZ Electrodes – a Hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2017-01-01

    This paper deals with degradation mechanisms of Ni–YSZ electrodes for solid oxide cells, mainly solid oxide electrolysis cells (SOECs), but also to some extent solid oxide fuel cells (SOFCs). Analysis of literature data reveals that several apparently different and even in one case apparently...... contradicting degradation phenomena are a consequence of interplay between loss of contact between the Ni–YSZ (and Ni–Ni particles) in the active fine-structured composite fuel electrode layer and migration of Ni via weakly oxidized Ni hydroxide species. A hypothesis that unravels the apparent contradiction...

  5. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  6. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    Science.gov (United States)

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  8. Preparation of SmBiO{sub 3} buffer layer on YSZ substrate by an improved chemical solution deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolei [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Pu, Minghua, E-mail: mhpu@home.swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Superconductivity and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, NSW 2052 (Australia)

    2016-12-15

    Highlights: • The proper conditions for SBO growth are 794 °C for 60 min in flowing Ar gas, the temperature of epitaxial growth is relatively low. • The total time by SSD technique for organic solvent removing, salts decomposition and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. • SBO layer on YSZ prepared by SSD technique are suitable for the growth of YBCO, The results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes. - Abstract: A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO{sub 3} (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm{sup 2}. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  9. Cubical local partial orders on cubically subdivided spaces - existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  10. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  11. Relation Between Ni Particle Shape Change and Ni Migration in Ni–YSZ Electrodes – a Hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2017-01-01

    This paper deals with degradation mechanisms of Ni–YSZ electrodes for solid oxide cells, mainly solid oxide electrolysis cells (SOECs), but also to some extent solid oxide fuel cells (SOFCs). Analysis of literature data reveals that several apparently different and even in one case apparently con...... and explains qualitatively the phenomena is presented, and as a side effect, light has been shed on a degradation phenomenon in solid oxide fuel cells (SOFCs) that has been observed during a decade.......This paper deals with degradation mechanisms of Ni–YSZ electrodes for solid oxide cells, mainly solid oxide electrolysis cells (SOECs), but also to some extent solid oxide fuel cells (SOFCs). Analysis of literature data reveals that several apparently different and even in one case apparently...... contradicting degradation phenomena are a consequence of interplay between loss of contact between the Ni–YSZ (and Ni–Ni particles) in the active fine-structured composite fuel electrode layer and migration of Ni via weakly oxidized Ni hydroxide species. A hypothesis that unravels the apparent contradiction...

  12. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  13. Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Hagen, Anke; Barfod, Rasmus

    2009-01-01

    The changes in the cathode/electrolyte interface microstructure have been studied on anode-supported technological solid oxide fuel cells (SOFCs) that were subjected to long-term (1500 h) testing at 750 °C under high electrical loading (a current density of 0.75 A/cm2). These cells exhibit...... different cathode degradation rates depending on, among others, the composition of the cathode gas, being significantly smaller in oxygen than in air. FE-SEM and high resolution analytical TEM were applied for characterization of the interface on a submicron- and nano-scale. The interface degradation has...... to decrease further due to the more pronounced formation of insulating zirconate phases that are present locally and preferably in LSM/YSZ electrolyte contact areas. The effects of the cathode gas on the interface degradation are discussed considering the change of oxygen activity at the interface, possible...

  14. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment

    International Nuclear Information System (INIS)

    Parikh, K.S.; Rao, S.S.; Ansari, H.M.; Zimmerman, L.B.; Lee, L.J.; Akbar, S.A.; Winter, J.O.

    2012-01-01

    Surfaces with ordered, nanopatterned roughness have demonstrated considerable promise in directing cell morphology, migration, proliferation, and gene expression. However, further investigation of these phenomena has been limited by the lack of simple, inexpensive methods of nanofabrication. Here, we report a facile, low-cost nanofabrication approach based on self-assembly of a thin-film of gadolinium-doped ceria on yttria-stabilized zirconia substrates (GDC/YSZ). This approach yields three distinct, randomly-oriented nanofeatures of variable dimensions, similar to those produced via polymer demixing, which can be reproducibly fabricated over tens to hundreds of microns. As a proof-of-concept, we examined the response of SK-N-SH neuroblastoma cells to features produced by this system, and observed significant changes in cell spreading, circularity, and cytoskeletal protein distribution. Additionally, we show that these features can be imprinted into commonly used rigid hydrogel biomaterials, demonstrating the potential broad applicability of this approach. Thus, GDC/YSZ substrates offer an efficient, economical alternative to lithographic methods for investigating cell response to randomly-oriented nanotopographical features. - Highlights: ► Self-assembled ceramic thin films yield nanopatterned surfaces that span mm 2 areas. ► Cells respond to these nanopatterns by varying adhesion and spreading behaviors. ► Adhesion and spreading were correlated to increased feature area. ► These patterns can be transferred into soft polymer substrates.

  15. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, K.S., E-mail: parikh.71@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Rao, S.S., E-mail: rao@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Ansari, H.M., E-mail: ansari@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Zimmerman, L.B., E-mail: burr.zimmerman@gmail.com [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Lee, L.J., E-mail: leelj@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Akbar, S.A., E-mail: Akbar@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Winter, J.O., E-mail: winter.63@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Department of Biomedical Engineering, 1080 Carmack Road, The Ohio State University, Columbus, OH-43210 (United States)

    2012-12-01

    Surfaces with ordered, nanopatterned roughness have demonstrated considerable promise in directing cell morphology, migration, proliferation, and gene expression. However, further investigation of these phenomena has been limited by the lack of simple, inexpensive methods of nanofabrication. Here, we report a facile, low-cost nanofabrication approach based on self-assembly of a thin-film of gadolinium-doped ceria on yttria-stabilized zirconia substrates (GDC/YSZ). This approach yields three distinct, randomly-oriented nanofeatures of variable dimensions, similar to those produced via polymer demixing, which can be reproducibly fabricated over tens to hundreds of microns. As a proof-of-concept, we examined the response of SK-N-SH neuroblastoma cells to features produced by this system, and observed significant changes in cell spreading, circularity, and cytoskeletal protein distribution. Additionally, we show that these features can be imprinted into commonly used rigid hydrogel biomaterials, demonstrating the potential broad applicability of this approach. Thus, GDC/YSZ substrates offer an efficient, economical alternative to lithographic methods for investigating cell response to randomly-oriented nanotopographical features. - Highlights: Black-Right-Pointing-Pointer Self-assembled ceramic thin films yield nanopatterned surfaces that span mm{sup 2} areas. Black-Right-Pointing-Pointer Cells respond to these nanopatterns by varying adhesion and spreading behaviors. Black-Right-Pointing-Pointer Adhesion and spreading were correlated to increased feature area. Black-Right-Pointing-Pointer These patterns can be transferred into soft polymer substrates.

  16. Prediction of overpotential and effective thickness of Ni/YSZ anode for solid oxide fuel cell by improved species territory adsorption model

    Science.gov (United States)

    Nagasawa, Tsuyoshi; Hanamura, Katsunori

    2017-06-01

    The reliability of analytical model for hydrogen oxidation at Ni/YSZ anode in solid oxide fuel cell named as species territory adsorption model has been improved by introducing referenced thermodynamic and kinetic parameters predicted by density function theory calculations. The model can explicitly predict anode overpotential using unknown values of quantities of state for oxygen migration process in YSZ near a triple phase boundary (TPB), frequency factor for hydrogen oxidation, and effective anode thickness. The former two are determined through careful fitting process between the predicted and experimental results of Ni/YSZ cermet and Ni-patterned anodes. This makes it possible to estimate effective anode thickness, which tends to increase with temperature in six kinds of Ni/YSZ anodes in references. In addition, the comparison between the proposed model and a published numerical simulation indicates that the model can predict more precise dependence of anode overpotential on steam partial pressure than that by Butler-Volmer equation with empirical exchange current density. The introduction of present model into numerical simulation instead of Butler-Volmer equation can give more accurate prediction of anode polarization.

  17. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Hernández, Z.E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Torres-Huerta, A.M.; Onofre-Bustamante, E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Andraca Adame, J. [Instituto Politécnico Nacional, Centro de Nanociencias Micro y Nanotecnologías, Departamento de DRX, C. P. 07300, Mexico, DF, México (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C. P. 07300 Mexico, DF, México (Mexico)

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  18. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    International Nuclear Information System (INIS)

    Sánchez-Hernández, Z.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Onofre-Bustamante, E.; Andraca Adame, J.; Dorantes-Rosales, H.

    2014-01-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO 2 + 8% Y 2 O 3 ) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure

  19. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  20. Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} cubic perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Lin, Bin; Wang, Songlin; Fang, Daru; Dong, Yingchao; Peng, Ranran; Liu, Xingqiu; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Jiang, Yinzhu; Tao, Shanwen [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2008-12-01

    The SrCo{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} (SCS) composite oxide with cubic perovskite structure was synthesized by a modified Pechini method and examined as a novel cathode for protonic ceramic membrane fuel cells (PCMFCs). At 700 C and under open-circuit condition, symmetrical SCS cathode on BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte showed low polarization resistances (R{sub p}) of 0.22 {omega}cm{sup 2} in air. A laboratory-sized tri-layer cell of NiO-BZCY7/BZCY7/SCS was operated from 500 to 700 C with humidified hydrogen ({proportional_to}3% H{sub 2}O) as fuel and the static air as oxidant. A high open-circuit potential of 1.004 V, a maximum power density of 259 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.14 {omega}cm{sup 2} was achieved at 700 C. (author)

  1. Effect of Y{sub 2}O{sub 3} addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W.; Shen, Y.-H. [Department of Resources Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Yuan Ze Fuel Cell Center, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China)], E-mail: imhung@saturn.yzu.edu.tw; Wen, S.-B. [General Education Center, Meiho Institute of Technology, 23 Pingguang Road, Neipu, Pingtung 91202, Taiwan (China); Lee, H.-E. [Faculty of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2009-03-20

    The effect of Y{sub 2}O{sub 3} (8 mol% {<=} Y{sub 2}O{sub 3} {<=} 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 {+-} 0.68, 4.22 {+-} 0.51, and 5.24 {+-} 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth.

  2. Investigation of a zirconia co-fired ceramic calorimetric microsensor for high-temperature flow measurements

    International Nuclear Information System (INIS)

    Lekholm, Ville; Persson, Anders; Klintberg, Lena; Thornell, Greger

    2015-01-01

    This paper describes the design, fabrication and characterization of a flow sensor for high-temperature, or otherwise aggressive, environments, like, e.g. the propulsion system of a small spacecraft. The sensor was fabricated using 8 mol% yttria stabilized zirconia (YSZ8) high-temperature co-fired ceramic (HTCC) tape and screen printed platinum paste. A calorimetric flow sensor design was used, with five 80 µm wide conductors, separated by 160 µm, in a 0.4 mm wide, 0.1 mm deep and 12.5 mm long flow channel. The central conductor was used as a heater for the sensor, and the two adjacent conductors were used to resistively measure the heat transferred from the heater by forced convection. The two outermost conductors were used to study the influence of an auxiliary heat source on the sensor. The resistances of the sensor conductors were measured using four-point connections, as the gas flow rate was slowly increased from 0 to 40 sccm, with different power supplied through the central heater, as well as with an upstream or downstream heater powered. In this study, the thermal and electrical integrability of microcomponents on the YSZ8 substrate was of particular interest and, hence, the influence of thermal and ionic conduction in the substrate was studied in detail. The effect of the ion conductivity of YSZ8 was studied by measuring the resistance of a platinum conductor and the resistance between two adjacent conductors on YSZ8, in a furnace at temperatures from 20 to 930 °C and by measuring the resistance with increasing current through a conductor. With this design, the influence of ion conductivity through the substrate became apparent above 700 °C. The sensitivity of the sensor was up to 1 mΩ sccm −1 in a range of 0–10 sccm. The results show that the signal from the sensor is influenced by the integrated auxiliary heating conductors and that these auxiliary heaters provide a way to balance disturbing heat sources, e.g. thrusters or other

  3. Zirconia stabilized by Y and Mn: A microstructural characterization

    DEFF Research Database (Denmark)

    Appel, Charlotte Clausen

    1995-01-01

    Cubic stabilized ZrO(2) with 8 mol% Y(2)O(3) (YSZ) is commonly used as an electrolyte in solid oxide fuel cells (SOFC). One of the most promising cathode materials is La, Sr-manganite (LSM). During manufacture and operation of the SOFC, Mn diffuses from the LSM into YSZ. The structural changes ca...

  4. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  5. Three-phase-boundary dynamics at the Ni/ScYSZ interface

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Hansen, Karin Vels; Norrman, Kion

    2009-01-01

    Chronoamperometry using a three-electrode cell configuration was undertaken with a nickel point-electrode acting as the working electrode on a polished ScYSZ electrolyte in a hydrogen atmosphere at 750–850 °C. High anodic overpotentials resulted in the occurrence of distinct sawtooth oscillation...... of the current oscillations. A mechanism accounting for the observed phenomena and possible implications for solid oxide fuel cell operation are presented...

  6. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.

    Science.gov (United States)

    Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin

    2011-11-11

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  7. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  8. Phenomenological Treatment of the Inductive Hysteresis in the Cathode Reaction on YSZ Electrolytes

    DEFF Research Database (Denmark)

    Bay, Lasse; Zachau-Christiansen, Birgit; Jacobsen, Torben

    1999-01-01

    The cathode reaction on YSZ electrolytes shows inductive hysteresis behavior with an activation/deactivation process of the cell. This is described by a phenomenological model, where the rate of activation is proportional to the current density and the rate of deactivation is proportional...

  9. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  10. Dielectric properties of Ga2O3-doped barium iron niobate ceramics

    International Nuclear Information System (INIS)

    Sanjoom, Kachaporn; Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee; Rujijanagul, Gobwute

    2014-01-01

    Ga-doped BaFe 0.5 Nb 0.5 O 3 (Ba(Fe 1-x Ga x ) 0.5 Nb 0.5 O 3 ) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε r > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε r > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Electrical characteristics of high density, high purity titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lupfer, D A [Electronics Laboratory, General Electric Company, Syracuse, NY (United States)

    1958-07-01

    This report is concerned with the electrical behaviour of cubic (Ba,Sr)TiO{sub 3} ceramics at very high values of the electric field. The work was undertaken to develop a dielectric system to be used in capacitors for the storage and discharge of electrical energy. Objectives for the finished system were to store large amounts of energy per unit volume, to release at least 75% of the energy in 0.2 x 10{sup -6} seconds, and to operate over a limited temperature range above 20 deg. C. The work is incomplete, but the results to date show that (Ba,Sr) TiO{sub 3} ceramics can store more electrical energy per unit volume than any other known dielectric system.

  12. Composite Sr- and V-doped LaCrO3/YSZ sensor electrode operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing electroch....... The relatively low response time at 700º C at an oxygen partial pressure of around 5x10-6 bar and an inlet gas flow rate of 8 L h-1 makes the LSCV/YSZ electrode suitable for use as an potentiometric oxygen sensor electrodes.......A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing...... and 400 nm. At oxygen partial pressures around 0.2 bar at 700º C, the oxygen reaction is dominated by solid-state diffusion of oxide ions and surface reaction kinetics. At oxygen partial pressures around 10-5 bar above 800º C, gas phase mass transport processes dominate the impedance spectra...

  13. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... sintering temperature needed to obtain a fully dense ceramic body, which can result in undesired reactions with YSZ. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. Such a low temperature synthesis provides control over particle size and sinterability...

  14. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  15. Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes

    DEFF Research Database (Denmark)

    Juhl Jørgensen, M.; Primdahl, S.; Bagger, C.

    2001-01-01

    the sintering temperature to 1050 degreesC the increase in the polarisation resistance was counterbalanced by a decrease in the series resistance, The optimum sintering temperature with respect to the initial performance is assumed to be where good physical and electrical contact between LSM and YSZ is obtained...

  16. Preparation and study of the critical-mass-free plutonium ceramics with neutron poisons Hf, Gd and Li

    International Nuclear Information System (INIS)

    Timoefeeva, L.F.; Orlov, V.K.; Malyukov, E.E.; Molomin, V.I.; Zhmak, V.A.; Semova, E.A.; Shishkov, N.V.; Nadykto, B.A.

    2002-01-01

    Powder sintering was used to produce homogeneous type oxide ceramics of Pu with Hf, Gd and Li 6 . In all the ceramics, there is the number of neutron poison (Hf, Gd and Li) atoms per plutonium atom needed, according to the physical calculation, for them to be free of critical mass. PuO 2 stabilizers high-temperature modifications of cubic HfO 2 or hexagonal Gd 2 O 3 , however, at the ratio given by the physical calculation, the plutonium is insufficient for their full stabilization. Addition of yttrium oxide as an additive stabilizing the fcc phase of HfO 2 resulted in cubic solid solution (Pu, Hf, Y)O 2-x . Pu/Li/Hf and Pu/Li/Si ceramics produced by sintering of PuO 2 and compound Li 2 HfO 3 or 6 Li 4 SiO 4 powders is characterized with presence of two phases. The method of differential thermal analysis demonstrated the phase stability of (Pu-Hf, Pu-Gd, Pu-Li-Hf) oxide ceramics in the 20-1500degC temperature range. Ceramic (Pu/Li/Si) has several endothermal effects. Tests in boiling water solutions of various composition suggest that the specimens of Pu, Hf oxides and ternary oxides (Pu, Hf, Y)O 2 are less stable in weakly acidic media than in weakly alkaline medium and distilled water. The obtained results were used as a basis to estimate the assumed solid solution region boundaries for binary Hf, Pu and ternary Hf, Pu, Y oxides on the side of HfO 2 . (author)

  17. Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels

    2015-01-01

    The reduction of a metal oxide is often a critical preparation step for activating catalytic behaviour. This study addresses the reduction process of NiO in pure form and in a composite of NiO/yttria-stabilized zirconia (YSZ) in hydrogen relevant for solid oxide electrochemical cells by comparing...... results from environmental transmission electron microscopy (ETEM) with thermogravimetric analysis (TGA). The temperature dependent reduction profiles obtained from TGA confirm an inhibitive effect from YSZ on the NiO reduction. The ETEM images show the growth of Ni in decaying NiO and reveal...... the nanoscale morphological changes such as pore formation in NiO above 280°C and densification and collapse of the pore structures above 400°C. The accelerated Ni front in NiO illustrates the auto catalysis of the reaction. A rapid temperature ramping from room temperature to 780°C in hydrogen in 1 second...

  18. Methane steam reforming kinetics over Ni-YSZ anodematerials for Solid Oxide FuelCells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  19. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    Science.gov (United States)

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  20. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  1. Phase evolution and aqueous durability of Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} ceramics designed to immobilize actinides with multi-valences

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi, E-mail: dingyi2279@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China); Long, Xinggui, E-mail: xingguil@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhang, Dong, E-mail: zd0823@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Tan, Zhaoyi [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Lu, Xirui [Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-04-15

    Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} ceramics, which were designed as waste form materials, were obtained by simultaneous substitution of Ce{sup 4+} and Nd{sup 3+} for Zr{sup 4+} in ZrO{sub 2}. The influences of the simultaneous substitution of Ce and Nd on phase transformation of ZrO{sub 2} were investigated systematically. Also, the aqueous durability of the ceramics was evaluated. The results show that the phase transformation caused by the simultaneous substitution mainly relates to the total content of Ce and Nd. The ZrO{sub 2} ceramics containing Ce + Nd < 30 mol% exhibit both monoclinic and cubic phases, while the ceramics containing Ce + Nd ≥ 30 mol% are cubic phase. And the cubic phase can be stabilized by incorporating 30 mol% Ce + Nd. Moreover, LR{sub i} are modified by the incorporation of Ce and Nd, because of the presence of oxygen vacancies. The Nd and Ce co-doped zirconia waste form exhibit excellent aqueous durability (∼10{sup −5} g m{sup −2} d{sup −1}). - Highlights: •Zr{sub 1−x−y}Ce{sub x}Nd{sub y}O{sub 2−y/2} were obtained by substitution of Ce and Nd for Zr in ZrO{sub 2}. •Phase transformation mainly relates to the total content of Ce and Nd. •Samples with Ce + Nd < 30 mol% show monoclinic and cubic phases, while ≥30 mol% are cubic. •Stabilized cubic zirconia can be obtained by doping with 30 mol% Ce and Nd. •LR{sub Ce} and LR{sub Nd} (42 d) are ∼ 10{sup −5} g m{sup −2} d{sup −1}, exhibiting excellent aqueous durability.

  2. Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method

    Science.gov (United States)

    Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.

    The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.

  3. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Dielectric behaviour of (Ba,Sr)TiO3 perovskite borosilicate glass ceramics

    International Nuclear Information System (INIS)

    Yadav, Avadhesh Kumar; Gautam, C.R.

    2013-01-01

    Various perovskite (Ba,Sr)TiO 3 borosilicate glasses were prepared by rapid melt-quench technique in the glass system ((Ba 1-x Sr x ).TiO 3 )-(2SiO 2 .B 2 O 3 )-(K 2 O)-(La 2 O 3 ). On the basis of differential thermal analysis results, glasses were converted into glass ceramic samples by regulated heat treatment schedules. The dielectric behaviour of crystallized barium strontium titanate borosilicate glass ceramic samples shows diffuse phase transition. The study depicts the dielectric behaviour of glass ceramic sample BST5K1L0.2S814. The double relaxation was observed in glass ceramic samples corresponding 80/20% Ba/Sr due to change in crystal structure from orthorhombic to tetragonal and tetragonal to cubic with variation of temperature. The highest value of dielectric constant was found to be 48289 for the glass ceramic sample BST5K1L0.2S814. The high value of dielectric constant attributed to space charge polarization between the glassy phase and perovskite phase. Due to very high value of dielectric constant, such glass ceramics are used for high energy storage devices. La 2 O 3 acts as nucleating agent for crystallization of glass to glass ceramics and enhances the dielectric constant and retarded dielectric loss. Such glass ceramics can be used in high energy storage devices such as barrier layer capacitors, multilayer capacitors etc. (author)

  5. Synthesis of Ni-YSZ cermet for an electrode of high temperature electrolysis by high energy ball milling

    International Nuclear Information System (INIS)

    Hong, H.S.; Chae, U.S.; Park, K.M.; Choo, S.T.

    2005-01-01

    Ni/YSZ composites for a cathode that can be used in high temperature electrolysis were prepared by ball milling of Ni and YSZ powder. Ball milling was performed in a dry process and in ethanol. The microstructure and electrical conductivity of the composites were examined by XRD, SEM, TEM and a 4-point probe. XRD patterns for both the dry and wet ball-milled powders showed that the composites were composed of crystalline Ni and YSZ particles. The patterns did not change with increases in the milling time up to 48 h. Dry-milling slightly increased the average particle size compared to starting Ni particles, but little change in the particle size was observed with the increase in milling time. On the other hand, the wet-milling reduced the average size and the increasing milling time induced a further decrease in the particle size. After cold-pressing and annealing at 900 C for 2 h, the dry-milled powder exhibited high stability against Ni sintering so that the particle size changed little, but the particle size increased in the wet-milled powder. The electrical conductivity increased after sintering at 900 C. Particles from the dry and wet process became denser and contacted closer after sintering, providing better electron migration paths. (orig.)

  6. Effects of annealing on the microstructure of yttria-stabilised zirconia thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Mengucci, P.; Barucca, G.; Caricato, A.P.; Di Cristoforo, A.; Leggieri, G.; Luches, A.; Majnia, G.

    2005-01-01

    In this paper the microstructural characterisation of yttria-stabilised zirconia (YSZ) thin films deposited by laser ablation is reported for the as-deposited sample as well as for samples submitted to thermal treatments in different atmospheres (vacuum, N 2 and O 2 ) at a moderate temperature (500 deg. C). Results obtained by different characterisation techniques such as grazing incidence X-ray diffraction, X-ray reflectivity and transmission electron microscopy evidenced the formation of the cubic YSZ phase after the annealing treatments. On the contrary, the as-deposited sample is amorphous with nanocrystals of the cubic YSZ phase dispersed inside. It also exhibits a difference between the density of the surface region and the region of the interface with the substrate. This latter effect has been attributed to the loss of oxygen atoms during the deposition. The annealing treatments are able to recover the density unhomogeneity present inside the as-deposited sample, the degree of recovering depends on the ambient atmosphere

  7. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  8. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Fang; Qin, Xianpeng; Ai, Jianping; Wang, Shiwei

    2016-01-01

    La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm 3 ) and effective atomic number, some of the La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La 2-x Gd x Hf 2 O 7 transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  9. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2007-01-01

    Nickel (Ni)—yttria-stabilized zirconia (YSZ) cermets are a prevalent material used for solid oxide fuel cells. The cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. Direct current conductivity measurements...

  10. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts

    Directory of Open Access Journals (Sweden)

    Yixiong Wang

    2017-08-01

    Full Text Available Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (2GdYSZ topcoat using air plasma spraying (APS. Hot corrosion behavior of the as-sprayed thermal barrier coatings (TBCs were investigated in the presence of 50 wt% Na2SO4 + 50 wt% V2O5 as the corrosive molten salt at 900 °C for 100 h. The analysis results indicate that Gd doped YVO4 and m-ZrO2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers (Y2O3, Gd2O3 of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.

  11. Characterization of the Materials Synthesized by High Pressure-High Temperature Treatment of a Polymer Derived t-BC2N Ceramic

    OpenAIRE

    Matizamhuka, Wallace R.; Sigalas, Iakovos; Herrmann, Mathias; Dubronvinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Mera, Gabriela; Riedel, Ralf

    2011-01-01

    Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C) in a multianvil apparatus from a polymer derived t-BC1.97N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond...

  12. Phase composition of murataite ceramics for excess weapons plutonium immobilization

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Stefanovsky, S.V.; Myasoedov, B.F.; Kullako, Y.M.; Yudintsev, S.V.

    2000-01-01

    Among the host phases for actinides immobilization, murataite (cubic, space group Fm3m) with the general formula A 4 B 2 C 7 O 22-x (A=Ca, Mn, Na, Ln, An; B=Mn, Ti, Zr, An IV ; C=Ti, Al, Fe; 0< x<1.5) is a promising matrix due to high isomorphic capacity and low leaching of actinides. One feature of murataite actinide zoning is an order-of-magnitude difference in concentration between the core and the rim. [1,2] Investigation of murataite ceramics in detail has shown occurrence of several murataite varieties with three-, five-, and eight-fold fluorite unit cells. [1-3] The goal of the present step of work is to study an effect of waste elements on phase composition of murataite ceramic and isomorphic capacity of waste elements

  13. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  14. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  15. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  16. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ multilayers: on the influence of strain

    Directory of Open Access Journals (Sweden)

    Halit Aydin, Carsten Korte and Jürgen Janek

    2013-01-01

    Full Text Available The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP, using secondary ion mass spec­trometry (SIMS. The multilayer samples were prepared by pulsed laser deposition (PLD on (0001 Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  17. Single-step Preparation of Nano-homogeneous NiO/YSZ Comp osite Ano de for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Song; Mi Young Park; Hye Won Park; Hyung-Tae Lim

    2013-01-01

    Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano-and highly dispersed NiO/YSZ (yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and NiO to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders (max. power density∼0.87 W/cm2) was higher than that of a cell fabricated using conventional powders (max. power density∼0.73 W/cm2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.

  18. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  19. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2006-01-01

    Ni-YSZ cermets are a prevalent material used for solid oxide fuel cells. However, the cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. DC conductivity measurements were performed on cermets and cermets...

  20. Wetting evaluation of silver based braze alloys onto zirconia metalized with reactive elements for application in oil well drill bots; Avaliacao do molhamento de ligas de adicao a base de prata sobre zirconia polida e metalizada com elementos ativos para aplicacao em brocas de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C.; Silva, J.M.; Santos, P.R.F.; Nascimento, R.M.; Martinelli, A.E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais], Email: jocabuzo@gmail.com; Pimenta, J.S. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Drill bits with hard ceramic inserts are often used on drilling operations. The cutting and crushing action of rocks will produce failures in the tricone bits, which are related to wear; total or partial rupture of the drill bit body or even the inserts; thermal shock and corrosion. The research of better drill bits with ceramic inserts thermally more stable and mechanically stronger, will lead to an increase of their lifetime, and so reducing costs of substitution and maintenance. In the present work, some silver based braze alloys were melted onto zirconia YSZ substrates metallized or not with active metals. inside a furnace with vacuum of 10{sup -5} mbar to evaluate the wetting behavior. The system with AgCuTi and the non metallized YSZ ceramic, showed low contact angles and stable interfaces, which may be appropriate for brazing metal/ceramic parts. (author)

  1. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  2. Kinetic Studies on Ni-YSZ Composite Electrodes

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Sudireddy, Bhaskar Reddy; Hjelm, Johan

    2015-01-01

    AC and DC techniques were applied to investigate the electrochemical reaction kinetics of porous composite Ni/8-mol% yttria-stabilized zirconia (Ni/8YSZ) solid oxide cell (SOC) electrodes using a novel pseudo-3-electrode cell geometry. From OCV impedance spectra an activation energy Ea of 1.13 e......V, prefactor yan of 3.7·105·T, hydrogen and steam partial pressure dependencies a and b respectively of -0.07 and 0.22 were determined. DC current density vs. overpotential curves compared with those predicted using the determined kinetic parameters. Apparent Butler-Volmer charge transfer coefficients α were...... branch and the need for different α values for each branch suggests that a simple BV model of the measured electrode kinetics is insufficient and/or different reaction mechanisms might be occurring in anodic vs cathodic polarization....

  3. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  4. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming

    2017-01-01

    operating life and lead to performance degradation. The planar anode-supported Ni-YSZ|YSZ|LSCF SOFC was chosen as the research object, with the cell size of 12cm×12cm and the effective area of 100cm2, and the holder is made of 99% purity of Al2O3 ceramic material, in order to eliminate the influence of Cr...

  5. Preparation, Structure, and Dielectric and Magnetic Properties of SrFe2/3W1/3O3 Ceramics

    Science.gov (United States)

    Pavlenko, A. V.; Turik, A. V.; Shilkina, L. A.; Kubrin, S. P.; Rusalev, Yu. V.; Reznichenko, L. A.; Andryushina, I. N.

    2018-03-01

    Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150-210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.

  6. Sintering temperature and impedance analysis of Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.15}Al{sub 0.03}Fe{sub 0.45}O{sub 4} NTC ceramic prepared by W/O microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo; Zhao, Pengjun; Ma, Renjun [Key Laboratory of Functional Materials and Devices under Special Environments, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-12-25

    Highlights: • The ceramics are mainly in spinel phase and cubic cobalt oxide phase. • A perfect sintering temperature of 1450 °C for the Mn–Co–Ni–Mg–Al–Fe–O was proposed. • The NTC characteristic of the ceramics derive from grain boundary resistance R{sub gb}. - Abstract: The Mn{sub 0.9}Co{sub 1.2}Ni{sub 0.27}Mg{sub 0.5}Al{sub 0.03}Fe{sub 0.45}O{sub 4} negative temperature coefficient (NTC) ceramics derived from nano-particles were sintered at 1380 °C, 1450 °C and 1560 °C, respectively. X-ray diffraction (XRD) result showed that the ceramics sintered at 1380 °C and 1450 °C were mainly in the cubic spinel structure except for a little of tetragonal spinel, and that sintered at 1560 °C was consisted of cubic spinel and cubic cobalt oxide phase. Scanning electron microscopy (SEM) image indicated that the grain size of the ceramic increased sharply when the sintering temperature increased from 1380 °C to 1450 °C, and it changed little when the temperature further increased to 1560 °C, while the porosity was enlarged seriously. Thus a perfect sintering temperature of 1450 °C was proposed. Impedance analysis revealed that the grain resistance R{sub g} showed positive temperature coefficient thermistor characteristic, while the grain boundary resistance R{sub gb} possessed negative temperature coefficient characteristic. Because the grain boundary resistance R{sub gb} was two orders of magnitude larger than the grain resistance R{sub g}, the material thus showed negative temperature coefficient thermistor characteristic.

  7. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    Science.gov (United States)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  8. Characterization of the Materials Synthesized by High Pressure-High Temperature Treatment of a Polymer Derived t-BC₂N Ceramic.

    Science.gov (United States)

    Matizamhuka, Wallace R; Sigalas, Iakovos; Herrmann, Mathias; Dubronvinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Mera, Gabriela; Riedel, Ralf

    2011-11-29

    Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C) in a multianvil apparatus from a polymer derived t-BC 1.97 N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond-like c-BC₂N compound, could not be unambiguously confirmed.

  9. Synthesis and mechanical properties of stabilized zirconia ceramics: MgO-ZrO_2 and Y_2O_3-MgO- ZrO_2

    International Nuclear Information System (INIS)

    Yamagata, C.; Mello-Castanho, S.R.H.; Paschoal, J.O.A.

    2014-01-01

    Precursor MgO-ZrO_2 and Y_2O_3-MgO-ZrO_2 ceramic powders were synthesized by the method of co-precipitation and characterized by techniques such as laser diffraction, QELS (Quasi Elastic Light Scattering), XRD, BET, and SEM. Nanoscale powders with specific surface area higher than 60 m"2. g"-"1 was achieved. Sintered ceramic obtained from the synthesized powders, were characterized to mechanical tests using Vickers indentation technique. The addition of Y_2O_3 promoted an increase in hardness of the ceramics and total cubic crystalline phase stabilization. (author)

  10. Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    Science.gov (United States)

    Miller, Joshua E.; Bohl, W. E.; Foreman, C. D.; Christiansen, Eric L.; Davis, B. A.

    2009-01-01

    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer.

  11. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  12. Processing and characterizations of BNT-KNN ceramics for actuator applications

    Directory of Open Access Journals (Sweden)

    Mallam Chandrasekhar

    2016-06-01

    Full Text Available BNT-KNN powder (with composition 0.93Bi0.5Na0.5TiO3–0.07K0.5Na0.5NbO3 was synthesized as a single perovskite phase by conventional solid state reaction route and dense ceramics were obtained by sintering of powder compacts at 1100 °C for 4 h. Dielectric study confirmed relaxor behaviour, whereas the microstructure study showed sharp cornered cubic like grains with an average grain size ∼1.15 µm. The saturated polarization vs. electric field (P-E hysteresis loops confirmed the ferroelectric (FE nature while the butterfly shaped strain vs. electric field (S-E loops suggested the piezoelectric nature of the BNT-KNN ceramic samples. Maximum electric field induced strain of ∼0.62% suggested the usefulness of this system for actuator applications.

  13. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  14. Chemical-technological approach to the selection of ceramic materials with predetermined thermistor properties

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, J.; Altenburg, H. [Fachhochschule Muenster, Steinfurt (Germany). SIMa and Supraleiter-Keramik-Kristalle; Brunner, M. [Fachhochschule Koeln (Germany). Elektronische Bauelemente; Shpotyuk, O.; Vakiv, M. [Scientific Research Co. ' ' Carat' ' , Lviv Scientific Research Inst. of Materials, Lviv (Ukraine)

    2002-07-01

    The selection possibilities of quaternary Cu-Ni-Co-Mn oxide system restricted by cubic spinels (CuMn{sub 2}O{sub 4}, MnCo{sub 2}O{sub 4} and NiMn{sub 2}O{sub 4}) for NTC thermistors application were discussed. Phase compositions, microstructural features and electrical properties of the investigated spinel-structured ceramics were studied in tight connection with technological regimes of their sintering. (orig.)

  15. Integrated-fin gasket for palm cubic-anvil high pressure apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-G. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Matsubayashi, K.; Nagasaki, S.; Hisada, A.; Hirayama, T.; Uwatoko, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Hedo, M. [Faculty of Science, University of Ryukyus, Senbaru, Nishihara, Okinawa 903-0213 (Japan); Kagi, H. [Graduate School of Science, University of Tokyo, 7-3-1, Hongo Bunkyo-Ku, Tokyo 113-0033 (Japan)

    2014-09-15

    We described an integrated-fin gasket technique for the palm cubic-anvil apparatus specialized for the high-pressure and low-temperature measurements. By using such a gasket made from the semi-sintered MgO ceramics and the tungsten-carbide anvils of 2.5 mm square top, we successfully generate pressures over 16 GPa at both room and cryogenic temperatures down to 0.5 K. We observed a pressure self-increment for this specific configuration and further characterized the thermally induced pressure variation by monitoring the antiferromagnetic transition temperature of chromium up to 12 GPa. In addition to enlarge the pressure capacity, such a modified gasket also improves greatly the surviving rate of electrical leads hanging the sample inside a Teflon capsule filled with the liquid pressure-transmitting medium. These improvements should be attributed to the reduced extrusion of gasket materials during the initial compression.

  16. Characterization of the Materials Synthesized by High Pressure-High Temperature Treatment of a Polymer Derived t-BC2N Ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2011-11-01

    Full Text Available Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C in a multianvil apparatus from a polymer derived t-BC1.97N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond-like c-BC2N compound, could not be unambiguously confirmed.

  17. Characterization of the Materials Synthesized by High Pressure-High Temperature Treatment of a Polymer Derived t-BC2N Ceramic

    Science.gov (United States)

    Matizamhuka, Wallace R.; Sigalas, Iakovos; Herrmann, Mathias; Dubronvinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Mera, Gabriela; Riedel, Ralf

    2011-01-01

    Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C) in a multianvil apparatus from a polymer derived t-BC1.97N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond-like c-BC2N compound, could not be unambiguously confirmed. PMID:28824124

  18. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...

  19. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  20. Electromechanical properties of a textured ceramic material in the (1 - x)PMN- xPT system: Simulation based on the effective-medium method

    Science.gov (United States)

    Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.

    2008-11-01

    A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.

  1. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes

    NARCIS (Netherlands)

    de Boer, B.; de Boer, B.; Gonzalez, M.; Gonzalez Cuenca, M.M.; Bouwmeester, Henricus J.M.; Verweij, H.

    2000-01-01

    The electrochemical performance of a porous nickel electrode with its surface modified by deposition with fine yttria-stabilised zirconia (YSZ) powder is compared with that of the ‘bare’ electrode. Image analysis of the electrode microstructure yields values for the triple phase boundary (TPB)

  2. Microscopic mechanism of stability in yttria-doped zirconia

    CERN Document Server

    Ostanin, S A

    2001-01-01

    The relaxed configurations of yttria-stabilized zirconia (YSZ) between 3 and 10 mol. % Y sub 2 O sub 3 were modeled within the pseudopotential technique. The vibration mode corresponding to the soft phonon in pure c-ZrO sub 2 has been calculated for each Y sub 2 O sub 3 composition. These anharmonic vibrations, associated with stabilization of YSZ, have been investigated within the self-consistent phonon approximation that makes obtainable the fine structure in spectral density. In studying the phonon dynamics, it is proposed to use the displacement probability density which can quantify very accurately the transition temperature needed to stabilize the YSZ cubic phase

  3. Relation between shape of Ni-particles and Ni migration in Ni-YSZ electrodes – a hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2016-01-01

    This is an attempt to explain a phenomenon of total depletion of Ni next to the electrolyte in Ni-YSZ cermet electrodes in solid oxide electrolysis cells during electrolysis at high current density/overpotential. Intuitively, we would think that Ni would always migrate down the steam partial...

  4. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  5. Structure of the Global Nanoscience and Nanotechnology Research Literature

    Science.gov (United States)

    2006-01-01

    glasses obtained from fine silica powder modified with galvanic waste addition In situ high-temperature X-ray study of ZnO- TeO2 glass ...spectroscopic studies of rare earth ions (Er3+, Yb3+, and Tm3+), especially in doped crystals and glass ceramics (82 Records) Cluster 27 (Countries...sintering, including liquid phase (dominant); ceramics-ZrO2, YSZ, Al2O3, SiC (dominant); ceramic dielectric properties; glass ceramics; nanorod

  6. Microstructure, mechanical, thermal, EPR, and optical properties of MgAl2O4:Cr3+ spinel glass–ceramic nanocomposites

    International Nuclear Information System (INIS)

    Molla, A.R.; Kesavulu, C.R.; Chakradhar, R.P.S.; Tarafder, A.; Mohanty, S.K.; Rao, J.L.; Karmakar, B.; Biswas, S.K.

    2014-01-01

    Highlights: • E c of MgAl 2 O 4 spinel glass–ceramics has been found to be 250–270 kJ/mol. • TEM images show presence of cubic crystals of uniform size 10–15 nm in the GC. • HV ∼6.0 GPa, K c ∼ 5.0 MPa m 1/2 , flexural strength ∼100 MPa and E ∼ 55 GPa obtained. • Observed red emission of Cr 3+ ions due to spin-forbidden 2 E g → 4 A 2g transition. -- Abstract: The mechanical, thermal, and optical properties, along with the microstructure and electron paramagnetic resonance (EPR) spectra, have been studied for MgAl 2 O 4 :Cr 3+ spinel glass and glass–ceramics. The activation energy of the crystallization has been estimated from the differential scanning calorimetry (DSC) study using different models and is found to vary within 255–270 kJ/mol for the un-doped precursor glass. The microstructure of the glass–ceramics has been characterized using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The TEM images demonstrate the presence of cubic crystals in the glass–ceramics of uniform size 10–15 nm. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy reveal the presence of MgAl 2 O 4 spinel as the only crystalline phase, formed in the heat-treated glass–ceramics. The EPR spectrum of Cr 3+ doped glass sample exhibits a broad resonance signal with effective g = 1.97 whereas in glass–ceramic sample an additional weak resonance signal is observed at g = 3.83. The excitation spectrum exhibits two bands in the visible region. The emission spectrum exhibits an intense red emission at 690 nm which is characteristic of Cr 3+ ions caused by the spin-forbidden 2 E g → 4 A 2g transition. All the mechanical properties are found to have improved in the glass–ceramics when compared to glasses. A good combination of micro-hardness (∼6.0 GPa), high fracture toughness (∼5.0 MPa m 1/2 ), 3 point flexural strength (∼100 MPa) and elastic modulus (∼55 GPa) has been obtained

  7. Mechanical properties of NiO/Ni-YSZ composites depending on temperature, porosity and redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Mogensen, Mogens Bjerg

    2009-01-01

    The Impulse Excitation Technique (IET) was used to determine the elastic modulus and specific damping of different Ni/NiO-YSZ composites suitable for use in solid oxide fuel cells (SOFC). The porosity of the as-sintered samples varied from 9 to 38% and that of the reduced ones from 31 to 52%. For...

  8. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  9. Influence of Al{sub 2}O{sub 3} addition on microstructure and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Abden, Md. Jaynul [International Islamic Univ., Chittagong (Bangladesh). Dept. of Electrical and Electronic Engineering; Afroze, Jannatul Dil [Noakhali Science and Technology Univ. (Bangladesh). Faculty of Science and Engineering; Gafur, Md. Abdul [Bangladesh Council of Scientific and Industrial Research, Dhaka (Bangladesh). Pilot Plant and Process Development Centre; Chowdhury, Faruque-Uz-Zaman [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2015-07-01

    The effect of the amount of Al{sub 2}O{sub 3} content on microstructure, tetragonal phase stability and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites are investigated in this study. The ceramic composites are obtained by means of uniaxial compacting at 210 MPa and green compacts are sintered at 1550 C for 3 h in air. The monoclinic zirconia (m-ZrO{sub 2}) phase has completely been transformed into tetragonal zirconia (t-ZrO{sub 2}) phase with corresponding higher Al{sub 2}O{sub 3} content. The t-ZrO{sub 2} grains induce transgranular fracture mode that has contribution in improvement of fracture toughness. The maximum flexural strength of 340 MPa, Vickers hardness value of 14.31 GPa and fracture toughness of 5.1 MPa x m{sup 1/2} in the composition containing 40 wt.-% Al{sub 2}O{sub 3} is attributed to the microstructure with t-ZrO{sub 2} grains as inter- and intragranular particles in the Al{sub 2}O{sub 3} grains, which makes it suitable for dental applications.

  10. Biogas Upgrading Using SOEC with a Ni-ScYSZ Electrode

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Bøgild Hansen, John; Mogensen, Mogens Bjerg

    2013-01-01

    Biogas consists mainly of CH4, CO2 and small amounts of H2S. The value of biogas will increase significantly if it is upgraded to pipeline quality by converting CO2 and H2O in the biogas to CO and H2 using a Solid Oxide Electrolysis Cell (SOEC) followed by methanation. The Ni-ScYSZ-cermet electrode...... is, however, active for steam reforming of CH4, but sulphur traces in the biogas reduce the steam reforming activity. It is proven that sulphur stops steam reforming activity whereas the electrochemistry is only affected to a limited degree, showing that up-grading of biogas using SOEC with Ni...

  11. Stability of cubic zirconia in a granitic system under high pressure and temperature

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Burakov, B. E.; Taylor, K. J.; Domracheva, Y.

    2008-01-01

    Cubic zirconia is a well known, highly durable material with potential uses as an actinide host phase in ceramic waste forms and inert matrix fuels and in containers for very deep borehole disposal of some highly radioactive wastes. To investigate the behaviour of this material under the conditions of possible use, a cube of ∼2.5 mm edge was made from a single crystal of Yttria stabilized cubic zirconia doped with 0.3 wt.% CeO 2 . The cube was enclosed in powdered granite within a gold capsule and a small amount of H 2 O added before sealing. The sealed capsule was held for 4 months in a cold-seal pressure vessel at a temperature of 780 deg. C and a pressure 150 MPa, simulating both the conditions of a deep borehole disposal involving partial melting of the host rock and the conditions under which the actinide waste form might be encapsulated in granite prior to disposal. At the end of the experiment the quenched, largely glassy, sample was cut into thin slices and studied by optical microscopy, EMPA, SEM and cathodoluminescence methods. The results show that no corrosion of the zirconia crystal or reaction with the granite melt occurred and that no detectable diffusion of elements, including Ce, in or out of the zirconia took place on the timescale of the experiment. Consequently, it appears that cubic zirconia could perform most satisfactorily as both an actinide host waste form for encapsulation in solid granite for very deep disposal and as a container material for deep borehole disposal of highly radioactive wastes (HLW), including spent fuel. (authors)

  12. Study of the Ni-NiAl{sub 2}O{sub 4}-YSZ cermet for its possible application as an anode in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Toluca (Mexico); Esparza-Ponce, H E [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Reyes-Gasga, J [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico DF (Mexico)

    2006-05-17

    Nanocrystalline Ni-NiAl{sub 2}O{sub 4}-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 {sup o}C and oxide reduction (NiO -Al{sub 2}O{sub 3}-YSZ {yields} Ni-NiAl{sub 2}O{sub 4}-YSZ) at 800 {sup o}C for 8 h in a tubular reactor furnace using 10% H{sub 2}/N{sub 2}. Eight samples with 45% Ni and 55% Al{sub 2}O{sub 3}-YSZ in concentrations of Al{sub 2}O{sub 3} oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 {sup o}C. Good results were registered using a heating rate of 1 {sup o}C min{sup -1} and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al{sub 2}O{sub 3} present a crystal size around 200 nm. An inversion degree (I) in the NiAl{sub 2}O{sub 4} spinel structure of the cermets Ni-NiAl{sub 2}O{sub 4}-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation.

  13. Computational image analysis of Suspension Plasma Sprayed YSZ coatings

    Directory of Open Access Journals (Sweden)

    Michalak Monika

    2017-01-01

    Full Text Available The paper presents the computational studies of microstructure- and topography- related features of suspension plasma sprayed (SPS coatings of yttria-stabilized zirconia (YSZ. The study mainly covers the porosity assessment, provided by ImageJ software analysis. The influence of boundary conditions, defined by: (i circularity and (ii size limits, on the computed values of porosity is also investigated. Additionally, the digital topography evaluation is performed: confocal laser scanning microscope (CLSM and scanning electron microscope (SEM operating in Shape from Shading (SFS mode measure surface roughness of deposited coatings. Computed values of porosity and roughness are referred to the variables of the spraying process, which influence the morphology of coatings and determines the possible fields of their applications.

  14. Electromotive Potential Distribution and Electronic Leak Currents in Working YSZ Based SOCs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jacobsen, Torben

    2009-01-01

    The size of electronic leak currents through the YSZ electrolyte of solid oxide cells have been calculated using basic solid state electrochemical relations and literature data. The distribution of the electromotive potential, of Galvani potential, of concentration of electrons, e, and electron...... holes, h, was also calculated as these parameters are the basis for the understanding of the electronic conductivity that causes the electronic leak currents. The results are illustrated with examples. The effects of electrolyte thickness, temperature and cell voltage on the electronic leak current...

  15. Effects of trace elements at the Ni/ScYSZ interface in a model solid oxide fuel cell anode

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Hansen, Karin Vels; Norrman, Kion

    2008-01-01

    Two ScYSZ electrolytes with different impurity levels were evaluated by electrochemical impedance spectroscopy using a nickel point electrode setup. The nickel electrodes showed lower electrode polarization resistances on the pure electrolyte than on the impure electrolyte. Time-of-flight secondary...

  16. Ni/YSZ electrode degradation studied by impedance spectroscopy — Effect of p(H2O)

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg; Hagen, Anke

    2011-01-01

    Anode supported solid oxide fuel cells have been tested and the degradation over time was monitored and analyzed by impedance spectroscopy. Reproducibility of initial cathode, anode and electrolyte performance was obtained. Anode (Ni/YSZ) degradation was analyzed for tests applying p(H2O) of 0...... correlated with p(H2O)), but the characteristic time, τ, for the anode degradation was significantly higher for the test at p(H2O) = 0.2 atm than at p(H2O) of 0.4 atm and 0.6 atm........2 atm, 0.4 atm and 0.6 atm at 750 °C and 0.75 A/cm2. The anode degradation could be well described by the equation: RNi,TPB(t) = RNi,0 + ΔR∙(1 − exp(− t / τ)). The initial resistance and total increase for the Ni–YSZ charge transfer resistance, RNi,0 and ΔR, were similar for all tests (i.e. not directly...

  17. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Science.gov (United States)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  18. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Ga{sub 2}O{sub 3} and YF{sub 3} dual-phase embedded glass ceramics were fabricated. • RE{sup 3+} and Cr{sup 3+} dopants incorporated into YF{sub 3} and Ga{sub 2}O{sub 3} lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga{sub 2}O{sub 3} and β-YF{sub 3} nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu{sup 3+} or Tm{sup 3+}) and transition metal (Cr{sup 3+}) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu{sup 3+} (or Tm{sup 3+}) ions partitioned into the crystallized orthorhombic YF{sub 3} nanophases, while Cr{sup 3+} ones entered into the precipitated cubic Ga{sub 2}O{sub 3} nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm{sup 3+} blue and Cr{sup 3+} deep-red emissions are easily achieved in the Tm{sup 3+}/Cr{sup 3+} co-doped dual-phase glass ceramics.

  19. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  20. The Effect of Humidity and Oxygen Partial Pressure on LSM–YSZ Cathode

    DEFF Research Database (Denmark)

    Knöfel, Christina; Chen, Ming; Mogensen, Mogens Bjerg

    2011-01-01

    Two series of anode supported solid oxide fuel cells (SOFC) were prepared, one with a composite cathode layer of lanthanum strontium manganite (LSM) and yttria stabilized zirconia (YSZ) on top and the other further has a LSM current collector layer on top. The fuel cells were heat treated at 1...... of manganese concentration and strontium enrichment on the surface of the materials. Formation of monoclinic zirconia and zirconate phases was also observed. These results give a closer insight into possible degradation mechanisms of SOFC composite cathode materials in dependence of humidity and oxygen partial...

  1. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  2. Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells

    DEFF Research Database (Denmark)

    Klemensø, Trine; Boccaccini, Dino; Brodersen, Karen

    2014-01-01

    The conventional solid oxide cell is based on a Ni–YSZ support layer, placed on the fuel side of the cell, also known as the anode supported SOFC. An alternative design, based on a support of porous 3YSZ (3 mol.% Y2O3–doped ZrO2), placed on the oxygen electrode side of the cell, is proposed...... of the support can be done simultaneously with forming the oxygen electrode, since some of the best performing oxygen electrodes are based on infiltrated LSC. The potential of the proposed structure was investigated by testing the mechanical and electrical properties of the support layer. Comparable strength...... properties to the conventional Ni/YSZ support were seen, and sufficient and fairly stable conductivity of LSC infiltrated 3YSZ was observed. The conductivity of 8–15 S cm–1 at 850 °C seen for over 600 h, corresponds to a serial resistance of less than 3.5 m Ω cm2 of a 300 μm thick support layer....

  3. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  4. Interpolation of natural cubic spline

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  5. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.

    Science.gov (United States)

    Zhang, Fei; Inokoshi, Masanao; Batuk, Maria; Hadermann, Joke; Naert, Ignace; Van Meerbeek, Bart; Vleugels, Jef

    2016-12-01

    The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y 2 O 3 content and La 2 O 3 doping on the translucency. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134°C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (α=0.05). Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La 2 O 3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La 2 O 3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Three different approaches were compared to improve the translucency of 3Y-TZP ceramics. Copyright

  6. X-ray diffraction and dielectric studies across morphotropic phase boundary in (1 - x) [Pb(Mg0.5W0.5)O3]-xPbTiO3 ceramics

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, Akhilesh Kumar

    2011-01-01

    Research highlights: → Structural studies reveal pseudocubic structure of PMW-xPT for the x ≤ 0.42, tetragonal for the x ≥ 0.72 and the coexistences of the two phases for intermediate compositions (0.46 ≤ x 0.68). → Temperature dependent dielectric constant for compositions in the two phase region shows two dielectric anomalies above room temperature and not just one as reported by earlier workers. → Rietveld structural analysis of PMW-xPT ceramics is presented for the first time to determine the fraction of the coexisting phases in MPB region. - Abstract: We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 - x)[Pb(Mg 0.5 W 0.5 )O 3 ]-xPbTiO 3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.

  7. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  8. Synthesis of LSM films deposited by dip-coating on YSZ substrate; Sintese de filmes de LSM depositados por dip-coating em substratos de YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Leandro da; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica; Ribeiro, Nielson F.P. [Coordenacao dos Programas de Pos-graduacao de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica. Nucleo de Catalise

    2010-07-01

    The dip-coating process was used to deposit films of La{sub 0.7}Sr{sub 0.}3MnO{sub 3} (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 {mu}m, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  9. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  10. Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    Energy-filtered transmission electron microscopy images are acquired during the reduction of a NiO-YSZ composite in H-2 up to 600 degrees C. Temperature-resolved quantitative information about both chemistry and structure is extracted with nm spatial resolution from the data, paving the way...

  11. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  12. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong [Physics Division, Institute of Nuclear Energy Research, Lungtan, Taoyuan 32546 (China)

    2008-05-15

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with {proportional_to}60 {mu}m in thickness and {proportional_to}0.054 S cm{sup -1} conductivity at 800 C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with {proportional_to}30 {mu}m in thickness and {proportional_to}30% porosity has a minimum resistance after being heated at 1000 C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 C for 2 h has a minimum inherent resistance and achieves output power densities of {proportional_to}440 mW cm{sup -2} at 800 C, {proportional_to}275 mW cm{sup -2} at 750 C and {proportional_to}170 mW cm{sup -2} at 700 C. Results from SEM, XRD, ac impedance analysis and I-V-P measurements are presented here. (author)

  13. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xinzhi; Liu Hongfei; Wei Yanying [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China); Caro Juergen [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3-3A D-30179 Hannover (Germany); Wang Haihui, E-mail: hhwang@scut.edu.c [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China)

    2009-09-18

    Zincum-doped ceramic membrane materials based on BaCo{sub 0.4}Fe{sub 0.4}Zn{sub x}Zr{sub (0.2-x)}O{sub 3-delta} with 0 <= x <= 0.2 were synthesized by combining citric acid and ethylene-diamine-tetraacetic acid (EDTA) complexing method. X-ray diffraction (XRD) patterns show that the BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} ceramic oxide exhibits a pure cubic perovskite structure. Oxygen temperature-programmed desorption (O{sub 2}-TPD) profile indicates that BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} possesses a good phase reversibility. An oxygen permeation flux of 0.65 ml/min cm{sup 2} was obtained at 950 deg. C and a single activation energy of 67 kJ/mol was observed for the oxygen permeation in the temperature range of 600-950 deg. C. No decline was found during more than 100 h oxygen permeation.

  14. Fabrication and properties of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjuan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Guohong, E-mail: sic_zhough@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Fang; Qin, Xianpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ai, Jianping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-01-15

    La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm{sup 3}) and effective atomic number, some of the La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  15. Electrical conductivity of Ni–YSZ composites: Degradation due to Ni particle growth

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Mogensen, Mogens Bjerg

    2011-01-01

    The short-term changes in the electrical conductivity of Ni–YSZ composites (cermets) suitable for use in Solid Oxide Fuel Cells (SOFC) were measured by an in-situ 4-point DC technique. The isothermal reduction was carried out in dry, humidified or wet hydrogen at temperatures from 600 to 1000°C...... modelled using two different semi-empirical approaches. Thermodynamic calculations were carried out to assess the vaporisation of Ni in the conditions tested. The rate and mechanisms of conductivity degradation due to Ni particle growth are discussed in light of the measurements, modelling and literature...

  16. Cubical sets as a classifying topos

    DEFF Research Database (Denmark)

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  17. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  18. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2018-01-01

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  19. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang

    2018-04-16

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  20. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  1. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  2. YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO.

    Science.gov (United States)

    Anggraini, Sri Ayu; Fujio, Yuki; Ikeda, Hiroshi; Miura, Norio

    2017-08-22

    A selective carbon monoxide (CO) sensor was developed by the use of both of CuCrFeO 4 and CoCrFeO 4 as the sensing electrode (SE) for yttria-stabilized zirconia (YSZ)-based potentiometric sensor. The sensing-characteristic examinations of the YSZ-based sensors using each of spinel oxides as the single-SE sensor showed that CuCrFeO 4 -SE had the ability to detect CO, hydrocarbons and NO x gases, while CoCrFeO 4 -SE was sensitive to hydrocarbons and NO x gases. Thus, when both SEs were paired as a combined-SEs sensor, the resulting sensor could generate a selective response to CO at 450 °C under humid conditions. The sensor was also capable of detecting CO in the concentration range of 20-700 ppm. Its sensing mechanism that was examined via polarization-curve measurements was confirmed to be based on mixed-potential model. The CO response generated by the combined-SEs sensor was unaffected by the change of water vapor concentration in the range of 1.3-11.5 vol% H 2 O. Additionally, the sensing performance was stable during 13 days tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    International Nuclear Information System (INIS)

    Xin Tang Huang

    2000-01-01

    High critical current density and in-plane aligned YBa 2 Cu 3 O 7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O + ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18 deg. and 11 deg., respectively. The critical current density of YBCO film is 7.9 x 105 A cm -2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K. (author)

  4. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  5. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  6. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    Science.gov (United States)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  7. Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

    Science.gov (United States)

    Seeley, Z. M.; Dai, Z. R.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2012-11-01

    Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)2O3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu1.9-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 °C to obtain ˜97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 °C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)2O3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices.

  8. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  9. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...... varies within 0.25-3.2% dL/L in dry gas and respective temperature range of 600-1000 degrees C. A high degree of redox reversibility was reached at low temperature. however. reversibility is lost at elevated temperatures. We found that at 850 degrees C, 6% steam and a very high p(H2O)/p(H2) ratio...

  10. Giant dielectric response in (Sr, Sb) codoped CaCu3Ti4O12 ceramics: A novel approach

    Science.gov (United States)

    Pradhan, M. K.; Rao, T. Lakshmana; Karna, Lipsarani; Dash, S.

    2018-04-01

    The CaCu3Ti4O12 (CCTO) remains as the best material for practical applications due to its high dielectric constant. To improve further the dielectric properties of CCTO to several orders in magnitude, a novel approach is adopted by codoping of Sr, Sb ions. The ceramic samples were fabricated by the conventional solid state route. The structure, morphology and detail dielectric properties were investigated systematically. All the samples crystalizes in a cubic symmetry with Im-3 space group. Sr substituted in Ca site can effectively suppress the grain growth, achieving a fine grained ceramic structure; however the grain size decreased slightly as Sb concentration increased further; whereas the dielectric permittivity of the ceramics increased drastically. The giant dielectric response was considered to be closely related with a reduction in the potential barrier height at grain boundaries (GBs) supported by the reduction in the activation energy for the conduction process.

  11. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  12. Theoretical basis of oxygen pressure control in liquid Pb-Bi using YSZ

    International Nuclear Information System (INIS)

    Jung, S. H.; Hwang, I. S.; Park, B. K.

    2002-01-01

    To develop a liquid Pb-Bi cooled reactor, it is necessary to solve the structural material corrosion problem caused by Pb-Bi. This experiment examine the fundamental behaviors to practically test the oxide film formation on the surface of structural material known as solution of corrosion inhibition in liquid Pb-Bi. The corrosion inhibition through oxide film formation is to prevent metals from dissolving into liquid Pb-Bi though not forming coolants slug resulted from oxidation. In this paper, we examined the oxygen pressure controllability using YSZ in cover gas, and theoretically derived the relationship between oxygen cover gas pressure and dissolved oxygen in liquid Pb-Bi

  13. Grain boundary defect compensation in Ti-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Fang, Liang; Liu, Laijun [Guilin University of Technology, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guilin (China); Peng, Biaolin [Guangxi University, School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics, Nanning (China); Jia, Wenhao [Shanghai Getong Enterprise Co., Ltd., Shanghai (China); Mei, Zaoming [Henan LiHeng Building Materials Co., Ltd., Zhengzhou (China); Su, Hongbo [Henan Province Product Quality Supervision and Inspection Center, Zhengzhou (China)

    2016-09-15

    Giant dielectric ceramics Ba(Nb{sub 0.5}Fe{sub 0.5-x}Ti{sub x})O{sub 3} (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε') of all these samples displays a high value (∝6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti{sup 4+}-doped Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} ceramics. (orig.)

  14. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  15. High ionic conductivity in confined bismuth oxide-based heterostructures

    Directory of Open Access Journals (Sweden)

    Simone Sanna

    2016-12-01

    Full Text Available Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3 exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ-Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ, deposited by pulsed laser deposition. The resulting [δ-Bi2O3/YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  16. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens

    2016-01-01

    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...... of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ-Bi2O3=YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value...... of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk....

  17. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  18. The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane

    NARCIS (Netherlands)

    Graf, P.O.; Mojet, Barbara; Lefferts, Leonardus

    2009-01-01

    The influence of potassium addition on Pt supported on yttrium-stabilized zirconia (YSZ) was studied with FT-IR CO adsorption and CO-FT-IR-TPD, in order to understand the effect of potassium on the performance of the catalyst in reforming of mixtures of methane and ethane. Potassium modification of

  19. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  20. Synthesis of LSM films deposited by dip-coating on YSZ substrate

    International Nuclear Information System (INIS)

    Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2010-01-01

    The dip-coating process was used to deposit films of La 0.7 Sr 0. 3MnO 3 (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 μm, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  1. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  2. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  3. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry

    International Nuclear Information System (INIS)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.

    2014-01-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca_2AlZrO_5_,_5 cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  4. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  5. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  6. Fabrication and study of stability of Ca2AlWO5,5 ceramic in crude petroleum for applications in petroleum industry

    International Nuclear Information System (INIS)

    Yadava, Y.P.; Silva, N.D.G.; Sousa, A.G. de; Sanguinetti Ferreira, R.A.

    2010-01-01

    Perovskite-type ceramic oxides or their derivatives are used for applications in high technology because of their enormous range of physic-chemical properties with little change in structural characteristics. In this paper we report manufacture ceramic components of a new ceramic Ca 2 AlWO 5,5 by thermo-mechanical process. Stoichiometric amounts of chemical constituents with high degree of purity, were homogenized using a ball mill and high purity alumina balls, compacted by uniaxial pressing and annealed at 1200 deg C for 48 hours. The structural characterization studied by x-ray diffraction that this material has a typical complex ordered cubic perovskite structure. For the study the stability of these ceramics in crude petroleum circular discs of 20 mm diameter and 2 mm thickness were produced and sintering. These discs were submerged in crude petroleum for 15, 30 and 45 days and were examined at each stage by X-ray diffraction, optical microscopy and hardness testing and these results show that Ca 2 AlWO 5,5 are stable in crude petroleum environment. (author)

  7. The Study on Thermal Expansion of Ceramic Composites with Addition of ZrW[2]O]8

    OpenAIRE

    Dedova, Elena Sergeevna; Shadrin, V. S.; Petrushina, M. Y.; Kulkov, Sergey Nikolaevich

    2016-01-01

    The studies on structure, phase composition and thermal properties of (Al[2]O[3] - 20 wt% ZrO[2]) - ZrW[2]O[8] ceramic composites obtained using nanosized, initial powders were conducted. Homogeneously distributed white particles on the polished surface of composites were observed. Phase composition of the composites was represented with corundum, monoclinic ZrO[2] and two modifications of ZrW[2]O[8] (tetragonal and cubic). Linear thermal expansion coefficient values of the composites were de...

  8. On q-power cycles in cubic graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien

    2017-01-01

    In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....

  9. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  10. Effects of NiO addition on the densification, microstructure and electrical conductivity of Yttria fully-stabilized zirconia

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2010-01-01

    The effects produced by NiO addition to yttria fully-stabilized zirconia were systematically investigated. Commercial zirconia-8 mol% yttria, nickel acetate, nitrate, trihydroxycarbonate and nickel oxide were used as starting materials. The NiO content varied from 0.5 to 5 mol%, and the compositions were prepared by mechanically mixing the starting materials in the stoichiometric proportions. Densification studies carried out by density and dilatometry measurements revealed that the maximum shrinkage (∼16-∼20%) depends on the type of nickel precursor. In the second sintering stage the linear shrinkage increased with increasing NiO content (precursor: nickel trihydroxy-carbonate). In the first sintering stage, the activation energy for grain boundary diffusion changed according to the additive precursor, being lower for the oxide and higher for the trihydroxy-carbonate. In the second stage, when the major part of porosity is eliminated, the maximum shrinkage rate temperatures were found to be independent on the precursor except when nickel acetate is used. The solubility limit at 1350 degree C is 1.48% as determined by X-ray diffraction. Above the solubility limit the excess NiO is retained as a second randomly distributed phase. The main effect of the additive in the ceramic microstructure is to increase the average grain size. The electrical measurements showed that the additive did not produce any significant effect in the grain conductivity irrespective of the sintering time, except when the precursor material was nickel oxide. In this case, the grain conductivity increased with increasing sintering time. This effect is attributed to the crystallite size of the nickel oxide precursor, which is higher than that of 8YSZ, slowing down the formation of solid solution. However, the grain conductivity of samples prepared with nickel trihydroxy-carbonate precursor is slightly lower than those of other samples. The samples sintered for 15 h exhibited an additional

  11. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2018-02-01

    Feb 1, 2018 ... The applications of electroless nickel (EN) co-deposition which ceramic particles was added and later .... The powder is set in suspension by magnetic stirring ... SEM/EDXA testing confirmed that Ni/YSZ was coated on the.

  12. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  13. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  14. Synthesis of Yttria-stabilized zirconia nanoparticles by decomposition of metal nitrates coated on carbon powder

    International Nuclear Information System (INIS)

    Jiang, S.; Stangle, G.C.; Amarakoon, V.R.; Schulze, W.A.

    1996-01-01

    Weakly agglomerated nanoparticles of yttria-stabilized zirconia (YSZ) were synthesized by a novel process which involved the decomposition of metal nitrates that had been coated on ultrafine carbon black powder, after which the carbon black was gasified. The use of ultrafine, high-surface-area carbon black powder apparently allowed the nanocrystalline oxide particles to form and remain separate from each other, after which the carbon black was gasified at a somewhat higher temperature. As a result, the degree of agglomeration was shown to be relatively low. The average crystallite size and the specific surface area of the as-synthesized YSZ nanoparticles were 5∼6 nm and 130 m 2 /g, respectively, for powder synthesized at 650 degree C. The as-synthesized YSZ nanoparticles had a light brown color and were translucent, which differs distinctly from conventional YSZ particles which are typically white and opaque. The mechanism of the synthesis process was investigated, and indicated that the gasification temperature had a direct effect on the crystallite size of the as-synthesized YSZ nanoparticles. High-density and ultrafine-grained YSZ ceramic articles were prepared by fast-firing, using a dwell temperature of 1250 degree C and a dwell time of two minutes or less. copyright 1996 Materials Research Society

  15. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  16. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  17. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  18. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  19. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  20. The Ni-YSZ interface - Structure, composition and electrochemical properties at 1000 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Vels Jensen, Karin

    2002-06-01

    The anode/electrolyte interface in solid oxide fuel cells (SOFC) is known to cause electrical losses. Geometrically simple Ni/Yttria-stabilised zirconia (YSZ) interfaces were examined to gain information on the structural and chemical changes occurring during experiments at 1000 deg. C in an atmosphere of 97% H2/3% H{sub 2}O. Electrochemical impedance spectroscopy at open circuit voltage (OCV) and at anodic and cathodic polarisation (100 mV) was performed. A correlation of the electrical data with the structure development and the chemical composition was attempted. Nickel wires with different impurity content (99.8% Ni and 99.995% Ni) were used to examine the impact of impurities on the polarisation resistance and contact area morphology. The electro polished nickel wires were pressed against a polished 8 mol% YSZ surface. Extensive structural changes from a flat interface to a hill and valley structure were found to occur in the contact area with the impure nickel wire, and a ridge of impurities was built along the rim of the contact area. Impurity particles in the interfacial region were also observed. The impurity phase was described as an alkali silicate glassy phase. No differences were found between polarised and non-polarised samples. With pure nickel wires, however, the microstructures depended on the polarisation/non-polarisation conditions. At non-polarised conditions a hill and valley type structure was found. Anodic polarisation produced an up to 1 {mu}m thick interface layer consisting of nano-sized YSZ particles with some Ni present. At cathodic polarisation both a granulated structure and a hill and valley structure resembling the structure of non-polarised samples were found. Small impurity ridges were surrounding the contact areas on non-polarised and cathodically polarised samples. TOF-SIMS and XPS analyses showed the presence of impurities in both the impure and pure contact areas. The impedance spectroscopy revealed that depending on the

  1. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  2. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  3. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Science.gov (United States)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  4. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dieter Stender

    2015-01-01

    Full Text Available The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  5. Neutrosophic Cubic MCGDM Method Based on Similarity Measure

    Directory of Open Access Journals (Sweden)

    Surapati Pramanik

    2017-06-01

    Full Text Available The notion of neutrosophic cubic set is originated from the hybridization of the concept of neutrosophic set and interval valued neutrosophic set. We define similarity measure for neutrosophic cubic sets and prove some of its basic properties.

  6. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  7. Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering

    DEFF Research Database (Denmark)

    Pirou, Stéven; Gurauskis, Jonas; Gil, Vanesa

    2016-01-01

    Asymmetric membranes based on a dual phase composite consisting of (Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 (10Sc1YSZ) as ionic conductor and MnCo2O4 as electronic conductor were prepared and characterized with respect to sinterability, microstructure and oxygen transport properties. The composite membranes...... were prepared by tape casting, lamination and fired in a two-step sintering process. Microstructural analysis showed that a gastight thin membrane layer with the desired ratio of ionic/electronic conducting phases could be fabricated. Oxygen permeation fluxes across the 10SclYSZ/MnCo2O4 (70/30 vol......%) composite membrane were measured from 750 to 940 degrees C using air or pure oxygen as feed gases and N2 or CO2 as sweep gases. Fluxes up to 2.3 mlN min-1 cm-2 were obtained for the 7 μm thick membrane. A degradation test over 1730 h showed an initial degradation of 21% during the first 1100 h after which...

  8. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera

    2014-02-01

    Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.

  9. Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties

    International Nuclear Information System (INIS)

    Zhang Yanfei; Li Jiayan; Li Qin; Zhu Ling; Liu Xiangdong; Zhong Xinghua; Meng Jian; Cao Xueqiang

    2007-01-01

    Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO 3 ) 3 .412H 2 O. Upon firing the composite fibers at 800 deg. C, In 2 O 3 fibers with diameters ranging from 200 to 400nm were synthesized. This indium oxide calcined at 800 deg. C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In 2 O 3 nanofibers were investigated. The In 2 O 3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation

  10. P-union and P-intersection of neutrosophic cubic sets

    OpenAIRE

    Florentin Smarandache; Chang Su Kim

    2015-01-01

    Conditions for the P-intersection and P-intersection of falsity-external (resp. indeterminacy-external and truth-external) neutrosophic cubic sets to be an falsity-external (resp. indeterminacy-external and truth- external) neutrosophic cubic set are provided. Conditions for the P-union and the P-intersection of two truth-external (resp. indeterminacy-external and falsity-external) neutrosophic cubic sets to be a truth-internal (resp. indeterminacy-internal and falsity-internal) neutrosoph...

  11. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune

    2008-01-01

    -reforming catalysis. In the context of electrochemically tested and technologically relevant cells, the majority of the microstructural work is performed on a cell tested at 850°C under relatively severe conditions for 17,500 hours. It is demonstrated that the major Ni rearrangements take place at the interface...... are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work......, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused...

  12. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  13. Electrical conductivity of Ni–YSZ composites: Variants and redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Mogensen, Mogens Bjerg

    2012-01-01

    -term conductivity changes due to microstructural changes in both the standard and modified cermets with different Ni doping were compared by re-oxidation at 600°C and subsequent thermal excursions up to 1000°C by normalising the conductivity to a constant temperature. Modified cermets show reduced conductivity loss......Short-term changes in the electrical conductivity of different Ni–YSZ composites (cermets) were measured by an in-situ 4-point DC technique. The isothermal reduction was carried out in dry, humidified or wet hydrogen at temperatures from 600 to 850°C. The cermets reduced at 600°C showed a stable...... conductivity of about 1100S/cm, which increased to an enhanced ~2000S/cm upon re-oxidation and subsequent re-reduction cycling at the same temperature. At 850°C, a rapid initial conductivity loss was observed; upon re-reduction after the re-oxidation both the conductivity and its loss rate were largely...

  14. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  15. Evolution of loss tangent with structural ordering of the perovskite-type Ba_3CaNb_2O_9 ceramics

    International Nuclear Information System (INIS)

    Rodrigues, J.E.F.S.; Correr, W.R.; Hernandes, A.C.; Castro, P.J.; Pizani, P.S.

    2016-01-01

    In this paper, we investigate the microwave dielectric properties considering the de-gree of disorder, which plays a fundamental role in the values of dielectric loss, for the perovskite-type Ba_3CaNb_2O_9 ceramics. Dense ceramics were prepared by con-ventional method in solid state reactions and their dielectric properties were then ob-tained as a function of sintering time. The coexistence of domains in the 1:1 (cubic) and the 1:2 (trigonal) ordering types in all samples was realized. Specifically, the in-crease of sintering time tends to reduce the domains 1:1, raising the unloaded quality factor (Q_u). The domain (1:1) acts as a lattice vibration damping, thus increasing the dielectric loss at resonance. The best performance was recorded in sintered ceramic at 1500° C for 32 h: ε_r = 43 (relative permittivity), Q_u × f_R = 15,752 GHz (resonant frequency f_R = 7.76 GHz) and τ_f = 278 ppm/deg C (coefficient of resonant frequency variation with temperature). (author)

  16. BiFeO3-doped (Na0.5K0.5NbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Xueyi Sun et al

    2008-01-01

    Full Text Available Lead-free piezoelectric ceramics (1−x(Na0.5K0.5NbO3-xBiFeO3 (x=0~0.07 were synthesized by the solid-state reaction. Differential scanning calorimetry (DSC measurements revealed that an increase in the amount of BiFeO3 dopant resulted in a decrease in the orthorhombic-tetragonal and tetragonal-cubic phase transition temperature of the material. One percent BiFeO3 additive suppressed grain growth, which not only benefits the sintering of ceramics but also enhances the piezoelectric and ferroelectric properties, where d33=145pC/N, kp=0.31, Qm=80, Pr=11.3 μC cm−2 and Ec=16.5 kV cm−1. As xBF>0.01, both piezoelectric and ferroelectric properties decreased rapidly with an increasing amount of dopant.

  17. Development of Fe-Ni/YSZ-GDC electro-catalysts for application as SOFC anodes. XRD and TPR characterization, and evaluation in ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Electro-catalysts based on Fe-Ni alloys were prepared using physical mixture and modified Pechini methods; they were supported on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC). The composites had compositions of 35% metal load and 65% support (70% wt. YSZ and 30% wt. GDC mixture) (cermets). The samples were characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in ethanol steam reforming at 650 C for six hours and in the temperature range 300 - 900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) in spinel structure; after reducing the sample in hydrogen, Ni-Fe alloys were formed. The presence of Ni decreased the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of Fe to Ni anchored to YSZ-GDC increased the hydrogen production and inhibits the carbon deposition. The bimetallic 30Fe5Ni samples reached an ethanol conversion of about 95%, and a hydrogen yield up to 48% at 750 C. In general, the ethanol conversion and hydrogen production were independent of the metal content in the electro-catalyst. However, the substitution of Ni for Fe significantly reduced the carbon deposition on the electro-catalyst: 74, 31 and 9 wt. % in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (orig.)

  18. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  19. Non-spherical micelles in an oil-in-water cubic phase

    DEFF Research Database (Denmark)

    Leaver, M.; Rajagopalan, V.; Ulf, O.

    2000-01-01

    phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate.......The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...

  20. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  1. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    Science.gov (United States)

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  2. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  3. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  4. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Amonpattaratkit, P. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Ananta, S., E-mail: suponananta@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-01

    In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1−x)PFN–xPZT (x=0.1–0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO{sub 4}B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M–H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (M{sub max}), remanent polarization (M{sub r}), and coercive field (H{sub C}). - Highlights: • Fabrication of PFN-PZT multiferroic ceramics from PZT and FeNbO{sub 4} precursors. • Effect of PZT content on phase transformation of PFN-PZT multiferroic ceramics. • Effect of PZT content on magnetic properties of PFN-PZT multiferroic ceramics.

  5. Microstructural characterization of Ni/YSZ based SOFC anodes after cyclic reduction and oxidation using electron microscopy

    International Nuclear Information System (INIS)

    Waldbillig, D.; He, A.; Ivey, D.

    2003-01-01

    The effect of redox cycling on the microstructure, of an SOFC anode, was studied using two approaches. Bulk samples were redox cycled and then examined in the SEM. In addition, electron transparent samples were prepared, redox cycled, and then examined in the TEM. Significant microstructural changes were observed. The anode in the as received condition consists of NiO particles several microns in size, YSZ grains about one micron in size and intergranular porosity. After the first reduction, the overall Ni grain size remains the same as the consumed NiO and epitaxial growth of Ni crystals on NiO grains is observed. The amount of intergranular porosity increases and very fine (50 nm) intragranular pores are formed throughout the Ni grains. This increase in the amount of porosity is expected due to the large volume change that occurs upon reduction. When samples are reoxidized the NiO particles in the SEM images appear spongy with much smaller pores than the as received, oxidized samples. The reoxidized anode consists of fine (<100 nm), randomly oriented grains of NiO. The grain refinement that occurs upon reoxidation is likely due to the large number of intragranular pores that occur upon reduction, which serve as nucleation sites. Rereduced samples were also very fine grained (<200 nm) and contained significant amounts of small intergranular porosity. The YSZ grains were unaffected by the redox cycles. (author)

  6. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  7. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  8. Dielectric studies of Co3-xMnxO4 (x=0.1-1.0) cubic spinel multiferroic

    Science.gov (United States)

    Meena, P. L.; Kumar, Ravi; Prajapat, C. L.; Sreenivas, K.; Gupta, Vinay

    2009-07-01

    A series of Co3-xMnxO4 (x =0.1-1.0) multiferroic cubic spinel ceramics were prepared to study the effect of Mn substitution at Co site on the crystal structures and dielectric properties. No significant change in the structural symmetry was observed with increasing x up to 1.0. A linear increase in lattice parameter with x is attributed to the substitution of Co3+ by Mn3+ (large ionic radii) at the octahedral sites. An antiferromagnetic-type ordering of Co3O4 changes to ferrimagnetic-type order after incorporation of Mn. The effect of Mn substitution on the dielectric constant and loss tangent was studied over a wide range of frequency (75 kHz-5 MHz) and temperature of 150-450 K. The measured value of room temperature ac conductivity at 1.0 MHz was found to increase from 2.0×10-6 to 4.4×10-4 Ω-1 cm-1 and follows power law (σac=Aωs) behavior. The dielectric constant ɛ'(ω) shows a weak frequency dispersion and small temperature dependence below 250 K for all ceramic samples. However, a strong temperature and frequency dependence on ɛ'(ω) was observed at higher temperature (>250 K). The temperature dependent ɛ'(ω) data show the existence of room temperature ferroelectricity in all prepared samples.

  9. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  10. Cubic interactions of Maxwell-like higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)

    2017-04-12

    We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.

  11. An Abel type cubic system

    Directory of Open Access Journals (Sweden)

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  12. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  13. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  14. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  15. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  16. Characterization of Pd catalyst-electrodes deposited on YSZ: Influence of the preparation technique and the presence of a ceria interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Borja, Carmen, E-mail: Carmen.JBorja@uclm.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad de Castilla-La Mancha. Avenida Camilo Jose Cela 12, 13071 Ciudad Real (Spain); Matei, Florina [Department of Petroleum Processing Engineering and Environmental Protection, Petroleum - Gas University of Ploiesti (Romania); Dorado, Fernando; Valverde, Jose Luis [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad de Castilla-La Mancha. Avenida Camilo Jose Cela 12, 13071 Ciudad Real (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Impregnation of palladium over YSZ led to more dispersed films. Black-Right-Pointing-Pointer XPS spectra indicated electron deficient Pd{sup 2+} species on the surface of palladium films. Black-Right-Pointing-Pointer Impregnated palladium films were more active than those prepared by paste deposition Black-Right-Pointing-Pointer The addition of a CeO{sub 2} interlayer enhanced the catalytic rate for the impregnated samples. - Abstract: Palladium catalyst-electrodes supported on Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) prepared either by paste deposition or wet impregnation technique were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found a strong dependence of the catalytic film preparation technique as well as of the presence of a ceria interlayer between the palladium film and the solid electrolyte on the catalytic activity towards methane oxidation. Impregnated palladium films were found to be more active than films prepared by paste deposition. Besides, the addition of ceria allowed stabilizing the palladium active phase for methane oxidation.

  17. Effect of binder concentration and blade gap on Yttria stabilized Zirconia tapes obtained by tape casting

    Energy Technology Data Exchange (ETDEWEB)

    Mena Garcia, J.; Reyes Rojas, A.; Rodriguez Gonzalez, C.A.; Hernandez Paz, J.; Garcia Casillas, P.E.; Enriquez Carrejo, J.L.; Camacho Montes, H.

    2016-07-01

    The tape casting method has kept its interest over the years due to the wide spectrum of its applications and its economic viability in comparison to other techniques focused on micrometric thin films. Two key parameters for tape casting are the binder relative amount and the Dr. Blade gap. The binder relative amount has a strong influence on the rheological properties for the ceramic YSZ slurry (ethanol, butanone, TEA, PVB, PEG, DEP). The coefficient K and the exponent m of the Cross model are reported to be inside the ranges 152.25-231.12 and 0.00987-0.26646 for PVB binder weight percentage concentrations between 6% and 12%. It is possible to describe the ceramic tape thickness dependence by means of a linear relation depending on the Dr. Blade gap whose linear coefficients (slope) are equal to 0.0350 and 0.2171 for green and sintered tapes respectively, with the YSZ slurry of the present work. (Author)

  18. SOFC anode reduction studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    The Solid Oxide Fuel Cell (SOFC) is a promising part of future energy approaches due to a relatively high energy conversion efficiency and low environmental pollution. SOFCs are typically composed of ceramic materials which are highly complex at the nanoscale. TEM is routinely applied ex situ...... for studying these nanoscale structures, but only few SOFC studies have applied in situ TEM to observe the ceramic nanostructures in a reactive gas environment at elevated temperatures. The present contribution focuses on the reduction of an SOFC anode which is a necessary process to form the catalytically...... active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure Ni...

  19. On Application of Non-cubic EoS to Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...

  20. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  1. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  2. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  3. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  4. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  5. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  6. Structural evolution and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.-D. [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); College of Chemistry, Northeast Normal University, Changchun 130024 (China); Lu, D.-Y., E-mail: cninjp11232000@yahoo.com [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Sun, X.-Y. [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2013-11-05

    Highlights: •Structural evolution and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} were studied. •A cubic ceramic with x = y = 0.05 exhibits a high-k Y5V behavior (ε{sub RT}{sup ′} = 6790). •The T{sub m} in BNTF with x = 0.05 decreased linearly at a rate of −5 °C/mol% Fe ions. •Evolution in the 840 cm{sup −1} Raman band gives evidence for Nd{sup 3+}–Fe{sup 3+} complex formation. •Defect chemistry associated with structure evolution is discussed. -- Abstract: The influence of donor and acceptor co-doping on structure and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} (BNTF) (x = 0.05, y = 0.01–0.07; and x = 0–0.08, y = 0.05) ceramics was investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), Raman spectroscopy, and dielectric measurements. When x < y, two types of Nd{sup 3+}–Fe{sup 3+} and Fe{sup 3+}–V{sub O}–Fe{sup 3+} defect complexes formed and could not coexist, leading to the mixed phases of cubic and hexagonal. A single-phase ceramic with a cubic or tetragonal structure formed for x ⩾ y and the dielectric-peak temperature (T{sub m}) in BNTF with x = 0.05 decreased linearly with increasing y at a rate of −5 °C/mol% Fe ions. A high-k Y5V behavior can be realized at x = y = 0.05 (i.e., C-N5F5). The same concentrations of Nd{sup 3+} and Fe{sup 3+} formed Nd{sup 3+}–Fe{sup 3+} complexes, which could effectively suppress the dielectric loss and silence the 840 cm{sup −1} band called “Raman charge effect” associated with Nd{sup 3+} donors. C-N5F5 exhibited a cubic structure, medium-sized grains (3.3 μm), low dielectric loss (<0.06), and high-k Y5V behavior (ε{sub RT}{sup ′} = 6790). Defect chemistry associated with structure evolution is discussed.

  7. Kinks in systems with cubic and quartic anharmonicity

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1988-01-01

    For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity

  8. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  9. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability

    Science.gov (United States)

    Pecho, Omar M.; Stenzel, Ole; Iwanschitz, Boris; Gasser, Philippe; Neumann, Matthias; Schmidt, Volker; Prestat, Michel; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 × M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers. PMID:28793523

  10. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability

    Directory of Open Access Journals (Sweden)

    Omar M. Pecho

    2015-08-01

    Full Text Available This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam-tomography and image analysis are used to quantify the effective (connected volume fraction (Φeff, constriction factor (β, and tortuosity (τ. The effective conductivity (σeff is described as the product of intrinsic conductivity (σ0 and the so-called microstructure-factor (M: σeff = σ0*M. Two different methods are used to evaluate the M-factor: (1 by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2 by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim. Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers.

  11. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  12. Determinación de las propiedades mecánicas y mecanismos de fractura de electrolitos soportados de YSZ y GDC mediante ensayos de indentación instrumentada

    Directory of Open Access Journals (Sweden)

    Segarra, M.

    2010-02-01

    Full Text Available The main purpose of this work is to evaluate the different mechanical properties and the different fracture mechanisms activated during the intrumented indentation process of the electrolytes based on yttria stabilized zirconia (YSZ and gadolinia doped ceria (GDC, for solid oxide fuel cells (SOFCs. Both materials, with a thickness of 200 μm, were shaped by uniaxial pressing at 500 MPa, and sintered at 1400ºC. Mechanical properties such as hardness (H and Young’s modulus (E have been studied at different penetration depths using the Oliver and Pharr equations. The different fracture mechanisms activated during the instrumented indentation process have been studied at constant penetration depth of 500 nm, performed with a diamond Berkovich tip indenter. The residual indentation imprints have been observed with atomic force microscopy (AFM. The hardness and Young’s modulus for YSZ electrolytes are higher than for GDC materials, due to the different fracture mechanism activated during the indentation process. As a result, the electrolytes of YSZ presented trans- and intergranular fracture mechanisms, depending on the place of the residual indentation imprint (in the grain boundary or in the middle of the grain, respectively. However, the GDC electrolyte revealed radical cracks at the corners of the residual nanoindentation imprints, thus producing a phenomenon known as chipping.

    El objetivo del presente trabajo es evaluar las propiedades mecánicas, así como los diferentes mecanismos de fractura activados mediante ensayos de indentación instrumentada, de electrolitos basados en circona estabilizada con itria (“yttria stabilized zirconia”,YSZ y ceria dopada con gadolinia (“gadolinia doped ceria”, GDC, para pilas de combustible de óxido sólido, SOFCs. Ambos materiales, con un espesor final de 200 μm, se conformaron mediante prensado uniaxial a 500 MPa y se sinterizaron a 1400ºC. Propiedades mecánicas tales

  13. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  14. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  15. Electrochemically Scavenging the Silica Impurities at the Ni-YSZ Triple Phase Boundary of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Tao, Youkun; Shao, Jing; Cheng, Shiyang

    2016-01-01

    Silica impurity originated from the sealing or raw materials of the solid oxide cells (SOCs) accumulating at the. Ni-YSZ triple phase boundaries (TPBs) is known as one major reason for electrode passivation. Here we report nanosilica precipitates inside Ni grains instead of blocking the TPBs when...... operating the SOCs at vertical bar i vertical bar >= 1.5 A cm-2 for electrolysis of H2O/CO2. An electrochemical scavenging mechanism was proposed to explain this unique behavior: the removal of silica proceeded through the reduction of the silica to Si under strong cathodic polarization, followed by bulk...

  16. Anomalies of the photo-response and thermal boundary resistance of a YBaCuO/YSZ structure

    International Nuclear Information System (INIS)

    Bonch-Osmolovskii, M.M.; Galkina, T.I.; Golovashkin, A.I.; Dovydenko, K.Yu.; Klokov, A.Yu.; Krasnosvobodtsev, S.I.; Oktyabrskii, S.R.; Romanov, E.G.

    1993-01-01

    The photoresponse of a YBaCuO/ZrO 2 bolometric structure was measured under modulated (λ = 630 nm) and pulsed (τ ∼ 7-8 ns; λ = 337 nm) laser excitation. The shape of the measured photoresponse was interpreted by a thermal model; nevertheless, the pulse amplitude for vanishing YBaCuO film resistance was 5-6 times greater than predicted; the thermal boundary resistance R Bd between YBaCuO and YSZ was evaluated ≅ 10 -2 K x cm 2 /Watt, which is considerably larger than estimated theoretically for the similar situation of YBaCuO/MgO. (orig.)

  17. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  18. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  19. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  20. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  1. Piezoelectric properties of lead-free submicron-structured (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics from nanopowders

    International Nuclear Information System (INIS)

    Pardo, Lorena; García, Alvaro; Brebøl, Klaus; Mercadelli, Elisa; Galassi, Carmen

    2010-01-01

    Submicron-structured (Bi 0.5 Na 0.5 ) 0.94 Ba 0.06 TiO 3 (BNBT6) ceramics were obtained from nanometric powder synthesized by sol–gel auto-combustion at 500 °C. Hot-pressing at low temperatures and a combination of this with recrystallization, still moderate in order to reduce the loss of volatile elements, have been tested. Material properties, including all losses, were determined at the resonances of thin discs using Alemany et al software. Ceramics hot-pressed at 700–800 °C for 2 h have a pseudo-cubic structure, a grain size of a few hundred nanometers and are homogeneous. Both their crystal structure and the lack of sintering prevent their poling. For ceramics hot-pressed at 950 °C for 3 h, Bi or Bi 0.5 Na 0.5 loss, together with low piezoelectric properties (d 33 = 60 pC N −1 , k p = 8.3% and k t = 9.5%), was observed. Recrystallization at 1000 °C-1 h of ceramics hot-pressed at 700 and 800 °C for 2 h keeps the submicron structure, reduces porosity and prevents off-stoichiometry. Mechanical and piezoelectric losses are also reduced and coupling factors increased (k p = 24.6%, k t = 36.4%). The best piezoelectric coefficient obtained in these ceramics (d 33 = 143 pC N −1 ) is comparable with those reported for coarse-grained ceramics

  2. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  3. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  4. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  5. Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in the ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    da Paz Fiuza, Raigenis; Aurelio da Silva, Marcos; Boaventura, Jaime Soares [Energy and Materials Science Group - GECIM, Institute of Chemistry, Physical Chemistry Department, Universidade Federal da Bahia, 41170290 Salvador, Bahia (Brazil)

    2010-10-15

    Electrocatalysts based on Fe-Ni alloys were prepared by means of modified Pechini and physical mixture methods and using on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia-Doped Ceria (GDC) as support. The former method was based on the formation a polymeric precursor that was subsequently calcined; the later method was based on the mixture of NiO and the support. The resulting composites had 35 wt.% metal load and 65 wt.% support (70 wt.% YSZ and 30 wt.% GDC mixture) (cermets). The samples were then characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in the ethanol steam reforming at 650 C for 6 h in the temperature range of 300-900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) with a spinel structure, which, after reduction in hydrogen, formed Ni-Fe alloys. The presence of Ni was observed to decrease the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of iron to the nickel anchored to YSZ-GDC increased the hydrogen production and inhibited carbon deposition. The resulting bimetallic 30Fe5Ni sample reached an ethanol conversion of about 95% and a hydrogen yield up to 48% at 750 C. In general, ethanol conversion and hydrogen production were independent of the metal content in the electrocatalyst. However, the substitution of nickel for iron significantly reduced carbon deposition on the electrocatalyst: 74, 31, and 9 wt.% in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (author)

  6. Interaction of dispersed cubic phases with blood components

    DEFF Research Database (Denmark)

    Bode, J C; Kuntsche, Judith; Funari, S S

    2013-01-01

    The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Part...... activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%....

  7. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Development and characterization of glass-ceramic sealants in the (CaO-Al2O3-SiO2-B2O3) system for Solid Oxide Electrolyzer Cells

    International Nuclear Information System (INIS)

    Khedim, Hichem; Nonnet, Helene; Mear, Francois O.

    2012-01-01

    The efficiency of glass-ceramic sealants plays a crucial role in Solid Oxide Electrolyzer Cell performance and durability. In order to develop suitable sealants, operating around 800 degrees C, two parent glass compositions, CAS1B and CAS2B, from the CaO-Al 2 O 3 -SiO 2 -B 2 O 3 system were prepared and explored. The thermal and physicochemical properties of the glass ceramics and their crystallization behavior were investigated by HSM. DTA and XRD analyses. The microstructure and chemical compositions of the crystalline phases were investigated by microprobe analysis. Bonding characteristic as well as chemical interactions of the parent glass with yttria-stabilized zirconia (YSZ) electrolyte and ferritic steel-based interconnect (Crofere (R)) were also investigated. The preliminary results revealed the superiority of CAS2B glass for sealing application in SOECs. The effect of minor additions of V 2 O 5 , K 2 O and TiO 2 on the thermal properties was also studied and again demonstrated the advantages of the CAS2B glass composition. Examining the influence of heat treatment on the seal behavior showed that the choice of the heating rate is a compromise between delaying the crystallization process and delaying the viscosity drop. The thermal Expansion Coefficients (TEC) obtained for the selected glass ceramic are within the desired range after the heat treatment of crystallization. The crystallization kinetic parameters of the selected glass composition were also determined under non-isothermal conditions by means of differential thermal analysis (DTA) and using the formal theory of transformations for heterogeneous nucleation. (authors)

  9. Elaboration of hybrid materials by templating with mineral liquid crystals stabilization of a mixed sol of YSZ nanoparticles and V2O5 ribbon-like colloids

    International Nuclear Information System (INIS)

    Guiot, C.

    2009-01-01

    The purpose of this PhD was to investigate innovative soft chemistry ways to prepare hybrid materials with ordered nano-structures. Concretely, research were conducted on the development of a hybrid material made of an yttria-stabilized zirconia (YSZ) matrix templated by a mineral liquid crystal, namely V 2 O 5 . In aqueous solutions, vanadium oxide exhibits ribbon-like colloids of typical dimensions 1 nm x 25 nm x 500 nm, stabilized by a strong negative surface charge. Above a critical concentration, the anisotropic colloids assemble into a nematic liquid crystal, whose domains can be oriented within the same direction over a macroscopic range under a weak magnetic field. The idea is to use V 2 O 5 anisotropic colloids as a template for a hybrid material, taking advantage of their ordering behavior. Preliminary experiments revealed a strong reactivity between molecular compounds of zirconium and vanadium oxide. Therefore, the studies were directed toward the preparation of a mixed colloidal sol containing YSZ nanoparticles and vanadium oxide ribbon-like colloids, as a precursor sol for the intended hybrid material. The YSZ nanoparticles are obtained through an outstanding hydrothermal synthesis leading to a stable suspension of nanocrystalline particles of ca. 5 nm, in pure water. Providing a mixed sol of YSZ and V 2 O 5 is a key challenge for it implies the co-stabilization of two types of colloids having different shape, size and surface properties. Besides, the existence of V 2 O 5 in its ribbon-like form requires acidic conditions and very low ionic strength. The first part of this work was then dedicated to the study of electro-steric stabilization of zirconia suspension by addition of acidic poly-electrolytes. Different polymers with carboxylic and/or sulfonic acidic functions were investigated. Based on zeta potential measurements and adsorption isotherms, the influence of molecular weight and polymer charge were discussed. Among the studied polymers, poly

  10. Microstructure degradation of LSM-YSZ cathode in SOFCs operated at various conditions

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Thydén, Karl Tor Sune; Chen, Ming

    2012-01-01

    Systematic microstructural analyses have been carried out on a series of technological SOFCs that went through long-term cell tests with various operating parameters including temperature, current load and time length under current. For the LSM-YSZ cathode, a number of microstructure degradation...... mechanisms have been identified. And it has been observed that different mechanisms dominate the degradation process under different test conditions. The severe cathode degradation at 750 °C operation with high current density is attributed to a loss of the cathode/electrolyte interface stability....... For the cells tested at 850 °C, the interface stability is maintained due to further sintering during cell operation. A cell test lasting for 2 years (17500 h) at 850 °C with a moderate current density (not greater than 1 A/cm2) has shown that the cathode microstructure is fairly robust to the degradation...

  11. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  12. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  13. Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs

    Science.gov (United States)

    Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.

    2018-04-01

    A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.

  14. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  15. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  16. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  17. d and f electrons in a qp-quantized cubical field

    International Nuclear Information System (INIS)

    Kibler, M.; Sztucki, J.

    1993-03-01

    A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs

  18. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  19. Growth of cubic InN on r-plane sapphire

    International Nuclear Information System (INIS)

    Cimalla, V.; Pezoldt, J.; Ecke, G.; Kosiba, R.; Ambacher, O.; Spiess, L.; Teichert, G.; Lu, H.; Schaff, W.J.

    2003-01-01

    InN has been grown directly on r-plane sapphire substrates by plasma-enhanced molecular-beam epitaxy. X-ray diffraction investigations have shown that the InN layers consist of a predominant zinc blende (cubic) structure along with a fraction of the wurtzite (hexagonal) phase which content increases with proceeding growth. The lattice constant for zinc blende InN was found to be a=4.986 A. For this unusual growth of a metastable cubic phase on a noncubic substrate an epitaxial relationship was proposed where the metastable zinc blende phase grows directly on the r-plane sapphire while the wurtzite phase arises as the special case of twinning in the cubic structure

  20. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

    Science.gov (United States)

    Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O

    2013-08-28

    We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.

  1. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  2. Novel Sr{sub 2}LuF{sub 7}–SiO{sub 2} nano-glass-ceramics: Structure and up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, A.C.; Castillo, J. del, E-mail: fjvargas@ull.edu.es; Luis, D.; Puentes, J.

    2016-02-15

    Novel transparent nano-glass-ceramics comprising RE-doped Sr{sub 2}LuF{sub 7} nanocrystals have been obtained by thermal treatment of precursor sol–gel glasses. The precipitated Sr{sub 2}LuF{sub 7} nanocrystals with sizes from 4.5 to 11.5 nm, confirmed by X-Ray Diffraction and Transmission Electron Microscopy images, show a cubic phase structure. The luminescent features of Eu{sup 3+} ions, used as structural probes, evidence the distribution of RE ions into the fluoride nanocrystals. Under 980 nm laser excitation, intense UV, vis and NIR up-conversion emissions were observed and studied in Yb{sup 3+}–Tm{sup 3+}, Yb{sup 3+}–Er{sup 3+} and Yb{sup 3+}–Ho{sup 3+} co-doped nano-glass-ceramics. These results suggest considering these nano-glass-ceramics for potential optical applications as high efficient UV up-conversion materials in UV solid state lasers, infrared tuneable phosphors and photonic integrated devices. - Highlights: • Novel sol-gel glass-ceramics with RE{sup 3+}-Sr{sub 2}LuF{sub 7} doped nanocrystals were obtained. • Eu{sup 3+} probe ion was used to distinguish between amorphous and crystalline environments. • The incorporation of an important fraction of RE ions into nanocrystals was confirmed. • Under 980 nm excitation, intense UV-vis-NIR up-conversion emissions were observed.

  3. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  4. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  5. Minimal knotted polygons in cubic lattices

    International Nuclear Information System (INIS)

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  6. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  7. Processing of strontium-doped lanthanum manganite suspensions for cathode production of the solid oxide fuel cell; Processamento das suspensoes de manganito de lantanio dopado com estroncio para fabricacao do catodo da celula a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2008-07-01

    The ceramic material, strontium-doped lanthanum manganite (La{sub 0,85}Sr{sub 0,15}MnO{sub 3} - LSM), has been used as cathode in Solid Oxide Fuel Cells (SOFCs). The cathode attainment as component of the SOFCs has been studied for diverse routes of synthesis and thin films forming in Yttria-stabilized zirconia (ZrO{sub 2}/Y{sub 2}O{sub 3} - YSZ) electrolyte. In this work, the LSM was synthesized by the citrate technique and deposited in YSZ substrate using the forming technique wet powder spraying. Rheological studies of suspensions and chemical, physical and microstructural characterizations of LSM powders were made, aiming at the deposition for thin films formation until 50 mum. The half unit cells LSM/YSZ sintered were characterized by scanning electron microscopy, for verification of porosity and adherence. In this sense, this work is a contribution for production of porous cathode using the forming technique wet powder spraying in the SOFCs. (author)

  8. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  9. A Preliminary Study on WO3‐Infiltrated W–Cu–ScYSZ Anodes for Low Temperature Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Reddy Sudireddy, Bhaskar; Høgh, Jens Valdemar Thorvald

    2012-01-01

    of symmetric cells were prepared by screen printing of WO3–CuO–ScYSZ ink and subsequent sintering at 1,300 °C for 1 h in 9% H2/N2. Analysis of the sintered backbone by X‐ray diffraction showed the metallic W and Cu phases. Precursor solutions of WO3 or CuO were infiltrated into porous WCS backbones to form...

  10. Cubic Pencils and Painlev\\'e Hamiltonians

    OpenAIRE

    Kajiwara, Kenji; Masuda, Tetsu; Noumi, Masatoshi; Ohta, Yasuhiro; Yamada, Yasuhiko

    2004-01-01

    We present a simple heuristic method to derive the Painlev\\'e differential equations from the corresponding geometry of rational surafces. We also give a direct relationship between the cubic pencils and Seiberg-Witten curves.

  11. Thermotropic phase transitions in Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} ceramics: Temperature dependent dielectric permittivity and Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. Q.; Peng, L.; Jiang, K.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Wang, P.; Liu, A. Y. [Department of Physics, Shanghai Normal University, Shanghai 200234 (China)

    2015-06-15

    The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′ softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.

  12. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  13. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  14. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  15. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    Science.gov (United States)

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of

  16. Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Vidhi [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Ghosh, S.K., E-mail: saritghosh@gmail.com [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Hussain, Ali [School of Advanced Materials Engineering, Changwon National University, Gyeong-Nam, 641-773 (Korea, Republic of); Rout, S.K., E-mail: skrout@bitmesra.ac.in [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India)

    2016-07-25

    Lead free niobium modified piezoelectric ceramics Bi{sub 0.5}Na{sub 0.25}K{sub 0.25}Nb{sub x}Ti{sub 1-x}O{sub 3} (BNKT) (x = 0.0, 0.015 and 0.025) compositions along with their structural and opto-electrical properties are investigated. At room temperature Rietveld refinement analysis on x-ray diffraction data revealed the evidence of tetragonal (P4mm) + cubic (Pm3m) mixed phases at 0.015Nb-BNKT composition and at higher niobium concentration it moves towards cubic phase. Presence of local disorder controls the Raman active vibrational modes along with excitation and emission spectra in these materials. The temperature dependence dielectric constant is investigated in the frequency range of 1 kHz–100 kHz. The broadening of dielectric peak and frequency dependence behavior indicated a relaxor property in these materials. Induced A-site vacancies and coexistence of tetragonal-pseudocubic phases lower the depolarization temperature (T{sub d}) with niobium concentration. The structural mix phases have been correlated with the piezoelectric coefficients and the composition x = 0.015 depicts the better piezoelectric properties amongst the studied compositions which is endorsed to the mixed symmetry of tetragonal and cubic phases. - Highlights: • Coexistence of polar and non-polar phases in Nb doped BNKT materials. • Structural instability and lattice disorder controls the opto-electrical properties. • Broadening and shifting of dielectric peaks highlighted the relaxor behavior. • High value of ferroelectric and piezoelectric coefficients at x = 0.015 composition.

  17. The Combinatorial Rigidity Conjecture is False for Cubic Polynomials

    DEFF Research Database (Denmark)

    Henriksen, Christian

    2003-01-01

    We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....

  18. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    Science.gov (United States)

    2012-01-01

    4140-steel [29] as well as composites such as Al/Al2O3 [30] and Ni– YSZ cermets [27]. The RUS apparatus used in this study consists of a computer...Microstructure and lattice parameter of LLZO specimens In this study , the LLZO microstructure was observed on a (i) fracture surface of LLZO-01 (Fig. 1a) and... study are consistent with the trend (Eq. 2) of a power law decrease in mechanical properties with increasing lattice parameter observed for other garnet

  19. Generalized Born-Infeld actions and projective cubic curves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Porrati, M. [CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY, 10003 (United States); Sagnotti, A. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Stora, R. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTH), F-74941, Annecy-le-Vieux, Cedex (France); Yeranyan, A. [INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, 00184, Roma (Italy)

    2015-04-01

    We investigate U(1){sup n} supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. In situ synchrotron X-ray diffraction of ferroelastic La0.8Ca0.2CoO3 ceramics during uniaxial compression

    International Nuclear Information System (INIS)

    Vullum, Per Erik; Mastin, Johann; Wright, Jonathan; Einarsrud, Mari-Ann; Holmestad, Randi; Grande, Tor

    2006-01-01

    Uniaxial compression of rhombohedral La 0.8 Ca 0.2 CoO 3 ceramics has been studied in situ using synchrotron X-ray diffraction. The intensities of Bragg reflections parallel and perpendicular to the stress field were simultaneously detected as a function of the stress. Reorientation of ferroelastic domains due to the uniaxial stress was demonstrated. With increasing stress the volume fraction of domains with the hexagonal c-axis parallel to the stress axis increased at the expense of domains with the c-axis perpendicular to the stress axis. The strain in the polycrystalline materials evolved unevenly with increasing stress due to crystallographic anisotropy. In energetically favourable domains with the c-axis parallel to the stress axis, the rhombohedral distortion from cubic symmetry increased, while the crystal structure became closer to cubic in domains with the c-axis perpendicular to the stress. Successive compression/decompression cycles to higher maximum stress resulted in a higher volume fraction of reoriented domains both at maximum stress and after decompression

  1. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  2. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  3. Zirconia UV-curable colloids for additive manufacturing via hybrid inkjet printing-stereolithography

    DEFF Research Database (Denmark)

    Rosa, Massimo; Barou, C.; Esposito, Vincenzo

    2018-01-01

    Currently, additive manufacturing of ceramics by stereolithography (SLA) is limited to single materials and by a poor thickness resolution that strongly depends on the ceramic particles-UV light interaction. Combining selective laser curing with inkjet printing represents a novel strategy...... to overcome these constrains. Nonetheless, this approach requires UV-curable inks that allow hardening of the printed material and sintering to high density. In this work, we report how to design an ink for inkjet printing of yttria stabilized zirconia (YSZ) which can be impressed by addition of UV...

  4. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  5. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  6. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  7. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  8. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  9. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  10. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  11. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  12. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  13. Some elements go cubic under pressure

    Czech Academy of Sciences Publication Activity Database

    Legut, Dominik

    2007-01-01

    Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007

  14. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  15. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  16. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  17. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  18. Trace spaces in a pre-cubical complex

    DEFF Research Database (Denmark)

    Raussen, Martin

    2009-01-01

    In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths...... are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex...... are separable metric spaces which are locally contractible and locally compact. Moreover, they have the homotopy type of a CW-complex....

  19. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  20. Deconvolution of X-ray diffraction profiles using series expansion: a line-broadening study of polycrystalline 9-YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Bajo, F. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Ortiz, A.L.; Cumbrera, F.L. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica

    2001-07-01

    Deconvolution of X-ray diffraction profiles is a fundamental step in obtaining reliable results in the microstructural characterization (crystallite size, lattice microstrain, etc) of polycrystalline materials. In this work we have analyzed a powder sample of 9-YSZ using a technique based on the Fourier series expansion of the pure profile. This procedure, which can be combined with regularization methods, is specially powerful to minimize the effects of the ill-posed nature of the linear integral equation involved in the kinematical theory of X-ray diffraction. Finally, the deconvoluted profiles have been used to obtain microstructural parameters by means of the integral-breadth method. (orig.)

  1. Facile synthesis and characterization of NiO-SnO2 ceramic nanocomposite and its unique performance in organic pollutants degradation

    Science.gov (United States)

    Nejati Moghadam, Laya; Salavati-Niasari, Masoud

    2017-10-01

    The ceramic nanocomposite of NiO-SnO2 has been known as a professional gas sensor in many fields. In this work, this nanocomposite was prepared with a simple in-situ method successfully. NiO-SnO2 was characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The obtained NiO-SnO2 is crystalline with a cubic structure. The photoluminescence measurement reveals one emission peak at about 3.18 eV at room temperature. In addition, this compound shows a good performance in degradation of organic dyes in a photo-catalytically reaction.

  2. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  3. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  4. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, M. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Prabhakar Rao, P., E-mail: padala_rao@yahoo.com [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India)

    2009-07-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce{sup 3+}, which remains in the reduced state without being oxidized to Ce{sup 4+} by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  5. Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang Jingji; Zhai Jiwei; Chou Xiujian; Yao Xi

    2008-01-01

    Ba 0.6 Sr 0.4 TiO 3 (BST) ceramics with 0.5 mol% various trivalent rare-earth additions prepared by a solid-state route are investigated. A strong correlation is observed between the microstructure, dielectric properties and rare-earth element dopant. The results display that comparing with the lattice constants of undoped and doped rare-earth BST, the structure transforms from cubic to tetragonal structure. In addition, the dopant improves the tetragonal distortion with the ionic radius of rare earth decreasing, and then deteriorates it with further decreasing. Large ions rare-earth additions effectively suppress the grain growth of BST. It is found that the temperature-permittivity characteristics for the BSTR (R, namely, rare earth) system could be controlled using various rare-earth elements. Especially, such as Sm, Eu, Gd dopants are effective to satisfy the tunable microwave devices application due to the decrease of permittivity and the improvement of dissipation factors of BST ceramic with the accompanying high-tunability

  6. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  7. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  8. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  9. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    Science.gov (United States)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  10. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  11. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  12. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  13. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  14. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  16. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  17. Regularizing cubic open Neveu-Schwarz string field theory

    International Nuclear Information System (INIS)

    Berkovits, Nathan; Siegel, Warren

    2009-01-01

    After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.

  18. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  19. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  1. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  2. Excimer pulsed laser deposition and annealing of YSZ nanometric films on Si substrates

    International Nuclear Information System (INIS)

    Caricato, A.P.; Barucca, G.; Di Cristoforo, A.; Leggieri, G.; Luches, A.; Majni, G.; Martino, M.; Mengucci, P.

    2005-01-01

    We report experimental results obtained for electrical and structural characteristics of yttria-stabilised zirconia (YSZ) thin films deposited by pulsed laser deposition (PLD) on Si substrates at room temperature. Some samples were submitted to thermal treatments in different ambient atmospheres (vacuum, N 2 and O 2 ) at a moderate temperature. The effects of thermal treatments on the film electrical properties were studied by C-V and I-V measurements. Structural characteristics were obtained by X-ray diffraction (XRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) analyses. The as-deposited film was amorphous with an in-depth non-uniform density. The annealed films became polycrystalline with a more uniform density. The sample annealed in O 2 was uniform over all the thickness. Electrical characterisation showed large hysteresis, high leakage current and positive charges trapped in the oxide in the as-deposited film. Post-deposition annealing, especially in O 2 atmosphere, improved considerably the electrical properties of the films

  3. Numbers for reducible cubic scrolls

    Directory of Open Access Journals (Sweden)

    Israel Vainsencher

    2004-12-01

    Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.

  4. Performance evaluation of a fuel cell with NiO-YSV anode operating with natural gas; Avaliacao do desempenho de uma celula a combustivel com anodo de NiO YSZ operando com gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Vasconcelos, Carmel Suzarte Ayres; Lima, Luiz Rogerio Pinho de Andrade [Universidade Federal da Bahia (UFBa), Salvador, BA (Brazil). Escola Politecnica. Dept. de Ciencia e Tecnologia dos Materiais]. E-mail: shayennedn@yahoo.com.br

    2008-07-01

    Fuel cell is an electrochemical device that converts the chemical energy into electric energy. The natural gas, for its proven improvement in the income of the equipment in relation to other energy ones, has been very used to feed the solid oxide fuel cell (SOFC) in the generation of electric power. Ceramics of Yttria-stabilized zirconia had been used as electrolyte and when supported with nickel oxide they act as anode in the solid oxide fuel cell, due to raised ionic conductivity that these materials present in high temperatures, while lanthanum with strontium and manganite are used as cathode. In the composition of the anode, the concentration of Ni O, acting as catalytic in the YSZ confers high electric conductivity and high electrochemical activity of the reactions, providing the internal reform in the SOFC. In this work, the solid oxide fuel cell, formed by Yttria- stabilized zirconia, nickel oxide, and lanthanum with strontium and manganite were tested in the reform had been prepared samples of electrode/electrolyte for use in SOFC of the natural gas in the presence of low water text, similar condition to the operation of the SOFC, operating in temperatures range from 700 to 800 deg C. This cell also was characterized using the impedance spectroscopy technique. These results allowed the development of components of the current versus voltage. (author)

  5. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  6. Conductivity and structure of sub-micrometric SrTiO3-YSZ composites

    DEFF Research Database (Denmark)

    Ruiz Trejo, Enrique; Thydén, Karl Tor Sune; Bonanos, Nikolaos

    2016-01-01

    Sub-micrometric composites of SrTiO3-YSZ (1:1 volume) and samples of SrTiO3 were prepared by high temperature consolidation of precursors obtained by precipitation with NaOH. The structure development and morphology of the precursors were studied by XRD and SEM. The perovskite and fluorite phases...... in the composites are clearly formed at 600°C with no signs of reaction up to 1100°C; the nominally pure SrTiO3 can be formed at temperatures as low as 400°C. Composites with sub-micrometric grain sizes can be prepared successfully without reaction between the components, although a change in the cell parameter...... of the SrTiO3 is attributed to the presence of Na. The consolidated composites were studied by impedance spectroscopy between 200 and 400°C and at a fixed temperature of 600°C with a scan in the partial pressure of oxygen. The composites did not exhibit high levels of ionic conductivity in the grain...

  7. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry; Utilizacao de ceramica para encapsulamento de sensores de temperatura na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A., E-mail: rebeka.oliveira@yahoo.com.br, E-mail: yadava@ufpe.br, E-mail: ricardo.sanguinetti@pq.cnpq.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca{sub 2}AlZrO{sub 5,5} cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  8. Fabrication, phase, microstructure and electrical properties of BNT-doped (Sr,La)TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Eaksuwanchai, Preeyakarn; Promsawat, Methee; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha [Chiang Mai University, Chiang Mai (Thailand)

    2014-08-15

    This research studied the effects of Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) doping on the phase, density, microstructure and electrical properties of (Sr,La)TiO{sub 3} (SLTO) ceramics. Separately calcined SLTO and BNT powders were mixed together to form (1-x)SLTO-xBNT (where x = 0, 0.01, 0.03, 0.05 and 0.07 mol fraction) compounds that were pressed into pellets and then sintered at 1500 .deg. C for 3 h under ambient atmosphere. The relative bulk densities of all the ceramics were greater than 95% their theoretical values which were confirmed by their nearly zero-porosity microstructure. X-ray diffraction patterns indicated complete solid solutions with a cubic structure and a slight lattice contraction when BNT was added. The electrical conductivity was found to decrease with BNT addition, suggesting a reduced number of mobile charges. The dielectric constant also showed limited polarization due to defect dipoles formed by aliovalent ionic substitution of BNT. Further optimization in terms of composition and defect chemistry could lead to a compound suitable for thermoelectric applications.

  9. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  10. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  11. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  12. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  13. MOCVD coating deposition of yttrium stabilized zirconia as backing for high-temperature superconductors on flexible substrates

    International Nuclear Information System (INIS)

    Jakschik, F.; Berger, W.; Seifert, L.; Nowick, W.; Leonhardt, G.

    1993-01-01

    The coating of carbon fibers with YSZ by means of the presented MOCVD process showed that in the bundle at temperatures between 500 - 600 C the coating thickness drops toward the center of the bundle. Sufficient homogeneity can be achieved only when the precipitation rate is selected slow enough to prevent the bundle edge from closing, or when the bundle is spread sufficiently open. The layers are on one hand ZrO 2 with incorporated carbon and on the other hand yttrium stabilized ZrO 2 with incorporated carbon. In both cases exclusively the cubic phase of the oxide was detected. The morphology of layers revealed only slight roughness with incorporation of relatively large nodules consisting of YSZ, caused by homogeneous gas phase reactions which are to be prevented. (orig.) [de

  14. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  15. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  16. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Kern, C D; Long, P E

    1979-01-01

    Two methods that can be used to solve complex, three-dimensional, advection-diffusion transport equations are investigated. A quasi-Lagrangian cubic spline method and a chapeau function method are compared in advecting a passive scalar. The methods are simple to use, computationally fast, and reasonably accurate. Little numerical dissipation is manifested by the schemes. In simple advection tests with equal mesh spacing, the chapeau function method maintains slightly more accurate peak values than the cubic spline method. In tests with unequal mesh spacing, the cubic spline method has less noise, but slightly more damping than the standard chapeau method has. Both cubic splines and chapeau functions can be used to solve the three-dimensional problem of gaseous emissions dispersion without excessive programing complexity or storage requirements. (10 diagrams, 39 references, 2 tables)

  17. Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Zhong Lin

    2015-01-01

    A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...

  18. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    International Nuclear Information System (INIS)

    Apriany, Karima; Permadani, Ita; Rahmawati, Fitria; Syarif, Dani G.; Soepriyanto, Syoni

    2016-01-01

    In this research, zirconium dioxide, ZrO 2 , was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO 2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10 -3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity. (paper)

  19. Influence of solvent on the morphology and microstructure of YSZ films obtained by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Falcade, T.; Oliveira, G.B.; Mueller, I.L.; Malfatti, C.F.

    2010-01-01

    This work aims to investigate the influence of solvent used for the deposition of thin films of yttria stabilized zirconia (YSZ) on porous substrate. The films were obtained directly on the porous LSM substrate by spray pyrolysis technique, which consists of spraying a precursor solution containing salts of zirconium (Zr (C 6 H 7 O 2 ) 4) and yttrium (YCl 3 .6H 2 O), dissolved in specific solvents, on the heated substrate. The use of solvents with different boiling points and viscosity aims the optimization of experimental operating parameters to obtain homogeneous and dense films suitable for application as electrolyte in fuel cells, solid oxide (SOFC). The films were characterized by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. (author)

  20. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis