WorldWideScience

Sample records for cu isotope fractionation

  1. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  2. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Liu, Sheng-Ao; Symons, David T. A.; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun

    2017-08-01

    Although it has been recently demonstrated that Cu isotope fractionation during mantle melting and basaltic magma differentiation is limited, the behavior of Cu isotopes during magmatic differentiation involving significant sulfide segregation remains unclear. Magmatic Ni-Cu deposits, which formed via sulfide segregation from basaltic or picritic magmas, are appropriate targets to address this issue. Here we report Cu isotope data for sulfides (chalcopyrite) from the Tulaergen Ni-Cu sulfide deposit in Xinjiang, NW China. Sulfides, including sparsely disseminated (hosted by hornblende gabbro), moderately disseminated (hosted by hornblende olivine websterite), densely disseminated (hosted by hornblende lherzolite) and massive sulfides (sandwiched between country rocks and mafic-ultramafic rocks), were collected from adits at 1050 m, 1100 m and 1150 m levels. The sparsely and moderately disseminated sulfides on 1150 m and 1050 m levels have a restricted range of δ65Cu values from - 0.38‰ to 0.15‰, whereas disseminated and massive sulfides on 1100 m level have δ65Cu values ranging widely from - 1.98‰ to - 0.04‰ and from - 1.08‰ to - 0.52‰, respectively. The δ65Cu values of disseminated sulfides are negatively correlated with whole-rock S and Cu concentrations, and sulfides formed at later stages have heavier δ65Cu values. These observations suggest significant Cu isotope fractionation during sulfide-magma differentiation above 600 °C. During the formation of the Tulaergen magmatic Ni-Cu deposit, sulfide segregation and crystallization of olivine and pyroxene caused the increase of Fe3 + contents in the residual magmas, which would move the redox reaction Cu+ + Fe3 + = Fe2 + + Cu2 + toward larger amounts of Cu2 + in the melt. The presence of Cu2 + in melt allowed redox transformation to happen during sulfide segregation. The residual magmas are enriched in heavy Cu isotopes due to the removal of 65Cu-depleted sulfides, and sulfides formed at later

  3. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  4. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Science.gov (United States)

    Balistrieri, Laurie S.; Borrok, David M.; Wanty, Richard B.; Ridley, W. Ian

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are -0.73 ± 0.08‰ for Cu and -0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  5. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Science.gov (United States)

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  6. Copper isotope fractionation by desert shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, Jesica U., E-mail: jnavarrete2@miners.utep.edu [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States); Viveros, Marian; Ellzey, Joanne T. [University of Texas at El Paso, Department of Biological Sciences, El Paso, TX 79968 (United States); Borrok, David M. [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States)

    2011-06-15

    Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes.

  7. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation.

    Science.gov (United States)

    Balter, Vincent; Lamboux, Aline; Zazzo, Antoine; Télouk, Philippe; Leverrier, Yann; Marvel, Jacqueline; Moloney, Aidan P; Monahan, Frank J; Schmidt, Olaf; Albarède, Francis

    2013-11-01

    We report Cu, Fe, and Zn natural isotope compositions in organs, body fluids, diets and feces of mice and sheep. Large and systematic isotope variability is observed, notably in the δ(66)Zn in liver and δ(65)Cu in kidneys, but significant differences exist between mice, sheep and humans, especially in the δ(66)Zn value of blood. The results are interpreted with reference to current knowledge of metal trafficking and redox conditions in cells. In general, the light isotopes preferentially fractionate into 'softer' bonds involving sulfur such as cysteine and glutathione, whereas heavy isotopes fractionate into 'harder' bonds involving nitrogen (histidine) and even more oxygen, notably hydroxides, phosphates, and carbonates. Bonds involving the reduced forms Cu(+) and Fe(2+) are enriched in the light isotopes relative to bonds involving the oxidized Cu(2+) and Fe(3+) forms. Differences in blood Zn isotope abundances between mice, sheep and humans may reflect a different prevalence of Zn ZIP transporters. The isotopically heavy Cu in the kidneys may reflect isotope fractionation during redox processes and may be relevant to ascorbate degradation into oxalate.

  8. The role of bacterial consortium and organic amendment in Cu and Fe isotope fractionation in plants on a polluted mine site.

    Science.gov (United States)

    Pérez Rodríguez, Nathalie; Langella, Francesca; Rodushkin, Ilia; Engström, Emma; Kothe, Erika; Alakangas, Lena; Öhlander, Björn

    2014-01-01

    Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99 ‰ for the δ(65)Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in (65)Cu compared to the soil. As a result of the same trial, the δ(56)Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal-organic complexation and weathering can modify particular isotopic signatures.

  9. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Blichert-Toft, Janne; Albarède, Francis

    2014-09-01

    This paper reports the values of reduced partition function ratios (as 1000 ln β) for Fe, Ni, Cu, and Zn bound to a number of inorganic and organic ligands. We used Density Functional Techniques to update the existing data and calculate ln β for new ligands. This work allows for the mass-dependent isotope fractionation to be predicted for various inorganic (hydrated cation, hydroxide, chloride, sulfate, sulfide, phosphate) and organic (citrate, amino acid) complexes of Fe, Ni, Cu, and Zn. Isotope fractionation among coexisting complexes of these metals was evaluated from the ln β values in a variety of geochemical and biological environments. The results provide a framework for interpretation of isotope fractionation observed in seawater and chemical sediments, in the roots and aerial parts of plants, and among the organs and body fluids of mammals.

  10. Fe and Cu isotope fractionation between chalcopyrite and dissolved metal species during hydrothermal recrystallization: An experimental study at 350°C and 500 bars

    Science.gov (United States)

    Syverson, D. D.; Luhmann, A. J.; Tan, C.; Borrok, D. M.; Ding, K.; Seyfried, W. E., Jr.

    2015-12-01

    The equilibrium Fe and Cu isotope fractionation factor between chalcopyrite and dissolved metal species was determined under hydrothermal conditions at 350°C and 500 bars. The experiments took advantage of gold-cell reaction technology, allowing time-series sampling of solution during the hydrothermal recrystallization of chalcopyrite over 3000 hours. One of the recrystallization experiments utilized an anomalous 57Fe spike in solution to quantify the degree and rate of isotopic exchange towards equilibrium between mineral and fluid reservoirs. The time-series 57Fe spike data suggests that chalcopyrite exchanges rapidly with dissolved Fe and Cu in solution and the isotopic fractionation between each metal-bearing reservoir throughout reaction progress, upon dissolution and recrystallization, represents close to equilibrium conditions. The isotope data indicate that the equilibrium fractionation between chalcopyrite and dissolved Fe and Cu at 350°C, Δ56FeCpy-Fe(aq), is 0.129±0.171‰ and Δ65CuCpy-Fe(aq), is -0.201±0.341‰ (2σ), and are in good agreement with recent theoretical equilibrium predictions. Comparison of the experimental data from this study with conjugate chalcopyrite and dissolved Fe and Cu pairs from a variety of hydrothermal systems along the mid-ocean ridge system indicates that chalcopyrite precipitates and recrystallizes at isotopic equilibrium with the fluid during cooling upon ascent to the seafloor. The rapid exchange between the mineral and fluid metal-reservoirs suggests that chalcopyrite effectively records the isotopic composition of the coexisting hydrothermal fluid during the evolution of hydrothermal systems. In addition, the pyrite-chalcopyrite equilibrium Fe isotope fractionation, Δ56FePyr-Cpy, at 350°C is quantified by combination of pyrite-Fe2+(aq) equilibrium fractionation data from Syverson et al., [2013] with chalcopyrite-Fe2+(aq) from this study, resulting in a fractionation of 0.861±0.337‰ (2σ). The empirical

  11. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  12. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  13. Study of micronutrients cycling in boreal forest of Central Siberia on continuous permafrost using Copper (Cu) and zinc (Zn) isotope fractionation

    Science.gov (United States)

    Viers, Jérôme; Prokushkin, Anatoly; Pokrovsky, Oleg; Kirdyanov, Anatoly; Chabaux, François; Oliva, Priscia

    2010-05-01

    Boreal forests mainly located between the latitudes 46°N and 72°N play a key role in regulating the global carbon cycle and climate of the Earth. These forests store about 140 gigatons of carbon (Gt C) in above ground biomass and 180 Gt C in soil organic matter that represents about 25% and 12% of the global amounts (Tarnocai et al., 2009). Within the context of global warming, forested permafrost regions appear to be very sensitive and are likely to be deeply modified in the near future due to the increase of soil temperature and the active layer thickness, as well as the northward shift of the vegetation. Before the quantitative modelling of the evolution of these ecosystems face to the climate change and their reciprocal influence on the whole Earth system become available, we have to constrain the main processes and parameters that control elements transfer between and within mineral and organic reservoirs in order to calculate the associated element fluxes. Indeed, the hydro- and biogeochemical functioning of these boreal environments is still poorly understood. This study will present new results on two important metal micro-nutrient and toxicants (Cu and Zn) concentrations in soil and plants and Zn and Cu isotopes fractionation data we acquired within the pilot site of Tura (Central Siberia, Yenissey basin). This pilot site is located in the drainage area of Nizhnaya Tunguska River, the largest tributary of the Yenissey River, on continuous permafrost of 100 to 300 m thickness. This watershed is located in the field of Central Siberia basalts ages 248+/-20 millions years. The landscape morphology presents north-facing slopes and south facing slopes separated by riparian zones. These environments exhibit peculiarities in terms of hydrological regime, active soil depth, that is, seasonal thawing permafrost depth, nutrients availability, total biomass and plants community distribution (Prokushkin et al., 2007). This region is dominated by deciduous Dahurian

  14. Natural fractionation of uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Noordmann, Janine

    2015-01-24

    The topic of this thesis was the investigation of U (n({sup 238}U) / n({sup 235}U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n({sup 238}U) and n({sup 235}U), on Earth.

  15. Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms.

    Science.gov (United States)

    Ryan, Brooke M; Kirby, Jason K; Degryse, Fien; Harris, Hugh; McLaughlin, Mike J; Scheiderich, Kathleen

    2013-07-01

    The fractionation of stable copper (Cu) isotopes during uptake into plant roots and translocation to shoots can provide information on Cu acquisition mechanisms. Isotope fractionation ((65) Cu/(63) Cu) and intact tissue speciation techniques (X-ray absorption spectroscopy, XAS) were used to examine the uptake, translocation and speciation of Cu in strategy I (tomato-Solanum lycopersicum) and strategy II (oat-Avena sativa) plant species. Plants were grown in controlled solution cultures, under varied iron (Fe) conditions, to test whether the stimulation of Fe-acquiring mechanisms can affect Cu uptake in plants. Isotopically light Cu was preferentially incorporated into tomatoes (Δ(65) Cu(whole plant-solution ) = c. -1‰), whereas oats showed minimal isotopic fractionation, with no effect of Fe supply in either species. The heavier isotope was preferentially translocated to shoots in tomato, whereas oat plants showed no significant fractionation during translocation. The majority of Cu in the roots and leaves of both species existed as sulfur-coordinated Cu(I) species resembling glutathione/cysteine-rich proteins. The presence of isotopically light Cu in tomatoes is attributed to a reductive uptake mechanism, and the isotopic shifts within various tissues are attributed to redox cycling during translocation. The lack of isotopic discrimination in oat plants suggests that Cu uptake and translocation are not redox selective.

  16. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël, E-mail: imfeld@unistra.fr

    2016-07-01

    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ{sup 65}Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (− 0.12 to 0.24‰ ± 0.08‰). The values were in the range of those of the fungicides (− 0.21 to 0.11‰) and included the geogenic δ{sup 65}Cu value of the untreated soil (0.08‰). However, δ{sup 65}Cu values significantly differed between particle-size soil fractions (− 0.37 ± 0.10‰ in fine clays and 0.23 ± 0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20{sup th} July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ{sup 65}Cu values from 0.52 to 1.35‰ in the dissolved phase (< 0.45 μm) compared to − 0.34 to − 0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments. - Highlights: • We investigated Cu sorption processes in vineyard soils and runoff transport. • Cu export by runoff from the catchment accounted for 1% of the applied Cu mass. • δ{sup 65}Cu values differed between the particle-size soil

  17. Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment

    Science.gov (United States)

    Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.

    2001-12-01

    Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments

  18. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Zhuhong Wang

    2017-05-01

    Full Text Available Copper (Cu is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰ in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals behaviors in the environment and biological systems.

  19. Silicon isotope fractionation during magmatic differentiation

    Science.gov (United States)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Burton, Kevin W.; Halliday, Alex N.

    2011-10-01

    The Si isotopic composition of Earth's mantle is thought to be homogeneous (δ 30Si = -0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth's mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates. At an average SiO 2 content of ˜60 wt.%, the predicted δ 30Si value of the continental crust that should result from magmatic fractionation alone is -0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ 30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle.

  20. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  1. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  2. Isotopic Fractionation of Selenium Oxyanions in Wetlands

    Science.gov (United States)

    Clark, S. K.; Johnson, T. M.

    2004-05-01

    As oxic surface waters pass through aquatic macrophytes and over anoxic sediments in wetlands and lakes, the dissolved Se load often decreases; and, Se isotope ratio measurements can provide information about the mechanisms involved. Previous work on microbially induced isotopic fractionation of Se oxyanions under nearly natural conditions using wetland sediments shows consistent Se isotopic shifts during reduction of Se(VI) and Se(IV) to insoluble Se(0). However, previous isotopic studies of total dissolved selenium in wetlands found little to no isotopic shift as dissolved selenium concentrations decreased. This suggests that plant/algal uptake, followed by deposition and degradation, is the primary route of Se transfer into sediments. However, it is possible that the effective isotopic fractionation between Se in the surface water and Se deposited into sediments is somehow much less than the fractionation induced by the reduction reaction, or that cycling of organically bound Se is involved. In this study, we report Se isotope data for Se(VI), Se(IV) and total dissolved Se, Se(T), in surface waters from three wetland/lake sites: Sweitzer Lake, CO; 33-Mile Reservoir, WY; and, a small pond adjacent to Benton Lake, MT. We isolated Se(IV) via hydride generation, and Se(VI) via ion exchange. Se(T), including any organic components, was also analyzed. Isotope analysis was performed on an Isoprobe MC-ICPMS, using a method modified from that of Rouxel et al. (2002). We used the 82Se + 74Se double spike approach, and spiked samples before species separation. Our results for all three locations indicate similar trends in concentration changes and isotopic shifts between the inflow and outflow waters. Se(T) concentrations decrease by 45-70%, and Se(VI) concentrations decrease by 60-90%, whereas Se(IV) concentrations increase by 60-150%. Concomitant 80Se/76Se shifts are +0.5-0.8‰ for Se(T); -0.1-0.5‰ for Se(VI); and +0.4-6.5‰ for Se(IV). These data provide greater

  3. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  5. OXYGEN ISOTOPE FRACTION ATION IN URANIUM OXIDES

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method.The sequence of 18O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows:spinelfractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0-1200℃.The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.

  6. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.

    Science.gov (United States)

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël

    2016-07-01

    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (<0.45μm) compared to -0.34 to -0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments.

  7. Theoretical calculation of equilibrium copper (I) isotope fractionations in ore-forming fluid

    Science.gov (United States)

    Seo, J.; Lee, I.; Lee, S.

    2006-05-01

    Equilibrium isotope fractionation of Cu (I) complexes in hydrothermal ore-forming fluid is calculated. Ab-initio quantum calculation of molecular structures and vibrational frequencies is conducted by Density Functional Theory (DFT) and Hartree-Fock Self Consistent Field (HF-SCF) method. Cu isotope (65Cu, 63Cu) exchange is expressed as reduced partition function ratios, 103·ln(β65-63), for liquid phase complexes (copper chlorides, copper hydrosulfides), and vapor phase complexes (hydrated copper chloride). Isodensity Polarizable Continuum Model (IPCM) is applied to the liquid complexes, whereas the vapor complexes are calculated in vacuo. Large fractionation (more than 2‰ at 25°C) is predicted between coexisting phases without changing oxidation state. CuCl(H2O)2 (vapor phase) is enriched in 65Cu better than any other studied complexes, whereas [CuCl3]2- (liquid phase) is mostly depleted. Heavy copper isotope is favor to partition into vapor phase complexes than coexisting liquid phase complexes. In the sea-floor hydrothermal system, after separation of phases into vapor and brine, vapor phase (CuCl(H2O)2) and chlorine-rich brine ([CuCl3]2-) will show +0.418‰ and -0.688‰ deviation from [CuCl2]1- at 150°C, respectively. However, most of the dominant copper-bearing species in hydrothermal condition, [CuCl2]1- and [Cu(HS)2]1-, fractionate at almost the same degree. Possible ranges of copper isotope ratio, δ65Cu, can be constrained from the calculated equilibrium isotope fractionation. Changes of oxidation state in low-temperature (e.g. supergene formation) have been thought to trigger most copper isotope fractionations, so far. However, measurable Cu isotope fractionation (1.106‰ at 150°C and 0.615‰ at 300°C) in hydrothermal ore-forming fluid is predicted within +1 valence state by theoretical study. Molecular structures and vibrational frequencies are compared with measured data. However, there is no experimental or theoretical work of some molecules

  8. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study

    Science.gov (United States)

    Lauwens, Sara; Costas-Rodríguez, Marta; van Vlierberghe, Hans; Vanhaecke, Frank

    2016-07-01

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient’s condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about ‑0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ65Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure.

  9. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  10. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria.

    Science.gov (United States)

    Navarrete, Jesica U; Borrok, David M; Viveros, Marian; Ellzey, Joanne T

    2011-02-01

    Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ(65)Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ(65)Cu(solution-solid) = δ(65)Cu(solution) - δ(65)Cu(solid)) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to -0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ(65)Cu(solution-solid) ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu

  11. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  12. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    Science.gov (United States)

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case.

  13. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from -0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (-0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (-0.39 to -0.07‰) with a mean of -0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (-0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo

  14. Fractionation of Metal Stable Isotopes by Higher Plants

    OpenAIRE

    Friedhelm von Blanckenburg; N. von Wirén; M. Guelke; Weiss, D J; T. D. Bullen

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal’s redox state and what ligand it is b...

  15. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

    Science.gov (United States)

    Li, Wang-Ye; Teng, Fang-Zhen; Halama, Ralf; Keller, Jörg; Klaudius, Jurgis

    2016-06-01

    To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of -0.30 to -0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate-carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite-wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite-wollastonite-melilite nephelinites (carbCWMNs), have δ26Mg values (from -0.25 to -0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate-carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of -0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate-carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.

  16. Mass-dependent fractionation of nickel isotopes in meteoritic metal

    Science.gov (United States)

    Cook, David L.; Wadhwa, Meenakshi; Clayton, Robert N.; Dauphas, Nicolas; Janney, Philip E.; Davis, Andrew M.

    We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non-magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ≈0.4‰ amu-1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (≈0.0 to ≈0.3‰ amu-1) and chondrites (≈0.0 to ≈0.2‰ amu-1) are similar, whereas the range in pallasite metal (≈-0.1 to 0.0‰ amu-1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (≈0.0 to ≈0.3‰ amu-1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ≈0.4‰ amu-1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe-Ni alloy and the development of the Widmanstätten pattern.

  17. Medical applications of Cu, Zn, and S isotope effects.

    Science.gov (United States)

    Albarede, Francis; Télouk, Philippe; Balter, Vincent; Bondanese, Victor P; Albalat, Emmanuelle; Oger, Philippe; Bonaventura, Paola; Miossec, Pierre; Fujii, Toshiyuki

    2016-10-01

    This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The (65)Cu/(63)Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. (66)Zn/(64)Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine

  18. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    Science.gov (United States)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  19. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  20. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    Science.gov (United States)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi-isotopic approach to trace the origin of colloids in surficial waters and it

  1. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  2. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  3. Microscale reservoir effects on microbial sulfur isotope fractionation

    Science.gov (United States)

    Louca, Stilianos; Crowe, Sean A.

    2017-04-01

    Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO42- over the heavier 34SO42-. The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfate-limited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and

  4. Direct path integral estimators for isotope fractionation ratios

    CERN Document Server

    Cheng, Bingqing

    2014-01-01

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  5. Fractionation of metal stable isotopes by higher plants

    Science.gov (United States)

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  6. Iron isotope fractionation in marine invertebrates in near shore environments

    Science.gov (United States)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-04-01

    Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.

  7. Cu isotopes in marine black shales record the Great Oxidation Event.

    Science.gov (United States)

    Chi Fru, Ernest; Rodríguez, Nathalie P; Partin, Camille A; Lalonde, Stefan V; Andersson, Per; Weiss, Dominik J; El Albani, Abderrazak; Rodushkin, Ilia; Konhauser, Kurt O

    2016-05-01

    The oxygenation of the atmosphere ∼2.45-2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth's redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ(65)CuERM-AE633) in organic carbon-rich shales spanning the period 2.66-2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in (65)Cu, along with the preferential removal of (65)Cu by iron oxides, left seawater and marine biomass depleted in (65)Cu but enriched in (63)Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ(65)Cu values coincides with a shift to negative sedimentary δ(56)Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ(65)Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.

  8. Cu isotopes in marine black shales record the Great Oxidation Event

    Science.gov (United States)

    Fru, Ernest Chi; Rodríguez, Nathalie P.; Partin, Camille A.; Lalonde, Stefan V.; Andersson, Per; Weiss, Dominik J.; El Albani, Abderrazak; Rodushkin, Ilia

    2016-05-01

    The oxygenation of the atmosphere ˜2.45-2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth's redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ65CuERM-AE633) in organic carbon-rich shales spanning the period 2.66-2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in 65Cu, along with the preferential removal of 65Cu by iron oxides, left seawater and marine biomass depleted in 65Cu but enriched in 63Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ65Cu values coincides with a shift to negative sedimentary δ56Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ65Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.

  9. Isotopic fractionation of alkali earth metals during carbonate precipitation

    Science.gov (United States)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  10. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass......-independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  11. Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Science.gov (United States)

    Chen, Xinming; Romaniello, Stephen J.; Herrmann, Achim D.; Wasylenki, Laura E.; Anbar, Ariel D.

    2016-09-01

    Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ∼7.5 and ∼8.5 to study possible U isotope fractionation during incorporation into these minerals. Small but significant U isotope fractionation was observed in aragonite experiments at pH ∼8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ∼7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism. These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2 , Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of

  12. Hydrogen isotope fractionation in methane plasma

    Science.gov (United States)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion‑molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  13. Chromium stable isotope fractionation in modern biogeochemical cycling

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie

    oxygen in the Earth’s atmosphere. Oxidative rock weathering on land induces oxidation of immobile Cr(III) to mobile Cr(VI). Isotopically relatively heavy Cr(VI) is released to runoff, and transported by rivers to the oceans, where it is incorporated into chemical sediments and carbonate shells...... laterite soils from India, formed on ultramafic rocks, indicates extensive leaching of isotopically heavy Cr(VI). Transferring this knowledge to ancient weathering profiles, negatively fractionated Cr is clear evidence for the presence of free oxygen in the atmosphere. The second part demonstrates...... that the positively fractionated Cr from the catchment area is preserved during its riverine transport to the sea. A global compilation of surface seawater Cr-isotope compositions shows a heterogeneous Cr-isotope distribution in the oceans, indicating that the signal is influenced by local factors as reduction...

  14. Kinetic Isotopic Fractionation During Diffusion of Ionic Speciesin Water

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso Jr.,Abelardo D.

    2005-06-09

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine D{sub Li}/D{sub K}, D{sub 7{sub Li}}/D{sub 6{sub Li}}, D{sub 25{sub Mg}}/D{sub 24{sub Mg}}, D{sub 26{sub Mg}}/D{sub 25{sub Mg}}, and D{sub 37{sub Cl}}/D{sub 35{sub Cl}}. The measured ratio of the diffusion coefficients for Li and K in water (D{sub Li}/D{sub K} = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D{sub 7{sub Li}}/D{sub 6{sub Li}} = 0.99772 {+-} 0.00026). This difference in the diffusion coefficient of {sup 7}Li compared to {sup 6}Li is significantly less than reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D{sub 25{sub Mg}}/D{sub 24{sub Mg}} = 1.00003 {+-} 0.00006). Cl isotopes were fractionated during diffusion in water (D{sub 37{sub Cl}}/D{sub 35{sub Cl}} = 0.99857 {+-} 0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water, being a polar liquid, surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in reducing isotopic fractionation associated with diffusion.

  15. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    Science.gov (United States)

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  16. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    Science.gov (United States)

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  17. Cd isotope fractionation during simulated and natural weathering.

    Science.gov (United States)

    Zhang, Yuxu; Wen, Hanjie; Zhu, Chuanwei; Fan, Haifeng; Luo, Chongguang; Liu, Jie; Cloquet, Christophe

    2016-09-01

    In practice, stable Cd isotope ratios are being applied to trace pollution sources in the natural environment. However, Cd isotope fractionation during weathering processes is not yet fully understood. We investigated Cd isotope fractionation of PbZn ore in leaching experiments and in the environment under natural weathering processes. Our leaching experiments demonstrated that the leachate was enriched with heavy Cd isotopes, relative to initial and residual samples (Δ(114/110)Cdleachate - initial state = 0.40-0.50‰, Δ(114/110)Cdleachate -residual state = 0.36-0.53‰). For natural samples, δ(114/110)Cd values of stream sediments were higher than those of the corresponding soil samples collected from the riverbank, Δ(114/110)Cdstream sediment -soil can be up to 0.50‰. This observation is consistent with our leaching experiments, which indicate significant Cd isotope fractionation during natural weathering processes. Therefore, natural contributions should be considered when using Cd isotopes to trace anthropogenic pollution in water and sediment systems.

  18. Modes of planetary-scale Fe isotope fractionation

    Science.gov (United States)

    Schoenberg, Ronny; Blanckenburg, Friedhelm von

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  19. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  20. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    Science.gov (United States)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  1. Lithium Isotopic Fractionation in Subduction Zones: Clues From Clays

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2003-12-01

    Lithium isotope ratios show such large variations in nature (>30 per mil), that many areas of geosciences are exploring the usefulness of this system in explaining the evolution of particular rocks. Here we show how the lithium isotope ratios change during the transformation of smectite clay minerals to illite during burial metamorphism. Such a transition may be a common feature in the shallow regions of subduction zones and may ultimately affect the Li isotope compositions of fluids contributing to arc magmatism. Lithium is a ubiquitous trace element in natural formation waters that, like B, shows large isotopic fractionation especially during interactions with clay minerals. Lithium is adsorbed in the interlayer region of expandable clay minerals but is easily exchanged. Lithium is also incorporated into the octahedral sites. The substitutions of Li in two crystallographic sites of clay minerals may complicate interpretations of bulk Li-isotope ratios. We suggest that the magnitude of the isotopic fractionation of Li between fluid and clay is different in the interlayer sites of clay minerals than in the octahedral sites of clay minerals. Examination of Li contents and isotope variations in experimental reactions of smectite to illite (300C, 100MPa) shows changes with structural re-arrangement of the clay layers. The Li-isotope trend declines (from ~+6 to -13 per mil, expressed as ratios of 7/6) throughout R1-ordering of the mixed-layered illite smectite (I/S). However, the equilibrium end products of the reaction have R3-ordering and show a heavier isotope ratio (~0 per mil). This observation is very similar to the trends we observed for B-isotopes, where the interlayer B initially overprinted the tetrahedral-layer B isotope composition, but as the interlayer sites were collapsed during illitization, the equilibrium isotope composition was approached. The significant Li and B isotopic changes that occur during ordering of I/S coincides with the temperatures

  2. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  3. Iron isotope fractionation between aqueous ferrous iron and goethite

    Science.gov (United States)

    Beard, Brian L.; Handler, Robert M.; Scherer, Michelle M.; Wu, Lingling; Czaja, Andrew D.; Heimann, Adriana; Johnson, Clark M.

    2010-06-01

    The equilibrium Fe isotope fractionation factor between aqueous Fe(II) and goethite has been experimentally measured to be - 1.05 ± 0.08‰ in 56Fe/54Fe (2σ) at 22 °C, using the three-isotope method. Experiments were done using two sizes of goethite (81 × 11 nm and 590 × 42 nm), and the experimental products were subjected to serial extraction using acid partial dissolution techniques to determine if surface Fe(III) atoms have different isotopic properties than the bulk goethite. These experiments indicate that the interaction of Fe(II)aq and goethite is dynamic and results in complete or near-complete Fe isotope exchange over 30 days, involving at least four components: Fe(II)aq, goethite, sorbed Fe(II), and Fe(III)surface. The equilibrium fractionation factor between Fe(II)aq and Fe(II)sorb is the same for both sizes of goethite, at Δ56FeFe(II)aq-Fe(II)sorb = - 1.24 ± 0.14‰; this fractionation factor is significantly different than the results of previous studies on Fe(II) sorption to goethite. The proportion of the Fe(III)surface component is greatest in the experiments that used the smallest goethite, and the Fe(III)surface-Fe(II)aq fractionation is estimated to be at least + 2.1‰. The high Fe(III)surface-Fe(II)aq fractionation may exert a significant influence on the Fe isotope compositions of aqueous Fe(II) in natural systems that contain nanoparticulate goethite, including those involving bacterial iron reduction. These results demonstrate that the isotopic properties of nano-scale minerals may be distinct from micron-scale or larger minerals, as is the case for other thermodynamic properties of nanoparticles.

  4. Quantification of Calcium Isotope Fractionation in Ectomycorrhizal Trees

    Science.gov (United States)

    Hoff, C. J.; Bryce, J. G.; Hobbie, E. A.; Colpaert, J. V.; Bullen, T. D.

    2005-12-01

    Calcium plays a significant role in many forest ecosystem processes and is required for plant growth. Within plants, calcium is a critical component of cell walls and membranes, signaling processes, and charge balances (1). Current efforts to quantify Ca cycling in ecosystems rely on large-scale ecosystem manipulations (e.g., 2) or mass balances (e.g., 3) and indirect chemical proxies, Ca/Sr or Sr isotopic systems (e.g., 4). The measurement of Ca isotopes may provide more direct information about the calcium sources and fluxes within and between the geological (mineral and soil) and biological (fungi and plants) components of terrestrial ecosystems. To examine calcium isotopic variability systematically, we measured the fractionation between roots and needles in cultured Scots pine ( Pinus sylvestris) seedlings. Our samples include roots and needles from trees grown at low or high nutrient supply rates (3% or 5% per day). Because mycorrhizal fungi are intimately involved in plant nutrient supply, we also tested whether mycorrhizal colonization by Suillus bovinus affected calcium isotopic fractionation. Initial results demonstrate that at a low nutrient supply rate there is a small but measurable fractionation (averaging 0.58 ‰) between the roots and needles of individual trees; the needles are enriched in 40Ca compared to the roots. The root-needle fractionation is unaffected by mycorrhizal colonization. Ongoing analyses will address both the consistency of the root-needle fractionation and the impacts of nutrient supply rate on fractionation. Preliminary results suggest that higher nutrient supply rates lead to decreased root-needle fractionation. Analyses underway will also address whether different fungal species ( Thelephora terrestris) affect the documented root-needle fractionation. Isotope signatures of calcium source materials will complete our sample suite and will be used to assess fractionation during uptake. Ultimately, the results of this study will

  5. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  6. Oxygen isotope fractionation between analcime and water - An experimental study

    Science.gov (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  7. Oxygen and Chlorine Isotopic Fractionation During Microbial Reduction of Perchlorate

    Science.gov (United States)

    Beloso, A. D.; Sturchio, N. C.; Böhlke, J. K.; Streger, S. H.; Heraty, L. J.; Hatzinger, P. B.

    2006-12-01

    Perchlorate is a widespread environmental contaminant that has both anthropogenic and natural sources. Stable isotope ratios of O and Cl in perchlorate have been used recently to distinguish perchlorate of different origins. Isotopic ratios may also be useful for identifying the occurrence and extent of biodegradation of perchlorate in natural environments, information that is critical for assessing natural attenuation of this contaminant. For this approach to be useful, however, the extent of isotopic fractionation of both Cl and O by bacteria must be determined, and the influence of environmental variables on this process must be defined. During this laboratory study, the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial species (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10 °C and 22 °C with acetate as the electron donor. Perchlorate was completely degraded by both strains within 280 hr at 22 °C and 615 hr at 10 °C. Measured values of isotopic fractionation factors were ɛ18O = -36.6 to -29.0 ‰ and ɛ37Cl = -14.5 to - 11.5 ‰, and these showed no apparent systematic variation with either temperature or bacterial strain. One experiment using 18O-enriched water (δ18O = 200‰) gave results indistinguishable from those observed in isotopically normal water, indicating little or no isotopic exchange between perchlorate and water during biodegradation. The fractionation factor ratio ɛ18O/ɛ37Cl was nearly invariant in all experiments at 2.50 ± 0.04. These data indicate that isotopic analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (ɛ18O/ɛ37Cl) also has significance for forensic studies, as these data indicate that fractionation via biodegradation will not cause the reported mass-dependent Cl and O isotopic signatures of synthetic and natural perchlorate to overlap.

  8. Hydrogen isotope fractionation in the photolysis of formaldehyde

    NARCIS (Netherlands)

    Rhee, T.S.; Brenninkmeijer, C.A.M.; Röckmann, T.

    2007-01-01

    Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D) depletion in H2 produced is 500(±20)‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O u

  9. Chromium stable isotope fractionation in modern biogeochemical cycling

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie

    Chromium (Cr) is, due to its redox-sensitive properties, a powerful tracer for redox processes in environmental studies. Changes in its preferred oxidation state (III and VI) are accompanied by Crisotope fractionation. The Cr-isotope system is a promising tool to reconstruct the evolution of free...

  10. Isotopic fractionation between seawater and the shell of

    NARCIS (Netherlands)

    Santos, S.; Cardoso, J.F.M.F.; Borges, V.; Luttikhuizen, P.C.; van der Veer, H.W.

    2012-01-01

    This study analyzed the isotopic profiles of four aragonitic shells of Scrobicularia plana in conjunction with measured seawater temperatures and salinities. Comparison of delta O-18(SHELL) with expected values revealed fractionation of delta O-18 in near equilibrium with the ambient environment. Gr

  11. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  12. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  13. The oxygen isotope equilibrium fractionation between sulfite species and water

    Science.gov (United States)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  14. Cadmium isotope fractionation during adsorption to Mn-oxyhydroxide

    Science.gov (United States)

    Wasylenki, L. E.; Swihart, J. W.

    2013-12-01

    The heavy metal cadmium is of interest both as a toxic contaminant in groundwater and as a critical nutrient for some marine diatoms [1], yet little is known about the biogeochemistry of this element. Horner et al. [2] suggested that Cd stable isotopes could potentially enable reconstruction of biological use of Cd in the marine realm: since cultured diatoms fractionate Cd isotopes [3], and ferromanganese crusts appear to incorporate a faithful record of deepwater Cd isotopes [2], depth profiles in such crusts may yield information about the extent of Cd assimilation of isotopically light Cd by diatoms over time. Although no work has yet been published regarding the use of stable isotopes to track reactive transport of Cd in contaminated aquifers, others have recently demonstrated the potential of isotopes to track reactions affecting the mobility of other toxic metals (e.g., [4]). With both of these potential applications in mind, we conducted two sets of experiments, at low and high ionic strength, in which Cd partially adsorbed to potassium birnessite. Our goals are to quantify the fractionations and to constrain the mechanisms governing Cd isotope behavior during adsorption to an environmentally abundant scavenger of Cd. Suspensions of synthetic birnessite were doped with various amounts of dissolved Cd2+ at pH ~8.3. Following reaction, the dissolved and adsorbed pools of Cd were separated by filtration, purified by anion exchange chromatography, and analyzed by multicollector ICP-MS using a double-spike routine. In all cases, lighter isotopes preferentially adsorbed to the birnessite particles. At low ionic strength (ILacan et al. (2006) Geochim. Cosmochim. Acta. 70, 5104. [4] Berna et al. (2010) Env. Sci. & Tech. 44, 1043.

  15. Carbon Isotope Fractionation In Biotic Vs. Abiotic Anaerobic Conditions

    Science.gov (United States)

    Gebrehiwet, T. A.

    2005-12-01

    Dissimilatory metal reducing bacteria (DMRB) are thought to play an important role in the biogeochemical cycling of Fe, and nutrient elements such as C and P, in the anaerobic subsurface. The consumption of organic carbon sources (including contaminants) by these bacteria can significantly fractionate substrate C isotopes, however the effects of solution composition, electron acceptor, or electron donor on C isotopic fractionation by DMRB is at present poorly quantified. We have conducted experiments to compare the effects of bicarbonate (δ13C = -3‰) and phosphate buffers on carbon isotope fractionation by Shewanella putrefaciens strain 200R. The effects of dissolved carbonate and phosphate on δ13C values of dissolved inorganic C evolved during microbial reduction of ferric citrate (δ 13Cinitial = -25‰) were examined using sodium lactate (δ13Cinitial = -25‰) as electron donor under strict anaerobic conditions at neutral pH and 30°C, under dark and (fluorescent) light conditions. Our results suggest that bicarbonate may enhance the rate of Fe(III) reduction by S. putrefaciens, in comparison with media containing phosphate buffer but no added bicarbonate. Compared with phosphate buffered experiments, the presence of dissolved bicarbonate also resulted in a greater degree of C isotopic fractionation (ɛ=2-3‰ and ɛ=5-7‰, respectively). The effect of light on microbial Fe(III) reduction was negligible, however sterile controls showed a minor but significant quantity of carbon dioxide production in liquid media, most likely from photochemical decomposition of citrate. The abiotic experiments also showed measurable carbon isotope fractionation between the carbon dioxide produced and the organic carbon substrate which will be discussed.

  16. Cadmium Isotope Fractionation in Cigarette Smoke and in the Biosphere

    Science.gov (United States)

    Smith, K.; Shafer, M. M.; Adams, S.

    2016-12-01

    Cadmium is a documented carcinogen, linked to several human cancers, including breast cancer, where its estrogenic properties are the suspected mode of action. An improved understanding of exposure pathways is critical to reducing the public health impacts of Cd exposure. Cigarette smoking is likely the major exposure vector for smokers, with dietary contributions also a major factor, however the specific apportionment of these sources, as well as possible occupational components has been difficult to characterize. We are exploring the use of cadmium stable isotope fractionation as a tool to help improve source attribution for this toxic environmental contaminant. The general lack of fractionation in the bulk silicate earth allows for Cd isotopes to act as an excellent tool for tracking anthropogenic sources of Cd as well as potential biochemical fractionation during incorporation into plant and animal food sources. Tobacco leaves are naturally enriched in Cd and cigarettes are a very efficient delivery mechanism for Cd to the body. Importantly, the combustion process provides a mechanism for further fractionation of Cd stable isotopes. Particulates in main stream and side stream cigarette smoke were collected onto quartz filters. The necessary mass of Cd (>50 ng) was collected by optimization of the mechanical smoking instrument to collect smoke aerosols from up to three cigarettes onto one filter, and thus also minimizing filter matrix biases. We modified existing geochemical methods for the isolation of the Cd fraction: the particulates were acid digested and the Cd fraction separated by passing through an anion exchange resin. The Cd fractions were analyzed by multicollector ICP-MS (Neptune Plus), and it was demonstrated that the main stream particulates are isotopically heavy and side stream particulates are light relative to NIST 3108, mass-difference-normalized: average δ112Cd/110Cd, δ112Cd/111Cd, δ114Cd/111Cd, and δ116Cd/112Cd values of 0.801, 1.58, 1

  17. Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ{sup 65}Cu isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    El Azzi, D. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Viers, J. [Université de Toulouse (France); UPS, Géosciences Environnement Toulouse (GET), 14, avenue Édouard Belin, Toulouse31400 (France); CNRS, IRD, CNES (France); GET, 14, avenue Édouard Belin, Toulouse 31400 (France); Guiresse, M.; Probst, A. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Aubert, D. [Université de Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditérranéens (CEFREM), UMR 5110, F-66860, Perpignan (France); CNRS, CEFREM, UMR 5110, F-66860, Perpignan (France); Caparros, J.; Charles, F.; Guizien, K. [CNRS, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); UPMC Université Paris 6, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); Probst, J.L., E-mail: jean-luc.probst@ensat.fr [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France)

    2013-10-01

    For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ{sup 65}Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (> 60%) whereas in cultivated soil, BS and SPM, Cu was mostly (> 25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ{sup 65}Cu in bulk samples were similar to bedrock therefore; δ{sup 65}Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ{sup 65}Cu close to local bedrock, + 0.07‰). Copper in water soluble fraction of SPM (δ{sup 65}Cu = + 0.26‰) was similar to dissolved river Cu (δ{sup 65}Cu = + 0.31‰). Copper from fungicide treatment (δ{sup 65}Cu = − 0.35‰) was bound to organic matter (δ{sup 65}Cu = − 0.20‰) without or with slight isotopic fractioning. A preferential

  18. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  19. Light element controlled iron isotope fractionation in planetary cores

    Science.gov (United States)

    Shahar, A.; Hillgren, V. J.; Horan, M. F.; Duke, L.; Mock, T. D.

    2013-12-01

    Using iron isotope fractionations measured in planetary and meteorite samples to trace planetary differentiation or formation has yielded contradictory results. Iron from high-Ti lunar basalts is more enriched in 57Fe/54Fe than mantle-derived terrestrial samples, in contrast to the isotopic similarity for almost every other element between the Earth and Moon. SNC (Shergottite, Nakhlite, Chassigny) and HED (Howardite, Eucrite, Diogenite) meteorites, which are thought to be derived from the mantles of Mars and Vesta, respectively, show no isotopic fractionation relative to chondrites. While the Bulk Silicate Earth (BSE) value is debated, recent work has shown effectively that basalts (mid-ocean ridge basalts, terrestrial basalts, and ocean island basalts) are enriched in 57Fe/54Fe relative to chondrites, but the causes of that fractionation are unclear (Craddock et al. 2013). Angrites, basaltic achondrite meteorites, also show enrichment in δ57Fe (Wang et al. 2012). Possible mechanisms include high-pressure core formation, oxidation during perovskite disproportionation, evaporation during the giant impact, and mantle melting. It is important to reconcile why the Earth's basalts are enriched in 57Fe/54Fe but the meteorites from Mars and Vesta are not. One possible explanation is that Mars and Vesta are smaller and the lower pressure attenuated the potential Fe fractionation during core formation. A second possibility is that the intrinsic oxidation states of the planets are causing the differences. However, another option is that the light elements (e.g. S, C, O, H, Si) in the cores of differentiated bodies control the iron isotope fractionation during differentiation. We have conducted experiments at 1 GPa and 1650-1800°C in a piston cylinder apparatus to address how sulfur, carbon and silicon alloyed with iron affect the iron isotopic fractionation between metallic alloy and silicate melt. We find that sulfur has the greatest effect on the iron isotopic

  20. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    Science.gov (United States)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  1. Magnesium isotope fractionation during differentiation of Harney Peak granite

    Science.gov (United States)

    Ke, S.; Teng, F.; Walker, R. J.

    2009-12-01

    Although numerous studies have sought to constrain the Mg isotopic composition of mantle rocks, few studies have focused on the Mg isotopic compositions of crustal rocks, particularly evolved igneous rocks, such as granites. Granites are a major component of the upper continental crust and can be produced by partial melting of the deep continental crust. Studies of granites, therefore, can potentially provide important constraints on Mg isotopic composition variations in the continental crust as related to sources and petrogenetic processes. In order to explore the behavior of Mg isotopes during partial melting of continental crust, as well as granite differentiation, we have begun a study of a set of well-characterized samples from S-type Harney Peak granite, its potential source rocks and associated Tin Mountain pegmatite from Black Hills, South Dakota, USA. δ26Mg values of Harney Peak granites and Tin Mountain pegmatite vary significantly (from -0.69 to +0.11), well beyond the range of their potential source rocks (from -0.40 to +0.15) — early Proterozoic schists and late Archean metagranites. The large Mg isotopic variations within the granite suite likely, in part, reflect heterogeneities in source rocks, as previously shown for oxygen and Nd isotopes. A greater cause of the variations may be fractionations that occur during partial melting and subsequent differentiation of granitic melts, as suggested by the correlations between δ26Mg with SiO2, Al2O3, Na2O and Sr.

  2. Cadmium Isotope Fractionation in Seawater - A Signature of Nutrient Utilization

    Science.gov (United States)

    Wichtlhuber, S.; Rehkaemper, M.; Halliday, A. N.

    2005-12-01

    Cadmium displays a nutrient-like distribution akin to phosphorous in the oceans. This has been attributed to the assimilation of Cd by phytoplankton in surface waters and re-mineralization at depth. If biological uptake is associated with kinetic isotopic fractionation, as recently suggested by Lacan et al. (2005), then the Cd-depleted surface waters of the oceans (with Cd contents of Lacan et al., 2005). In this study, we have extended the search for Cd isotope variations in the oceans with analyses of two depth profiles and various additional seawater samples from the North Pacific, the Arctic, and the Southern Ocean. The Cd isotope measurements utilized a double spike technique in conjunction with multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS), to achieve a precision and accuracy of about ± 0.8 to 1.5 ɛ114/110Cd. This precision is about a factor of 3 to 4 better than that of previous studies, which did not utilize a double spike. The data collected for the samples display a clear co-variation of Cd isotope compositions with Cd concentrations. The most Cd-rich water samples (with ~1 nmol/kg Cd) display the "lightest" Cd isotope compositions with ɛ114/110Cd ~ +3, akin to results previously obtained for crustal and mantle rocks (Wombacher et. al, 2003). In contrast, samples from the upper water column of the North Pacific (with Lacan et al. (2005), because inorganic geological processes (other than evaporation/condensation) do not appear to generate isotope effects as large as those observed in the present study (Wombacher et. al, 2003). These preliminary results suggest that Cd isotopes have the potential to become a useful proxy of nutrient utilization, which could supplement the Cd/Ca and δ13C records of previous studies, if suitable sedimentary archives can be identified that preserve the Cd isotope signatures of past seawater. References: Lacan F., Francois R., Ji Y. and Sherrell R., 2005. Does oceanic productivity production

  3. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  4. Cd Isotope Fractionation During Adsorption Varies with Salinity

    Science.gov (United States)

    Wasylenki, L. E.; Montanez, G.; Anbar, A. D.

    2009-12-01

    Because its marine concentration profile is very similar to that of phosphate [1], Cd is considered to have potential as a paleophosphate or paleonutrient proxy in the geologic record. Previous work [2,3] has established that lighter isotopes of Cd are preferentially assimilated by phytoplankton, leaving surface waters isotopically heavy. Another recent study [4] suggests that analysis of Cd isotope variations in transects of ferromanganese crusts could reveal past variations in the extent to which Cd, and thus phosphate, has been depleted over time. This idea presumes that the extent of consumption of Cd by phytoplankton is reflected in the isotopic composition of seawater and that the Cd isotopic composition of seawater is in turn faithfully recorded in ferromanganese crusts. To test the latter assumption, Rehkämper et al. [4] measured the Cd isotopic composition of 15 Fe-Mn crusts from various ocean basins and found that 13 of those samples were within analytical error of the Cd isotopic composition of deep seawater from [3], indicating that Cd often does not fractionate appreciably during incorporation into ferromanganese crusts. Other studies [5,6] have likewise revealed little or no variation in Cd isotopic compositions among various terrestrial rocks and carbonaceous chondrites, suggesting that few earth processes significantly fractionate Cd isotopes. To test this conclusion experimentally, we performed adsorption experiments in which aqueous Cd was allowed to adsorb to synthetic birnessite (Mn oxyhydroxide). Stock solutions of dissolved Cd and birnessite suspension were mixed and agitated from 1 to 48 hours at room temperature. Some experiments had 0.1m KNO3 as background electrolyte, while others had 0.3m NaCl + 0.1m KNO3. After filtration, both the fluid with remaining dissolved Cd and solids with adsorbed Cd were purified with anion exchange chemistry. Column yields and proportions of dissolved and adsorbed Cd were determined by ICP-MS, and isotope

  5. Thermal-gradient-induced non-mass-dependent isotope fractionation.

    Science.gov (United States)

    Sun, Tao; Bao, Huiming

    2011-03-30

    Isotope fractionation resulting from gas diffusion along a thermal gradient has always been considered entirely mass-dependent. A previous report, however, showed that non-mass-dependent (17)O anomalies can be generated simply by subjecting O(2) gas in an enclosure to a thermal gradient. To explore the underlying mechanism for the anomalies, we tested the effect of gas pressure, duration of experiment, and geometry of the apparatus on the (17)O anomalies for O(2) as well as on the (33)S or (36)S anomalies for SF(6) gas. The results are consistent with our proposal that a previously ignored nuclear spin effect on gas diffusion coefficient may be largely responsible for generating the observed anomalies. This discovery provides clues to some of the puzzling non-mass-dependent isotope signatures encountered in experiments and in nature, including the triple oxygen or quadruple sulfur isotope heterogeneity in the solar system. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Mg Isotope Fractionation Between E. coli and Growth Medium

    Science.gov (United States)

    Basset, R.; Lemelle, L.; Albalat, E.; Telouk, P.; Albarède, F.

    2008-12-01

    Magnesium is a major element in both microbial cells and minerals, immune to redox conditions and atmospheric interactions. In organic cells, Mg can be associated with membranes, with cytoplasm (either as an isolated ion or bound to proteins). Its isotope composition can be used to constrain the contribution of organic material to carbonate fluxes and the overall cycle of this element in the exogenous environment [1, 2]. Cells of DH5α E. coli strain were grown in Luria Broth medium and the Mg isotope fractionation between the cells and their growth medium determined after calcination in Pt crucibles, chemical purification by cation exchange chemistry in HCl medium [3] and isotopic analysis on a Nu HR MC-ICPMS. The yield is better than 96%. The Mg contents of 2.19 ± 0.08 mg per g DW in cells and 0.117 ± 0.001 mg per g DW in Luria Broth medium are consistent with literature data [4]. About half of the Mg initially present in the LB medium is taken up by the growing cells. At high cellular concentrations (OD600 = 3.5), cells are enriched in 26Mg by 0.97 ± 0.14 ‰ with respect to the culture medium. Although E. coli may not be a good proxy for oceanic plankton, such a substantial fractionation of Mg isotopes suggests that incorporation of even a few percent organic matter into oceanic oozes depletes oceanic Mg in its heavy isotopes and therefore accounts for the isotopic difference between riverine and marine Mg. [1] Drever, The Sea 5 (1974) 337-357 [2] Tipper et al., EPSL 250 (2006) 241-253 [3] Chang et al., JAAS 18 (2003) 296-301 [4] Outten et al., Science 292 (2001), 2488-2492

  7. Calcium isotopic fractionation in microbially mediated gypsum precipitates

    Science.gov (United States)

    Harouaka, Khadouja; Mansor, Muammar; Macalady, Jennifer L.; Fantle, Matthew S.

    2016-07-01

    Gypsum (CaSO4·2H2O) precipitation experiments were carried out at low pH in the presence of the sulfur oxidizing bacterium Acidithiobacillus thiooxidans. The observed Ca isotopic fractionation (expressed as Δ44/40Cas-f = δ44/40Casolid-δ44/40Cafluid) at the end of each experimental time period (∼50 to 60 days) was -1.41‰ to -1.09‰ in the biotic experiments, -1.09‰ in the killed control, and -1.01‰ to -0.88‰ in the abiotic controls. As there were no strong differences in the solution chemistry and the rate at which gypsum precipitated in the biotic and abiotic controls, we deduce a biological Ca isotope effect on the order of -0.3‰. The isotope effect correlates with a difference in crystal aspect ratios between the biotic experiments (8.05 ± 3.99) and abiotic controls (31.9 ± 8.40). We hypothesize that soluble and/or insoluble organic compounds selectively inhibit crystal growth at specific crystal faces, and that the growth inhibition affects the fractionation factor associated with gypsum precipitation. The experimental results help explain Ca isotopic variability in gypsum sampled from a sulfidic cave system, in which gypsum crystals exhibiting a diversity of morphologies (microcrystalline to cm-scale needles) have a broad range of δ44/40Ca values (∼1.2-0.4‰) relative to the limestone wall (δ44/40Ca = 1.3‰). In light of the laboratory experiments, the variation in Ca isotope values in the caves can be interpreted as a consequence of gypsum precipitation in the presence of microbial organic matter and subsequent isotopic re-equilibration with the Ca source.

  8. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089....

  9. Re-investigating the isotopic fractionation corrections in radiocarbon measurements

    Science.gov (United States)

    Fahrni, S.; Santos, G. M.; Xu, X.; Southon, J. R.

    2012-12-01

    By convention (Stuiver and Polach, 1977), 14C data has to be corrected for any isotopic fractionation occurring in nature, during the sample preparation or the measurement. The fractionation factor b = 2.0 used to correct the 14C/12C ratio for shifts in the 13C/12C ratio has been proposed in 1954 (Craig, 1954) and has been applied ever since. While theoretical considerations have suggested moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. Saliege and Fontes, 1984). With the increasing precision of radiocarbon measurements, potential deviations of b from 2.0 become more significant, since these could cause shifts of several decades in some radiocarbon dates (Southon, 2011). It is therefore of great interest for the radiocarbon community to re-evaluate the fractionation corrections. We present approaches for the experimental determination of b and discuss results and their effects on radiocarbon dating. Stuiver M., Polach H.A., 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355-63. Saliege J.F., Fontes J.C., 1984. Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35(1):55-62. Craig H., 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 in nature. Journal of Geology 62(2):115-49. Southon J., 2011. Are the Fractionation Corrections Correct: Are the Isotopic Shifts for 14C/12C Ratios in Physical Processes and Chemical Reactions Really Twice Those for 13C/12C? Radiocarbon 53(4):691-704.

  10. Hydrogen isotope fractionation in the photolysis of formaldehyde

    Directory of Open Access Journals (Sweden)

    T. S. Rhee

    2007-08-01

    Full Text Available Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D depletion in H2 produced is 500(±20‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O under atmospheric conditions produces H2 that has virtually the same isotopic ratio as that of the parent CH2O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O + → CHO + H as compared to the molecular channel (CH2O + → H2 + CO of the photolysis of CH2O in order to balance the relatively small isotopic fractionation in the competing reaction of CH2O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08, which is equivalent to a 780(±80‰ enrichment in D of the remaining CH2O. When CH2O is in photochemical steady state, the isotopic ratio of the H2 produced is determined not only by the isotopic fractionation occurring during the photolytical production of H2m but also by overall fractionation for the removal processes of CH2O (αf, and is represented by the ratio of αmf. Applying the isotopic fractionation factors relevant to CH2O photolysis obtained in the present study to the troposphere, the ratio of αmf varies from ~0.8 to ~1.2 depending on the fraction of CH2O that reacts with OH and that produces H2. This range of αmf can render the H2 produced from the photochemical oxidation of CH4 to be enriched in D (with respect to the original CH

  11. Hydrogen isotope fractionation in the photolysis of formaldehyde

    Directory of Open Access Journals (Sweden)

    T. S. Rhee

    2008-03-01

    Full Text Available Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D depletion in the H2 produced is 500(±20‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O under atmospheric conditions produces H2 that has virtually the same isotope ratio as that of the parent CH2O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O+hν → CHO+H as compared to the molecular channel (CH2O+hν → H2+CO of the photolysis of CH2O in order to balance the relatively small isotopic fractionation in the competing reaction of CH2O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08, which is equivalent to a 780(±80‰ enrichment in D of the remaining CH2O. When CH2O is in photochemical steady state, the isotope ratio of the H2 produced is determined not only by the isotopic fractionation occurring during the photolytical production of H2m but also by overall fractionation for the removal processes of CH2O (αf, and is represented by the ratio of αmf. Applying the isotopic fractionation factors relevant to CH2O photolysis obtained in the present study to the troposphere, the ratio of αmf varies from ~0.8 to ~1.2 depending on the fraction of CH2O that reacts with OH and that produces H2. This range of αmf can render the H2 produced from the photochemical oxidation of CH4 to

  12. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    Science.gov (United States)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    Silica fluxes to soil solutions and water streams are controlled by both abiotic and biotic processes occurring in a Si soil-plant cycle that can be significant in comparison with Si weathering input and hydrological output. The quantification of Si-isotopic fractionation by these processes is highly promising to study the Si soil-plant cycle. Therein, the fate of aqueous monosilicic acid H4SiO4, as produced by silicate weathering, may take four paths: (1) uptake by plants and recycling through falling litter, (2) formation of clay minerals, (3) specific adsorption onto Al and Fe oxides, (4) leaching in drainage waters and export from watersheds. Here we report on detailed Si-isotopic compositions of various Si pools in a tropical soil-plant system involving old stands of banana (Musa acuminata Colla, cv Grande Naine) cropped on a weathering sequence of soils derived from andesitic volcanic ash and pumice deposits in Cameroon, West Africa. Si-isotopic compositions were measured by MC-ICP-MS in dry plasma mode with external Mg doping with a reproducibility of 0.08 permil (2stdev). Results were expressed as delta29Si vs NBS28. The compositions were determined in plant parts, bulk soils, clay fractions (less than 2um) and stream waters used for crop irrigation. Of the weathering sequence, we selected young (Y) and old (O) volcanic soils (vs). Yvs are rich in weatherable minerals, and contain large amounts of pumice gravels; their clay fraction (10-35 percent) contains allophane, halloysite and ferrihydrite. Oppositely, Ovs are strongly weathered and fine clayey soils (75-96 percent clay) rich in halloysite, kaolinite, gibbsite and goethite. Intra-plant fractionation between roots and shoots and within shoots confirmed our previous data measured on banana plants grown in hydroponics. The bulk plant isotopic composition was heavier at Ovs than at Yvs giving a fractionation factor per atomic mass unit between plants and their irrigation water Si source (+0.61 permil) of

  13. An Archean Terrestrial Fractionation Line for Oxygen Isotopes

    Science.gov (United States)

    Rumble, D.; Blake, R. E.; Bao, H.; Bowring, S.; Komiya, T.; Rosing, M.; Ueno, Y.

    2008-12-01

    The Terrestrial Fractionation Line (TFL) for oxygen isotopes is defined by 17O/16O and 18O/16O analyses of meteoric waters, seawater, sedimentary, metamorphic, and igneous rocks and constituent minerals. Interlaboratory measurements of the slope of the TFL on a plot of d18O vs. d17O revealed eclogitic garnets with a slope of 0.526 and hydrothermal quartz of 0.524 from rocks younger than 0.8 Ga (Giga years before present). New measurements show Archean metamorphic rocks and minerals from Barberton, (3.2 Ga, S. Africa), Isua (3.8 Ga, Greenland), and Acasta (4.0 Ga, Canada) have a slope of 0.524 +/- 0.002 (95% confidence, MSWD = 0.66). Analysis of Ag3PO4 prepared from apatite mineral separates from Isua meta-sediments gives a slope of 0.509 +/- 0.022 (95% confidence, MSWD = 0.59). Taken at face value, steeper slopes on a d17O vs. d18O diagram indicate an approach towards isotope exchange equilibrium. Lower slopes are expected when isotope fractionation is kinetically controlled. The lower slope of 0.509 for Isua apatite suggests that the formation of orthophosphate was kinetically controlled. Kinetic fractionations are known to occur during catalysis of reactions by enzymes secreted by microbes. Enzymatic catalysis confers an advantage on organisms because energy-producing reactions may be induced to occur at lower temperature conditions more accessible to the organism. May it be definitively concluded that enzymatic catalysis was responsible for the measured 0.509 slope? No, abiotic kinetic fractionation cannot be disproven with existing data. The preparation of Ag3PO4 from apatite may have introduced kinetic fractionation as an analytical artifact. Conclusions fully supported by the data suggest: (1) Mixing accompanying the violent birth of the Earth- Moon system had already succeeded in establishing Earth's current oxygen isotope composition by 4.0 Ga; and (2) No trace of an episode of late heavy meteorite bombardment remains in the oxygen isotope compositions of

  14. S-Isotope Fractionation between Fluid and Silicate Melts

    Science.gov (United States)

    Fiege, A.; Holtz, F.; Shimizu, N.; Behrens, H.; Mandeville, C. W.; Simon, A. C.

    2013-12-01

    Large amounts of sulfur (S) can be released from silicate melts during volcanic eruption. Degassing of magma can lead to S-isotope fractionation between fluid and melt. However, experimental data on fluid-melt S-isotope fractionation are scarce and no data exist for silicate melts at temperatures (T) > 1000°C. Recent advances in in situ S-isotope analyses using secondary ion mass spectroscopy (SIMS) enable determinations of the isotopic composition in silicate glasses with low S content [1] and allow us to investigate experimentally fluid-melt S-isotope fractionation effects in magmatic systems. Isothermal decompression experiments were conducted in internally heated pressure vessels (IHPV). Volatile-bearing (~3 to ~8 wt% H2O, 140 to 2700 ppm S, 0 to 1000 ppm Cl) andesitic and basaltic glasses were synthesized at ~1040°C, ~500 MPa and log(fO2) = QFM to QFM+4 (QFM: quartz-magnetite-fayalite buffer). The decompression experiments were carried out at T = 1030 to 1200°C and similar fO2. Pressure (P) was released continuously from ~400 MPa to 150, 100 or 70 MPa with rates (r) ranging from 0.001 to 0.2 MPa/s. The samples were either rapidly quenched after decompression or annealed for various times (tA) at final conditions (1 to 72 h) before quenching. The volatile-bearing starting glasses and the partially degassed experimental glasses were analyzed by electron microprobe (e.g. Cl-, S-content), IR-spectroscopy (H2O content) and SIMS (δ34S). The gas-melt isotope fractionation factors (αg-m) were estimated following Holloway and Blank [2] and utilizing mass balance calculations. The results show that αg-m remains constant within error over the investigated range of r and tA, reflecting fluid-melt equilibrium fractionation of S isotopes for given T and fO2. Data obtained for oxidizing conditions (~QFM+4) are in agreement with observations in arc magmas [3] and close to what is predicted by previous theoretical and experimental data [4; 5; 6]; e.g. a α(SO2 gas - SO42

  15. Microbial mass-dependent fractionation of chromium isotopes

    Science.gov (United States)

    Sikora, E.R.; Johnson, T.M.; Bullen, T.D.

    2008-01-01

    Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 ??M Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 ??M, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways. ?? 2008 Elsevier Ltd.

  16. Microbial mass-dependent fractionation of chromium isotopes

    Science.gov (United States)

    Sikora, Eric R.; Johnson, Thomas M.; Bullen, Thomas D.

    2008-08-01

    Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/ 52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/ 52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.

  17. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and

  18. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  19. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  20. Wavelength dependence of isotope fractionation in N2O photolysis

    Directory of Open Access Journals (Sweden)

    P. J. Crutzen

    2002-10-01

    Full Text Available In previous reports on isotopic fractionation in the ultraviolet photolysis of nitrous oxide (N2O only enrichments of heavy isotopes in the remaining N2O fraction have been found. However, most direct photolysis experiments have been performed at wavelengths far from the absorption maximum at 182 nm. Here we present high-precision measurements of the 15N and 18O fractionation constants (e in photolysis at 185 nm. Small, but statistically robust depletions of heavy isotopes for the terminal atoms in the linear N2O molecule are found. This means that the absorption cross sections s(15N14N16O and s(14N218O are larger than s(14N216O at this specific wavelength. In contrast, the central N atom becomes enriched in 15N. The corresponding fractionation constants (±1 standard deviation are 15e1 = s(15N14N16O/s(14N216O - 1 = (3.7 ± 0.2%o 18e = s(14N218O/s(14N216O - 1 = (4.5 ± 0.2%o  and   15e2 = s(chem{14N15N16O/s(14N216O - 1 = (-18.6 ± 0.5 %o To our knowledge, this is the first documented case of such a heavy isotope depletion in the photolysis of N2O which supports theoretical models and pioneering vacuum ultraviolet spectroscopic measurements of 15N substituted N2O species that predict fluctuations of e around zero in this spectral region (Selwyn and Johnston, 1981. Such a variability in isotopic fractionation could have consequences for atmospheric models of N2O isotopes since actinic flux varies also strongly over narrow wavelength regions between 175 and 200 nm due to the Schumann-Runge bands of oxygen. However, the spacing between maxima and minima of the fractionation constants and of the actinic flux differ by two orders of magnitude in the wavelength  domain. The wavelength dependence of fractionation constants in N2O photolysis can thus be approximated by a linear fit with negligible consequences on the actual value of the spectrally averaged fractionation constant. In order to establish this linear fit, additional measurements at

  1. Isotopic Fractionation in Comets: Quantifying the Contribution of Interstellar Chemistry

    Science.gov (United States)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cares where substantial freeze-taut of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with the GBT.

  2. First-principles models of equilibrium tellurium isotope fractionation

    Science.gov (United States)

    Haghnegahdar, M. A.; Schauble, E. A.; Fornadel, A. P.; Spry, P. G.

    2013-12-01

    In this study, equilibrium mass-dependent isotopic fractionation among representative Te-bearing species is estimated with first-principles thermodynamic calculations. Tellurium is a group 16 element (along with O, S, and Se) with eight stable isotopes ranging in mass from 120Te to 130Te, and six commonly-occurring oxidation states: -II, -I, 0, +II, +IV, and +VI. In its reduced form, Te(-II), tellurium has a unique crystal-chemical role as a bond partner for gold and silver in epithermal and orogenic gold deposits, which likely form when oxidized Te species (e.g., H2TeO3, TeO32-) or perhaps polytellurides (e.g., Te22-) interact with precious metals in hydrothermal solution. Te(IV) is the most common oxidation state at the Earth's surface, including surface outcrops of telluride ore deposits, where tellurite and tellurate minerals form by oxidation. In the ocean, dissolved tellurium tends to be scavenged by particulate matter. Te(VI) is more abundant than Te(IV) in the ocean water (1), even though it is thought to be less stable thermodynamically. This variety of valence states in natural systems and range of isotopic masses suggest that tellurium could exhibit geochemically useful isotope abundance variations. Tellurium isotope fractionations were determined for representative molecules and crystals of varying complexity and chemistry. Gas-phase calculations are combined with supermolecular cluster models of aqueous and solid species. These in turn are compared with plane-wave density functional theory calculations with periodic boundary conditions. In general, heavyTe/lightTe is predicted to be higher for more oxidized species, and lower for reduced species, with 130Te/125Te fractionations as large as 4‰ at 100οC between coexisting Te(IV) and Te(-II) or Te(0) compounds. This is a much larger fractionation than has been observed in naturally occurring redox pairs (i.e., Te (0) vs. Te(IV) species) so far, suggesting that disequilibrium processes may control

  3. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  4. Predicting equilibrium uranium isotope fractionation in crystals and solution

    Science.gov (United States)

    Schauble, E. A.

    2015-12-01

    Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22

  5. Experimental determination of magnesium isotope fractionation during higher plant growth

    Science.gov (United States)

    Bolou-Bi, Emile B.; Poszwa, Anne; Leyval, Corinne; Vigier, Nathalie

    2010-05-01

    Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ 26Mg plant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ˜0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ 26Mg (by ˜0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ 26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ 26Mg leaf-root = -0.65‰ and -0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ 26Mg leaf-root of -0.06‰ and -0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ 26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ 26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of

  6. Isotope Fractionation by Diffusion in Liquids (Final Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Frank [Univ. of Chicago, IL (United States)

    2016-11-09

    The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the key for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.

  7. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -pinene - an abundant precursor to biogenic aerosol 3. Oxidation of SO2 to sulfuric acid - one of the key species in aerosol formation Laboratory experiments were designed and conducted as part of this thesis to investigate these processes. In addition, advanced data treatment and chemical modeling were performed...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass......-independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...

  8. Large Sulfur Isotope Fractionation Does Not Require Disproportionation

    Science.gov (United States)

    Sim, Min Sub; Bosak, Tanja; Ono, Shuhei

    2011-07-01

    The composition of sulfur isotopes in sedimentary sulfides and sulfates traces the sulfur cycle throughout Earth’s history. In particular, depletions of sulfur-34 (34S) in sulfide relative to sulfate exceeding 47 per mil (‰) often serve as a proxy for the disproportionation of intermediate sulfur species in addition to sulfate reduction. Here, we demonstrate that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete 34S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle. Therefore, similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth’s surface environment during the Proterozoic.

  9. Large sulfur isotope fractionation does not require disproportionation.

    Science.gov (United States)

    Sim, Min Sub; Bosak, Tanja; Ono, Shuhei

    2011-07-01

    The composition of sulfur isotopes in sedimentary sulfides and sulfates traces the sulfur cycle throughout Earth's history. In particular, depletions of sulfur-34 ((34)S) in sulfide relative to sulfate exceeding 47 per mil (‰) often serve as a proxy for the disproportionation of intermediate sulfur species in addition to sulfate reduction. Here, we demonstrate that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete (34)S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle. Therefore, similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth's surface environment during the Proterozoic.

  10. Isotope Fractionation Studies in Prestellar Cores: The Case of Nitrogen

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is considered, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing, thus preserving the fractionation. In interstellar molecular clouds, ion-molecule chemistry continually cycles nitrogen between the two main reservoirs - N and N2 - leading to only minor N-15 enrichments. Charnley and Rodgers showed that depletion of CO removes oxygen from the gas and weakens this cycle such that significant N-15 fractionation can occur for N2 and other N-bearing species in such cores. Observations are being conducted at millimeter and submillimeter wavelengths employing various facilities in order to both spatially and spectrally, resolve emission from these cores. A preliminary study to obtain the N-14/N-15 ratio in nitriles (HCN and HNC) was conducted at the Arizona Radio Observatory's 12m telescope on Kitt Peak, AZ. Spectra were obtained at high resolution (0.08 km/s) in order to resolve dynamic properties of each source as well as to resolve hyperfine structure present in certain isotopologues. This study included four dark cloud cores, observed to have varying levels of molecular depletion: L1521E, L1498, L1544, and L1521F. Previous studies of the N-14/N-15 ratio towards LI544 were obtained with N2H+ and NIH3, yielding ratios of 446 and >700, respectively. The discrepancy observed in these two measurements suggests a strong chemical dependence on the fractionation of nitrogen. Ratios (C,N, and D) obtained from isotopologues for a particular molecule are likely tracing the same chemical heritage and are directly comparable within a given source. Results and comparisons between the protostellar evolutionary state and isomer isotope fractionation as well as between other N-bearing species will be presented.

  11. Cr isotope fractionation in metal-mineral-microbe interactions

    Science.gov (United States)

    Zhang, Qiong; Porcelli, Don; Thompson, Ian; Amor, Ken; Galer, Stephen

    2016-04-01

    Microbes interact with metals and minerals in the environments, altering their physical and chemical state whilst in turn the metals and minerals affect microbial growth, activity and survival. The interactions between Cr, Fe minerals and bacteria were investigated in this study. Cr(VI) reduction experiments by two iron-reducing bacteria, Pseudomonas fluorescens LB 300 and Shewanella oneidensis MR 1, in the presence of two iron oxide minerals, goethite and hematite, were conducted. Both minerals were found to inhibit the Cr(VI) reduction rate by Pseudomonas fluorescens LB 300 but accelerated Shewanella oneidensis MR 1. The Cr isotopic fractionation factor generated by both bacteria was mostly independent of the presence of the minerals, except for hematite with Pseudomonas fluorescens LB 300, where the ɛ was much higher. Aqueous Fe(III) in the solution did not have any detectable impact on either bacterial Cr reduction rates or the isotopic fractionation factors, indicating that the reduction of Cr(VI) occurred prior to that of Fe(III). The presence of aqueous Fe(II) induced a very fast abiotic reduction of Cr, but had little impact on the bacterial Cr reduction rates or its isotope fractionations. The evidence suggests that the different impact that Fe minerals had on the bacteria were related to the way they attached to the minerals and the difference in the reduction mechanism. SEM images confirmed that the attachment of Pseudomonas fluorescens LB 300 on the mineral surfaces were much more tightly packed than that of Shewanella oneidensis MR 1, so reducing mineral-metal interactions.

  12. The three-isotope method for equilibrium isotope fractionation factor determination: Unfounded optimism

    Science.gov (United States)

    Cao, X.; Hayles, J. A.; Bao, H.

    2015-12-01

    The equilibrium isotope fractionation factor α is a fundamental parameter in stable isotope geochemistry. Although equilibrium α can be determined by theoretical calculation or by measurement of natural samples, direct laboratory experiments are ultimately required to verify those results. The attainment of a true exchange equilibrium in experiments is often difficult, but three methods have been devised and used to ensure that an equilibrium α has been obtained in an isotope exchange experiment. These are the two-directional method, partial-exchange method, and three-isotope method. Of these, the three-isotope method is thought to be the most rigorous. Using water-water exchange as a basic unit, we have developed a set of complex exchange models to study when and why the three-isotope method may work well or not. We found that the method cannot promise to lead to an equilibrium α before the kinetic complexity of the specific exchange experiment is known. An equilibrium point in δ17O-δ18O space can be reached only when all of the isotope exchange pathways are fully reversible, i.e. there is no mass loss at any instant, and the forward and backward reactions share the same pathway. If the exchange pathways are not fully reversible, steady state may be reached, but a steady state α can be very different from the equilibrium α. Our results validated the earlier warning that the trajectory for three-isotope evolution in δ17O-δ18O space may be a distinctly curved line or contain more than one straight line due to the non-fully reversible isotope exchange reactions. The three-isotope method for equilibrium α determination is not as rigorous or as promising as it may seem. Instead, the trajectory of three-isotope evolution provides detailed insights into the kinetics of isotope exchange between compounds. If multiple components exist in the exchange system, the δ17O-δ18O evolving trajectory would be more complex.

  13. Constraints on neon and argon isotopic fractionation in solar wind.

    Science.gov (United States)

    Meshik, Alex; Mabry, Jennifer; Hohenberg, Charles; Marrocchi, Yves; Pravdivtseva, Olga; Burnett, Donald; Olinger, Chad; Wiens, Roger; Reisenfeld, Dan; Allton, Judith; McNamara, Karen; Stansbery, Eileen; Jurewicz, Amy J G

    2007-10-19

    To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history.

  14. Cadmium isotope fractionation of materials derived from various industrial processes.

    Science.gov (United States)

    Martinková, Eva; Chrastný, Vladislav; Francová, Michaela; Šípková, Adéla; Čuřík, Jan; Myška, Oldřich; Mižič, Lukáš

    2016-01-25

    Our study represents ϵ(114/110) Cd NIST3108 values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ(114/110) CdNIST3108 values of 1.0±0.2, 0.2±0.2, 1.3±0.1, -2.3±0.2 and -0.1±0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ(114/110) Cd NIST3108 values. The heaviest ϵ(114/110) CdNIST3108 value of 58.6±0.9 was found for slag resulting from coal combustion, and the lightest ϵ(114/110) CdNIST3108 value of -23±2.5 was observed for waste material after Pb refinement. It is evident that ϵ(114/110) Cd NIST3108 values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.

  15. Retrievals of boundary layer methane and isotope fractionation on Titan

    Science.gov (United States)

    Adamkovics, Mate; Lora, Juan M.; Mitchell, Jonathan L.

    2016-10-01

    The amount of methane in the boundary layer on Titan is an interesting diagnostic of whether or not it might be seeping out of the regolith. We know that kinetic fractionation of methane isotopes can be diagnostic of evaporation at the surface and condensation in the atmosphere. If a parcel is constrained to follow a moist adiabat while condensation occurs, we can predict the amount of fractionation that is expected (Ádámkovics & Mitchell, 2016). We will present our most recent efforts to measure boundary layer methane abundance and isotopic composition, which include our recently published Keck NIRSPAO observations from 17 July 2014 (Ádámkovics et al., 2016), as well as preliminary results from follow-up measurements made on 15 May 2016. Our measurements are tantalizingly close to being able to distinguish between different hydrological parameterizations of the polar regions in the Titan Atmospheric Model (Lora & Ádámkovics, 2016). We will discuss the systematic uncertainties that can be evaluated with the combination of these two datasets and the prospects for exceptionally high S/N observations via particularly deep integrations over multiple nights.

  16. Experimental study on the relationship between average isotopic fractionation factor and evaporation rate

    Directory of Open Access Journals (Sweden)

    Tao WANG

    2010-12-01

    Full Text Available Isotopic fractionation is the foundation of tracing water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in evaporation from free water body are mainly affected by temperature and relative humidity, and greatly vary with these atmospheric factors in a day. Evaporation rate can properly reveal the effects of atmospheric factors. Therefore, there should be a certain function relationship existing in isotopic fractionation factors and evaporation rate. An average isotopic fractionation factor was defined to describe isotopic differences between vapor and liquid phases in evaporation with time interval of hours or days. The relationship of average isotopic fractionation factor and evaporation based on isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water became more enrichment with time; the average isotopic fractionation factor was affected by air temperature, relative humidity and other atmospheric factors, and had a good functional relation with evaporation rate. The values of average isotopic fractionation factor could be easily calculated with the known of evaporation rate, the initial volume of water in pan and isotopic compositions of residual water.

  17. Fractionation of Nitrogen and Oxygen Isotopes During Microbial Nitrate Reduction

    Science.gov (United States)

    Lehmann, M. F.; Bernasconi, S. M.; Reichert, P.; Barbieri, A.; McKenzie, J. A.

    2001-12-01

    Lakes represent an important continental sink of fixed nitrogen. Besides the burial of particulate nitrogen, fixed nitrogen is eliminated from lakes by emission of N2 and N2O to the atmosphere during dissimilative nitrate reduction within suboxic and anoxic waters or sediments. The understanding and quantification of this efficient nitrogen removal process in eutrophic lakes is crucial for nitrogen budget modelling and the application and evaluation of lake restoration measures. In order to use natural abundance N and O isotope ratios as tracers for microbial nitrate reduction and to obtain quantitative estimates on its intensity, it is crucial to constrain the associated isotope fractionation. This is the first report of nitrogen and oxygen isotope effects associated with microbial nitrate reduction in lacustrine environments. Nitrate reduction in suboxic and anoxic waters of the southern basin of Lake Lugano (Switzerland) is demonstrated by a progressive nitrate depletion coupled to increasing δ 15N and δ 18O values for residual nitrate. 15N and 18O enrichment factors (ɛ ) were estimated using a closed-system (Rayleigh-distillation) model and a dynamic reaction-diffusion model. Calculated enrichment factors ɛ ranged between -11.2 and -22‰ for 15N and between -6.6 and -11.3‰ for 18O with both nitrogen and oxygen isotope fractionation being greatest during times with the highest nitrate reduction rates. The closed-system model neglects vertical diffusive mixing and does not distinguish between sedimentary and water-column nitrate reduction. Therefore, it tends to underestimate the intrinsic isotope effect of microbial nitrate reduction. Based upon results from earlier studies that indicate that nitrate reduction in sediments displays a highly reduced N-isotope effect (Brandes and Devol, 1997), model-derived enrichment factors could be used to discern the relative importance of nitrate reduction in the water column and in the sediment. Sedimentary nitrate

  18. Experimental study on stable isotopic fractionation of evaporating water under varying temperature

    Institute of Scientific and Technical Information of China (English)

    Hai-ying HU; Wei-min BAO; Tao WANG; Si-min QU

    2009-01-01

    The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.

  19. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  20. Carbon and nitrogen isotope systematics in diamond: Different sensitivities to isotopic fractionation or a decoupled origin?

    Science.gov (United States)

    Hogberg, K.; Stachel, T.; Stern, R. A.

    2016-11-01

    Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in δ13C (- 28.4 ‰ to - 1.1‰, mode at - 5.8‰), δ15N (- 5.8 to + 18.8‰, mode at - 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low δ13C and [N] to mantle-like δ13C and high [N]. Overall, δ13C appears to be uncorrelated to δ15N and [N] on both the inter- and intra-diamond levels. Co-variations of δ15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive δ15N (about - 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low δ13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative δ13C and δ15N). (3.) In waning

  1. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    Science.gov (United States)

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael

    2016-11-01

    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ(65)Cu and δ(66)Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ(65)Cu and δ(66)Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ(65)Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ(65)Cu value of pollution sources (-1.17‰). The variability in δ(65)Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ(66)Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ(66)Zn value of pollution sources (-0.23‰). The variability in δ(66)Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stable carbon isotope fractionation of six strongly fractionating microorganisms is not affected by growth temperature under laboratory conditions

    Science.gov (United States)

    Penger, Jörn; Conrad, Ralf; Blaser, Martin

    2014-09-01

    Temperature is the major driving force for many biological as well as chemical reactions and may impact the fractionation of stable carbon isotopes. Thus, a good correlation between temperature and fractionation is observed in many chemical systems that are controlled by an equilibrium isotope effect. In contrast, biological systems that are usually controlled by a kinetic isotope effect are less well studied with respect to temperature effects and have shown contrasting results. We studied three different biological pathways (methylotrophic methanogenesis, hydrogenotrophic methanogenesis, acetogenesis by the acetyl-CoA pathway) which are characterized by very strong carbon isotope enrichment factors (-50‰ to -83‰). The microorganisms (Methanosarcina barkeri, Methanosarcina acetivorans, Methanolobus zinderi, Methanothermobacter marburgensis, Methanothermobacter thermoautotrophicus, Thermoanaerobacter kivui) exhibiting these pathways were grown at different temperatures ranging between 25 and 68 °C, and the fractionation factors were determined from 13C/12C isotope discrimination during substrate depletion and product formation. Our experiments showed that the fractionation factors were different for the different metabolic pathways but were not much affected by the different growth temperatures. Slight variations were well within the standard errors of replication and regression analysis. Our results showed that temperature had no significant effect on the fractionation of stable carbon isotopes during anaerobic microbial metabolism with relatively strong isotope fractionation.

  3. Oxygen isotope fractionation between bird bone phosphate and drinking water

    Science.gov (United States)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  4. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    CERN Document Server

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-01-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan s atmosphere and in the protosolar nebula, respectively. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 permil relative to the initial N2 gas, whatever the experimental set...

  5. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  6. Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine.

    Science.gov (United States)

    Moynier, Frédéric; Fujii, Toshiyuki

    2017-03-09

    Stable Ca isotopes are fractionated between bones, urine and blood of animals and between soils, roots and leaves of plants by >1000 ppm for the (44)Ca/(40)Ca ratio. These isotopic variations have important implications to understand Ca transport and fluxes in living organisms; however, the mechanisms of isotopic fractionation are unclear. Here we present ab initio calculations for the isotopic fractionation between various aqueous species of Ca and show that this fractionation can be up to 3000 ppm. We show that the Ca isotopic fractionation between soil solutions and plant roots can be explained by the difference of isotopic fractionation between the different first shell hydration degree of Ca(2+) and that the isotopic fractionation between roots and leaves is controlled by the precipitation of Ca-oxalates. The isotopic fractionation between blood and urine is due to the complexation of heavy Ca with citrate and oxalates in urine. Calculations are presented for additional Ca species that may be useful to interpret future Ca isotopic measurements.

  7. Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine

    Science.gov (United States)

    Moynier, Frédéric; Fujii, Toshiyuki

    2017-01-01

    Stable Ca isotopes are fractionated between bones, urine and blood of animals and between soils, roots and leaves of plants by >1000 ppm for the 44Ca/40Ca ratio. These isotopic variations have important implications to understand Ca transport and fluxes in living organisms; however, the mechanisms of isotopic fractionation are unclear. Here we present ab initio calculations for the isotopic fractionation between various aqueous species of Ca and show that this fractionation can be up to 3000 ppm. We show that the Ca isotopic fractionation between soil solutions and plant roots can be explained by the difference of isotopic fractionation between the different first shell hydration degree of Ca2+ and that the isotopic fractionation between roots and leaves is controlled by the precipitation of Ca-oxalates. The isotopic fractionation between blood and urine is due to the complexation of heavy Ca with citrate and oxalates in urine. Calculations are presented for additional Ca species that may be useful to interpret future Ca isotopic measurements. PMID:28276502

  8. Observations of nitrogen isotope fractionation in deeply embedded protostars

    CERN Document Server

    Wampfler, S F; Bizzarro, M; Bisschop, S E

    2014-01-01

    (Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Our aim is to measure the 14N/15N ratio around three nearby, embedded low-to-intermediate-mass protostars. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of H13CN, HC15N, HN13C, and H15NC transitions was observed with the APEX telescope. The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically...

  9. Mass Independent Fractionation of Hg Isotopes Preserved in the Precambrian

    Science.gov (United States)

    Thibodeau, A. M.; Bergquist, B. A.; Kah, L. C.; Ono, S.; Ghosh, S.; Hazen, R. M.

    2013-12-01

    Mercury (Hg) is a photochemically active, redox-sensitive, chalcophilic metal with complex biogeochemistry that displays a wide range of mass-dependent (MDF) and mass-independent (MIF) stable isotopic fractionation. In the past decade, Hg isotopes have emerged as important tracers of both the sources and cycling of Hg in the modern environment. However, their utility as environmental proxies in ancient rocks remains largely unexplored. The potential of Hg isotopes to inform Precambrian environments derives from the observation that Hg isotopes with odd atomic mass numbers (199Hg and 201Hg) undergo large MIF by the magnetic isotope effect (MIE) and smaller MIF through the nuclear volume effect (NVE). Small MIF produced via NVE has been observed for numerous transformations and is characterized by MIF ratios (Δ199Hg/Δ201Hg) of about 1.6. Large Hg-MIF driven by MIE has been observed during photochemical transformations and is characterized by Δ199Hg/Δ201Hg ratios between 1 and 1.3. This MIF signal is sensitive to a range of environmental conditions, including the amount and type of solar radiation, the presence and type of complexing organic ligands, and the Hg/dissolved organic carbon (DOC) ratio. Thus, it is hoped that Hg-MIF signals may indirectly record changes in atmospheric composition or seawater chemistry if preserved in marine sedimentary records. Previous work has clearly demonstrated that Hg-MIF signals are preserved in Archean and Paleoproterozoic marine shales and massive sulfide deposits. Here, we present evidence that such signals are also preserved in marine shales of mid-Proterozoic age, including the ~1.3 Ga Sulky formation (Dismal Lakes Group, NW Arctic), the ~1.45 Ga Greyson Shale (Belt Basin, Montana), and the ~1.5 Ga Katalsy formation (Kypry Group, Eastern European Platform). We observe that the Greyson shale and shales within the Sulky formation yield negative Hg-MIF with Δ199Hg/Δ201Hg ratios close to 1 and that Kaltasy group sediments

  10. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite

    Science.gov (United States)

    Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.

    2011-01-01

    Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.

  11. Comment on "Abiotic pyrite formation produces a large Fe isotope fractionation".

    Science.gov (United States)

    Czaja, Andrew D; Johnson, Clark M; Yamaguchi, Kosei E; Beard, Brian L

    2012-02-01

    Guilbaud et al. (Reports, 24 June 2011, p. 1548) suggest that the geologic record of Fe isotope fractionation can be explained by abiological precipitation of pyrite. We argue that a detailed understanding of the depositional setting, mineralogy, and geologic history of Precambrian sedimentary rocks indicates that the Fe isotope record dominantly reflects biological fractionations and Fe redox processes.

  12. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  13. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama Meguroku, Tokyo, 152-8550 (Japan)

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  14. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    Science.gov (United States)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  15. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  16. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  17. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno.

    Science.gov (United States)

    Posth, N R; Bristow, L A; Cox, R P; Habicht, K S; Danza, F; Tonolla, M; Frigaard, N-U; Canfield, D E

    2017-09-03

    Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2 . In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive the sulfur cycle. PSB and GSB fix carbon utilizing different enzymatic pathways and these fractionate C-isotopes to different extents. Here, these differences in C-isotope fractionation are used to constrain the relative input of various anoxygenic phototrophs to the bulk community C-isotope signal in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C-isotope fractionation in the water column, settling material, and sediment of Lake Cadagno, compared these values to C-isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C-isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C-isotope fractionation, but the influence of GSB and PSB differed with season. Furthermore, the contribution of PSB and GSB to bulk C-isotope fractionation in the chemocline could be traced in the settling fraction and in the sediment. Taken together with other studies, such as lipid biomarker analyzes and investigations of other stratified lakes, these results offer a firmer understanding of diagenetic influences on bacterial biomass. © 2017 John Wiley & Sons Ltd.

  18. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    Science.gov (United States)

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere.

  19. A reconnaissance of the Cu isotopic compositions of hydrothermal vein-type cop-per deposit, Jinman, Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Jinman deposit is a low-temperature hydrothermal vein-type copper deposit, which occurs along faults and fractures within Middle Jurassic sandstone and mudstone units of the Lanping-Simao Mesozoic-Cenozoic basin of Yunnan Province. In this note, we report for the first time the Cu isotopic compositions of Cu-sulfides from the Jinman deposit. The data show large variations and low 65Cu values of 3.70‰ to +0.30‰, which are in sharp contrast to the 65Cu values of high-temperature magmatic-hydrothermal copper deposits (0.62‰ to +0.40‰) and the modern ocean-floor massive sulfide deposits (0.48‰ to +1.15‰). It is suggested that the Cu isotope fractionation at Jinman is affected mainly by the following factors, i.e. a low temperature of ore formation (150-286℃); a sedimentary source for ore materials; various stages of ore deposition; and involvement of organic matter in the ore-forming processes.

  20. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    Science.gov (United States)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  1. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K. [Chemical Engineering Division, Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  2. Simulation of cloud microphysical effects on water isotope fractionation in a frontal system

    Science.gov (United States)

    Chen, J. P.; Tsai, I. C.; Chen, W. Y.; Liang, M. C.

    2014-12-01

    The stable water isotopic composition changes due to fractionation during phase changes. This information is useful for understanding the water cycle, such as the water vapor source, transport and cloud microphysical processes. In conventional atmospheric models, the isotope exchange between liquid and gas phase is usually assumed to be in an equilibrium state, which is not sufficient to describe the highly kinetic phase transformation processes in clouds. In this study, a two-moment microphysical scheme incorporated into the NCAR Weather Research and Forecasting (WRF) model is modified to simulate the isotope fractionations. Experimentally determined stable water isotope thermal equilibrium data are converted into isotope saturation vapor pressure, which is then put into the two-stream Maxwellian kinetic equation to calculate the fractionation during vapor condensation/evaporation or deposition/sublimation. Isotope mass transfer between liquid- and ice-phase hydrometeors during freezing/melting are also considered explicitly. The simulation results were compared with rainwater isotope measurements and showed fairly good agreement. Sensitivity tests were also conducted to quantify the contribution of rainwater isotopic due to water vapor source and transport, condensation environment conditions, and cloud microphysical processes. The results show that isotopic water vapor source dominates the stable isotope concentration in rainwater but the cloud microphysical processes including the ice-phase processes are also quite important. The results also showed that the two-stream Maxwellian kinetic method would cause significantly more deuterium to be transported into higher altitudes during convection than the thermal equilibrium method.

  3. Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues

    Science.gov (United States)

    Chopra, Rahul; Richter, Frank M.; Bruce Watson, E.; Scullard, Christian R.

    2012-07-01

    Laboratory experiments are used to document isotopic fractionation of magnesium by chemical diffusion in a silicate melt and the results compared to the magnesium isotopic composition across contacts between igneous rocks of different composition in natural settings. The natural samples are from transects from felsic to mafic rocks at Vinal Cove in the Vinalhaven Intrusive Complex, Maine and from the Aztec Wash pluton in Nevada. Two laboratory diffusion couples made by juxtaposing melts made from powders of the felsic and mafic compositions sampled at Vinal Cove were annealed at about 1500 °C for 22.5 and 10 h, respectively. The transport of magnesium in the diffusion couples resulted in easily measured magnesium isotopic fractionations at the interface (δ26Mg∼1.5‰). These isotopic fractionations provide a distinctive isotopic “fingerprint” that we use to determine whether chemical gradients in natural settings where melts of different composition were juxtaposed were due to chemical diffusion. The magnesium isotopic fractionation along one profile at Vinal Cove is exactly what one would expect based on the fractionations found in the laboratory experiments. This is an important result in that it shows that the isotope fractionation by chemical diffusion found in highly controlled laboratory experiments can be found in a natural setting. This correspondence implies that chemical diffusion was the dominant process responsible for the transport of magnesium across this particular contact at Vinal Cove. A second Vinal Cove profile has a very similar gradient in magnesium concentration but with significantly less magnesium isotopic fractionation than expected. This suggests that mass transport at this location was only partly by diffusion and that some other mass transport mechanism such as mechanical mixing must have also played a role. The magnesium isotopic composition of samples from Aztec Wash shows no resolvable isotopic fractionation across the contact

  4. What is the Role of the Transition State in Soret and Chemical Diffusion Induced Isotopic Fractionation?

    Science.gov (United States)

    Dominguez, G.

    2013-12-01

    For over six decades, Urey's (1) statistical mechanical model of isotopic fractionation based on partition functions with quantized energy levels have enjoyed enormous success in quantitatively explaining equilibrium isotopic fractionation in a wide variety of geochemical systems For example, the interpretation of oxygen isotopic variations in carbonate systems (e.g. foraminiferas), in terms of partition functions with quantized energy levels, forms the basis for paleothermometry (2). Recent observations of isotopic fractionation from chemical and thermal (Soret) diffusion (3-7) appear to challenge our theoretical understanding of mass-transport and isotopic fractionation (8, 9). For example, a recently proposed quantum mechanical model of Soret diffusion, which correctly predicts the isotopic fractionation in thermal gradients for isotopes of Mg, Ca, Fe, Si, and possibly oxygen, was critiqued as being unphysical. First, it was argued that the zero point energies needed to explain the magnitude of isotopic fractionation in basalt melts were unrealistically high based on infrared spectra of these melts. Second, it was argued that the chemical diffusion isotopic fractionation (beta) factors expected from these zero-point energies were also unphysical (10). A recently proposed collision-momentum transfer model partially explains observed fractionation factors, although it fails miserably (by a factor of 3) to account for the isotopic fractionation of Mg isotopes (11). In this presentation, I will review recent observations and models of isotopic fractionation in geochemical melts with thermal gradients and expand upon previous work (8, 12) to show how transition state theory can simultaneously explain mass-transport induced isotopic fractionation, including kinetic, equilibrium, and Soret isotopic fractionation. I show this by providing a few example calculations of the kinetic fractionation factors (a.k.a. beta factors) expected in chemical diffusion as well as

  5. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    Science.gov (United States)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  6. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  7. Zinc and copper behaviour at the soil-river interface: New insights by Zn and Cu isotopes in the organic-rich Rio Negro basin

    Science.gov (United States)

    Guinoiseau, Damien; Gélabert, Alexandre; Allard, Thierry; Louvat, Pascale; Moreira-Turcq, Patricia; Benedetti, Marc F.

    2017-09-01

    The complex behaviour of Zn and Cu at the soil-river interface was investigated in soil and riverine water samples from the Rio Negro basin, a secondary tributary of the Rio Amazonas, using their stable isotope compositions. This acidic and organic river drains two types of intensely weathered terrains: podzols in its upstream part, and lateritic soils downstream. Bulk soil particles, suspended particulate matter (SPM) as well as colloidal fractions were sampled across the whole basin during low and high water stages. In the basin, Zn and Cu are mostly exported from lateritic soils and transported by organic colloids where significant losses are observed in the downstream part of the river. The use of δ66Zn and δ65Cu measurements reveals distinct stories for these two metals in suspended sediments and colloids. In the colloids, the constant δ66Zncoll across the basin is induced by the same weak association mode between Zn and organic ligands, regardless of the origin of the water. By contrast, in SPM, the speciation of Zn and thus δ66ZnSPM differ according to the type of drained soils. Zn is associated with organic complexes in particles exported with water draining podzol whereas Zn2+ is incorporated in the structure of the remaining kaolinite clays in lateritic output. The stronger reactivity of Cu than Zn with organic ligands induces its complete complexation. Copper is controlled by refractory particulate organic matter (POM) and by reactive colloidal organic matter; the latter being enriched in 65Cu due to stronger binding interactions than in POM. While the Cu content remains constant in the upstream part of the Rio Negro, downstream, the decrease of SPM and colloidal Cu fluxes is associated with a constant δ65CuSPM and with an increase of δ65Cucoll at the Rio Negro outlet. Geochemical mass balance modelling, based on SPM, Cu and Zn fluxes in SPM and their associated isotopic signatures, confirms distinct host phases for Zn and Cu, and identifies the

  8. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    Science.gov (United States)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  9. Carbon dioxide-water oxygen isotope fractionation factor using chlorine trifluoride and guanidine hydrochloride techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, J.P. Jr.; Borthwick, J.

    1986-12-01

    A new value for the CO/sub 2/-H/sub 2/O oxygen isotope fractionation factor of 1.04145 +/- 0.000 15 (2sigma) has been determined. The data have been normalized to the V-SMOW/V-SLAP scale and were obtained by measuring isotopic compositions with the guanidine hydrochloride and chlorine trifluoride techniques.

  10. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    Science.gov (United States)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  11. Cr-isotope fractionation during oxidative weathering of ultramafic rocks and its impact on river waters

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Døssing, Lasse Nørbye; Mondal, Sisir K.

    We investigated Cr isotope fractionation during soil formation from Precambrian ultramafic rocks. A soil profile was logged in an active open-cast chromite mine (Sukinda Valley, India). In addition, mine and river waters, as well as seawater were collected to trace the Cr-isotope signal into the ...

  12. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    Science.gov (United States)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  13. Iron isotope fractionation during Fe uptake and translocation in alpine plants.

    Science.gov (United States)

    Kiczka, Mirjam; Wiederhold, Jan G; Kraemer, Stephan M; Bourdon, Bernard; Kretzschmar, Ruben

    2010-08-15

    The potential of stable Fe isotopes as a tracer for the biogeochemical Fe cycle depends on the understanding and quantification of the fractionation processes involved. Iron uptake and cycling by plants may influence Fe speciation in soils. Here, we determined the Fe isotopic composition of different plant parts including the complete root system of three alpine plant species (Oxyria digyna, Rumex scutatus, Agrostis gigantea) in a granitic glacier forefield, which allowed us, for the first time, to distinguish between uptake and in-plant fractionation processes. The overall range of fractionation was 4.5 per thousand in delta(56)Fe. Mass balance calculations demonstrated that fractionation toward lighter Fe isotopic composition occurred in two steps during uptake: (1) before active uptake, probably during mineral dissolution and (2) during selective uptake of Fe at the plasma membrane with an enrichment factor of -1.0 to -1.7 per thousand for all three species. Iron isotopes were further fractionated during remobilization from old into new plant tissue, which changed the isotopic composition of leaves and flowers over the season. This study demonstrates the potential of Fe isotopes as a new tool in plant nutrition studies but also reveals challenges for the future application of Fe isotope signatures in soil-plant environments.

  14. Tracking the weathering of basalts on Mars using lithium isotope fractionation models

    Science.gov (United States)

    Fairén, Alberto G.; Losa-Adams, Elisabeth; Gil-Lozano, Carolina; Gago-Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.

    2015-04-01

    Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (˜15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.

  15. Uranium Isotope Fractionation during Adsorption, (Co)precipitation, and Biotic Reduction.

    Science.gov (United States)

    Dang, Duc Huy; Novotnik, Breda; Wang, Wei; Georg, R Bastian; Evans, R Douglas

    2016-12-06

    Uranium contamination of surface environments is a problem associated with both U-ore extraction/processing and situations in which groundwater comes into contact with geological formations high in uranium. Apart from the environmental concerns about U contamination, its accumulation and isotope composition have been used in marine sediments as a paleoproxy of the Earth's oxygenation history. Understanding U isotope geochemistry is then essential either to develop sustainable remediation procedures as well as for use in paleotracer applications. We report on parameters controlling U immobilization and U isotope fractionation by adsorption onto Mn/Fe oxides, precipitation with phosphate, and biotic reduction. The light U isotope ((235)U) is preferentially adsorbed on Mn/Fe oxides in an oxic system. When adsorbed onto Mn/Fe oxides, dissolved organic carbon and carbonate are the most efficient ligands limiting U binding resulting in slight differences in U isotope composition (δ(238)U = 0.22 ± 0.06‰) compared to the DOC/DIC-free configuration (δ(238)U = 0.39 ± 0.04‰). Uranium precipitation with phosphate does not induce isotope fractionation. In contrast, during U biotic reduction, the heavy U isotope ((238)U) is accumulated in reduced species (δ(238)U up to -1‰). The different trends of U isotope fractionation in oxic and anoxic environments makes its isotope composition a useful tracer for both environmental and paleogeochemical applications.

  16. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    Science.gov (United States)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  17. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects.

    Science.gov (United States)

    Sternberg, Leonel; Pinzon, Maria Camila; Anderson, William T; Jahren, A Hope

    2006-10-01

    The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

  18. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains.

  19. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089....

  20. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem

    Science.gov (United States)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Ma, Jing; Xu, Hua

    2016-06-01

    Carbon isotopic fractionations in the processes of CH4 emission from paddy field remain poorly understood. The δ13C-values of CH4 in association with production, oxidation and transport of CH4 in different pools of a paddy field were determined, and the stable carbon isotope fractionations were calibrated to assess relative contribution of acetate to CH4 production (fac) and fraction of CH4 oxidized (fox) by different pathways. The apparent isotope fractionation for CO2 conversion to CH4 (αapp) was 1.041-1.056 in the soil and 1.046-1.080 on the roots, indicating that fac was 10-60% and 0-50%, respectively. Isotope fractionation associated with CH4 oxidation (αox) was 1.021 ± 0.007 in the soil and 1.013 ± 0.005 on the roots, and the transport fractionation (ɛtransport) by rice plants was estimated to be -16.7‰ ~ -11.1‰. Rhizospheric fox was about 30-100%, and it was more important at the beginning but decreased fast towards the end of season. Large value of fox was also observed at the soil-water interface and soil and roots surfaces, respectively. The results demonstrate that carbon isotopic fractionations which might be different in different conditions were sensitive to the estimations of fac and fox in paddy field.

  1. Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone

    CERN Document Server

    Bouchard, D; Höhener, P; Hunkeler, D; 10.1016/j.jconhyd.2010.09.006

    2011-01-01

    Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion, and the equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment, and the comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas-phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporization, diffusion and biodegradation. The net...

  2. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake.

    Science.gov (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Helz, Rosalind T

    2008-06-20

    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stagemeltveins are 0.2 permil (per thousand) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2 per thousand lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  3. Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene.

    Science.gov (United States)

    Dong, Yiran; Butler, Elizabeth C; Philp, R Paul; Krumholz, Lee R

    2011-04-01

    Isotope fractionation has been used with increasing frequency as a tool to quantify degradation of chlorinated aliphatic pollutants in the environment. The objective of this research was to determine if the electron donor present in enrichment cultures prepared from uncontaminated sediments influenced the extent of isotope fractionation of tetrachloroethylene (PCE), either directly, or through its influence on microbial community composition. Two PCE-degrading enrichment cultures were prepared from Duck Pond (DP) sediment and were incubated with formate (DPF) or H(2) (DPH) as electron donor. DPF and DPH were significantly different in both product distribution and extent of isotope fractionation. Chemical and isotope analyses indicated that electron donors did not directly affect the product distribution or the extent of isotope fractionation for PCE reductive dechlorination. Instead, restriction fragment length polymorphism (RFLP) and sequence analysis of the 16S rRNA clone libraries of DPF and DPH identified distinct microbial communities in each enrichment culture, suggesting that differences in microbial communities were responsible for distinct product distributions and isotope fractionation between the two cultures. A dominant species identified only in DPH was closely related to known dehalogenating species (Sulfurospirillum multivorans and Sulfurospirillum halorespirans) and may be responsible for PCE degradation in DPH. Our study suggests that different dechlorinators exist at the same site and can be preferentially stimulated by different electron donors, especially over the long-term (i.e., years), typical of in-situ ground water remediation.

  4. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guy, R.D. (Carnegie Institution of Washington, Stanford, CA (United States)); Fogel, M.L.; Berry, J.A. (Carnegie Inst. of Washington, Washington, DC (United States))

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  5. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO

    NARCIS (Netherlands)

    Hoins, M.; Van de Waal, D.B.; Eberlein, T.; Reichart, G.-J.; Rost, B.; Sluijs, A.

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  6. Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation.

    Science.gov (United States)

    Thullner, Martin; Kampara, Makeba; Richnow, Hans H; Harms, Hauke; Wick, Lukas Y

    2008-09-01

    The microbial degradation of organic substrates often exhibits a fractionation of stable isotopes which leads to an enrichment of the heavier isotope in the remaining substrate. The use of this effect to quantify the amount of biodegraded substrate in contaminated aquifers requires that the isotope fractionation factor is constant in time and space. In many natural and engineered systems the bioavailable concentration at the location of the enzymes differs from the average bulk concentration of the substrate. When enzymatically driven substrate degradation is coupled to a preceding transport step controlling the bioavailability of the substrate, the observed isotope fractionation becomes a function of the bulk substrate concentration. The sensitivity of the observed isotope fractionation factor toward such substrate concentration changes depends on the ratio of bulk substrate concentration and Michaelis-Menten constant and on the ratio between the specific affinity of the microorganisms toward the substrate and the first order rate constant of the bioavailability limiting transport process. Highest sensitivities toward substrate concentration were found for combinations of high substrate concentration with low substrate bioavailability (i.e., high ratios of substrate concentration and Michaelis-Menten constant, and high ratios of specific affinity and transport rate constant). As a consequence, changes in concentration and isotopic composition of a bioavailability limited substrate in batch experiments should not exhibit a linear relation in a Rayleigh plot, and the slope of the Rayleigh plot should show a decreasing trend with concentration decrease. When using isotope fractionation to quantify biodegradation along groundwater flow paths, changes in observed isotope fractionation might occur while contaminant concentration decreases along a flow path.

  7. Temperature effects on the fractionation of multiple sulfur isotopes by Thermodesulfobacterium and Desulfovibrio strains

    Science.gov (United States)

    Wang, P.; Sun, C.; Ono, S.; Lin, L.

    2012-12-01

    Microbial dissimilatory sulfate reduction is one of the major mechanisms driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic compositions of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in the sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions. The isotope fractionations caused by microbial sulfate reduction have been interpreted to be a sequence of enzyme-catalyzed isotope fractionation steps. Therefore, the fractionation factor depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur transformation between the internal pools. Whether the multiple sulfur isotope effect could be quantitatively predicted using such a metabolic flux model would provide insights into the cellular machinery catalyzing with sulfate reduction. This study examined the multiple sulfur isotope fractionation patterns associated with a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79°C with an optimal temperature at 72°C and the highest cell-specific sulfate reduction rate at 77°C. The 34ɛ values ranged between 8.2 and 31.6‰ with a maximum at 68°C. The D. gigas grew between 10 and 45 °C with an optimal temperature at 30°C and the highest cell-specific sulfate reduction rate at 41°C. The 34ɛ values ranged between 10.3 and 29.7‰ with higher magnitude at both lower and higher temperatures. The results of multiple sulfur isotope measurements expand the previously reported range and cannot be described by a solution field of the metabolic flux model, which calculates

  8. Variability in carbon and nitrogen isotope fractionation associated with bacterial hydrolysis of atrazine

    Science.gov (United States)

    Meyer, A.; Penning, H.; Elsner, M.

    2009-04-01

    Even after legislative prohibition in 1991 by the European Union, the pesticide atrazine and its metabolites are still detected in surface and ground water frequently exceeding the permitted drinking water concentration limit of 0,1 g/L. Despite much recent research on atrazine, its risk assessment in the environment is still a major challenge because of the difficulty of establishing mass balances in the subsurface. To obtain a better insight into the fate of atrazine, we developed compound-specific stable isotope analysis (CSIA) for atrazine. CSIA has proven valuable for assessing organic contaminants in subsurface environments, on the one hand for source identification and on the other hand to trace (bio)chemical degradation reactions through isotope fractionation in the compounds. Such assessment is based on the Rayleigh equation and therein on the isotope enrichment factor ɛ, which must be determined experimentally beforehand. In ongoing work, we therefore measured carbon and nitrogen isotope fractionation associated with biotic hydrolsis of atrazine. C and N isotope enrichment factors were determined in resting cell experiments for Pseudomonas sp. ADP, Chelatobacter heintzii and Arthrobacter aurescens TC1, strains that hydrolyse atrazine in the initial transformation reaction. Carbon and nitrogen isotope enrichment factors were distinctly different between the bacterial strains. However, when plotting shifts in carbon isotope ratios versus shifts in nitrogen isotope ratios the slopes of the different degradation experiments coincided well. These results give evidence that all bacterial strains were carrying out the same initial biochemical degradation reaction, but that the associated isotope fractionation, as represented by the enrichment factors, was masked to a different extent owing to different rate determining steps prior to the isotopically sensitive bond cleavage (commitment to catalysis). Our study therefore illustrates the benefit of multi

  9. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    Science.gov (United States)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  10. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...... sulfate reduction. Therefore, additional processes contributing to the fractionation of sulfur isotopes in the sediments are indicated. From both Solar Lake and Logten Lagoon we were able to enrich cultures of elemental sulfur-disproportionating bacteria. We suggest that isotope fractionation accompanying...

  11. Oxygen isotope fractionation between human phosphate and water revisited

    DEFF Research Database (Denmark)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne;

    2008-01-01

    The oxygen isotope composition of human phosphatic tissues (delta18OP) has great potential for reconstructing climate and population migration, but this technique has not been applied to early human evolution. To facilitate this application we analyzed delta18OP values of modern human teeth...

  12. Mg isotope fractionation during microbe-mineral interactions

    Science.gov (United States)

    Kim, Insu; Ryu, Jong-sik; Lee, Kwang-sik; Lee, Dongho

    2014-05-01

    Magnesium is involved in various biogeochemical processes important to the global climate change over geological time-scale. Mg isotopes allow us to directly trace the Mg cycle in the Earth's surface but the factors controlling Mg isotopic compositions have not fully understood yet. Here, we conducted a batch experiment using two bacterial species (Shewanella putrefaciens and Burkholderia fungorum) and three major Mg-bearing minerals (biotite, dolomite and hornblende). All elemental concentrations increased by 336 h and then reached to steady-state values, of which Mg concentrations varied depending on minerals and bacterial species. This result indicates that the mineral dissolution is affect by the presence of microbes, which either provide organic acids or attach onto mineral surface. The Mg isotopic compositions of initial minerals biotite, dolomite and hornblende are -0.35o of biotite, -0.99o of dolomite, and -0.24o of hornblende, in δ26Mg. Similarly, δ26Mg values increased by 336 h and reached to steady-state values, which also varied with minerals and microbes. During dissolution of three minerals, the light isotope of Mg is preferentially incorporated into the dissolved phases and then the dissolved δ26Mg values become consistent with those of minerals with the time.

  13. Chemical fractionation of Cu and Zn and their impacts on microbial properties in slightly contaminated soils

    Directory of Open Access Journals (Sweden)

    Liu Aiju

    2013-06-01

    Full Text Available Chemical fractionation of Cu and Zn in bulk soil and its effects on soil microbial properties were determined in Cu and Zn contaminated soils (Cu: 35.57~46.37 mg•kg-1, Zn: 74.33~127.20 mg•kg-1 sampled from an agricultural field in outskirts of Zibo, China during the month of September, 2011. A sequential extraction technique (SET was used for metals chemical fractionation analysis in soils and a correlation analysis was applied to determinate the effects of metal on soil microbial properties. Chemical speciation showed that Cu and Zn were mostly present in the residual fraction and their concentrations in the most labile fraction (acid soluble fraction were the lowest in the investigated soils. However, the correlation analysis indicated that the labile forms of Cu/Zn, such as its acid soluble, reducible or oxidizable fractions, were usually significantly negatively correlated with the tested microbial activities at 0.05 or 0.01 probability levels. These results indicate that the metal labile fractions could exert an inhibitory effect on the soil microbial parameters even in the minor contaminated soils.

  14. Oxygen Isotope Effect and Structural Phase Transitions in La2CuO4-Based Superconductors.

    Science.gov (United States)

    Crawford, M K; Farneth, W E; McCarronn, E M; Harlow, R L; Moudden, A H

    1990-12-07

    The oxygen isotope effect on the superconducting transition temperature (alpha(o)) varies as a function of x in La2-xSrxCuO(4) and La2-xBaxCuO(4), with the maximum alpha(o) values (alpha(o) >/= 0.5) found for x near 0.12. This unusual x dependence implies that the isotope effect is influenced by proximity to the Abma --> P4(2)/ncm structural phase transition in these systems. Synchrotron x-ray difaction measurements reveal little change in lattice parameters or orthorhombicity due to isotope exchange in strontium-doped materials where alpha(o) > 0.5, eliminating static structural distortion as a cause of the large isotope effects. The anomalous behavior of alpha(o) in both strontium- and barium-doped materials, in combination with the previously discovered Abma --> P4(2)/ncm structural phase-transition in La(1.88)B(0.12)CuO(4), suggests that an electronic contribution to the lattice instability is present and maximizes at approximately 1/8 hole per copper atom. These observations indicate a dose connection between hole doping of the Cu-O sheets, tilting instabilities of the CuO(6) octahedra, and superconductivity in La(2)CuO(4)-based superconductors.

  15. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    Science.gov (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  16. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    Science.gov (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-04-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ˜110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  17. Diffusive fractionation of volatiles and their isotopes during bubble growth in magmas

    Science.gov (United States)

    Watson, E. Bruce

    2017-08-01

    Bubbles grow in decompressing magmas by simple expansion and by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate elements and isotopes (or isotopologues) of dissolved components. This raises the possibility that the character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the absence of equilibrium vapor/melt isotopic fractionation. Recent experiments have confirmed the existence of an isotope mass effect on diffusion of the volatile element Cl in silicate melt [Fortin et al. (Isotopic fractionation of chlorine during chemical diffusion in a dacitic melt and its implications for isotope behavior during bubble growth (abstract), 2016 Fall AGU Meeting, 2016)], so there is a clear need to understand the efficacy of diffusive fractionation during bubble growth. In this study, numerical models of diffusion and mass redistribution during bubble growth were implemented for both "passive" volatiles—those whose concentrations are generally well below saturation levels—and "active" volatiles such as CO2 and H2O, whose elevated concentrations and limited solubilities are the cause of bubble nucleation and growth. Both diffusive and convective bubble-growth scenarios were explored. The magnitude of the isotope mass effect on passive volatiles partitioned into bubbles growing at a constant rate R in a static system depends upon R/ D L, K d and D H/ D L ( K d = bubble/melt partition coefficient; D H/ D L = diffusivity ratio of the heavy and light isotopes). During convective bubble growth, the presence of a discrete (physical) melt boundary layer against the growing bubble (of width x BL) simplifies outcomes because it leads to the quick onset of steady-state fractionation during growth, the magnitude of which depends mainly upon R•x BL/ D L and D H/ D L (bubble/melt fractionation

  18. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    Science.gov (United States)

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  19. Simulations of an isotopic fractionation by freezing in an open system

    Institute of Scientific and Technical Information of China (English)

    Yoshinori Iizuka

    2003-01-01

    This paper presents a model of isotopic fractionation by freezing under near-equilibrium conditions in an open system and uses the model to predict the fractionation curve and slope gradient of δ18O versus δD.The simulation results show that 1) the fractionation curve and slope gradient are determined by the ratio of freezing rate to input rate, 2) the isotopic value in the initial stage of freezing is determined by the isotopic value of initial water; 3) in the latter half of freezing in an open system, the isotopic value converges to a certain value determined by that of input water.These results suggest that the shape of the fractionation curve is the method to distinguish whether freezing occurred in a closed or open system.This analysis is applied to an isotopic curve observed in basal ice of Hamna Glacier, Sya drainage, East Antarctica.The isotopic curve indicates formation by regelation in an open system with a ratio of freezing/input rates of about 10/4.

  20. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    Science.gov (United States)

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  1. Isotopic fractionation during soil uptake of atmospheric hydrogen

    Directory of Open Access Journals (Sweden)

    A. Rice

    2011-03-01

    Full Text Available Soil uptake of atmospheric hydrogen (H2 and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4–50% and temperature (6–22 °C. H2 deposition velocities were found to range from 0.01–0.06 cm s−1 with an average of 0.033 ± 0.008 cm s−1 (95% confidence interval. Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. During winter, there was considerable variability observed in deposition velocity that was not closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from −24‰ to −109‰. Aggregate analysis of experimental data results in an average KIE of −57 ± 5‰ (95% CI. Some of the variability in KIE can be explained by larger isotope effects at lower (<10% and higher (>30% soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  2. Molybdenum isotope fractionation during complexation with organic matter in the Critical Zone

    Science.gov (United States)

    King, E. K.; Pett-Ridge, J. C.; Perakis, S. S.

    2016-12-01

    Molybdenum (Mo) is a micronutrient and a redox sensitive trace metal that also forms strong complexes with organic matter (OM). The fractionation of Mo in sediments associated with adsorption onto both iron (Fe) and manganese (Mn) (oxyhydr)oxides under oxic conditions and sulfide phases under euxinic conditions has been used to constrain redox conditions in the ocean. Additionally, Mo isotope dynamics in terrestrial systems can shed light on the pedogenic mechanisms driving the riverine Mo isotopic composition and how atmospheric inputs alter the trace metal budget and isotopic composition of soils. As a result of these studies, it has been hypothesized that multiple mechanisms are responsible for fractionating Mo isotopes. In particular, Mo fractionation during adsorption onto OM is unknown, despite the fact this mechanism is 3x to more than 20x greater than adsorption onto Fe- and Mn- (oxyhydr)oxides across a range of soil types from Oregon, Iceland, and Hawaii1-3 (Marks et al., 2015; Siebert et al., 2015; King et al., 2016). In this study, we measured Mo adsorption and isotopic fractionation onto insolubilized humic acid (IHA), a proxy for OM, as a function of both adsorption time (2-170 h) and pH (2-7). Preliminary results suggest that for the time series experiment, Mo adsorption onto IHA increased from 35% to 64% and a plateau was reached after 24 hours. The average Mo isotope fractionation between the solution and the IHA was Δ98Mosolution-IHA = 1.8 ± 0.3‰. For the pH series experiment, the average Mo isotope fractionation was Δ98Mosolution-IHA = 2.0 ± 0.2‰. Next, we compared the Mo isotopic composition of foliage, O-horizon, and surface soil from 12 sites in the Oregon Coast Range to better understand the impact of OM on Mo isotope dynamics in natural samples. The potential isotopic offset between dissolved and adsorbed Mo onto OM is of the same order of magnitude and direction as fractionation onto Fe- and Mn- (oxyhydr)oxides such as ferrihydrite

  3. A theoretical model of isotopic fractionation by thermal diffusion and its implementation on silicate melts

    Science.gov (United States)

    Xuefang, L.; Liu, Y.

    2015-12-01

    Huang et al (2010) found that Fe, Ca and Mg isotope fractionations of high-temperature silicate melts are only associated with the temperature gradients in thermal diffusion processes and are independent of compositions and mean temperatures [1]. Richter et al (2010) doubted that the existing data are sufficient to obtain such conclusion [2]. A few theoretical models have been proposed for explaining isotopic fractionations in these processes under high temperatures [3, 4]. However, molecular-level mechanisms and theoretical treatments of these processes are still under debating. Here we provide a unified theory based on the local thermodynamic equilibrium treatment (LTE) of statistical mechanics for evaluating thermal isotopic fractionations under a wide range of temperatures. Under high temperatures, our theory however can be reasonably approximated to this equation: where A and B are constants which are related to specific isotope systems and chemical compositions of silicate melts. If the thermal gradient is not very large and the mean temperature is high, the second part of the above equation can be safely neglected and obtain an extremely simple equation which is linearly depended on temperatures, agreeing with what Huang et al (2010) concluded. Based on this terse equation, we can not only easily provide isotope fractionation data for almost all kinds of isotope systems, but also can provide the mechanisms of isotope fractionation in thermal diffusion processes. [1] Huang et al (2010) Nature 464, 396-400. [2] Richter et al (2010) Nature 472, E1-E1. [3] Dominguez et al (2011) Nature 473, 70-73.

  4. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish.

    Science.gov (United States)

    Xu, Xiaoyu; Wang, Wen-Xiong

    2015-11-01

    This study investigated the mass dependent (MDF) and independent fractionation (MIF) of stable mercury isotopes in fish during the uptake and elimination of inorganic species. Mercury accumulation during the exposure led to re-equilibration of organ isotopic compositions with the external sources, and elimination terminated the equilibrating with isotope ratios moving back to the original values. Generally, the isotopic behaviors corresponded to the changes of Hg accumulation in the muscle and liver, causing by the internal transportation, organ redistribution, and mixing of different sources. A small degree of MDF caused by biotransformation of Hg in the liver was documented during the elimination, whereas MIF was not observed. The absence of MIF during geochemical and metabolic processes suggested that mercury isotopes can be used as source tracers. Additionally, fish liver is a more responsive organ than muscle to track Hg source when it is mainly composed of inorganic species.

  5. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  6. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  7. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    Science.gov (United States)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.

    2001-05-01

    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  8. Cu isotope variability in Bavariás largest Cu-Zn deposit in Kupferberg (NE Bavaria, Germany)

    Science.gov (United States)

    Höhn, Stefan; Frimmel, Hartwig E.; Debaille, Vinciane; Debouge, Wendy

    2016-04-01

    Kupferberg, a small town c. 15 km northeast of Kulmbach, owns its existence to Bavaria's largest Cu-Zn deposit, which was mined intermittently from the 13th to the 19th century. The deposit is located in the Saxothuringian Zone of the Variscan basement in northeastern Bavaria. It is positioned between the allochthonous Münchberg metamorphic complex in the east and a major northwest-southeast tending regional fault zone, the "Franconian Lineament", in the west. The deposit is hosted by an Early Palaeozoic volcano-sedimentary succession of the Randschiefer Formation (RF) and consists of a northwest-southeast directed string of several stratiform, sulfide-rich ore lenses. These lenses show a remarkably simple mineralogy dominated by quartz, carbonate, pyrite and chalcopyrite with minor amounts of sphalerite and chlorite. The genesis of the Cu-Zn mineralization has remained speculative. A purely syngenetic model, supported by the generally laminated appearance of the ore, has to be questioned because of the ore lenses occurring in different tectonic units. Urban & Vaché (1972) proposed supergene enrichment between the Cretaceous and the Tertiary as most critical. To test such a supergene versus hypogene Cu-mineralization, we investigated the Cu isotopic composition of primary and secondary Cu phases as well as the trace element distribution in three pyrite generations. The pyrite generation that is coeval with the principal Cu-mineralization in the form of chalcopyrite has Co/Ni ratios (on average 35) typical of hydrothermal, possibly metamorphic, formation. Chalcopyrite, present at highly variable modal proportions, yielded a narrow range in δ65Cu from -0.26 to 0.36 ‰Ḃoth the absolute values and the narrow range are similar to the δ65Cu range known for hydrothermal chalcopyrite in crustal rocks (Markl et al. 2006). Metamorphism has been shown to further restrict the range in δ65Cu (Ikehata et al. 2011) - an effect that might be applicable to Kupferberg. In

  9. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes.

    Directory of Open Access Journals (Sweden)

    Li Gao

    Full Text Available Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden, chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences.

  10. Cu isotope geochemistry of volcanogenic massive sulphide deposits of the eastern Pontides, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Housh, T B [Department of Geological Sciences, University of Texas at Austin, 1 University Station C1100, Austin, TX 78712 (United States); Ciftci, E [Department of Geological Engineering, Nigde University, 51245 Nigde (Turkey)], E-mail: housh@mail.utexas.edu

    2008-07-01

    A large number of volcanogenic massive sulfide (VMS) deposits are associated with Late Cretaceous to Eocene arc-like volcanic rocks in the eastern Pontides of NE Turkey. Cu isotope studies on thirteen VMS and two vein deposits were undertaken to examine the nature of copper isotope variations and to compare these with other VMS and black smoker deposits. {phi}{sup 65}Cu of chalcopyrite from these deposits range between +0.34 and -0.62 per mille . Chalcopyrite from the VMS deposits of the eastern Pontides have a mean {phi}{sup 65}Cu = -0.13 per mille . {phi}{sup 65}Cu of chalcopyrite is generally heavier than that of corresponding bornite. The range of {phi}{sup 65}Cu for chalcopyrite from VMS deposits in the eastern Pontides is larger than that observed from Alexandrinka, a Devonian VMS deposit in the southern Urals, but is significantly smaller than the up to 3 per mille variations observed from individual modern sea-floor hydrothermal fields along modern mid-ocean ridges. The range of Cu isotope variation in VMS deposits from the eastern Pontides is interpreted to result from processes related to both oxidation and leaching of previously deposited copper by seawater and to its subsequent deposition elsewhere in the hydrothermal system.

  11. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE).

    Science.gov (United States)

    Poulson, Simon R; Naraoka, Hiroshi

    2002-08-01

    Permanganate oxidation of chlorinated ethylenes is an attractive technique to effect remediation of these important groundwater contaminants. Stable carbon isotope fractionation associated with permanganate oxidation of trichloroethylene (TCE), tetrachloroethylene (PCE), and cis-1,2-dichloroethylene (cDCE) has been measured, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by permanganate oxidation. Average carbon isotope fractionation factors of alphaTCE = 0.9786, alphaPCE = 0.9830, and alphacDCE = 0.9789 were obtained, although the fractionation factor for PCE may be interpreted to change from a value of 0.9779-0.9871 during the course of the reaction. The fractionation factors for all three compounds are quite similar, in contrast to the variation of fractionation factors vs degree of chlorination observed for other degradative processes, such as microbial dechlorination. This may be due to a common rate-determining step for permanganate oxidation of all three compounds studied. The large fractionation factors and the relative lack of dependence of the fractionation factors upon other environmental factors (e.g. oxidation rate, presence of multiple contaminants, incomplete oxidation, presence of chloride in solution) indicate that monitoring delta13C values of chlorinated ethylenes during oxidation with permanganate may be a sensitive, and potentially quantitative, technique to investigate the extent of degradation.

  12. Insights to PETM Terrestrial Records from Global Patterns in Carbon Isotope Fractionation by Modern Plants

    Science.gov (United States)

    Freeman, K. H.; Diefendorf, A. F.; Mueller, K. E.; Wing, S. L.; Koch, P. L.

    2009-12-01

    Global patterns in plant fractionation and δ13C values of leaves are potentially important for understanding and predicting ecologic impacts of climate change, yet clear, global patterns have not emerged from the copious, highly variable leaf δ13C values published to date. Understanding drivers in modern plant fractionation at large spatial scales has potential to strengthen understanding of isotopic variability in ancient terrestrial organic matter and how it encodes climate and ecological signals. We converted published leaf δ13C-leaf data into mean fractionation values for 334 woody C3 plant species at 105 globally distributed locations to evaluate the influence of environmental properties and plant functional type. Biome designation reflects both community composition and climate properties, so it is not unexpected that in our study it exerts the greatest predictive power on leaf fractionation values. Pulling apart the influences of different environmental factors, precipitation has the next strongest correlation with fractionation, consistent with limitations on photosynthesis and global patterns of ecosystem productivity due to water availability. Individual plant functional types exhibit similar relationships between fractionation and both biome designation and precipitation amount. However, mean fractionation values for evergreen gymnosperms are 1-2.7‰ lower than other woody plant types when environmental factors are constrained. Our results illustrate that both plant type and precipitation can independently result in differences in isotope fractionation of up to several permil. The predictive relationships from our study provide a framework for assessing models of plant fractionation at large spatial scales, and potentially enable predictive spatial mapping of carbon isotopic patterns, both for plants and soil organic carbon. We use these relationships to re-evaluate the 5 ‰ carbon isotope excursion of the PETM in the Bighorn Basin recorded in plant

  13. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    Science.gov (United States)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  14. Species-dependent silicon isotope fractionation in unialgal cultures of marine diatoms

    Science.gov (United States)

    Sutton, J. N.; Varela, D. E.; Brzezinski, M. A.; Beucher, C.

    2011-12-01

    Variations in the natural abundance of stable isotopes of silicon (expressed as δ30Si in %) are a key tool for studying the marine silicon (Si) cycle in modern and ancient oceans. In particular, this tool can be used to track relative differences in silicic acid drawdown in surface waters by siliceous microplankton. Diatoms are siliceous phytoplankton that dominate the cycling of Si in the oceans. They represent a major source of primary production and are important in the transfer of Si, nitrogen, phosphorus, and atmospheric carbon to the deep sea. Previous investigations of Si isotope fractionation in diatom cultures have ruled out the influence of temperature (12-22°C) and shown that Si fractionation was invariant in different species of temperate diatoms (De La Rocha et al. 1997). However, the application of this proxy for marine paleo-silicon reconstructions has typically only been used in polar regions, such as the Southern Ocean, where high primary production rates give rise to diatom-rich sediments. Here, we present results on the fractionation of Si isotopes by four species of polar diatoms grown in semi-continuous cultures (Chaetoceros brevis, Fragilariopsis kerguelensis, Porosira glacialis, and Thalassiosira antarctica). To compare with previous studies (De La Rocha et al, 1997), we also tested Si isotope fractionation by two species of temperate diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii). The temperate species yielded Si isotope fractionation (Δ30Si) values of -0.81 % (±0.12, SD, n=11) for T. pseudonana and -1.03% (±0.09, SD, n=3) for T. weissflogii, that are identical to the previously reported fractionation of -1.1 % (±0.4, SD, n=6) (De La Rocha et al. 1997). Similarly, our data for polar species F. kerguelensis, P. glacialis and T. antarctica suggest a fractionation of -0.7 to -1.1 %. Interestingly, our preliminary results from Chaetoceros brevis cultures show a Si isotope fractionation value of about -2.61 % (±0.05, SD

  15. Use of a stable copper isotope (65Cu) in the differential diagnosis of Wilson's disease.

    Science.gov (United States)

    Lyon, T D; Fell, G S; Gaffney, D; McGaw, B A; Russell, R I; Park, R H; Beattie, A D; Curry, G; Crofton, R J; Gunn, I

    1995-06-01

    1. 65Cu/63Cu stable-isotope ratios have been measured in blood serum after oral administration of the stable isotope 65Cu. The incorporation of the isotope into the plasma protein pool was followed at various times for up to 3 days. The resulting patterns of enrichment in healthy control subjects, in Wilson's disease patients and in heterozygotes for the Wilson's disease gene, were similar in appearance to those found by others using copper radioactive isotopes. After an initially high enrichment at 2 h after dosage, the Wilson's disease cases, in contrast to the control subjects, did not show a secondary rise in isotope enrichment of the plasma pool after 72 h, demonstrating a failure to incorporate copper into caeruloplasmin. The Wilson's disease heterozygotes had variable degrees of impairment of isotope incorporation, not always distinguished from those of control subjects. 2. The stability of the isotope also permits the copper tracer to be followed for a longer period. Ten healthy subjects were studied for over 40 days, allowing the biological half-time of an oral dose of copper to be determined (median 18.5 days, 95% confidence interval 14-26 days). Known heterozygotes for the Wilson's disease gene were found to have a significantly increased biological half-time for removal of copper from the plasma pool (median 43 days, 95% confidence interval 32-77 days). 3. The incorporation of 65 Cu in patients with diseases of the liver (other than Wilson's disease) was found to be similar to that in control subjects, aiding differential diagnosis.

  16. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    Science.gov (United States)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic

  17. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers

    Science.gov (United States)

    Meckenstock, Rainer U.; Morasch, Barbara; Griebler, Christian; Richnow, Hans H.

    2004-12-01

    The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions ( ɛ=-3‰) and some anaerobic studies on microbial degradation of aromatic hydrocarbons ( ɛ=-1.7‰) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents ( ɛ=between -5‰ and -30‰). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.

  18. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.

    Science.gov (United States)

    Percak-Dennett, E M; Beard, B L; Xu, H; Konishi, H; Johnson, C M; Roden, E E

    2011-05-01

    The largest Fe isotope excursion yet measured in marine sedimentary rocks occurs in shales, carbonates, and banded iron formations of Neoarchaean and Paleoproterozoic age. The results of field and laboratory studies suggest a potential role for microbial dissimilatory iron reduction (DIR) in producing this excursion. However, most experimental studies of Fe isotope fractionation during DIR have been conducted in simple geochemical systems, using pure Fe(III) oxide substrates that are not direct analogues to phases likely to have been present in Precambrian marine environments. In this study, Fe isotope fractionation was investigated during microbial reduction of an amorphous Fe(III) oxide-silica coprecipitate in anoxic, high-silica, low-sulphate artificial Archaean seawater at 30 °C to determine if such conditions alter the extent of reduction or isotopic fractionations relative to those observed in simple systems. The Fe(III)-Si coprecipitate was highly reducible (c. 80% reduction) in the presence of excess acetate. The coprecipitate did not undergo phase conversion (e.g. to green rust, magnetite or siderite) during reduction. Iron isotope fractionations suggest that rapid and near-complete isotope exchange took place among all Fe(II) and Fe(III) components, in contrast to previous work on goethite and hematite, where exchange was limited to the outer few atom layers of the substrate. Large quantities of low-δ(56)Fe Fe(II) (aqueous and solid phase) were produced during reduction of the Fe(III)-Si coprecipitate. These findings shed new light on DIR as a mechanism for producing Fe isotope variations observed in Neoarchaean and Paleoproterozoic marine sedimentary rocks.

  19. Oxygen isotope fractionation between human phosphate and water revisited.

    Science.gov (United States)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne; Amiot, Romain; Simon, Laurent; Fourel, François; Martineau, François; Lynnerup, Niels; Reychler, Hervé; Escarguel, Gilles

    2008-12-01

    The oxygen isotope composition of human phosphatic tissues (delta18OP) has great potential for reconstructing climate and population migration, but this technique has not been applied to early human evolution. To facilitate this application we analyzed delta18OP values of modern human teeth collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat-dominated and cereal-free diets, which may have been the diets of some of our early ancestors, the shift is a little higher and the application of the regression equation would slightly overestimate delta18OW in these cases.

  20. Carbon isotope fractionation during photorespiration and carboxylation in Senecio.

    Science.gov (United States)

    Lanigan, Gary J; Betson, Nicholas; Griffiths, Howard; Seibt, Ulli

    2008-12-01

    The magnitude of fractionation during photorespiration and the effect on net photosynthetic (13)C discrimination (Delta) were investigated for three Senecio species, S. squalidus, S. cineraria, and S. greyii. We determined the contributions of different processes during photosynthesis to Delta by comparing observations (Delta(obs)) with discrimination predicted from gas-exchange measurements (Delta(pred)). Photorespiration rates were manipulated by altering the O(2) partial pressure (pO(2)) in the air surrounding the leaves. Contributions from (13)C-depleted photorespiratory CO(2) were largest at high pO(2). The parameters for photorespiratory fractionation (f), net fractionation during carboxylation by Rubisco and phosphoenolpyruvate carboxylase (b), and mesophyll conductance (g(i)) were determined simultaneously for all measurements. Instead of using Delta(obs) data to obtain g(i) and f successively, which requires that b is known, we treated b, f, and g(i) as unknowns. We propose this as an alternative approach to analyze measurements under field conditions when b and g(i) are not known or cannot be determined in separate experiments. Good agreement between modeled and observed Delta was achieved with f = 11.6 per thousand +/- 1.5 per thousand, b = 26.0 per thousand +/- 0.3 per thousand, and g(i) of 0.27 +/- 0.01, 0.25 +/- 0.01, and 0.22 +/- 0.01 mol m(-2) s(-1) for S. squalidus, S. cineraria, and S. greyii, respectively. We estimate that photorespiratory fractionation decreases Delta by about 1.2 per thousand on average under field conditions. In addition, diurnal changes in Delta are likely to reflect variations in photorespiration even at the canopy level. Our results emphasize that the effects of photorespiration must be taken into account when partitioning net CO(2) exchange of ecosystems into gross fluxes of photosynthesis and respiration.

  1. Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites

    Science.gov (United States)

    Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.

    2016-10-01

    Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.

  2. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  3. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  4. Temperature dependency of the triple isotope fractionation relationship for equilibrium processes

    Science.gov (United States)

    Hayles, J. A.; Cao, X.; Bao, H.

    2015-12-01

    The use of an approximation to the Bigeleisen-Mayer-Urey model for isotope fractionation has led to the concept of a constant, and later constrained, mass fractionation law for multiple isotopes of the same element. This concept has brought new insights to investigation in photochemistry, radical chemistry, or the contribution of quantum tunneling to chemical and biological processes. Despite previous work indicating that these mass fractionation laws can be highly variable, the concept of a constant relationship remains common in these fields. Using the diatomic case as a first-order approximation, we demonstrate generically that the mass fractionation exponent, θ, can take any value for small fractionations but is less variable for large fractionations. The predicted variability is larger than both theoretical and analytical precision. These deviations from the traditional range of mass-dependence exponents are the largest under cross-over scenarios, but can occur for any scenario with small fractionations. We advocate the use of ∆∆‡M or "change in cap-delta", defined strictly with a slope of at the high-temperature limit, as a necessary, more reliable and more useful descriptor of mass-dependent fractionation. This work can bring new insights and a conventional explanation to low temperature experiments yielding traditionally unusual mass fractionation laws.

  5. Stable isotope fractionations during reactive transport of phosphate in packed-bed sediment columns.

    Science.gov (United States)

    Jaisi, Deb P

    2013-11-01

    Characterizing reactivity and fate of contaminants in subsurface environments that are isolated from direct visualization is a major challenge. Stable isotopes coupled with concentration could be used as a potential tool to quantitatively analyze the chemical variability of the contaminant during reactive transport processes in the subsurface environment. This study was aimed at determining whether abiotic reactions of phosphate during its transport involve fractionation of oxygen isotopes in phosphate (δ(18)Op). It included the effects of solution chemistry and hydrodynamics on δ(18)Op values during phosphate transport through a packed-bed column prepared by using natural sediment collected from the Cape Cod aquifer in Massachusetts. Results show that the isotopic fractionation between effluent and influent phosphate at early stage of transport could be ~1.3‰ at higher flow rates with isotopically-light phosphate (P(16)O4) preferentially retained in the sediment column. This fractionation, however, decreased and became insignificant as more phosphate passed through the column. Mobilization of phosphate initially sorbed onto sediments caused a large kinetic isotopic fractionation with isotopically-light phosphate preferentially remobilized from the sediment column, but over longer time periods, this fractionation decreased and became insignificant as well. These results collectively suggest that abiotic reactive transport processes exert minimal influence on the δ(18)Op composition of subsurface systems. Alternatively, fluctuation in flow rate and subsequent remobilization of phosphate could be detectable through transient changes in δ(18)Op values. These findings extend the burgeoning application of δ(18)Op to identify the different sources and geochemical processes of phosphate in the subsurface environments.

  6. Stable isotope fractionations during reactive transport of phosphate in packed-bed sediment columns

    Science.gov (United States)

    Jaisi, Deb P.

    2013-11-01

    Characterizing reactivity and fate of contaminants in subsurface environments that are isolated from direct visualization is a major challenge. Stable isotopes coupled with concentration could be used as a potential tool to quantitatively analyze the chemical variability of the contaminant during reactive transport processes in the subsurface environment. This study was aimed at determining whether abiotic reactions of phosphate during its transport involve fractionation of oxygen isotopes in phosphate (δ18Op). It included the effects of solution chemistry and hydrodynamics on δ18Op values during phosphate transport through a packed-bed column prepared by using natural sediment collected from the Cape Cod aquifer in Massachusetts. Results show that the isotopic fractionation between effluent and influent phosphate at early stage of transport could be ~ 1.3‰ at higher flow rates with isotopically-light phosphate (P16O4) preferentially retained in the sediment column. This fractionation, however, decreased and became insignificant as more phosphate passed through the column. Mobilization of phosphate initially sorbed onto sediments caused a large kinetic isotopic fractionation with isotopically-light phosphate preferentially remobilized from the sediment column, but over longer time periods, this fractionation decreased and became insignificant as well. These results collectively suggest that abiotic reactive transport processes exert minimal influence on the δ18Op composition of subsurface systems. Alternatively, fluctuation in flow rate and subsequent remobilization of phosphate could be detectable through transient changes in δ18Op values. These findings extend the burgeoning application of δ18Op to identify the different sources and geochemical processes of phosphate in the subsurface environments.

  7. Distribution and fractionation mechanism of stable carbon isotope of coalbed methane

    Institute of Scientific and Technical Information of China (English)

    QIN Shengfei; TANG Xiuyi; SONG Yan; WANG Hongyan

    2006-01-01

    The stable carbon isotope values of coalbed methane range widely,and also are generally lighter than that of gases in normal coal-formed gas fields with similar coal rank.There exists strong carbon isotope fractionation in coalbed methane and it makes the carbon isotope value lighter.The correlation between the carbon isotope value and Ro in coalbed methane is less obvious.The coaly source rock maturity cannot be judged by coalbed methane carbon isotope value.The carbon isotopes of coalbed methane become lighter in much different degree due to the hydrodynamics.The stronger the hydrodynamics is,the lighter the CBM carbon isotopic value becomes.Many previous investigations indicated that the desorption-diffusion effects make the carbon isotope value of coalbed methane lighter.However,the explanation has encountered many problems.The authors of this article suggest that the flowing groundwater dissolution to free methane in coal seams and the free methane exchange with absorbed one is the carbon isotope fractionation mechanism in coalbed methane.The flowing groundwater in coal can easily take more 13CH4 away from free gas and comparatively leave more 12CH4.This will make 12CH4 density in free gas comparatively higher than that in absorbed gas.The remaining 12CH4 in free gas then exchanges with the adsorbed methane in coal matrix.Some absorbed 13CH4 can be replaced and become free gas.Some free 12CH4 can be absorbed again into coal matrix and become absorbed gas.Part of the newly replaced 13CH4 in free gas will also be taken away by water,leaving preferentially more 12CH4.The remaining 12CH4 in free gas will exchange again with adsorbed methane in the coal matrix.These processes occur all the time.Through accumulative effect,the 12CH4 will be greatly concentrated in coal.Thus,the stable carbon isotope of coalbed methane becomes dramatically lighter.Through simulation experiment on water-dissolved methane,it had been proved that the flowing water could fractionate the

  8. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    Science.gov (United States)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the co-occuring geochemical and physiological process and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 6 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered as infinite. A second experiment (non infinite L6) allowed Ca depletion in the solution through time; therefore, response effects on the Ca isotopic signatures in the plant organs and in the nutritive solution were observed. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Preliminary results show that: (1) the roots (main and secondary) were enriched in the light isotope (40Ca) compared to the nutritive solution, and leaves were enriched in the heavy isotope (44Ca) compared to stems. These results are in accord with previously published field studies (Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). Leaves and secondary roots were however enriched in the heavy isotope (44Ca) compared to bean pods, stems and main roots. These results could be related to kinetic fractionation processes occurring either during the Ca root uptake, or during the Ca transport within the plant, or physiological mechanisms

  9. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation

    Science.gov (United States)

    Burkhardt, Christoph; Hin, Remco C.; Kleine, Thorsten; Bourdon, Bernard

    2014-04-01

    Mass-dependent Mo isotope fractionation has been investigated for a wide range of meteorites including chondrites (enstatite, ordinary and carbonaceous chondrites), iron meteorites, and achondrites (eucrites, angrites and martian meteorites), as well as for lunar and terrestrial samples. Magmatic iron meteorites together with enstatite, ordinary and most carbonaceous chondrites define a common δMo value of -0.16±0.02‰ (relative to the NIST SRM 3134 Mo standard), which is interpreted to reflect the Mo isotope composition of bulk planetary bodies in the inner solar system. Heavy Mo isotope compositions for IAB iron meteorites most likely reflect impact-induced evaporative losses of Mo from these meteorites. Carbonaceous chondrites define an inverse correlation between δMo and metal content, and a positive correlation between δMo and matrix abundance. These correlations are mainly defined by CM and CK chondrites, and may reflect the heterogeneous distribution of an isotopically light metal and/or an isotopically heavy matrix component in the formation region of carbonaceous chondrites. Alternatively, the elevated δMo of the CM and CK chondrites could result from the loss of volatile, isotopically light Mo oxides, that formed under oxidized conditions typical for the formation of these chondrites. The Mo isotope compositions of samples derived from the silicate portion of differentiated planetary bodies are heavy compared to the mean composition of chondrites and iron meteorites. This difference is qualitatively consistent with experimental evidence for Mo isotope fractionation between metal and silicate. The common δMo values of -0.05±0.03‰ of lunar samples derived from different geochemical reservoirs indicate the absence of significant Mo isotope fractionation by silicate differentiation or impact metamorphism/volatilization on the Moon. The most straightforward interpretation of the Mo isotope composition of the lunar mantle corresponds to the formation

  10. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    Science.gov (United States)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

  11. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes.

    Science.gov (United States)

    Gantner, Nikolaus; Hintelmann, Holger; Zheng, Wang; Muir, Derek C

    2009-12-15

    Biotic and abiotic fractionation of mercury (Hg) isotopes has recently been shown to occur in aquatic environments. We determined isotope ratios (IRs) of Hg in food webs (zooplankton, chironomids, Arctic char) and sediments of 10 Arctic lakes from four regions and investigated the extent of Hg isotope fractionation. Hg IRs were analyzed by multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS). Hg mass independent fractionation (MIF; Delta(199)Hg) and mass dependent fractionation (MDF; delta(202)Hg) were calculated and compared among samples. IRs of Hg in sediment were characterized mainly by MDF and low MIF (Delta(199)Hg -0.37 to 0.74 per thousand). However, all biota showed evidence of MIF, most pronounced in zooplankton (Delta(199)Hg up to 3.40 per thousand) and char (Delta(199)Hg up to 4.87 per thousand). Zooplankton takes up highly fractionated MeHg directly from the water column, while benthic organisms are exposed to sedimentary Hg, which contains less fractionated Hg. As evidenced by delta(13)C measurements, benthic chironomids make up a large proportion of char diet, explaining in part why MIF(char) meteor impact crater lake (Pingualuk) reflects a "pure" atmospheric Hg signature, which is modified only by aqueous in-lake processes. All other lakes are also affected by terrestrial Hg inputs and sediment processes.

  12. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity

    Science.gov (United States)

    Kwon, Sae Yun; Blum, Joel D.; Carvan, Michael J.; Basu, Niladri; Head, Jessica A.; Madenjian, Charles P.; David, Solomon R.

    2012-01-01

    We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ202Hg, 0.07 ‰; Δ199Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.

  13. Sulfur Isotopic Characteristics of Coal in China and Sulfur Isotopic Fractionation during Coal—burning Process

    Institute of Scientific and Technical Information of China (English)

    洪业汤; 张鸿斌; 等

    1993-01-01

    The determined results of the sulfur contents and isotopic composition of coal samples from major coal mines in 15 provinces and regions of China show that the coal mined in the north of China is characterized by higher 34S and lower sulfur content, but that in the south of China has lower 34S and higher sulfur content.During the coal-burning process in both indrstrial and daily use of coal as fuel the released sulfur dioxide is always enriched in lighter sulfur isotope relative to the corresponding coal;the particles are always enriched in heavier sulfur isotope.The discussion on the environmental geochemical significance of the above-mentioned results also has been made.

  14. Chromium isotope fractionation during oxidative weathering of the Antrim Basalts: An insight into the global Cr geochemical cycle

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Cr isotopes fractionate during oxidative weathering of the continents; the oxidation of Cr (III) bearing minerals produces soluble Cr (VI) which is enriched in the heavy isotope, Cr (VI) is lost to local rivers resulting in a Cr depleted, isotopically light residual soil [1] [2]. To date, researc...

  15. Joint interpretation of enantiomer and stable isotope fractionation for chiral pesticides degradation

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    introduce a modeling approach with the aim of unifying and integrating the interpretation of isotopic and enantiomeric fractionation. The model is based on the definition of enantiomer-specific isotopologues and jointly predicts the evolution of concentration, enantiomer fractionation, as well as changes...... in stable isotope ratios of different elements. The method allows evaluating different transformation pathways and was applied to investigate enzymatic degradation of dichlorprop (DCPP), enzymatic degradation of mecoprop methyl ester (MCPPM), and microbial degradation of α-hexachlorocyclohexane (α......-HCH) by different bacterial strains and under different redox conditions. The model accurately reproduces the isotopic and enantiomeric data observed in previous experimental studies and precisely captures the dual-dimensional trends characterizing different reaction pathways. Furthermore, the model allows testing...

  16. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes

    DEFF Research Database (Denmark)

    Ellehøj, Mads Dam; Steen-Larsen, Hans Christian; Johnsen, Sigfus Johann;

    2013-01-01

    RATIONALE: The equilibrium fractionation factors govern the relative change in the isotopic composition during phase transitions of water. The commonly used results, which were published more than 40 years ago, are limited to a minimum temperature of -33 degrees C. This limits the reliability...

  17. Iron isotope fractionation during microbial reduction of iron: The importance of adsorption

    Science.gov (United States)

    Icopini, G. A.; Anbar, A. D.; Ruebush, S. S.; Tien, M.; Brantley, S. L.

    2004-03-01

    In experiments investigating the causes of Fe isotope fractionation, the δ56/54Fe value of Fe(II) remaining in solution (Fe(II)(aq)) after reduction of Fe(III) (goethite) by Shewanella putrefaciens is ˜-1.2‰ relative to the goethite, in agreement with previous research. The addition of an electron shuttle did not affect fractionation, suggesting that Fe isotope fractionation may not be related to the kinetics of the electron transfer. Furthermore, in abiotic, anaerobic FeCl2(aq) experiments in which approximately one-third of Fe(II)(aq) is lost from solution due to adsorption of Fe(II) onto goethite, the δ56/54Fe value of Fe(II)(aq) remaining in solution is shifted by -0.8‰ relative to FeCl2. This finding demonstrates that anaerobic nonbiological interaction between Fe(II) and goethite can generate significant Fe isotope fractionation. Acid extraction of sorbed Fe(II) from goethite in experiments reveals that heavy Fe preferentially sorbs to goethite. Simple mass-balance modeling indicates that the isotopic composition of the sorbed Fe(II) pool is ˜+1.5‰ to +2.5‰ heavier than Fe in the goethite [˜2.7‰ 3.7‰ heavier than aqueous Fe(II)]. Mass balance is also consistent with a pool of heavy Fe that is not released to solution during acid extraction.

  18. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways

    NARCIS (Netherlands)

    Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S.A.B.; Stams, A.J.M.; Richnow, H.H.; Vogt, C.

    2008-01-01

    Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under o

  19. Selenium sorption and isotope fractionation: Iron(III) oxides versus iron(II) sulfides

    NARCIS (Netherlands)

    Mitchell, K.; Couture, R.-M.; Johnson, T.M.; Mason, P.R.D.; Van Cappellen, P.

    2013-01-01

    Sorption and reduction are important processes influencing the environmental mobility and cycling of Se. In this study, we determined the rates of reaction and isotopic fractionations of Se(IV) and Se(VI) during sorption to iron oxides (2-line ferrihydrite, hematite and goethite) and iron sulfides (

  20. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at differe

  1. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes

    NARCIS (Netherlands)

    Hoins, M.; Eberlein, T.; Van de Waal, D.B.; Sluijs, A.|info:eu-repo/dai/nl/311474748; Reichart, G.-J.|info:eu-repo/dai/nl/165599081; Rost, B.

    2016-01-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scri

  2. In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish

    Science.gov (United States)

    Das, R.; Odom, L. A.

    2008-12-01

    Recent experimental work and analyses of natural samples have revealed both mass-dependent and mass- independent isotope fractionation effects in mercury. These findings portend new avenues toward understanding the global mercury cycle. It has been shown experimentally that photo reduction of Hg+2 and methylmercury in water with concomitant release of the reduced, gaseous species Hg° results in the residual methylmercury possessing a mass-independent isotope effect. This effect is a relative enrichment of isotopes 199Hg and 201Hg over the even mass number isotopes when compared to the mercury standard NIST SRM3133. Large mass independent fractionation (MIF) effects (Δ199Hg values of a few ‰) have been found in mercury in fish and interpreted as isotope effects inherited from the water. To evaluate the possibility that MIF might be produced within the fish, we have analyzed 38 samples that include zooplankton and twelve different species of fish from a single lake collected over a 2-month time period for mercury isotopic compositions. Trophic levels of the same fish specimens had previously been determined from stomach contents and nitrogen isotopes. Zooplankton in the lake contain mercury with Δ199Hg and Δ201Hg values of +0.43 (±0.07) and +0.44 (±0.07) respectively. Among the fish species there is a striking correspondence between trophic level and Δ199Hg and Δ201Hg values for primary, secondary, and tertiary consumers. The Δ199Hg values ranges over ~1‰ from ~+0.4 in zooplankton, juvenile bluegill and several other small fishes to Δ199Hg = + 1.36 for the Florida gar that is the top predator fish in the lake. These observations indicate that the MIF effect, rather than being an artifact of the water column is produced in vivo. Partial separation of 199Hg and 201Hg from isotopes of even neutron number can be achieved by the magnetic isotope effect in reactions involving sufficiently long-lived intermediate free radicals, where nuclear - electron

  3. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Thomas B., E-mail: thomas.hofstetter@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich (Switzerland); Bolotin, Jakov [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland); Skarpeli-Liati, Marita; Wijker, Reto [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich (Switzerland); Kurt, Zohre; Nishino, Shirley F.; Spain, Jim C. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-06-15

    The quantitative description of enzymatic or abiotic transformations of man-made organic micropollutants in rivers, lakes, and groundwaters is one of the major challenges associated with the risk assessment of water resource contamination. Compound-specific isotope analysis enables one to identify (bio)degradation pathways based on changes in the contaminants' stable isotope ratios even if multiple reactive and non-reactive processes cause concentrations to decrease. Here, we investigated how the magnitude and variability of isotope fractionation in some priority pollutants is determined by the kinetics and mechanisms of important enzymatic and abiotic redox reactions. For nitroaromatic compounds and substituted anilines, we illustrate that competing transformation pathways can be assessed via trends of N and C isotope signatures.

  4. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  5. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  6. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine

    Science.gov (United States)

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.

    2011-01-01

    Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.

  7. Oxygen Isotope Fractionation in TiO2 Polymorphs and Application to Geothermometry of Eclogites

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1995-01-01

    Oxygen isotope fractionation in TiO2 polymorphs has been calculated by the modi-fied increment method .The results that rutile is enriched in 18O relative to brookite but depleted in 18O relative to anatase.Due to the same crystal structure ,oxygen isotope partitioning in the TiO2 polymorphs is determined by the cation-oxygen inter-atomic distances.The theoretical calibrations involving rutile are in fair agreement with known experimental measurements and empirical estimates.Application of the theoretic-cal quartz-rutile calibration to geothermometry of natural eclogite assemblages indicates the preservation of isotopic equilibrium at high temperatures.The isotopic temperatures calculated are only slightly lower than the non-isotopic temperatures,indicating the slow rates of exchange for oxygen diffusion in rutile.The kinetics of exchange for oxygen diffu-sion in rutile is accordingly estimated by reconciling the differences between the isotopic and the non-isotopic temperatures.The rates of exchange for oxygen diffusion in rutile should be smaller than those for hornblende,but may be equal to or greater than those for diopside.

  8. Cu(II) binding by a pH-fractionated fulvic acid

    Science.gov (United States)

    Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The relationship between acidity, Cu(II) binding and sorption to XAD resin was examined using Suwannee River fulvic acid (SRFA). The work was based on the hypothesis that fractions of SRFA eluted from an XAD column at various pH's from 1.0 to 12.0 would show systematic variations in acidity and possibly aromaticity which in turn would lead to different Cu(II) binding properties. We measured equilibrium Cu(II) binding to these fractions using Cu2+ ion-selective electrode (ISE) potentiometry at pH 6.0. Several model ligands were also examined, including cyclopentane-1,2,3,4-tetracarboxylic acid (CP-TCA) and tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TCA), the latter binding Cu(II) much more strongly as a consequence of the ether linkage. The SRFA Cu(II) binding properties agreed with previous work at high ionic strength, and binding was enhanced substantially at lower ionic strength, in agreement with Poisson-Boltzmann predictions for small spheres. Determining Cu binding constants (K(i)) by non-linear regression with total ligand concentrations (L(Ti)) taken from previous work, the fractions eluted at varying pH had K(i) similar to the unfractionated SRFA, with a maximum enhancement of 0.50 log units. We conclude that variable-pH elution from XAD does not isolate significantly strong (or weak) Cu(II)-binding components from the SRFA mixture. Copyright (C) 1999 Elsevier Science B.V.

  9. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    Science.gov (United States)

    Bohlke, Johnkarl F.; Hatzinger, P.B.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br– as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (e18O/e37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ~0.8 (e18O/e15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (e18O/e37Cl, e18O/e15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent e values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion.

  10. Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico

    Science.gov (United States)

    Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.

    2013-07-01

    The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.

  11. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    Science.gov (United States)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  12. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    I. Preuss

    2013-04-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009 and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by

  13. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction

    Science.gov (United States)

    King, C.-C.; Clayton, R. N.; Hayatsu, R.; Studier, M. H.

    1979-01-01

    Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large N-15/N-14 ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in N-15 by only 3 per mil relative to the starting material (NH3). The N-15 enrichment in polymers from the Miller-Urey reaction was 10-12 per mil. Both of these fractionations are small compared to the 80-90 per mil differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds.

  14. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

    Science.gov (United States)

    Wang, Kun; Savage, Paul S.; Moynier, Frédéric

    2014-10-01

    due to intensive impact-induced shearing stress, or the ultimate destruction of the Shallowater parent body. Analysis of separated enstatite meteorite mineral phases show that the magnetic phase (Fe metal) is systematically enriched in the heavier Fe isotopes when compared to non-magnetic phases (Fe hosted in troilite), which agrees with previous experimental observations and theoretical calculations. The difference between magnetic and non-magnetic phases from enstatite achondrites provides an equilibrium metal-sulfide Fe isotopic fractionation factor of Δ56Femetal-troilite = δ56Femetal - δ56Fetroilite of 0.129 ± 0.060‰ (2 SE) at 1060 ± 80 K, which confirms the predictions of previous theoretical calculations.

  15. Fractionation of Cd, Cu, Ni, Pb, and Zn in floodplain soils from Egypt, Germany and Greece

    Directory of Open Access Journals (Sweden)

    Shaheen S. M.

    2013-04-01

    Full Text Available Trace elements are potentially toxic to human life and the environment. Element toxicity depends on chemical associations in soils. Therefore, determining the chemical form of an element in soils is important to evaluate its mobility and bioavailability. Initial soil development in river floodplains influences soil properties, processes and therefore behavior of trace elements. In this study, three different floodplain soils sampled at three rivers (Nile/Egypt, Elbe/Germany and Penios/Greece were used to link soil development and properties to the geochemical fractions and mobility of some trace elements. Sequential extraction was used to fractionate five trace elements (Cd, Cu, Ni, Pb and Zn into five operationally defined groups: water soluble + exchangeable, carbonate, Fe-Mn oxide, organic, and residual. German soil showed the highest total concentration of the studied elements (except Ni. The Greek soil had the greatest amount of Ni. The residual fraction was the abundant pool for the studied elements examined in the Egyptian and Greek soils while the non-residual fraction was the dominant pool for all elements in the German soil. A significant amount (71- 94% of all elements was present in German soil in the potentially available fraction: non-residual fraction, while the amount of this fraction ranged between 9 and 39 % in Greek soil and between 9 and 34 % in Egyptian soil. These suggest that the potential availability of the studied trace elements was extremely high in German soil compared to the Egyptian and Greek soil. In the German soil, most of the non-residual Cd, Ni and Zn were bounded with the Fe-Mn oxide fraction, while Cu and Pb distributed in the organic fraction. While in the Egyptian and Greek soils Fe-Mn oxide fraction was the abundant pool for the studied elements except for Cd, in which the exchangeable and the carbonate fractions had the greatest amount of Cd. Assuming that mobility and bioavailability of these elements

  16. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  17. Carbon isotope fractionation in developing natural phototrophic biofilms

    Science.gov (United States)

    Staal, M.; Thar, R.; Kühl, M.; van Loosdrecht, M. C. M.; Wolf, G.; de Brouwer, J. F. C.; Rijstenbil, J. W.

    2007-01-01

    Natural phototrophic biofilms are influenced by a broad array of abiotic and biotic factors and vary over temporal and spatial scales. Different developmental stages can be distinguished and growth rates will vary due to the thickening of the biofilm, which are expected to lead to a limitation of light or mass transport. In this study it is shown that a variation of the availability of CO2 leads to a shift in fractionation, thereby affecting δ13C signatures during the successive developmental stages. For phototrophic freshwater biofilms it was found that the δ13C value became less negative with the thickening of the biofilm, while the opposite trend in δ13C values was found in marine biofilms. Modeling and pH profiling indicated that the change in the freshwater system was caused by an increase in CO2 limitation resulting in an increase of HCO3- as C-source. The opposite trend in the marine system could be explained by a higher heterotrophic biomass and activity causing a higher carbon recycling and thereby lower δ13C values. We conclude that δ13C was more related to the net areal photosynthesis rate and carbon recycling, rather than to the growth rate of the biofilms.

  18. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    Science.gov (United States)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  19. Stable Te isotope fractionation in tellurium-bearing minerals from precious metal hydrothermal ore deposits

    Science.gov (United States)

    Fornadel, Andrew P.; Spry, Paul G.; Haghnegahdar, Mojhgan A.; Schauble, Edwin A.; Jackson, Simon E.; Mills, Stuart J.

    2017-04-01

    The tellurium isotope compositions of naturally-occurring tellurides, native tellurium, and tellurites were measured by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) and compared to theoretical values for equilibrium mass-dependent isotopic fractionation of representative Te-bearing species estimated with first-principles thermodynamic calculations. Calculated fractionation models suggest that 130/125Te fractionations as large as 4‰ occur at 100 °C between coexisting tellurates (Te VI) and tellurides (Te -II) or or native tellurium Te(0), and smaller, typically secondary emmonsite, δ130/125Te compositions were identical. The coincidence of δ130/125Te between all oxidized and reduced species in this study and the apparent lack of isotopic fractionation between native tellurium and emmonsite in one sample suggest that oxidation processes cause little to no fractionation. Because Te is predominantly transported as an oxidized aqueous phase or as a reduced vapor phase under hydrothermal conditions, either a reduction of oxidized Te in hydrothermal liquids or deposition of Te from a reduced vapor to a solid is necessary to form the common tellurides and native tellurium in ore-forming systems. Our data suggest that these sorts of reactions during mineralization may account for a ∼3‰ range of δ130/125Te values. Based on the data ranges for Te minerals from various ore deposits, the underpinning geologic processes responsible for mineralization seem to have primary control on the magnitude of fractionation, with tellurides in epithermal gold deposits showing a narrower range of isotope values than those in orogenic gold and volcanogenic massive sulfide deposits.

  20. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    E.-M. Pfeiffer

    2012-12-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009 and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the

  1. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas; Bi, Wenli; Tissot, Francois L. H.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen E.

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels. This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.

  2. Shell Evolution in the Neutron-Rich Cu and Zn Isotopes

    Science.gov (United States)

    Belarge, Joe; Bazin, Daniel; Gade, Alexandra; Ayyad, Yassid; Bender, Peter; Elder, Robert; Elman, Brandon; Iwasaki, Hiro; Kobayashi, Nobuyuki; Loelius, Charles; Longfellow, Brenden; Lunderberg, Eric; Morfouace, Pierre; Sullivan, Chris; Weisshaar, Dirk; Whitmore, Kenneth

    2016-09-01

    Recent shell model calculations predict a gradual reduction of the Z=28 shell gap in Ni isotopes as the ν 1g9 / 2 orbital is filled from 68Ni to 78Ni [Otsuka et al. PRL 95, 232502]. These predictions can be experimentally tested by measuring the spectroscopic strength of a given orbital in an isotopic chain. The neutron-rich Cu isotopes, with one proton outside of a filled π 1f7 / 2 orbital, are some of the best candidates to exhibit the effects of the underlying structure evolution in this region. The high luminosity provided by fast beam, thick target experiments performed at the NSCL, coupled with the high resolution, high efficiency gamma-ray array GRETINA, provide a unique opportunity to study the neutron-rich Cu isotopes. The current experiment aims to measure the strength of 2p-1h excitations in 69-77Cu, populated through one proton knockout from 70-78Zn beams on a Be target, thereby probing the effective single particle energy and spectroscopic strength of the π 1f7 / 2 orbital. Results from the ongoing analysis will be presented.

  3. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Janssen, Sarah E; Schaefer, Jeffra K; Barkay, Tamar; Reinfelder, John R

    2016-08-01

    The biological production of monomethylmercury (MeHg) in soils and sediments is an important factor controlling mercury (Hg) accumulation in aquatic and terrestrial food webs. In this study we examined the fractionation of Hg stable isotopes during Hg methylation in nongrowing cultures of the anaerobic bacteria Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Both organisms showed mass-dependent, but no mass-independent fractionation of Hg stable isotopes during Hg methylation. Despite differences in methylation rates, the two bacteria had similar Hg fractionation factors (αr/p = 1.0009 and 1.0011, respectively). Unexpectedly, δ(202)Hg values of MeHg for both organisms were 0.4‰ higher than the value of initial inorganic Hg after about 35% of inorganic Hg had been methylated. These results indicate that a (202)Hg-enriched pool of inorganic Hg was preferentially utilized as a substrate for methylation by these organisms, but that multiple intra- and/or extracellular pools supplied inorganic Hg for biological methylation. Understanding the controls of the Hg stable isotopic composition of microbially produced MeHg is important to identifying bioavailable Hg in natural systems and the interpretation of Hg stable isotopes in aquatic food webs.

  4. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates

    Science.gov (United States)

    Basu, Anirban; Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.; Löffler, Frank E.

    2014-07-01

    We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., 238U) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as ε = 1000‰ * (α-1)) for 238U/235U were 0.68‰ ± 0.05‰ and 0.99‰ ± 0.12‰ for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The ε values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72‰ ± 0.15‰, 0.99‰ ± 0.12‰, 0.96‰ ± 0.16‰ and 0.86‰ ± 0.06‰, respectively. Our results show that the maximum ε values of ∼1.0‰ were obtained with low biomass (∼107 cells/mL) and low electron donor concentrations (∼500 μM). These results provide an initial assessment of 238U/235U shifts induced by microbially-mediated U(VI) reduction, which is needed as 238U/235U data are increasingly applied as redox indicators in various geochemical settings.

  5. Evidence of isotopic fractionation of natural uranium in cultured human cells

    Science.gov (United States)

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  6. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    Science.gov (United States)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  7. Hydrogen isotope fractionation by Methanothermobacter thermoautotrophicus in coculture and pure culture conditions

    Science.gov (United States)

    Yoshioka, Hideyoshi; Sakata, Susumu; Kamagata, Yoichi

    2008-06-01

    We grew a hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain ΔH, in coculture and pure culture conditions to evaluate the hydrogen isotope fractionation associated with carbonate reduction under low (6 mM; pure culture) concentrations of H 2 in the headspace. In the cocultures, which were grown at 55 °C with a thermophilic butyrate-oxidizing syntroph, the hydrogen isotopic relationship between methane and water was well represented by the following equation: δD=0.725(±0.003)·δDO-275(±3), in which the hydrogen isotope fractionation factor ( αH) was 0.725 ± 0.003. The relationship was consistent with the isotopic data on methane and water from terrestrial fields (a peat bog in Washington State, USA, and a sandy aquifer in Denmark), where carbonate reduction was reported to be the dominant pathway of methanogenesis. In the pure cultures, grown at 55 and 65 °C, the αH values were 0.755 ± 0.014 and 0.749 ± 0.014, respectively. Dependence of αH on growth temperature was not observed. The αH value at 55 °C in the pure culture was slightly higher than that in the coculture, a finding that disagrees with a hypothesis proposed by Burke [Burke, Jr. R. A. (1993) Possible influence of hydrogen concentration on microbial methane stable hydrogen isotopic composition. Chemosphere26, 55-67] that hydrogen isotope fractionation between methane and water increases (and αH decreases) with increasing H 2 concentration.

  8. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications

    Science.gov (United States)

    Li, Xuefang; Zhao, Hui; Tang, Mao; Liu, Yun

    2009-09-01

    This study estimates equilibrium fractionation factors in the Ge isotope system, including the dominant aqueous Ge(OH) 4 and GeO(OH) 3- species in seawater, Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), and Ge in quartz- (or opal-), albite-, K-feldspar-, olivine- and sphalerite-like structures. Estimations are based on Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. All calculations are made at B3LYP/6-311 + G(d,p) theory level. Solvation effects are treated by explicit solvent model ("water-droplet" method), and mineral structures are simulated using cluster models, in which the clusters are cut from the X-ray structures of those minerals. In addition, a number of different conformers are used for aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The "salt effect" on GeO(OH) 3-(aq) species is also carefully evaluated. We estimate the accuracy of these fractionation calculations at about ± 0.3‰. Excitedly, very large isotope fractionations are found between many Ge isotope systems. The Ge-containing sulfides (e.g. sphalerite) can extremely enrich light Ge isotopes (more than 10‰) compared with 4-coordinated Ge-O compounds (e.g. Ge(OH) 4(aq) or quartz). The fractionations between Ge(OH) 4(aq) and 6-coordinated Ge-bearing organic complexes can be also up to 4‰ at 25 °C. These results give a good explanation for the experimental observations of Rouxel et al. (2006). It also suggests a great potential for broad application of Ge isotope method in various geological systems.

  9. Stable Ni Isotope Fractionation In Systems Relevant To Banded Iron-Formations

    Science.gov (United States)

    Howe, H.; Spivak-Birndorf, L.; Newkirk, D.; Wasylenki, L. E.

    2013-12-01

    An important event in the evolution of life was the rise of atmospheric oxygen during the Proterozoic. Preceding the rise in O2 was a decline in atmospheric methane concentrations, likely due to decreased productivity of methanogenic Archaea. Based on Ni concentrations in banded iron formations (BIF), Konhauser et al. (2009) hypothesized that mantle cooling during the Archaean reduced the amount of Ni present in igneous rocks and in oceans, causing a Ni shortage for methanogens. Methanogens use Ni for cofactor F430, a catalyst during methanogenesis. To confirm Konhauser's hypothesis, a proxy for methanogen productivity in the rock record is necessary, in order to determine whether a decline in methanogen populations correlated with the observed decrease in maximum Ni contents in rocks from the Archaean. Ni isotope ratios recorded in BIF (oceanic sediments consisting of layered iron oxides and cherts) may provide evidence of a decline in methane production. Cameron et al. (2009) have shown that methanogens preferentially assimilate light Ni isotopes. Thus Ni isotopes in BIF have potential use as biomarkers for methanogenesis. Ferrihydrite was almost certainly the dominant Fe-oxide phase precipitating during BIF deposition. Ferrihydrite nanoparticles have large surface areas and are able to remove aqueous metals from solution through multiple sorption mechanisms. Thus we investigated experimentally the relationship between Ni isotopes in solution and Ni associated with ferrihydrite. We experimented with two different sorption mechanisms: adsorption of aqueous Ni onto surfaces of synthetic ferrihydrite and coprecipitation of aqueous Ni with ferrihydrite. Preliminary results indicate that light isotopes are preferentially associated with ferrihydrite in both adsorption and coprecipitation experiments, with an average fractionation of 0.3‰ in terms of δ60/58 Ni. Future experiments will investigate whether the observed isotope fractionations reflect kinetics or

  10. Development of U isotope fractionation as an indictor or U(VI) reduction in uranium plumes

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Craig [Univ. of Illinois, Urbana-Champaign, IL (United States); Johnson, Thomas [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-02-16

    This is the final report for a university research project that advanced development of a new technology for identifying chemical reduction of uranium contamination in groundwater at the Rifle Field Challenge site. Reduction changes mobile hexavalent uranium into immobile U(IV). The stable isotope ratio (238U/235U) measurements of U using multicollector ICP-mass spectrometry were performed to understand the chemical reduction and sorption processes during various field experiments. In addition laboratory experiments were performed to better understand the isotopic fractionations. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  11. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  12. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  13. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury

    Science.gov (United States)

    Kritee, K.; Barkay, Tamar; Blum, Joel D.

    2009-03-01

    Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance ( mer) pathway in Escherichia coli carrying a mercury resistance ( mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg

  14. Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora).

    Science.gov (United States)

    Gao, Yu-Ya; Li, Xian-Hua; Griffin, William L; Tang, Yan-Jie; Pearson, Norman J; Liu, Yu; Chu, Mei-Fei; Li, Qiu-Li; Tang, Guo-Qiang; O'Reilly, Suzanne Y

    2015-11-23

    To understand the behavior of Li in zircon, we have analyzed the abundance and isotopic composition of Li in three zircon standards (Plešovice, Qinghu and Temora) widely used for microbeam analysis of U-Pb ages and O-Hf isotopes. We have mapped Li concentration ([Li]) on large grains, using a Cameca 1280HR Secondary Ion Mass Spectrometer (SIMS). All zircons have a rim 5-20 μm wide in which [Li] is 5 to 20 times higher than in the core. Up to ~20‰ isotopic fractionation is observed on a small scale in the rims of a single zircon grain. The measured δ(7)Li values range from -14.3 to 3.7‰ for Plešovice, -22.8 to 1.4‰ for Qinghu and -4.7 to 16.1‰ for Temora zircon. The [Li] and δ(7)Li are highly variable at the rims, but relatively homogenous in the cores of the grains. From zircon rim to core, [Li] decreases rapidly, while δ(7)Li increases, suggesting that the large isotopic variation of Li in zircons could be caused by diffusion. Our data demonstrate that homogeneous δ(7)Li in the cores of zircon can retain the original isotopic signatures of the magmas, while the bulk analysis of Li isotopes in mineral separates and in bulk-rock samples may produce misleading data.

  15. Free Cu2+ Ions, Cu Fractionation and Microbial Parameters in Soils from Apple Orchards Following Long-Term Application of Copper Fungicides

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-Mei; WANG Quan-Ying; CANG Long

    2011-01-01

    Soil samples were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil was used as reference to investigate the free Cu2+ ion activity in soil solution and the soil Cu fractionation in the solid phase following long-term application of copper fungicide, Bordeaux mixture, in apple orchards and to investigate the relationships among soil free Cu2+ ions, Cu fractionation and soil microbial parameters. The total Cu concentration in the orchard soils varied from 21.8 to 141 mg kg-l, increasing with the orchard age, and the value for the reference soil was 12.5 mg kg-1. The free Cu2+ ion concentrations in the soil solutions extracted by 0.01 mol L-1 KNO3 ranged from 3.13 × 10-8 (reference) to 4.08 × 10-6 mol L-1 (45 years-old orchard). The concentration of Cu complexed in the fulvic fraction increased with orchard age from 5.16 to 52.5 mg kg-1. This was also the case for other soil Cu fractions except the residual one. The residual soil Cu remained practically constant, ranging from 4.28 to 5.66 mg kg-1, suggesting that anthropogenic soil Cu mainly existed in the more labile active fractions. Regression analyses revealed that both the free Cu2+ ions in the soil solution and the humic acid-complexed Cu fraction in the solid phase were strongly related with soil microbial parameters.

  16. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  17. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood.

    Science.gov (United States)

    Gessler, Arthur; Ferrio, Juan Pedro; Hommel, Robert; Treydte, Kerstin; Werner, Roland A; Monson, Russell K

    2014-08-01

    The mechanistic understanding of isotope fractionation processes is increasing but we still lack detailed knowledge of the processes that determine the isotopic composition of the tree-ring archive over the long term. Especially with regard to the path from leaf photosynthate production to wood formation, post-assimilation fractionations/processes might cause at least a partial decoupling between the leaf isotope signals that record processes such as stomatal conductance, transpiration and photosynthesis, and the wood or cellulose signals that are stored in the paleophysiological record. In this review, we start from the rather well understood processes at the leaf level such as photosynthetic carbon isotope fractionation, leaf water evaporative isotope enrichment and the issue of the isotopic composition of inorganic sources (CO2 and H2O), though we focus on the less explored 'downstream' processes related to metabolism and transport. We further summarize the roles of cellulose and lignin as important chemical constituents of wood, and the processes that determine the transfer of photosynthate (sucrose) and associated isotopic signals to wood production. We cover the broad topics of post-carboxylation carbon isotope fractionation and of the exchange of organic oxygen with water within the tree. In two case studies, we assess the transfer of carbon and oxygen isotopic signals from leaves to tree rings. Finally we address the issue of different temporal scales and link isotope fractionation at the shorter time scale for processes in the leaf to the isotopic ratio as recorded across longer time scales of the tree-ring archive.

  18. Binding characteristics of Cu(2+) to natural humic acid fractions sequentially extracted from the lake sediments.

    Science.gov (United States)

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao

    2016-11-01

    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu(2+) to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu(2+) to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu(2+) to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu(2+) sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu(2+) were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  19. Uranium isotope fractionation induced by aqueous speciation: Implications for U isotopes in marine CaCO3 as a paleoredox proxy

    Science.gov (United States)

    Chen, Xinming; Romaniello, Stephen J.; Anbar, Ariel D.

    2017-10-01

    Natural variations of 238U/235U in marine CaCO3 rocks are being explored as a novel paleoredox proxy to investigate oceanic anoxia events. Although it is generally assumed that U isotopes in CaCO3 directly record 238U/235U of seawater, recently published laboratory experiments demonstrate slight U isotope fractionation during U(VI) incorporation into abiotic calcium carbonates. This fractionation is hypothesized to depend on aqueous U(VI) speciation, which is controlled by pH, ionic strength, pCO2 and Mg2+ and Ca2+ concentrations. Secular variation in seawater chemistry could lead to changes in aqueous U(VI) speciation, and thus, may affect the extent of U isotope fractionation during U(VI) incorporation into CaCO3. In this study, we combine estimates of seawater composition over the Phanerozoic with a model of aqueous U speciation and isotope fractionation to explore variations in the expected offset between the U isotope composition of seawater and primary marine CaCO3 through time. We find that U isotope fractionation between U in primary marine CaCO3 and seawater could have varied between 0.11 and 0.23‰ over the Phanerozoic due to secular variations in seawater chemistry. Such variations would significantly impact estimates of the extent of marine anoxia derived from the U isotope record. For example, at the Permo-Triassic boundary, this effect might imply that the estimated extent of anoxia is ∼32% more extreme than previously inferred. One significant limitation of our model is that the existing experimental database covers only abiotic carbonate precipitation, and does not include a possible range of biological effects which might enhance or suppress the range of isotopic fractionation calculated here. As biotic carbonates dominate the marine carbonate record, more work is need to assess controls on U isotopic fractionation into biotic marine carbonates.

  20. Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone.

    Science.gov (United States)

    Morrill, P L; Sleep, B E; Seepersad, D J; McMaster, M L; Hood, E D; LeBron, C; Major, D W; Edwards, E A; Lollar, B Sherwood

    2009-11-03

    The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.

  1. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  2. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with results from previous studies. Similarly to what was previously shown for k(H2CO)/k(HDCO), the isotope effect decreased as pressure decreased. In addition, a model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface, to investigate its...

  3. Isotope Fractionation of Toluene: A Perspective to Characterise Microbial In Situ Degradation

    Directory of Open Access Journals (Sweden)

    H.H. Richnow

    2002-01-01

    Full Text Available A concept to assess in situ biodegradation of organic contaminants in aquifers is presented. The alteration of the carbon isotope composition of contaminants along the groundwater flow path indicates microbial degradation processes and can be used as an indicator for in situ biodegradation. The Rayleigh equation was applied to calculate the percentage of the in situ biodegradation (B[%] using the change in the isotopic composition of contaminants (Rt/R0 along the ground water flow path and a kinetic carbon isotope fractionation factor (αC derived from defined biodegradation experiments in the laboratory. When the groundwater hydrology is known and a representative source concentration (C0 for a groundwater flow path can be determined, the extent of in situ biodegradation can be quantified.

  4. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-07-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT-{sup 2}H{sub 19}), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT-{sup 2}H{sub 10}). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  5. RELATIONSHIPS BETWEEN FRACTIONATIONS OF Pb, Cd, Cu, Zn AND Ni AND SOIL PROPERTIES IN URBAN SOILS OF CHANGCHUN, CHINA

    Institute of Scientific and Technical Information of China (English)

    GUO Ping; XIE Zhong-lei; LI Jun; KANG Chun-li; LIU Jian-hua

    2005-01-01

    An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencingthe fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn,Pb, CuandNi. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.

  6. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  7. Iron isotope fractionation in subduction-related high-pressure metabasites (Ile de Groix, France)

    Science.gov (United States)

    El Korh, Afifé; Luais, Béatrice; Deloule, Etienne; Cividini, Damien

    2017-06-01

    Characterisation of mass transfer during subduction is fundamental to understand the origin of compositional heterogeneities in the upper mantle. Fe isotopes were measured in high-pressure/low-temperature metabasites (blueschists, eclogites and retrograde greenschists) from the Ile de Groix (France), a Variscan high-pressure terrane, to determine if the subducted oceanic crust contributes to mantle Fe isotope heterogeneities. The metabasites have δ56Fe values of +0.16 to +0.33‰, which are heavier than typical values of MORB and OIB, indicating that their basaltic protolith derives from a heavy-Fe mantle source. The δ56Fe correlates well with Y/Nb and (La/Sm)PM ratios, which commonly fractionate during magmatic processes, highlighting variations in the magmatic protolith composition. In addition, the shift of δ56Fe by +0.06 to 0.10‰ compared to basalts may reflect hydrothermal alteration prior to subduction. The δ56Fe decrease from blueschists (+0.19 ± 0.03 to +0.33 ± 0.01‰) to eclogites (+0.16 ± 0.02 to +0.18 ± 0.03‰) reflects small variations in the protolith composition, rather than Fe fractionation during metamorphism: newly-formed Fe-rich minerals allowed preserving bulk rock Fe compositions during metamorphic reactions and hampered any Fe isotope fractionation. Greenschists have δ56Fe values (+0.17 ± 0.01 to +0.27 ± 0.02‰) similar to high-pressure rocks. Hence, metasomatism related to fluids derived from the subducted hydrothermally altered metabasites might only have a limited effect on mantle Fe isotope composition under subsolidus conditions, owing to the large stability of Fe-rich minerals and low mobility of Fe. Subsequent melting of the heavy-Fe metabasites at deeper levels is expected to generate mantle Fe isotope heterogeneities.

  8. Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12

    Directory of Open Access Journals (Sweden)

    A. Zuiderweg

    2011-12-01

    Full Text Available The chlorofluorocarbons CFC-11 (CCl3F and CFC-12 (CCl2F2 are stable atmospheric compounds that are produced at the earth's surface, but removed only at high altitudes in the stratosphere, where their removal liberates atomic chlorine that then catalytically destroys stratospheric ozone. For such long-lived compounds, isotope effects in the stratospheric removal reactions have a large effect on their global isotope budgets. We have determined the photolytic isotope fractionation for stable carbon isotopes of CFC-11 and CFC-12 in laboratory experiments. 13C/12C isotope fractionations (ϵ range from (−23.7 ± 0.9 to (−17.5 ± 0.4‰ for CFC-11 and (−69.2 ± 3.4 to (−49.4 ± 2.3‰ for CFC-12 between 203 and 288 K, a temperature range relevant to conditions in the troposphere and stratosphere. These results suggest that CFCs should become strongly enriched in 13C with decreasing mixing ratio in the stratosphere, similar to what has been recently observed for CFC chlorine isotopes. In conjunction with the strong variations in CFC emissions before and after the Montréal Protocol, the stratospheric enrichments should also lead to a significant temporal increase in the 13C content of the CFCs at the surface over the past decades, which should be recorded in atmospheric air archives such as firn air.

  9. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation

    Science.gov (United States)

    Page, B.D.; Bullen, T.D.; Mitchell, M.J.

    2008-01-01

    The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.

  10. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    from ice cores; (5) arguably gives more accurate results than a combined firn densification-firn air transport modeling study would. We apply the method to records of CH, CO and NO mixing ratios, and we find that the correction is particularly important for C - . We apply the correction to C - records......During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... cores and firn need to be corrected for this diffusive fractionation artifact. We present a novel, semi-empirical method to accurately estimate the magnitude of the diffusive fractionation in the ice core record. Our method (1) consists of a relatively simple analytical calculation; (2) requires only...

  11. Analysis of hydrogen isotope ratios by SIMS, and application to determining mineral-fluid isotope fractionation factors

    Energy Technology Data Exchange (ETDEWEB)

    Riciputi, L.R.; Chacko, T.; Cole, D.R.; Horita, J.

    1997-09-01

    Due to the large mass difference between the two isotopes, D/H ratios can be strongly affected by chemical processes. Thus, they can be sensitive monitors of fluid source, temperature, and fluid-rock interactions in geologic settings. The lack of confidence in fractionation factors has significantly hindered realization of the potential of D/H ratios in geochemical studies. The authors describe a new experimental method, relying on SIMS analysis, that allows the precise determination of mineral-water D/H fractionation factors, and the analytical considerations that are required to make both precise and accurate measurements. The development of this method is based on the fact that diffusion rates are markedly anisotropic in many hydrous minerals, varying by over five orders of magnitude depending on the crystallographic orientation. The diffusion rates can be determined by conducting controlled exchange experiments of fixed duration using isotopically labeled waters that are enriched (strongly) with D, and then measuring the depth profile by SIMS.

  12. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    Science.gov (United States)

    M'boule, Daniela; Chivall, David; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-04-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at different salinities. The fractionation factor, αalkenones-water, ranged between 0.853 and 0.902 for I. galbana and 0.789 and 0.822 for E. huxleyi. The results show a strong linear correlation between the fractionation factor α and salinity for E. huxleyi, in agreement with earlier studies, but also for I. galbana. Both haptophytes show the same response to changes in salinity, represented by the slopes of the α-salinity relationship (˜0.002 per salinity unit). This suggests that the same process, in both coastal as well as open ocean haptophytes, is responsible for reducing fractionation with increasing salinity. However, there is a significant difference in absolute isotope fractionation between E. huxleyi and I. galbana, i.e. E. huxleyi produces alkenones which are 90‰ more depleted in D under the same culturing conditions than I. galbana. Our data suggest that the δD of alkenones can be used to reconstruct relative shifts in paleosalinity in coastal as well as open ocean environments with careful consideration of species composition and other complicating factors especially in coastal regions.

  13. Blizzards to hurricanes: computer modeling of hydrology, weathering, and isotopic fractionation across hydroclimatic regions

    Science.gov (United States)

    Richard MT Webb; David L. Parkhurst

    2016-01-01

    The U.S. Geological Survey’s (USGS) Water, Energy, and Biogeochemical Model (WEBMOD) was used to simulate hydrology, weathering, and isotopic fractionation in the Andrews Creek watershed in Rocky Mountain National Park, Colorado and the Icacos River watershed in the Luquillo Experimental Forest, Puerto Rico. WEBMOD includes hydrologic modules derived from the USGS...

  14. Carbon isotope fractionation by the marine ammonia-oxidizing archaeon Nitrosopumilus maritimus

    OpenAIRE

    Könneke, Martin; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe

    2012-01-01

    Abstract Ammonia-oxidizing archaea (AOA) are abundant and widely distributed microorganisms in aquatic and terrestrial habitats. By catalyzing the first and rate limiting step in nitrification, these chemolithoautotrophs play a significant role in the global nitrogen cycle and contribute to primary production. Here, the carbon isotopic fractionation relative to inorganic carbon source was determined for bulk biomass, biphytanes and polar lipid bound sugars of a marine AOA pure culture. Bu...

  15. Experimental and theoretical investigation of isotope fractionation of zinc between aqua, chloro, and macrocyclic complexes.

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Telouk, Philippe; Abe, Minori

    2010-02-25

    This work reports on the chemical isotope fractionation of Zn(II) by a solvent extraction method with the crown ether dicyclohexano-18-crown-6. The (m)Zn/(64)Zn ratios (m = 66, 67, and 68) were analyzed by multiple-collector inductively coupled plasma mass spectrometry. The relative deviations of the (66)Zn/(64)Zn ratios relative to the unprocessed material (delta(66)Zn) was determined to be -0.51 to -0.32 in the acidity region 1.0-6.0 mol dm(-3) (M) HCl. The acidity dependence of delta(m)Zn was explained by the isotope exchange reactions between Zn(II) species (Zn(2+), ZnCl(+), ZnCl(2), ZnCl(3)(-), and ZnCl(4)(2-)) and the mole fractions of them. The magnitude of delta(m)Zn due to the related Zn(II) species estimated by quantum chemical calculations was in agreement with delta(m)Zn experimentally obtained. Contribution of nuclear field shift to the isotope fractionation was estimated to be less than 10% of delta(m)Zn by quantum chemical calculations.

  16. Mercury isotope fractionation during transfer from post-desulfurized seawater to air.

    Science.gov (United States)

    Huang, Shuyuan; Lin, Kunning; Yuan, Dongxing; Gao, Yaqin; Sun, Lumin

    2016-12-15

    Samples of dissolved gaseous mercury (DGM) in the post-desulfurized seawater discharged from a coal-fired power plant together with samples of gaseous elemental mercury (GEM) over the post-desulfurized seawater surface were collected and analyzed to study the mercury isotope fractionation during transfer from post-desulfurized seawater to air. Experimental results showed that when DGM in the seawater was converted to GEM in the air, the δ(202)Hg and Δ(199)Hg values were changed, ranging from -2.98 to -0.04‰ and from -0.31 to 0.64‰, respectively. Aeration played a key role in accelerating the transformation of DGM to GEM, and resulted in light mercury isotopes being more likely to be enriched in the GEM. The ratio Δ(199)Hg/Δ(201)Hg was 1.626 in all samples, suggesting that mercury mass independent fractionation occurred owing to the nuclear volume effect during the transformation. In addition, mass independent fractionation of mercury even isotopes was found in the GEM above the post-desulfurized seawater surface in the aeration pool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles

    Science.gov (United States)

    Lu, Dawei; Liu, Qian; Zhang, Tuoya; Cai, Yong; Yin, Yongguang; Jiang, Guibin

    2016-08-01

    Nanoparticles in the environment can form by natural processes or be released due to human activities. Owing to limited analytical methods, the behaviour of nanoparticles in the natural environment is poorly understood and until now they have only been described by the variations in the nanoparticle size or the concentration of the element of interest. Here we show that by using inductively coupled plasma mass spectrometry to measure silver (Ag) isotope ratios it is possible to understand the transformation processes of silver nanoparticles (AgNPs) in the environment. We found that the formation and dissolution of AgNPs under natural conditions caused significant variations in the ratio of natural Ag isotopes (107Ag and 109Ag) with an isotopic enrichment factor (ε) up to 0.86‰. Furthermore, we show that engineered AgNPs have distinctly different isotope fractionation effects to their naturally formed counterparts. Further studies will be needed to understand whether isotope analysis can be used to reveal the sources of AgNPs in the environment.

  18. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles.

    Science.gov (United States)

    Lu, Dawei; Liu, Qian; Zhang, Tuoya; Cai, Yong; Yin, Yongguang; Jiang, Guibin

    2016-08-01

    Nanoparticles in the environment can form by natural processes or be released due to human activities. Owing to limited analytical methods, the behaviour of nanoparticles in the natural environment is poorly understood and until now they have only been described by the variations in the nanoparticle size or the concentration of the element of interest. Here we show that by using inductively coupled plasma mass spectrometry to measure silver (Ag) isotope ratios it is possible to understand the transformation processes of silver nanoparticles (AgNPs) in the environment. We found that the formation and dissolution of AgNPs under natural conditions caused significant variations in the ratio of natural Ag isotopes ((107)Ag and (109)Ag) with an isotopic enrichment factor (ε) up to 0.86‰. Furthermore, we show that engineered AgNPs have distinctly different isotope fractionation effects to their naturally formed counterparts. Further studies will be needed to understand whether isotope analysis can be used to reveal the sources of AgNPs in the environment.

  19. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  20. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada

    Science.gov (United States)

    Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.

    2016-10-01

    Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern

  1. An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water

    Institute of Scientific and Technical Information of China (English)

    XIAO Yingkai; LI Shizhen; WEI Haizhen; SUN Aide; ZHOU Weijian; LIU Weiguo

    2006-01-01

    Inorganic calcium carbonate precipitation from natural seawater and saline water at various pH values was carried out experimentally. The results show the clear positive relationships between boron concentration and δ11B of inorganic calcium carbonate with the pH of natural seawater and saline water. However, the variations of boron isotopic fractionation between inorganic calcite and seawater/saline water with pH are inconsistent with the hypothesis that B(OH)4- is the dominant species incorporated into the biogenic calcite structure. The isotopic fractionation factors α Between synthetic calcium carbonate precipitate and parent solutions increase systematically as pH increases, from 0.9884 at pH 7.60 to 1.0072 at pH 8.60 for seawater and from 0.9826 at pH 7.60 to 1.0178 at pH 8.75 for saline water. An unusual boron isotopic fractionation factor of larger than 1 in synthetic calcium carbonate precipitated from seawater/saline water at higher pH is observed, which implies that a substantial amount of the isotopically heavier B(OH)3 species must be incorporated preferentially into synthetic inorganic carbonate. The results propose that the incorporation of B(OH)3 is attributed to the formation of Mg(OH)2 at higher pH of calcifying microenvironment during the synthetic calcium carbonate precipitation. The preliminary experiment of Mg(OH)2 precipitated from artificial seawater shows that heavier 11B is enriched in Mg(OH)2 precipitation, which suggests that isotopically heavier B(OH)3 species incorporated preferentially into Mg(OH)2 precipitation.This result cannot be applied to explain the boron isotopic fractionation of marine bio-carbonate because of the possibility that the unusual environment in this study appears in formation of marine bio-carbonate is infinitesimal. We, however, must pay more attention to this phenomenon observed in this study, which accidentally appears in especially natural environment.

  2. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    Science.gov (United States)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  3. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  4. Seasonal Variations in the Biochemical Fractionation of Hydrogen Isotopes by Spartina alterniflora.

    Science.gov (United States)

    Sessions, A. L.

    2005-12-01

    Hydrogen isotope ratios (D/H) of lipids are being intensively explored as a paleoenvironmental proxy, particularly for continental regimes where organic preservation in lakes is generally high. Several studies have already shown good correlations between δD values of lake water and sedimentary (core-top) lipids, but the fractionations indicated by those correlations do not agree well between studies. Moreover, the data cannot be adequately described by a single biochemical fractionation. These difficulties suggest that the relationship between environmental water and plant lipid δD is controlled by multiple environmental and biochemical factors. Understanding these factors will lead to a more robust interpretation of D/H as a paleoclimate proxy. Here we examine seasonal changes in biochemical H-isotopic fractionation by the salt marsh grass Spartina alterniflora. Because S. alterniflora grows partially submerged in a tidal estuary, it has an unlimited and isotopically unvarying source of water for growth. Thus environmental influences on fractionation should be negligible, allowing us to examine seasonal changes in biochemical fractionations. C27 and C29 n-alkanes, β-sitosterol, phytol, and C16 and C18 fatty acids were extracted and analyzed from 35 samples of S. alterniflora harvested from the same location over a period of 18 months. All lipids except β-sitosterol exhibit statistically significant depletions of D during summer months relative to the rest of the year. The magnitude of the isotopic shift is up to 36‰ in the fatty acids (δD values from -130 to -166‰), 31‰ in n-alkanes (-161 to -192‰), and 24‰ in phytol (-252 to -276‰). The shift in D/H ratio is in the opposite direction from that expected due to increased evapotranspiration during the summer months. The largest D-depletions coincide with periods of maximal growth. The observed pattern is interpreted as resulting from increased use of stored carbohydrates as substrates for lipid

  5. Silicon Isotope Fractionation by Banana Under Continuous Nutrient and Silica Flux

    Science.gov (United States)

    Opfergelt, S.; Cardinal, D.; Henriet, C.; Delvaux, B.; André, L.

    2004-12-01

    Silicon is absorbed by plants as aqueous H4SiO4 with other essential nutrients, and precipitates in aerial parts of the plant as phytolith, a biogenic opal. Phytoliths are restored to the soil by decomposition of organic debris from plant material. The role of higher plants in the biogeochemical cycle of silicon is therefore major although it is still poorly studied. Biomineralization processes are known to fractionate the three stable silicon isotopes with a preferential uptake of light isotopes. Therefore, following some preliminary results from Douthitt (1982), and studies presented in recent conferences (Ziegler et al., 2002; Ding et al., 2003), we suspect that phytolith production by plants could also fractionate the silicon isotopes. Inversely, intensity of phytolith-related isotopic fractionations might contribute to a better understanding of the soil-plant silicon cycle. Our study focused on banana, a silicon accumulating plant (>1% Si, dry weight).Musa acuminata cv Grande Naine has been grown in hydroponics under controlled conditions (light, temperature, humidity, nutrients) during six weeks. The nutrient supply was kept constant: three batches of five plants were grown with a continuous nutrient solution flow of 5, 50 and 100 ppm SiO2 respectively. Si isotopic compositions were measured in the source solution, and in silica extracted from the various parts of banana (roots, pseudostems, midribs and petioles, leaves), using a Nu Plasma multicollector mass spectrometer (MC-ICP-MS) operating in dry plasma mode. The results are expressed as δ 29Si relatively to the NBS28 standard, with an average precision of ± 0.03‰ . Silicon contents and morphological studies of phytoliths were also achieved. Banana δ 29Si varied between -0.18 and -0.76‰ with a source solution at -0.02‰ . Values of δ 29Si were less fractionated, relatively to the nutrient solution, in roots, where no phytoliths have been observed until now, than in upper parts of banana where

  6. The effect of bonding environment on iron isotope fractionation between minerals at high temperature

    Science.gov (United States)

    Sossi, Paolo A.; O'Neill, Hugh St. C.

    2017-01-01

    Central to understanding the processes that drive stable isotope fractionation in nature is their quantification under controlled experimental conditions. The polyvalent element iron, given its abundance in terrestrial rocks, exerts controls on the structural and chemical properties of minerals and melts. The iron isotope compositions of typical high temperature minerals are, however, poorly constrained and their dependence on intensive (e.g. fO2) and extensive (e.g. compositional) variables is unknown. In this work, experiments involving a reference phase, 2 M FeCl2·4H2O(l), together with an oxide mix corresponding to the bulk composition of the chosen mineral were performed in a piston cylinder in Ag capsules. The oxide mix crystallised in situ at 1073 K and 1 GPa, in equilibrium with the iron chloride, and was held for 72 h. In order to characterise the effect of co-ordination and oxidation state on the isotope composition independently, exclusively Fe2+ minerals were substituted in: VIII-fold almandine, VI-fold ilmenite, fayalite and IV-fold chromite and hercynite. Δ57FeMin-FeCl2 increases in the order VIII ion. The composition of the VIFe2+-bearing minerals is similar to that of the aqueous FeCl2 fluid. To the degree that this represents the speciation of iron in fluids exsolving from magmas, the fractionation between them should be small, unless the iron is hosted in magnetite. By contrast, predominantly Fe2+-bearing mantle garnets should preserve a much lighter δ57Fe than their lower pressure spinel counterparts, a signature that may be reflected in partial melts from these lithologies. As the Fe-O bond lengths in fayalite and ilmenite are comparable, their isotope compositions overlap, suggesting that high Ti mare basalts acquired their heavy isotopic signature from ilmenite that crystallised late during lunar magma ocean solidification.

  7. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Science.gov (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.

    2016-02-01

    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  8. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust

    Directory of Open Access Journals (Sweden)

    P. Hoppe

    2012-06-01

    Full Text Available Mineral dust is a major fraction of global atmospheric aerosol, and the oxidation of SO2 on mineral dust has implications for cloud formation, climate and the sulfur cycle. Stable sulfur isotopes can be used to understand the different oxidation processes occurring on mineral dust. This study presents measurements of the 34S/32S fractionation factor α34 for oxidation of SO2 on mineral dust surfaces and in the aqueous phase in mineral dust leachate. Sahara dust, which accounts for ~60% of global dust emissions and loading, was used for the experiments. The fractionation factor for aqueous oxidation in dust leachate is αleachate = 0.9917±0.0046, which is in agreement with previous measurements of aqueous SO2 oxidation by iron solutions. This fractionation factor is representative of a radical chain reaction oxidation pathway initiated by transition metal ions. Oxidation on the dust surface at subsaturated relative humidity (RH had an overall fractionation factor of αhet = 1.0096±0.0036 and was found to be almost an order of magnitude faster when the dust was simultaneously exposed to ozone, light and RH of ~40%. However, the presence of ozone, light and humidity did not influence isotope fractionation during oxidation on dust surfaces at subsaturated relative humidity. All the investigated reactions showed mass-dependent fractionation of 33S relative to 34S. A positive matrix factorization model was used to investigate surface oxidation on the different components of dust. Ilmenite, rutile and iron oxide were found to be the most reactive components, accounting for 85% of sulfate production with a fractionation factor of α34 = 1.012±0.010. This overlaps within the analytical uncertainty with the fractionation of other major atmospheric oxidation pathways such as the oxidation of SO2 by H2O2 and O3 in the aqueous phase and OH in the gas phase. Clay minerals accounted for roughly 12% of the sulfate production, and oxidation on clay minerals

  9. A Martian Fractionation Line Constructed from Oxygen Isotope Analyses of Bulk Material and Minerals from SNC Meteorites

    Science.gov (United States)

    Banerjee, N. R.; Ali, A.; Jabeen, I.; Osinski, G.; Al-Rawas, A. D.; Nasir, S.; Flemming, R.; Shivak, J.; Gregory, D.

    2013-09-01

    Precise triple oxygen isotope data of SNC Martian meteorites are obtained by laser-assisted fluorination technique. Martian fractionation line is constructed using bulk material and mineral separates of SNC meteorites.

  10. Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods.

    Science.gov (United States)

    do Nascimento da Silva, Emanueli; Leme, Ana Beatriz Perriello; Cidade, Mirla; Cadore, Solange

    2013-12-15

    The bioaccessibility of four essential micronutrients (iron, zinc, copper and manganese) in some baby foods was evaluated using an in vitro gastrointestinal digestion model. For all of the flour-based foods evaluated, the bioaccessibility of Zn was low, while the bioaccessibility of Cu was above 50%. For these samples, the bioaccessibility of Mn was lower than 50%. Two samples composed of oat and rice flour and whole wheat flour demonstrated a lower bioaccessible fraction of Fe (less than 35%), while the sample made with wheat flour showed high Fe bioaccessibility (approximately 80%). For vegetable- and meat-based baby foods, the Fe bioaccessibility was greater than 80% in samples that contained meat and chicken and approximately 20% for the banana-based sample. The bioaccessibility of Zn was small for all of the foods studied, and in some cases, no Zn appeared to be released. The sample containing banana showed 100% Cu bioaccessibility, in contrast to meat and chicken-based samples, whose Cu bioaccessibility values were less than 50%. The opposite effect occurred for Mn, in which samples containing meat and chicken presented a bioaccessible fraction greater than 50% while the banana-based sample had a fraction less than 50%. © 2013 Elsevier B.V. All rights reserved.

  11. Adsorption as a cause for iron isotope fractionation in reduced groundwater

    Science.gov (United States)

    Teutsch, Nadya; von Gunten, Urs; Porcelli, Don; Cirpka, Olaf A.; Halliday, Alex N.

    2005-09-01

    Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ 57Fe/ 54Fe of pre-experiment background groundwater (-0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (-0.24 ± 0.08 ‰), probably due to slight fractionation (only ˜0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ 57Fe/ 54Fe as low as -4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ 57Fe/ 54Fe linearly correlated with Fe concentrations (R 2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is

  12. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc

    Science.gov (United States)

    Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim

    2015-12-01

    -like mantle wedge. Thus we infer that the Pb and Mo budgets of the fluid component are dominated by contributions from the deeper, less altered (cooler) portion of the subducting Pacific crust. The high 98Mo/95Mo of this flux is likely caused by isotopic fractionation during dehydration and fluid flow in the slab. As a result, the residual mafic crust becomes isotopically lighter than the upper mantle from which it was derived. Our results suggest that the continental crust produced by arc magmatism should have an isotopically heavy Mo composition compared to the mantle, whilst a contribution of deep recycled oceanic crust to the sources of some ocean island basalts might be evident from an isotopically light Mo signature.

  13. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status

    NARCIS (Netherlands)

    Penning, H.; Plugge, C.M.; Galand, P.E.; Conrad, R.

    2005-01-01

    Methane is a major product of anaerobic degradation of organic matter and an important greenhouse gas. Its stable carbon isotope composition can be used to reveal active methanogenic pathways, if associated isotope fractionation factors are known. To clarify the causes that lead to the wide variatio

  14. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye; Dideriksen, Knud; Stipp, Susan Louise Svane

    2011-01-01

    Stable chromium (Cr) isotopes can be used as a tracer for changing redox conditions in modern marine systems and in the geological record. We have investigated isotope fractionation during reduction of Cr(VI)aq by Fe(II)aq. Reduction of Cr(VI)aq by Fe(II)aq in batch experiments leads to significa...

  15. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    by the natural populations of sulfate reducers and previous measurements from pure cultures. This was somewhat surprising given the extremely high rates of sulfate reduction in the experiments. Our results are explained if we conclude that the fractionation was mainly controlled by the specific rate of sulfate......Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...

  16. Isotopic Fractionation in Primitive Material: Quantifying the Contribution of Interstellar Chemistry

    Science.gov (United States)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  17. Liquid-Vapor Argon Isotope Fractionation from the Triple Point to the Critical Point

    DEFF Research Database (Denmark)

    Phillips, J. T.; Linderstrøm-Lang, C. U.; Bigeleisen, J.

    1972-01-01

    are compared at the same molar volume. The isotope fractionation factor α for 36Ar∕40Ar between liquid and vapor has been measured from the triple point to the critical temperature. The results are compared with previous vapor pressure data, which cover the range 84–102°K. Although the agreement is within....... The fractionation factor approaches zero at the critical temperature with a nonclassical critical index equal to 0.42±0.02.〈∇2Uc〉/ρc in liquid argon is derived from the experimental fractionation data and calculations of 〈∇2Ug〉/ρg for a number of potential functions for gaseous argon....

  18. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    Science.gov (United States)

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  19. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D.

    2010-10-15

    A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p

  20. Determination of the Fe(II)aq-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium

    Science.gov (United States)

    Frierdich, Andrew J.; Beard, Brian L.; Scherer, Michelle M.; Johnson, Clark M.

    2014-04-01

    Magnetite is ubiquitous in the Earth's crust and its presence in modern marine sediments has been taken as an indicator of biogeochemical Fe cycling. Magnetite is also the most abundant Fe oxide in banded iron formations (BIFs) that have not been subjected to ore-forming alteration. Magnetite is therefore an important target of stable Fe isotope studies, and yet interpretations are currently difficult because of large uncertainties in the equilibrium stable Fe isotope fractionation factors for magnetite relative to fluids and other minerals. In this study, we utilized the three-isotope method (57Fe-56Fe-54Fe) to explore isotopic exchange via an enriched-57Fe tracer, and natural mass-dependent fractionation using 56Fe/54Fe variations, during reaction of aqueous Fe(II) (Fe(II)aq) with magnetite. Importantly, we employed a multi-direction approach to equilibrium by reacting four 57Fe-enriched Fe(II) solutions that had distinct 56Fe/54Fe ratios, which identifies changes in the instantaneous Fe isotope fractionation factor and hence identifies kinetic isotope effects. We find that isotopic exchange can be described by two 56Fe/54Fe fractionations, where an initial rapid exchange (∼66% isotopic mixing within 1 day) involved a relatively small Fe(II)aq-magnetite 56Fe/54Fe fractionation, followed by slower exchange (∼25% isotopic mixing over 50 days) that was associated with a larger Fe(II)aq-magnetite 56Fe/54Fe fractionation; this later fractionation is interpreted to approach isotopic equilibrium between Fe(II)aq and the total magnetite. All four Fe(II) solutions extrapolate to the same final equilibrium 56Fe/54Fe fractionation for Fe(II)aq-magnetite of -1.56±0.20‰ (2σ) at 22 °C. Additional experiments that synthesized magnetite via conversion of ferrihydrite by reaction with aqueous Fe(II) yield final 56Fe/54Fe fractionations that are identical to those of the exchange experiments. Our experimental results agree well with calculated fractionation factors using

  1. Mineral composition control on inter-mineral iron isotopic fractionation in granitoids

    Science.gov (United States)

    Wu, Hongjie; He, Yongsheng; Bao, Leier; Zhu, Chuanwei; Li, Shuguang

    2017-02-01

    This study reports elemental and iron isotopic compositions of feldspar and its coexisting minerals from four Dabie I-type granitoids to evaluate the factors that control inter-mineral Fe isotopic fractionation in granitoids. The order of heavy iron isotope enrichment is feldspar > pyrite > magnetite > biotite ≈ hornblende. Feldspar has heavier iron isotopic compositions than its co-existing magnetite (Δ56Feplagioclase-magnetite = +0.376‰ to +1.084‰, Δ56Fealkali-feldspar-magnetite = +0.516‰ to +0.846‰), which can be attributed to its high Fe3+/Fetot ratio and low coordination number (tetrahedrally-coordinated) of Fe3+. Δ56Femagnetite-biotite of coexisting magnetite and biotite ranges from 0.090‰ to 0.246‰. Based on homogeneous major and iron isotopic compositions of mineral replicates, the inter-mineral fractionation in this study should reflect equilibrium fractionation. The large variations of inter-mineral fractionation among feldspar, magnetite and biotite cannot be simply explained by temperature variation, but strongly depend on mineral compositions. The Δ56Feplagioclase-magnetite and Δ56Fealkali-feldspar-magnetite are positively correlated with albite mode in plagioclase and orthoclase mode in alkali-feldspar, respectively. This could be explained by different Fe-O bond strength in feldspar due to different Fe3+/∑Fe or different crystal parameters. The Δ56Femagnetite-biotite increases with decreasing Fe3+/∑Febiotite and increasing mole (Na + K)/Mgbiotite, indicating a decrease of β factor in low Fe3+/∑Fe and high (Na + K)/Mg biotite. High-silica leucosomes from Dabie migmatites with a feldspar accumulation petrogenesis have higher δ56Fe values (δ56Fe = 0.42-0.567‰) than leucosome that represents pristine partial melt (δ56Fe = 0.117 ± 0.016‰), indicating that accumulation of feldspar could account for high δ56Fe values of these rocks. High δ56Fe values are also predicted for other igneous rocks that are mainly composed of

  2. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Otero, Neus; Soler, Albert [Departament de Cristal.lographia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Barcelona, Spain 08028 (Spain)

    2013-09-15

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S{sub 2}O{sub 8}{sup 2−} was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio. •Base-catalyzed S{sub 2}O{sub 8}{sup 2−} can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S{sub 2}O{sub 8}{sup 2−}) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system.

  3. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust

    Directory of Open Access Journals (Sweden)

    P. Hoppe

    2012-01-01

    Full Text Available Mineral dust is a major fraction of global atmospheric aerosol, and the oxidation of SO2 on mineral dust has implications for cloud formation, climate and the sulfur cycle. Stable sulfur isotopes can be used to understand the different oxidation processes occurring on mineral dust. This study presents measurements of the 34S/32S fractionation factor α34 for oxidation of SO2 on mineral dust surfaces and in the aqueous phase in mineral dust leachate. Sahara dust, which accounts for ~ 60% of global dust emissions and loading, was used for the experiments. The fractionation factor for aqueous oxidation in dust leachate is αleachate = 0.9917 ± 0.0046, which is in agreement with previous measurements of aqueous SO2 oxidation by iron solutions. This fractionation factor is representative of a radical chain reaction oxidation pathway initiated by transition metal ions. Oxidation on the dust surface at subsaturated relative humidity (RH had an overall fractionation factor of αhet = 1.0096 ± 0.0036 and was found to be almost an order of magnitude faster when the dust was simultaneously exposed to ozone, light and RH of ~ 40%. However, the presence of ozone, light and humidity did not influence isotope fractionation during oxidation on dust surfaces at subsaturated relative humidity. A positive matrix factorization model was used to investigate surface oxidation on the different components of dust. Ilmenite, rutile and iron oxide were found to be the most reactive components, accounting for 85% of sulfate production with a fractionation factor of α34 = 1.012 ± 0.010. This overlaps within the analytical uncertainty with the fractionation of other major atmospheric oxidation pathways such as the oxidation of SO2 by H2O2 and O3 in the aqueous phase and OH in the gas phase. Clay minerals accounted for roughly 12% of the sulfate production, and oxidation on clay minerals resulted in a very distinct fractionation factor of α34 = 1.085 ± 0.013. The

  4. Sulfur Isotopic Fractionation During Dissimilatory Sulfate Reduction from the Perspective of an Entire Microbial Metabolism

    Science.gov (United States)

    Webber, B.; Lau, L.; Wing, B.

    2009-05-01

    Whether in the investigation of the most ancient life on Earth, examination of surface oxidation properties across geological timescales, or the estimation of microbial metabolism in inaccessible environments, dissimilatory sulfate reduction (DSR) constrains biogeochemical processes in a variety of spatial and temporal scales. Pioneering work in the 1970s established the importance of DSR to biogeochemical processes and its potential as a geochemical tracer, and models for biological controls of DSR were published from empirical results of in vitro microbial cultures. Recent efforts have expanded upon this body of work and further extended toward multiple sulfur isotopes and through the more precise definition of the biological processes themselves. Resulting from these recent efforts is an rigorous description of DSR of the sulfur metabolism of sulfate-reducing bacteria. However, despite these efforts, the exact mechanisms of DSR within the scope of a complex system such as microbial metabolism remain incomplete and obscure. We will be presenting ongoing work coupling together recent mathematical models of isotopic fractionation with a flux-oriented, genomically-derived software model of the metabolism of Desulfovibrio vulgaris, a patent sulfate-reducing bacterium. Our presentation will explore the effects on isotopic fractionation throughout the sulfate reduction pathway of D. vulgaris by a multitude of separate and distinct biological pathways within the bacterial metabolism. Further, we will be discussing both the pitfalls and promise of such an approach and its implications for future research.

  5. Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2012-02-01

    Full Text Available One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the 13C/12C ratio when degrading both trichloroethene (TCE and cis-1,2-dichloroethene (c-DCE: toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing δ13C enrichment factors of -0.9±0.5 to -1.2±0.5, in contrast to reported anaerobic degradation δ13C enrichment factors of -14.1‰ to -20.4‰. Aerobic degradation of TCE resulted in δ13C enrichment factors of -11.6±4.1‰ to -14.7±3.0‰ which overlap reported δ13C enrichment factors for anaerobic TCE degradation of -2.5‰ to -13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites.

  6. Isotopic constraints on biogeochemical cycling of copper in the ocean.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Sohrin, Yoshiki

    2014-12-05

    Trace elements and their isotopes are being actively studied as powerful tracers in the modern ocean and as proxies for the palaeocean. Although distributions and fractionations have been reported for stable isotopes of dissolved Fe, Cu, Zn and Cd in the ocean, the data remain limited and only preliminary explanations have been given. Copper is of great interest because it is either essential or toxic to organisms and because its distribution reflects both biological recycling and scavenging. Here we present new isotopic composition data for dissolved Cu (δ(65)Cu) in seawater and rainwater. The Cu isotopic composition in surface seawater can be explained by the mixing of rain, river and deep seawater. In deep seawater, δ(65)Cu becomes heavier with oceanic circulation because of preferential scavenging of the lighter isotope ((63)Cu). In addition, we constrain the marine biogeochemical cycling of Cu using a new box model based on Cu concentrations and δ(65)Cu.

  7. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence

    Science.gov (United States)

    Su, Ben-Xun; Zhou, Mei-Fu; Robinson, Paul T.

    2016-01-01

    We report Li isotopic compositions of olivine from the mantle sequence of the Luobusa ophiolite, southern Tibet. The olivine in the Luobusa ophiolite has Li concentrations from ~0.1 to 0.9 ppm and a broad range of δ7Li (+14 to −20‰). An inverse correlation of Li concentration and δ7Li in olivine from harzburgite suggests recent diffusive ingress of Li into the rock. Olivine from dunite enveloping podiform chromitites shows positive δ7Li values higher than those of MORB, whereas olivine from the chromitite has negative δ7Li values. Such variations are difficult to reconcile by diffusive fractionation and are thought to record the nature of the magma sources. Our results clearly indicate that the Luobusa chromitites formed from magmas with light Li isotopic compositions and that the dunites are products of melt-rock interaction. The isotopically light magmas originated by partial melting of a subducted slab after high degrees of dehydration and then penetrated the overlying mantle wedge. This study provides evidence for Li isotope heterogeneity in the mantle that resulted from subduction of a recycled oceanic component. PMID:26927333

  8. Cu Purification Using an Extraction Resin for Determination of Isotope Ratios by Multicollector ICP-MS

    Directory of Open Access Journals (Sweden)

    Akio Makishima

    2014-06-01

    Full Text Available A new simple and quick method has been established for separation of Cu from solutions using an extraction chromatographic resin utilizing Aliquat® 336 (commercially available as TEVA™ resin and Cu(I. This method involves the use of a one milliliter column containing 0.33 mL TEVA™ resin on 0.67 mL Amberchrom® CG-71C acrylic resin. Copper was adsorbed on the column by forming Cu(I with 0.15% ascorbic acid in 0.05 mol·L−1 HBr, while other major elements except Zn showed no adsorption. After removal of the major elements (Na, Mg, Al, P, K, Ca, Cr, Mn, Fe, Co and Ni, Cu was recovered using 2 mol·L−1 HNO3. The recovery yield and total blank were 102% ± 2% and 0.25 ng, respectively. To evaluate the separation method, Cu isotope ratios were determined by a standard-sample-standard bracketing method using multicollector inductively coupled plasma-mass spectrometry (ICP-MS, with a repeatability of 0.04‰ and 0.25‰ (SD, for the standard solution and the solutions from low S (<0.1% S silicate standards, respectively.

  9. First-principles investigation of equilibrium isotopic fractionation of Si and O isotopes among quartz, albite, anthorite, orthoenstatite, clinoenstatite, olivine, and zircon

    Science.gov (United States)

    Qin, T.; Wu, F.; Huang, F.; Wu, Z.

    2013-12-01

    Silicon is one of the most abundant elements in the crust and mantle. Because of advance of high precision analytical technique, Si isotope geochemistry has been widely applied into studies of a variety of important processes including planetary formation, core-mantle segregation, magmatism, and weathering of the crust. In order to better understanding Si isotope data in high temperature rock and mineral samples, it is critical to obtain equilibrium fractionation factors of Si isotopes among silicate minerals. However, experimental studies on calibrating Si isotope fractionation factors are still no available in literature. Here we used first-principles calculation based on density functional theory to investigate Si isotope fractionation factors among silicate minerals commonly occurring in magmatism in crustal level. These minerals include quartz, albite, anthorite, orthoenstatite, clinoenstatite, olivine, and zircon. We also calculated oxygen isotope fractionation factors among these minerals. Our results indicate the 18O-enrichment order among these minerals follows sequence of quartz > albite > anorthite > enstatite> zircon > olivine, showing good agreement with the data from previous experiments or natural sample measurement. For Si isotopes, our work shows that the 30Si-enrichment order in these minerals follows sequence of quartz > albite > anorthite > olivine ~ zircon > enstatite > diopside. These results are consistent with previous calculation [1] and observation from natural minerals. For example, Δ30Sianorthite-olivine = 0.2‰ at 1000oC based on our calculation, well consistent with value from the study of Skaergaard Intrusion (Δ30Siplagioclase-olivine = 0.24-27‰) [2] at same temperature. Our calculation indicates that Si isotopes can be significantly fractionated among silicate minerals during high temperature geochemical processes. References: [1] M. Méheut et al (2007), GCA 71:3170-3180. [2] P. S. Savage et al (2011), GCA 75:6124-6139.

  10. Theoretical determination of O and S isotope fractionations between gypsum and aqueous sulfate

    Science.gov (United States)

    Liu, Y.; Bao, H.

    2009-12-01

    Some non-labile oxyanions, such as sulfate (SO42-) or nitrate (NO3-), do not exchange O atoms readily with O in water at ambient temperatures. They often behave like a single atom during mineral precipitation, dissolution, adsorption, and even microbial transport. Considering the many different isotopologues these oxyanions usually possess, for example, SO42- has 32-16-16-16-16, 34-16-16-16-16, 32-18-16-16-16, 34-18-16-16-16, …, etc., the behaviour of isotope fractionation for different elements in the oxyanions (e.g., O and S) may lead to certain degrees of coupling during different physical, chemical, and biological processes. Here, we use an aqueous sulfate - solid gypsum (CaSO4-2H2O) system to illustrate a first-principle approach to calculating the isotope fractionation factors and their coupling for O and S in sulfate during gypsum precipitation. Using Urey model or Bigeleisen-Mayer equation in combination with quantum chemistry calculations (at B3LYP/6-311+G(2df,p) level), we have calculated equilibrium isotope fractionation factors α18 and α34 for tens of isotopologues of SO42-. We use a time-consuming yet explicit solvent model (i.e. “water-droplet”) to precisely evaluate solvation effects for aqueous sulfate species. A large and partially fixed cluster model is used for simulating gypsum mineral surface. Our results show that the equilibrium fractionations at 25°C between solid gypsum and aqueous sulfate are ~ 2.5 and 1.6 ‰ for the Δδ18O and Δδ34S, respectively. Without considering ion-pair effect on sulfate anion in solution, however, the corresponding Δδ18O and Δδ34S become ~ 4.4 and 2.8 ‰, respectively. Our work presents a new approach to predicting isotope fractionation behaviour for no-labile species at equilibrium and lays the ground for evaluating kinetic effects. The results also shed lights on the mechanism and model for gypsum crystal growth at molecular level.

  11. Soluble/insoluble (dilute-HCl-extractable fractionation of Cd, Pb and Cu in Antarctic snow and its relationship with metal fractionations in the aerosol

    Directory of Open Access Journals (Sweden)

    Annibaldi A.

    2013-04-01

    Full Text Available A chemical fractionation methodology for determination of the (water soluble and the insoluble (dilute-HCl-extractable fractions of Cd, Pb and Cu in Antarctic snow was set-up and verified for the additivity of the two fractions detected. Molten samples were filtrated and the water-insoluble fraction was extracted by dilute ultrapure HCl (pH ~1.5. Metal determinations were carried out in the two fractions by square wave anodic stripping voltammetry. The total metal concentrations in samples collected in the 2000–2001 austral summer in a clean area (Faraglione Camp in the neighbourhood of the Mario Zucchelli Italian Station were of the order of Cd 10-20 pg g−1, Pb 20–40 pg g−1, Cu 60–120 pg g−1 with an approximate equidistribution between soluble and insoluble fractions. These fractionations compare well (and show a quite consistent temporal trend with those observed in the aerosol samples collected in the same area/period and confirm the close relationship between metal distributions in snow/ice and in the aerosol. At the station metal concentrations increase due to anthropic contribution and the distribution changes with Cd predominantly present in the soluble fraction (~80%, while Pb and Cu are more concentrated in the insoluble fraction, 70–80% and ~70%, respectively.

  12. Shock-Wave Heating Model for Chondrule Formation: Prevention of Isotopic Fractionation

    CERN Document Server

    Miura, H; Miura, Hitoshi; Nakamoto, Taishi

    2006-01-01

    Chondrules are considered to have much information on dust particles and processes in the solar nebula. It is naturally expected that protoplanetary disks observed in present star forming regions have similar dust particles and processes, so study of chondrule formation may provide us great information on the formation of the planetary systems. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules. In order to meet this observed constraint, the rapid heating rate at temperatures below the silicate solidus is required to suppress the isotopic fractionation. We have developed a new shock-wave heating model taking into account the radiative transfer of the dust thermal continuum emission and the line emission of gas molecules and calculated the thermal history of chondrules. We have found that optically-thin shock waves for the thermal continuum emission from dust ...

  13. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments

    Science.gov (United States)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-10-01

    Chitons (Mollusca) are marine invertebrates that produce radulae (teeth or rasping tongues) containing high concentrations of biomineralized magnetite and other iron-bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radulae might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radulae collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00 ‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae in the sublittoral zone, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds on both green and red algae in the eulittoral zone, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Three possible pathways are proposed to account for the different isotopic signatures: (i) physiologically controlled processes within the chitons that lead to species-dependent fractionation; (ii) diet-controlled variability due to different Fe isotope fractionation in the red and green algal food sources; and (iii) environmentally controlled fractionation that causes variation in the isotopic signatures of bioavailable Fe in the different

  14. Density-driven free-convection model for isotopically fractionated geogenic nitrate in sabkha brine

    Science.gov (United States)

    Wood, Warren W.; Böhlke, John Karl

    2017-01-01

    Subsurface brines with high nitrate (NO3−) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ∼525 mg/L (as N), NO3− in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ∼17‰), which is an enigma. A NO3− solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3− could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density-driven free-convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near-surface oxygenated NO3− bearing water downward where it encounters reducing conditions and mixes with oxygen-free ascending geologic brines. In this environment, NO3− is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3− in heavy isotopes. The isotopically fractionated NO3− and nitrogen gas return to the near-surface oxidizing environment on the upward displacement leg of the free-convection cycle, where the nitrogen gas is released to the atmosphere and new NO3− is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000-year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3−.

  15. The behaviour of copper isotopes during igneous processes

    Science.gov (United States)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  16. Stable Carbon Isotopic Fractionation in Smoke and Char Produced During Biomass Burning

    Science.gov (United States)

    Wang, Y.; Hsieh, Y.

    2006-12-01

    Stable isotopic ratio of carbon has been used extensively as a tracer of carbon sources in the environment. It has been documented that burning of C4 grasses resulted in significant depletion of C13 in the charcoal while burning of wood and C3 grass did not. This study was initiated to investigate the stable carbon isotopic fractionation of the smoke and char produced during biomass burnings. Samples of Juncus romerianus (C3 salt marsh grass) and Spartina alterniflora (C4 salt marsh grass), Eremochloa ophiuroides (centipede, a C4 lawn grass) and woody debris of a pine forest were colleted and burned in open air fire place. The particulate matter with diameters less than 2.5 micron (PM2.5) emitted from the burning was collected using a PM sampler. The original biomass, PM2.5, black C in PM2.5 and char (ash) were analyzed for their C, N and S thermograms using a multi-elemental scanning thermal analyzer and their stable C isotopic ratios were measured using an EA-IRMS. The results indicate that burning of wood and C3 grass did not produce significant C isotopic fractionation in PM2.5, black C in PM2.5 and char with respect to the original material. However, there was a significant C13-depletion in PM2.5 (-6.2 per mil), black C in PM2.5 (-4.6 per mil) and chars (-4.6 per mil) produced by burning of the C4 centipede grass; whereas the C4 Spartina salt marsh grass produced a C13-depletion in PM2.5 (-2.3 per mil) and black C in PM2.5 (-3.6 per mil), and a slight C13-enrichment in char (0.5 per mil). The isotope fractionation associated with burning of C4 vegetation is probably dependent on species and burning conditions and warrant further study.

  17. Sulfur isotope fractionation between fluid and andesitic melt: An experimental study

    Science.gov (United States)

    Fiege, Adrian; Holtz, François; Shimizu, Nobumichi; Mandeville, Charles W.; Behrens, Harald; Knipping, Jaayke L.

    2014-01-01

    Glasses produced from decompression experiments conducted by Fiege et al. (2014a) were used to investigate the fractionation of sulfur isotopes between fluid and andesitic melt upon magma degassing. Starting materials were synthetic glasses with a composition close to a Krakatau dacitic andesite. The glasses contained 4.55–7.95 wt% H2O, ∼140 to 2700 ppm sulfur (S), and 0–1000 ppm chlorine (Cl). The experiments were carried out in internally heated pressure vessels (IHPV) at 1030 °C and oxygen fugacities (fO2) ranging from QFM+0.8 log units up to QFM+4.2 log units (QFM: quartz–fayalite–magnetite buffer). The decompression experiments were conducted by releasing pressure (P) continuously from ∼400 MPa to final P of 150, 100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were annealed for 0–72 h (annealing time, tA) at the final P and quenched rapidly from 1030 °C to room temperature (T).The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large fluid–melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to determine the isotopic composition of the glasses before and after decompression. Mass balance calculations were applied to estimate the gas–melt S isotope fractionation factor αg-m.No detectable effect of r and tA on αg-m was observed. However, SIMS data revealed a remarkable increase of αg-m from ∼0.9985 ± 0.0007 at >QFM+3 to ∼1.0042 ± 0.0042 at ∼QFM+1. Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger than predicted by previous works. Based on our experimental results and on previous findings for S speciation in fluid and silicate melt a new model predicting the effect of fO2 on αg-m (or Δ34Sg–m) in andesitic systems at 1030 °C is proposed. Our experimental results as well as our modeling are of high importance for the interpretation of S isotope

  18. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  19. Experimental Investigation of Irradiation-driven Hydrogen Isotope Fractionation in Analogs of Protoplanetary Hydrous Silicate Dust

    Science.gov (United States)

    Roskosz, Mathieu; Laurent, Boris; Leroux, Hugues; Remusat, Laurent

    2016-11-01

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  20. Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites

    Science.gov (United States)

    Chernonozhkin, Stepan M.; Goderis, Steven; Costas-Rodríguez, Marta; Claeys, Philippe; Vanhaecke, Frank

    2016-08-01

    Various iron and stony-iron meteorites have been characterized for their Ni and Fe isotopic compositions using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) after sample digestion and chromatographic separation of the target elements in an attempt to further constrain the planetary differentiation processes that shifted these isotope ratios and to shed light on the formational history and evolution of selected achondrite parent body asteroids. Emphasis was placed on spatially resolved isotopic analysis of iron meteorites, known to be inhomogeneous at the μm to mm scale, and on the isotopic characterization of adjacent metal and silicate phases in main group pallasites (PMG), mesosiderites, and the IIE and IAB complex silicate-bearing iron meteorites. In a 3-isotope plot of 60/58Ni versus62/58Ni, the slope of the best-fitting straight line through the laterally resolved Ni isotope ratio data for iron meteorites reveals kinetically controlled isotope fractionation (βexper = 1.981 ± 0.039, 1 SD), predominantly resulting from sub-solidus diffusion (with the fractionation exponent β connecting the isotope fractionation factors, as α62/58 =α60/58β). The observed relation between δ56/54Fe and Ir concentration in the metal fractions of PMGs and in IIIAB iron meteorites indicates a dependence of the bulk Fe isotopic composition on the fractional crystallization of an asteroidal metal core. No such fractional crystallization trends were found for the corresponding Ni isotope ratios or for other iron meteorite groups, such as the IIABs. In the case of the IIE and IAB silicate-bearing iron meteorites, the Fe and Ni isotopic signatures potentially reflect the influence of impact processes, as the degree of diffusion-controlled Ni isotope fractionation is closer to that of Fe compared to what is observed for magmatic iron meteorite types. Between the metal and olivine counterparts of pallasites, the Fe and Ni isotopic compositions show clearly

  1. Magnesium isotopic fractionation in chondrules from the Murchison and Murray CM2 carbonaceous chondrites

    Science.gov (United States)

    Bouvier, Audrey; Wadhwa, Meenakshi; Simon, Steven B.; Grossman, Lawrence

    2013-03-01

    We present high-precision measurements of the Mg isotopic compositions of a suite of types I and II chondrules separated from the Murchison and Murray CM2 carbonaceous chondrites. These chondrules are olivine- and pyroxene-rich and have low 27Al/24Mg ratios (0.012-0.316). The Mg isotopic compositions of Murray chondrules are on average lighter (δ26Mg ranging from -0.95‰ to -0.15‰ relative to the DSM-3 standard) than those of Murchison (δ26Mg ranging from -1.27‰ to +0.77‰). Taken together, the CM2 chondrules exhibit a narrower range of Mg isotopic compositions than those from CV and CB chondrites studied previously. The least-altered CM2 chondrules are on average lighter (average δ26Mg = -0.39 ± 0.30‰, 2SE) than the moderately to heavily altered CM2 chondrules (average δ26Mg = -0.11 ± 0.21‰, 2SE). The compositions of CM2 chondrules are consistent with isotopic fractionation toward heavy Mg being associated with the formation of secondary silicate phases on the CM2 parent body, but were also probably affected by volatilization and recondensation processes involved in their original formation. The low-Al CM2 chondrules analyzed here do not exhibit any mass-independent variations in 26Mg from the decay of 26Al, with the exception of two chondrules that show only small variations just outside of the analytical error. In the case of the chondrule with the highest Al/Mg ratio (a type IAB chondrule from Murchison), the lack of resolvable 26Mg excess suggests that it either formed >1 Ma after calcium-aluminum-rich inclusions, or that its Al-Mg isotope systematics were reset by secondary alteration processes on the CM2 chondrite parent body after the decay of 26Al.

  2. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    Science.gov (United States)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-08-01

    Recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s, lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) andGephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence. Emiliania huxleyi was observed to exhibit an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 may exist and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature records.

  3. Copper isotope signatures in modern marine sediments

    Science.gov (United States)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  4. 高温下非传统稳定同位素分馏%Non-traditional stable isotope fractionation at high temperatures

    Institute of Scientific and Technical Information of China (English)

    黄方

    2011-01-01

    The last ten years have seen big progress and wide applications of a novel field, non-traditional stable isotope (NTSI) geochemistry, to high temperature geo-science studies. Invention of multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) led to the big breakthrough of analytical methods for heavy stable isotopes. This contribution summarizes Ii, Fe, and Mg isotope studies on igneous rocks and minerals, as representative of NTSI geochemistry. Ii isotopes have been widely applied to the studies of mantle geochemistry, recycling of subducted materials, and metamorphism to constrain the source of magma and kinetic diffusion process. Fe isotope fractionation is related to partitioning of multi-valent Fe between Fe-bearing phases, which can occur in the course of mantle metasomatism, partial melting, and fractional crystallization. Mg isotopic compositions of igneous rocks most likely reflect the source signatures. Variation of Mg isotopic ratios of mantle peridotites is trivial and this provides a homogenous background for Mg isotope fractionation in low temperature processes. Furthermore, Cl, Si, Cu, Ca, and U isotopes are also promising in the future geochemical studies. Experimental studies and theoretical simulation for the mechanisms of isotope fractionation provide important guidances for understanding the NTIS data. Experimental studies show that light and heavy isotopes have different migration velocity at high temperature processes such as chemical diffusion, evaporation, and desublimation, which could produce significant kinetic isotope fractionation. Equilibrium isotopic fractionation could occur among mineral, melt, and fluid when chemical environment of the isotopes are different between the phases. Recent thermal diffusion and migration experiments on silicate material reveal a " new" mechanism of magma differentiation and isotope fractionation. Along a temperature gradient in silicate magma, large elemental variation and isotopic

  5. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments

    DEFF Research Database (Denmark)

    Bruchert, V.; Knoblauch, C.; Jørgensen, BB

    2001-01-01

    Sulfur isotope fractionation experiments during bacterial sulfate reduction were performed with recently isolated strains of cold-adapted sulfate-reducing bacteria from Arctic marine sediments with year-round temperatures below 2 degreesC. The bacteria represent quantitatively important members...... parts per thousand and 8 parts per thousand above 25 degreesC, respectively. In absence of significant differences in sulfate reduction rates in the high and low temperature range, respectively, we infer that different genera of sulfate-reducing bacteria dominate the sulfate-reducing bacterial community...

  6. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    Science.gov (United States)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7

  7. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    2O Cr (OH) 2+ + 2H+ (1) (ii) The continuing oxidation of Cr(III) and Cr(OH)2+ to Cr(VI) oxyanions, CrO42-, HCrO4- and Cr2O72-. Cr3+ +H2O HCrO4- + 7H+ +3e- (2) Cr(OH)2+ + 2H2O HCrO4- + 5H+ + 3e- (3) This process predominates in the soil horizons and is accompanied by an isotopic fractionation...

  8. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    Science.gov (United States)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ˜70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ˜10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium

  9. Microbial perchlorate reduction: A precise laboratory determination of the chlorine isotope fractionation and its possible biochemical basis

    Science.gov (United States)

    Ader, Magali; Chaudhuri, Swades; Coates, John D.; Coleman, Max

    2008-05-01

    Perchlorate-reducing bacteria fractionate chlorine stable isotopes giving a powerful approach to monitor the extent of microbial consumption of perchlorate in contaminated sites undergoing remediation or natural perchlorate containing sites. This study reports the full experimental data and methodology used to re-evaluate the chlorine isotope fractionation of perchlorate reduction in duplicate culture experiments of Azospira suillum strain PS at 37 °C (Δ 37Cl Cl --ClO 4-) previously reported, without a supporting data set by Coleman et al. [Coleman, M.L., Ader, M., Chaudhuri, S., Coates, J.D., 2003. Microbial Isotopic Fractionation of Perchlorate Chlorine. Appl. Environ. Microbiol. 69, 4997-5000] in a reconnaissance study, with the goal of increasing the accuracy and precision of the isotopic fractionation determination. The method fully described here for the first time, allows the determination of a higher precision Δ 37Cl Cl --ClO 4- value, either from accumulated chloride content and isotopic composition or from the residual perchlorate content and isotopic composition. The result sets agree perfectly, within error, giving average Δ 37Cl Cl --ClO 4- = - 14.94 ± 0.15‰. Complementary use of chloride and perchlorate data allowed the identification and rejection of poor quality data by applying mass and isotopic balance checks. This precise Δ 37Cl Cl --ClO 4- value can serve as a reference point for comparison with future in situ or microcosm studies but we also note its similarity to the theoretical equilibrium isotopic fractionation between a hypothetical chlorine species of redox state + 6 and perchlorate at 37 °C and suggest that the first electron transfer during perchlorate reduction may occur at isotopic equilibrium between an enzyme-bound chlorine and perchlorate.

  10. Potential of calcium isotopes to identify fractionations in vegetation: experimental approach

    Science.gov (United States)

    Cobert, F.; Schmitt, A.; Bourgade, P.; Stille, P.; Chabaux, F. J.; Badot, P.; Jaegler, T.

    2010-12-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the cooccuring geochemical and biological processes and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 5 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered to be infinite. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Our results show, in accord with previously published field studies, that the bean organs are all enriched in the light 40Ca isotope compared to the nutritive solution (e.g. Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). We identify two fractionation levels. The first occurs during the uptake of the nutrient elements by the lateral roots. This implies that the main mechanisms of light isotope enrichments in the plant are due to electrochemical gradient transport processes taking place at this interface. The second fractionation can be observed within the plant itself and is due to the nature of the considered organ itself. Indeed structural reservoirs (primary roots, stem, reproductive organs) incorporate more the light 40Ca isotope compared to the transfer reservoirs (lateral roots, xylem sap, leaves). This could be linked to ion

  11. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates : Evaluating the potential for a CO2 proxy

    NARCIS (Netherlands)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert Jan; Rost, Björn; Sluijs, Appy

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  12. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: evaluating the potential for a CO2 proxy

    NARCIS (Netherlands)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  13. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  14. Hydrogen isotope fractionation between C-H-O species in magmatic fluids

    Science.gov (United States)

    Foustoukos, D. I.; Mysen, B. O.

    2012-12-01

    Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of

  15. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by ¹³C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J; Remaud, Gérald S

    2015-10-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by (13)C NMR (irm-(13)C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources.

  16. Size-fractionated uranium isotopes in surface waters in the Jiulong Estuary in China

    Institute of Scientific and Technical Information of China (English)

    L(U) E; ZHANG Lei; CHEN Min; QIU Yusheng; XING Na; YANG Weifeng; LI Yanping; HUANG Yipu

    2008-01-01

    Surface water was collected from the Jiulong Estuary for determination of activity concentrations of uranium isotopes in different size fractions,namely,greater than 53,10~53,2~10,0.4~2 μm,10 000 u~0.4 μm and less than 10 000 u fractions by microfihration and cross-flow ultrafihration technologies.Results indicated that most of the dissolved uranium (<0.4 μm) exis- ted in the low molecular mass fraction ( < 10 000 u),and the colloidal uranium-238 ( 10 000 u~0.4 μm) only contributed less than 1% of the dissolved uranium-238.The fractions of colloidal uranium in the dissolved phases decreased with the increasing sa- linity.A positive linear relationship between uranium-238 activities and salinities was observed for the dissolved,colloidal and low molecular mass fractions,indicating a conservative behavior of uranium in the Jiulong Estuary.In the particulate phases ( 0.4 μm),the partitioning of uranium isotopes among different size fractions was controlled by the partitioning of particle concentra- tions.In the regions with salinities below 20,the partitioning of uranium-238 among different size fractions was as follows:10~ 53 μm2~10 μm0.4~2 μm greater than above 53 μm.However,the order at the offshore station with salinities above 30 changed as follows:0.4~2 μm 10~53 μm 2~10 μm greater than above 53 μm.The fraction of the 0.4~2 μm particles increased at the offshore station,suggesting the increased contribution of the authigenic uranium.The activity ratio of uranium-234 to uranium-238 in the dissolved phases,including the low molecular mass fraction and the colloidal fraction,was larger than uni-ty,showing the occurrence of excess uranium-234.In contrast,the activity ratio of uranium-234 to uranium-238 in all size frac-tions of the particulate phase was close to the equilibrium value (1.0).The observed different values of the activity ratio of urani-um-234 to uranium-238 in the dissolved phase and the particulate phase were

  17. Influence of salinity on hydrogen isotope fractionation in Rhizophora mangroves from Micronesia

    Science.gov (United States)

    Ladd, S. Nemiah; Sachs, Julian P.

    2015-11-01

    Hydrogen isotope ratios (2H/1H or δ2H) of plant leaf waxes typically covary with those of precipitation, and are therefore used as a proxy for past hydrologic variability. Mangroves present an important exception to this relationship, as salinity can strongly influence 2H fractionation in leaf lipids. To better understand and calibrate this effect, δ2H values of taraxerol and n-alkanes were measured in the leaves of Rhizophora spp. (red mangroves) from three estuaries and four brackish lakes on the Micronesian islands of Pohnpei and Palau, and compared to the δ2H and δ18O values of leaf water, xylem water and surface water. Net 2H discrimination between surface water and taraxerol increased by 0.9 ± 0.2‰ per part per thousand (ppt-1) over a salinity range of 1-34 ppt. Xylem water was always depleted in 2H relative to surface water, and the magnitude of this depletion increased with salinity, which is most likely due to a combination of greater 2H discrimination by roots during water uptake and opportunistic use of freshwater. Changes in the 2H content of xylem water can account for up to 43% of the change in net taraxerol fractionation with salinity. Leaf water isotopes were minimally enriched relative to xylem water and there was not significant variability in leaf water enrichment with salinity, which is consistent with a Péclet-modified Craig-Gordon model of leaf water enrichment. As leaf water enrichment is therefore unlikely to be responsible for increased 2H/1H fractionation in mangrove leaf lipids at elevated salinities, the majority of this signal is most likely explained either by changes in biosynthetic fractionation in response to salt stress or by salinity influenced changes in the timing of water uptake and lipid synthesis.

  18. Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars

    Science.gov (United States)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2017-01-01

    We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured

  19. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record

    Science.gov (United States)

    Wu, Lingling; Percak-Dennett, Elizabeth M.; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.

    2012-05-01

    Iron isotope fractionation between aqueous Fe(II) (Fe(II)aq) and two amorphous Fe(III) oxide-Si coprecipitates was investigated in an aqueous medium that simulated Archean marine conditions, including saturated amorphous silica, low sulfate, and zero dissolved oxygen. The equilibrium isotope fractionation (in 56Fe/54Fe) between Fe(II)aq and Fe(III)-Si coprecipitates at circum-neutral pH, as inferred by the three-isotope method, was -3.51 ± 0.20 (2σ)‰ and -3.99 ± 0.17 (2σ)‰ for coprecipitates that had Fe:Si molar ratios of 1:2 and 1:3, respectively. These results, when combined with earlier work, indicate that the equilibrium isotope fractionation factor between Fe(II)aq and Fe(III)-Si coprecipitates changes as a function of Fe:Si ratio of the solid. Isotopic fractionation was least negative when Fe:Si = 1:1 and most negative when Fe:Si = 1:3. This change corresponds with changes in the local structure of iron, as revealed by prior spectroscopic studies. The kinetics of isotopic exchange was controlled by movement of Fe(II) and Si, where sorption of Fe(II) from aqueous to solid phase facilitated atom exchange, but sorption of Si hindered isotopic exchange through blockage of reactive surface sites. Although Fe(II)-Fe(III) isotopic exchange rates were a function of solid and solution compositions in the current study, in all cases they were much higher than that determined in previous studies of aqueous Fe(III) and ferrihydrite interaction, highlighting the importance of electron exchange in promoting Fe atom exchange. When compared to analogous microbial reduction experiments of overlapping Fe(II) to Fe(III) ratios, isotopic exchange rates were faster in the biological experiments, likely due to promotion of atom exchange by the solid-phase Fe(II) produced in the biological experiments. These results provide constraints for interpreting the relatively large range of Fe isotope compositions in Precambrian marine sedimentary rocks, and highlight important

  20. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic

    Science.gov (United States)

    Xie, Ruifang C.; Galer, Stephen J. G.; Abouchami, Wafa; Rijkenberg, Micha J. A.; de Baar, Hein J. W.; De Jong, Jeroen; Andreae, Meinrat O.

    2017-08-01

    We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50°S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high ε 112 / 110Cd at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in ε 112 / 110Cd is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated ε 112 / 110Cd reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg-1, ε 112 / 110Cd are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 ± 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacterial/picoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of ε 112 / 110Cd in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion

  1. Iron Isotope Fractionation Reveals Structural Change upon Microbial and Chemical Reduction of Nontronite NAu-1

    Science.gov (United States)

    Liu, K.; Wu, L.; Shi, B.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.

    2015-12-01

    Iron (Fe) isotope fractionations were determined during reduction of structural Fe(III) in nontronite NAu-1 biologically by Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA and chemically by dithionite. ~10% reduction was achieved in biological reactors, with similar reduction extents obtained by dithionite. We hypothesize that two stages occurred in our reactors. Firstly, reduction started from edge sites of clays and the produced Fe(II) partially remained in situ and partially was released into solution. Next aqueous Fe(II) adsorbed onto basal planes. The basal sorbed Fe(II) then undergoes electron transfer and atom exchange (ETAE) with octahedral Fe(III) in clays, with the most negative fractionation factor Δ56Febasal Fe(II)-structural Fe(III)of -1.7‰ when basal sorption reached a threshold value. Secondly, when the most reactive Fe(III) was exhausted, bioreduction significantly slowed down and chemical reduction was able to achieve 24% due to diffusion of small size dithionite. Importantly, no ETAE occurred between basal Fe(II) and structural Fe(III) due to blockage of pathways by collapsed clay layers. This two-stage process in our reduction experiments is distinctive from abiotic exchange experiments by mixing aqueous Fe(II) and NAu-1, where no structural change of clay would block ETAE between basal Fe(II) and structural Fe(III). The separation of reduction sites (clay edges) and sorption sites (basal planes) is unique to clay minerals with layered structure. In contrast, reduction and sorption occur on the same sites on the surfaces of Fe oxyhydroxides, where reduction does not induce structure change. Thus, the Fe isotope fractionations are the same for reduction and abiotic exchange experiments for Fe oxides. Our study reveals important changes in electron transfer and atom exchange pathways upon reduction of clay minerals by dissimilatory Fe reducing bacteria, which is prevalent in anoxic soils and sediments.

  2. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  3. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-15

    Density functional electronic structure calculations are used to compute the equilibrium constant (the isotope fractionation factor) for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln(K) at 25 °C, of -5.3, -1.1, and +1.1 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq), the calculations predict values of +1.5 for Ca2+(aq) in six-fold coordination and +4.1 for Ca2+(aq) in seven-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)610- and M2+(H2O)6 embedded in a set of fixed atoms representing the 2nd shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using 2 the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.

  4. FRACTIONATION OF SELECTED HEAVY METALS (Zn, Ni, Cu IN MUNICIPAL SEWAGE SLUDGES FROM PODLASIE PROVINCE

    Directory of Open Access Journals (Sweden)

    Adam Łukowski

    2017-05-01

    Full Text Available In the samples of fresh dehydrated sewage sludges from municipal treatment plants in Grajewo, Bielsk Podlaski, Sokółka, Dąbrowa Białostocka, Knyszyn, Mońki, Augustów, Suwałki, Sejny and Suchowola the following determinations were made: pH, pseudo-total content of Zn, Ni and Cu, organic matter and dry mass. The contents of above-mentioned elements in fractions were evaluated using modified BCR method (four fractions: F1-acid soluble and exchangeable, F2-reducible, F3-oxidizable, F4-residual. The zinc content (mean values in particular fractions can be arranged quantitatively in a sequence: F3 (60.8 % > F2 (20.0% > F4 (19.9% > F1 (3.9%, in the case of nickel: F3 ( 48.6% > F2 (25.2% > F4 (25.1% > F1 (5.6% and in the case of copper: F4 (66.3% > F3 (35.3% > F1 (4.2% > F2 (3.0%. Cumulative content of zinc in mobile fractions (F1+F2+F3 ranged from 76.0 to 93.3%; for nickel from 56.3 to 89.6% and for copper from 28.8 to 53.3% of pseudo-total content.

  5. Studies on fractionation of ytterbium isotopes in Yb(III)-acetate/Yb-amalgam system. Even-odd effect

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, W.; Poninski, M.; Fiedler, R.

    1997-12-31

    The fractionation of ytterbium isotopes with the even and odd numbers of neutrons was investigated in a Yb(III)-acetate/Yb-amalgam exchange systems. The light isotope was preferentially fractionated to the amalgam phase. The values of the unit separation gain per mass difference,{epsilon}, were found to be -0.00054 for {sup 176/171}Yb and -0.00069 for {sup 176/174}Yb The difference which amounted to 0.00015 is an evidence for the occurrence of the so called `even-odd` effect. It was also found that the chemical isotope shift of ytterbium was monitored by optical isotope shift its atomic spectra. (author). 23 refs, 7 figs, 4 tabs.

  6. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    Science.gov (United States)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  7. Determination of mass-dependent isotopic fractionation of cerium and neodymium in geochemical samples by MC-ICPMS.

    Science.gov (United States)

    Ohno, Takeshi; Hirata, Takafumi

    2013-01-01

    We have developed a new analytical method to determine the mass-dependent isotopic fractionations on Ce and Nd in geochemical samples. Mass discrimination effects on Ce and Nd were externally corrected by normalizing (149)Sm/(147)Sm and (153)Eu/(151)Eu, being 0.92124 and 1.0916, respectively based on an exponential law. The reproducibility of the isotopic ratio measurements on (142)Ce/(140)Ce, (146)Nd/(144)Nd and (148)Nd/(144)Nd were 0.08‰ (2SD, n = 25), 0.06‰ (2SD, n = 39) and 0.12‰ (2SD, n = 39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ(142)Ce and δ(146)Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by geochemical or physicochemical processes without changing the oxidation status of Ce, since the redox-reaction can produce larger isotopic fractionation than the reactions without changing the oxidation state. The variations in the Ce and Nd isotope ratios for geochemical samples could provide new information concerning the physico-chemical processes of the sample formation.

  8. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    Science.gov (United States)

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  9. Iron isotopes in a soil chronosequence: evidence of fractionation due to biological lifting of iron

    Science.gov (United States)

    Schulz, M. S.; Bullen, T. D.; White, A. F.; Fitzpatrick, J.

    2009-12-01

    The evolution of iron distribution with landform exposure time was studied in a marine terrace chronosequence northwest of Santa Cruz, California. The abundance of soil Fe increases with terrace age on the five terraces studied (65 to 226 Ka). Mass change calculations for Fe, indicate that not only is iron concentrated near the surface but, it is also depleted at depths >1.5m. The surficial Fe concentration cannot be fully accounted for by weathering and compaction of the soil profile or by the addition of iron content through eolian deposition to the soils. The terrace regoliths were generally unsaturated and aerobic, thus lateral movement of large amounts of dissolved reduced iron is unlikely. We propose that plant roots and symbiotic fungi (mycorrhizae) have transported iron from deep within the regolith to the shallow soil through the process of biolifting. Iron is a plant micronutrient; and unlike other mineral nutrients, it is relatively insoluble in aerobic soil solutions. Once Fe is released from decaying organic matter, the Fe-oxides are incorporated into the shallow soil. The Fe content of the current grassland vegetation was measured and yearly biomass Fe uptake calculated. The yearly cycling of plant-utilized Fe in above ground biomass multiplied by the age of the terrace is roughly equivalent to the shallow iron content of these soils. It has been shown that plants which use the strategy I Fe uptake process fractionate light Fe (Guelke and Von Blankenburg, ES&T, p1896; 2007). To test the biolifting hypothesis, Fe isotope ratios were determined for bulk soil samples from several soil depths of terraces 1 through 3 and terrace 5. The shallow soils generally have increasingly lighter δ56/54Fe with terrace age. The δ 56/54Fe values at 10cm soil depth are: 0.546, 0.628 0.381 and 0.182. The deep soil samples (>3 m) have a relatively constant isotopic composition ranging from 0.595 to 0.678 δ 56/54Fe. The deep sample ratios are between the values of the

  10. Sulfur Isotope Fractionation in Magmatic Systems:Models of Rayleigh Distillation and Selective Flux

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1990-01-01

    The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled.A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ34S of the melts mith respect to the original magmas.The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts,while an equilibrium fractionation is approached between sulfate and sulfide within the melts.The results show that under high fo2 conditions,the sulfate/sulfide ratio in a melt entds to increase,and the δ34S value of sulfur in a solidified rock might then be shifted in the positive direction.This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold,or due to a unidirectional increase in δ34S value of the sulfate with decreaing temperature,Conversely,at low fo2,the sulfate/sulfide ratio tends to decrease and the δ34S value of total sulfur could be driven in the negative direction,either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold,or because of a unidirectional decrease inδ34S value of the sulfide.To establish isotopic equilibrium between sulfate and sulfide,the HM,QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide.CaO present in the silicatte Melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide,Consequently,the δ34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification.

  11. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely...... for the slower stage, indicating that approximately 40% reequilibration may take place during the separation of the two pools. To further test if the induced precipitation leads to experimental artefacts, the fractionation during precipitation of inorganic Fe was determined. Assuming a Rayleigh...

  12. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    Science.gov (United States)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of

  13. Sulfur Isotopic Fractionation During Vacuum Ultraviolet Photolysis of SO2: Implication for Meteorites and Early Earth

    Science.gov (United States)

    Chakraborty, S.; Jackson, T. L.; Rude, B.; Ahmed, M.; Thiemens, M. H.

    2016-12-01

    Several sulfur bearing gas phase species existed in the solar nebula, including H2S, SO2, SiS, OCS, CS2, CS, NS and SO as a consequence of multiple available chemical valence states (S2- to S6+). Sulfur directly condensed into refractory phases in the solar nebula under reducing conditions. Mass independent (MI) sulfur isotopic compositions have been measured in chondrules and organics from chondritic meteorites. Large 33S excesses in sulfides from achondrite meteoritic groups have also been found suggesting that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon to oxygen ratio. Photochemical reactions in the early solar nebula have been inferred to be a leading process in generating MI sulfur compositions. Previously, we have reported wavelength dependent mass-independent sulfur isotopic compositions (with a varying degree in D33S and D36S) in the product elemental sulfur during vacuum ultraviolet (VUV) photodissociation of H2S. Recently we performed photodissociation of SO2 experiments in the wavelength region 98 to 200 nm at low pressures (0.5 torr) using the VUV photons from the Advanced Light Source Synchrotron in a differentially pumped reaction chamber. To our knowledge, this is the first ever experiment to determine the isotopic fractionation in VUV photodissociation of SO2. At VUV energy region, SO2 is mostly predissociative. The measured sulfur isotopic compositions in the product elemental sulfur are MI and dependent on the wavelength. These new results support the previous finding from photodissociation of other di- and tri-atomic molecules (CO, N2, H2S) that predissociative photodissociation produces MI isotopic products and is a quantum mechanically driven selective phenomenon. These new results are useful because (i) they are important in interpreting meteoritic data and decipher sulfur chemistry in the early nebula which is indicative of the redox condition of the nebula (ii) SO2 photolysis in the atmosphere of early

  14. Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach

    CERN Document Server

    Kowalski, Piotr M

    2011-01-01

    The mass-dependent equilibrium stable isotope fractionation between different materials is an important geochemical process. Here we present an efficient method to compute the isotope fractionation between complex minerals and fluids at high pressure, P, and temperature, T, representative for the Earth's crust and mantle. The method is tested by computation of the equilibrium fractionation of lithium isotopes between aqueous fluids and various Li bearing minerals such as staurolite, spodumene and mica. We are able to correctly predict the direction of the isotope fractionation as observed in the experiments. On the quantitative level the computed fractionation factors agree within 1.0 permil with the experimental values indicating predictive power of ab initio methods. We show that with ab initio methods we are able to investigate the underlying mechanisms driving the equilibrium isotope fractionation process, such as coordination of the fractionating elements, their bond strengths to the neighboring atoms, c...

  15. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    Science.gov (United States)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well

  16. Contrasting Cu-Au and Sn-W Granite Metallogeny through the Zircon Geochemical and Isotopic Record

    Science.gov (United States)

    Gardiner, Nicholas; Hawkesworth, Chris; Robb, Laurence; Whitehouse, Martin; Roberts, Nick; Kirkland, Chris

    2017-04-01

    Magmatic genesis and evolution - mediated by geodynamic setting - exert a primary control on the propensity of granites to be metal fertile. A revolution in our understanding of these petrogenetic processes has been made through a range of mineral-based tools, most notably the common accessory mineral zircon. There is consequently considerable interest in whether the geochemical and isotopic compositions of zircon can be applied to metallogenic problems. The paired magmatic belts of Myanmar have broadly contrasting metallogenic affinities (Sn-W versus Cu-Au), and are interpreted to have formed on the accretionary margin of the subducting Neo-Tethys Ocean. They therefore present the opportunity to geochemically compare and contrast the zircon compositions in two end-member types of granite-hosted mineral deposits generated in collisional settings. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset that fingerprint: (a) source; (b) redox conditions; and (c) degree of fractionation. These variables all impact on magma fertility, and our key question to address is whether they can be reliably traced and calibrated within the Myanmar zircon record. Granitoid-hosted zircons from the I-type copper arc have juvenile ɛHf (+7 to +12) and mantle-like δ18O (5.3 ‰), whereas zircons from the S-type tin belt have low ɛHf (-7 to -13) and heavier δ18O (6.2-7.7 ‰). Plotting Hf versus U/Yb reaffirms that the tin belt magmas contain greater crustal contributions than the copper arc rocks. Links between whole rock Rb/Sr and zircon Eu/Eu* highlights that the latter can be used to monitor magma fractionation in systems that crystallize plagioclase (low Sr/Y). Ce/Ce* and Eu/Eu* in zircon are thus sensitive to redox and fractionation respectively, and can be used to evaluate the sensitivity of zircons to the metallogenic affinity of their host rocks. Tin contents that exceed the solubility limit are required in order to make a magmatic

  17. Experimental determination of Fe isotope fractionation between liquid metal, silicate and sulfide at high pressures and temperatures

    Science.gov (United States)

    Williams, H. M.; Wood, B. J.; Halliday, A. N.

    2007-12-01

    There is evidence for significant equilibrium Fe isotope fractionation (≤0.26‰/amu) between metal and troilite (FeS) in iron meteorites (Williams et al., EPSL (250) 2006) and a smaller fractionation (Gessmann and Wood, EPSL (200) 2002; Wood et al., EPSL (in revision) 2007). Metal, sulfide and silicate fractions were separated from mounted and sectioned experimental charges using a computer-controlled micromill (New Wave-Merchantek). Sample dissolution, Fe purification and isotopic analysis followed established procedures (Williams et al., EPSL (235) 2005). In agreement with another preliminary high-pressure experimental study (Poitrasson and Roskosz, LPSC XXXVIII 2007) we find no appreciable fractionation between liquid iron metal and basaltic melt. However, there is a resolvable Fe isotope fractionation between silicate melt and Fe-S alloy which ranges from 0.12±0.04 to 0.15±0.04‰/amu for separate experiments (errors are propagated based on the 2 SD errors of replicate analyses). The Fe isotope compositions of coexisting phases from these experiments define a positive linear relationship with a slope that is, within error, equal to unity, implying isotopic equilibrium. No relationship between apparent fractionation factor and pressure or temperature is detectable within the range covered by the experiments. The fractionation factors determined from our experiments overlap with the average equilibrium fractionation factor obtained between silicate melt and pyrrhotite (Fe1-xS) of 0.18±0.02‰/amu at 0.5GPa and 1114-1274K (Schuessler et al., GCA (71) 2007) and are also broadly consistent with silicate-FeS fractionation factors inferred indirectly from iron meteorites and pallasites which range from ~0.16 to 0.24‰/amu. Taken together these observations suggest that resolvable stable isotope fractionation between Fe-S alloys and silicate melts can take place at extreme pressure and temperature conditions and that isotopically light Fe can be sequestered into

  18. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    Science.gov (United States)

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or

  19. The role of soil biogeochemistry in wine taste: Soil factors influencing grape elemental composition, photosynthetic biomarkers and Cu/Zn isotopic signature of Vitis vinifera

    Science.gov (United States)

    Blotevogel, Simon; Oliva, Priscia; Darrozes, José; Viers, Jérôme; Audry, Stéphane; Courjault-Radé, Pierre; Orgogozo, Laurent; Le Guedard, Marina; Schreck, Eva

    2015-04-01

    Understanding the influence of soil composition in wine taste is of great economic and environmental interest in France and around the world. Nevertheless the impact of soil composition on wine taste is still controversially discussed. Since inorganic soil components do not have a proper taste and do not enter the plant anyway, their influence needs to be induced by nutrient absorption and its impact on plant functioning and grape composition. Indeed recent development of geological tracers of origin proof the existence of soil chemical and isotopic signatures in wine. However, type and scale of the impact of soil composition on wine taste are not well understood yet, and little experimental evidence exists due to the complexity of mechanisms involved. Thus, to provide evidence for the impact of soil composition on grape composition and potentially wine taste, we studied soil and plant material from two relevant vineyards (Soave, Italia). On those two directly adjacent vineyards, two different wines are produced with the same plant material and cultivation techniques. The vineyards only differ by their underlying bedrock - limestone versus basaltic rock - and thus present suitable conditions for investigating the impact of soil composition on grapes and wine. Pedological and mineralogical parameters were analyzed for the two vineyards whereas chemical extractions (citrate, CaCl2) were performed to determine nutrient bioavailability in both soils. Elemental compositions were determined by ICP-MS analyses in different compartments (soils, vine leaves and grapes). Isotopic fractionation of Cu and Zn was investigated in various samples as source tracers and in order to better understand fractionation mechanisms involved. Finally, plant health was studied using the Omega-3 biomarker which determines the fatty acid composition in vine leaves, directly involved in photosynthetic processes. Results show that the vineyards are characterized by two different soil types due

  20. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    Science.gov (United States)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  1. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low sulfate, iron rich environment

    Directory of Open Access Journals (Sweden)

    Hannah Sophia Weber

    2016-06-01

    Full Text Available Sulfur isotope signatures provide key information for the study of microbial activity in modern systems and the evolution of the Earth surface redox system. Microbial sulfate reducers shift sulfur isotope distributions by discriminating against heavier isotopes. This discrimination is strain-specific and often suppressed at sulfate concentrations in the lower micromolar range that are typical to freshwater systems and inferred for ancient oceans. Anaerobic oxidation of methane (AOM is a sulfate-reducing microbial process with a strong impact on global sulfur cycling in modern habitats and potentially in the geological past, but its impact on sulfur isotope signatures is poorly understood, especially in low sulfate environments. We investigated sulfur cycling and 34S fractionation in a low-sulfate freshwater sediment with biogeochemical conditions analogous to Early Earth environments. The zone of highest AOM activity was associated in situ with a zone of strong 34S depletions in the pool of reduced sulfur species, indicating a coupling of sulfate reduction and AOM at sulfate concentrations < 50 µmol L-1. In slurry incubations of AOM-active sediment, the addition of methane stimulated sulfate reduction and induced a bulk sulfur isotope effect of ~29 ‰. Our results imply that sulfur isotope signatures may be strongly impacted by AOM even at sulfate concentrations two orders of magnitude lower than at present oceanic levels. Therefore, we suggest that sulfur isotope fractionation during AOM must be considered when interpreting 34S signatures in modern and ancient environment.

  2. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China

    Science.gov (United States)

    Duan, Jun; Li, Chusi; Qian, Zhuangzhi; Jiao, Jiangang; Ripley, Edward M.; Feng, Yanqing

    2016-04-01

    Previous geochemical data for the Jinchuan Ni-Cu-(platinum-group elements, PGE) deposit, the single largest magmatic sulfide deposit in the world, are derived primarily from the upper parts of the deposit. This paper reports new PGE and S-Hf-Sr-Nd isotope data for the lower parts of the deposit that have become accessible for sampling by ongoing underground mining activity. New PGE data from this study, together with previous results, indicate that PGE tenors in the bulk sulfide ores of the deposit increase eastward, except for two fault-offset ore zones which occur together within the western part of the deposit. Generally, these two ore zones show depletions in IPGE (Ir, Ru, Rh) but not in PPGE (Pt, Pd) and Cu, and more fractionated olivine and Cr-spinel compositions than the rest of the deposit. These differences can be explained by a more evolved parental magma for the IPGE-depleted ore zones. The eastward increase of PGE tenors in the rest of the deposit can be explained by upgrading of preexisting sulfide liquid in a subhorizontal conduit by a new surge of magma moving through the conduit from west to east, which took place before the formation of the IPGE-depleted ore zones. The Jinchuan ultramafic rocks are characterized by elevated initial 87Sr/86Sr ratios from 0.7077 to 0.7093, negative ɛ Nd values from -9.2 to -10.5, and zircon ɛ Hf values from -4 to -7. These data indicate up to 20 % of crustal contamination in the Jinchuan magma. Four of nine multiple sulfur isotope analyses for the Jinchuan deposit show anomalous ∆33S values varying from 0.12 to 2.67 ‰. These results, together with elevated δ34S values (>2 ‰) for some of the samples analyzed previously by other researchers, indicate the involvement of external sulfur from Archean and Proterozoic sedimentary rocks. Modeling results based on our olivine data and magma compositions estimated previously by other researchers indicate that fractional crystallization did not play a major role in

  3. Sulfur Isotope Fractionation Due to SO2 Photolysis in the Atmosphere

    Science.gov (United States)

    Lyons, J. R.; Blackie, D.; Stark, G.; Pickering, J.

    2012-12-01

    The discovery of unusual (i.e. mass-independent) sulfur isotope fractionation (or MIF) in Archean and Paleoproterozoic sedimentary rocks has promised to yield insights into the rise of O2 and the nature of the sulfur cycle on ancient Earth [1], but interpretation has been hampered by the lack of a clear mechanism for the sulfur isotope signature. Proposed MIF mechanisms include SO2 photolysis [1-4], atmospheric S3 (thiozone) formation, and thermal sulfate reduction in sediments [5]. Studies focusing only on SO2 photolysis, including measurements of isotopic cross sections [6], have yielded results differing greatly from theory [4], and have resulted in improbable interpretations [7]. In addition to ancient rocks, there are sulfur isotope MIF signatures in polar ice core sulfates associated with massive Plinian eruptions over the past ~1000 years (e.g., [8]). The ice core MIF signatures differ significantly from the ancient Earth MIF signatures, suggesting a different source mechanism. SO2 photolysis can generate sulfur isotope MIF signatures in two ways: 1) self-shielding by an optically-thick column of SO2, and 2) isotope-dependent differences in absorption line intensities and widths, which are espcially important for optically-thin conditions. The MIF signatures in ice core sulfates appear to be consistent with self-shielding in an optically-thick plume, but the Archean MIF clearly is not. To address the optically-thin case, we've made high-resolution ultraviolet cross section measurements of the sulfur isotopologues of SO2 made with the UV FTS at Imperial College. We measured cross sections at 1 cm-1 spectral resolution for 32SO2, 33SO2, 34SO2 and for a 36SO2/34SO2 mixture. Incorporating these cross sections into a simple atmospheric photochemical model with a solar UV flux, we find sulfur MIF signatures for SO and S that.are consistent with the Archean pyrites. We also find that additional mass-dependent fractionation during self-shielding by 32SO2 places an

  4. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    Science.gov (United States)

    Holloway, J.M.; Nordstrom, D.K.; Böhlke, J.K.; McCleskey, R.B.; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  5. Stable carbon and hydrogen isotopic fractionations of alkane compounds and crude oil during aerobically microbial degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Xianzhi; ZHANG Gan; CHEN Fanzhong; LIU Guoqing

    2004-01-01

    Normal alkane compounds dodecane, pentadecane, hexadecane, octadecane, tetracosane, isoprenoid alkane pristane and a crude oil sample were aerobically biodegraded with a pure bacterial strain GIM2.5 and white rot fungus Phanerochaete Chrysosporium-1767 to monitor the kinetic fractionation of the molecular stable carbon (δ13C) and hydrogen (δD) isotopes in the course of biodegradation. Both δ13C (V-PDB) and δ D (V-SMOW) remained stable for the standard alkane compounds and n-alkane components (from n-C13 to n-C25) of the crude oil, generally varying in the range of ±0.5‰ and ±5‰ respectively, within the range of the instrumental precisions, especially for those molecularly heavier than n-C16 during microbial degradation. These results indicate that molecular stable carbon and hydrogen isotopic fingerprints can be promising indicators for tracing the sources of petroleum-related contaminants in the environment, especially in the case of severe weathering when they are difficult to be unambiguously identified by the chemical fingerprints alone.

  6. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  7. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation.

    Science.gov (United States)

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Keppler, Frank; Vuilleumier, Stéphane

    2014-01-01

    Chloromethane (CH3Cl) is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial, and phyllospheric environments. Improving our knowledge of these degradation processes and their magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl. The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterized in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment. Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans MB2 showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans MB2 suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future.

  8. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation

    Directory of Open Access Journals (Sweden)

    Thierry eNADALIG

    2014-10-01

    Full Text Available Chloromethane (CH3Cl is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial and phyllospheric environments. Improving our knowledge of these degradation processes and its magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl.The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterised in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment.Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future.

  9. Isotopic fractionation of Mg 2+(aq), Ca 2+(aq), and Fe 2+(aq) with carbonate minerals

    Science.gov (United States)

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-01

    Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/ 24Mg and 44Ca/ 40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 10 3ln ( K) at 25 °C, of -5.3, -1.1, and +1.2 for 26Mg/ 24Mg exchange between calcite (CaCO 3), magnesite (MgCO 3), and dolomite (Ca 0.5Mg 0.5CO 3), respectively, and Mg 2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/ 40Ca exchange between calcite and Ca 2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca 2+(aq) in 6-fold coordination and +4.1 for Ca 2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO)610- and M(HO)62+ embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe 3+-hematite and Fe 2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe 3+(aq) and Fe 2+(aq) species.

  10. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    WANG Huan-hua; LI Lian-qing; WU Xin-min; PAN Gen-xing

    2006-01-01

    Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion procedure. The total contents of Cu and Pb in the different particle size fractions of the urban soils were analyzed by HNO3-HF-HC1O4 digestion and flame atomic absorption spectrophotometer determination. The total content of Cu and Pb in soil particle size fractions varied with their size and with city zones as well. Both the content and variation with the size fractions of Pb was bigger than of Cu supporting our previous finding that there was Pb pollution to different degrees in the urban soils although the two elements were generally enriched in clay-sized fraction.Contaminated Pb tended to be preferentially enriched in the size fraction of 2000-250 μm and clay-sized fraction. While the size fractions of the soils from newly developed and preserved area contained smaller amount of Cu and Pb, the partitioning of them in coarse and fine particle size fractions were insignificant compared to that from inner residence and commercial area. The very high Pb level over 150 mg/kg of the fine particle fractions from the soils of the inner city could be a cause of high blood Pb level reported of children from the city as acute exposure to Pb of fine particles of the urban soil might occur by soil ingestion and inhalation by young children. Thus, much attention should be paid to the partitioning of toxic metals in fine soil particles of the urban soils and countermeasures against high health risk of Pb exposure by soil ingestion and dust inhalation should be practiced against the health problem of blood Pb for young children from the cities.

  11. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  12. Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    V. E. Johnston

    2013-01-01

    Full Text Available The interpretation of stable isotope ratios in speleothem calcite is complex, and only in a few cases, unequivocal relationships with palaeoclimate parameters have been attained. A major issue is temperature, which has an effect on both the isotope incorporation into calcite and on environmental processes. Here, a field approach is taken, by studying the isotopic composition of calcites from monitored caves located in steep altitudinal topography in the northern Italian Alps. These create a thermal gradient (3–12 °C apt to study the effects of temperature on the speleothem isotope record. Our data indicate that the magnitude of oxygen isotope disequilibrium effects, calculated as an offset from the experimentally determined equilibrium, decreases with increased elevation (cooler temperatures and faster drip rate. Carbon isotope values exhibit 13C enrichment at high altitudes (colder temperatures and slow drip rates. The results obtained support modelling and laboratory cave analogue experiments that indicate temperature, drip rate, pCO2 and supersaturation are important factors controlling stable isotope fractionation, but also stress the significance of ventilation and evaporation in the cave environment. It is proposed that the effects on stable isotope ratios observed along the altitudinal gradient can be analogues for glacial to interglacial temperature changes in regions which were extensively glaciated in the past.

  13. Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit, South Australia

    Science.gov (United States)

    Kirchenbaur, Maria; Maas, Roland; Ehrig, Kathy; Kamenetsky, Vadim S.; Strub, Erik; Ballhaus, Chris; Münker, Carsten

    2016-05-01

    The Olympic Dam Cu-U-Au-Ag deposit in the Archean-Proterozoic Gawler Craton (South Australia) is a type example of the iron oxide-copper-gold (IOCG) spectrum of deposits and one of the largest Cu-U-Au resources known. Mineralization is hosted in a lithologically and texturally diverse, hematite-rich breccia complex developed within a granite of the 1.59 Ga Gawler Silicic Province. Emerging evidence indicates that both the breccia complex and its metal content developed over ∼1000 Ma, responding to major tectonic events, e.g., at 1300-1100, 825 and 500 Ma. However, metal sources and exact mechanism/s of ore formation remain poorly known. New high-precision 238U/235U data for a set of 40 whole rock samples representing all major lithological facies of the breccia complex show a narrow range (δ238UCRM112a = -0.56‰ to +0.04‰). At the scale of sampling, there is no correlation of δ238U with lithology, degree of alteration or U mineralogy, although ores with U > 5 wt.% have subtly higher δ238U values (-0.20‰ to 0.00) than the majority of samples (primary fractionation signatures may have been erased during the long history of the U mineralization. High-grade U ores may record isotopic neutron-capture effects related to fissionogenic neutrons. High-precision Sm isotope data for five high-U (>5 wt.% U, U/Sm ≫ 500) Olympic Dam ores define a neutron capture line, with correlated depletions in 149Sm (up to ∼2ε units) and excesses in 150Sm (up to ∼ 4ε units), but fission fragment contributions to Sm are below detection. These observations provide evidence for small-scale neutron-capture effects, with calculated neutron fluences of 1015 to 1016 n cm-2, similar to those observed in several Proterozoic and Phanerozoic U deposits. The apparent lack of fission fragment contributions in Olympic Dam high-grade ores can be explained with an age of U deposition, or re-deposition that is substantially younger than the initial 1.59 Ga age of the oldest IOCG

  14. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle

    Science.gov (United States)

    Teng, F.-Z.; Wadhwa, M.; Helz, R.T.

    2007-01-01

    To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.

  15. Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach.

    Science.gov (United States)

    Palau, Jordi; Shouakar-Stash, Orfan; Hatijah Mortan, Siti; Yu, Rong; Rosell, Monica; Marco-Urrea, Ernest; Freedman, David L; Aravena, Ramon; Soler, Albert; Hunkeler, Daniel

    2017-09-19

    Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulk(H)) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ(2)H/Δδ(13)C ≈ εbulk(H)/εbulk(C), where Δδ(2)H and Δδ(13)C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ(2)H versus Δδ(37)Cl versus Δδ(13)C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.

  16. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    Science.gov (United States)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  17. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  18. Stable isotope fractionation at a glacial hydrothermal field: implications for biogeochemistry and biosignatures on Mars

    Science.gov (United States)

    Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.

    2012-12-01

    Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This

  19. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    De Groote, Ruben Pieter

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  20. Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone

    Directory of Open Access Journals (Sweden)

    J. Gelting

    2010-08-01

    Full Text Available To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the riverine input characterized low salinity Bothnian Sea, via the Landsort Deep near Stockholm, towards the Gotland Deep in the Baltic Proper, total Fe concentrations averaged 114, 44, and 15 nM, respectively. At all three locations, a decrease in total Fe of 80–90% from early spring to summer was observed. Particulate Fe (PFe was the dominating phase at all stations and accounted for 75–85% of the total Fe pool on average. The Fe isotope composition (δ 56Fe of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰. Enrichment of heavy Fe in the Bothnian Sea PFe is possibly associated to input of aggregated land derived Fe-oxyhydroxides and oxidation of dissolved Fe(II. At the Landsort Deep the isotopic fractionation of PFe changed between −0.08‰ to +0.28‰ over the sampling period. The negative values in early spring indicate transport of PFe from the oxic-anoxic boundary at ∼80 m depth. The average colloidal iron fraction (CFe showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM, and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. A strong positive correlation between PFe and chl-a indicates that cycling of suspended Fe is at least partially controlled by primary production. However, this relationship may not be dominated by active uptake of Fe into phytoplankton, but instead may reflect scavenging and removal of PFe during phytoplankton

  1. Fe stable isotope fractionation in modern and ancient hydrothermal Fe-Si deposits

    Science.gov (United States)

    Moeller, K.; Schoenberg, R.; Thorseth, I. H.; Øvreås, L.; Pedersen, R.

    2010-12-01

    -sea sediments and the deposit itself, including abiogenic partial oxidation of hydrothermal Fe(II)aq through mixing with oxygenated seawater, reduction of Fe(III) precipitates by dissimilatory iron reduction (DIR) and re-oxidation by Fe-oxidising bacteria. The Løkken jaspers were postulated to be a combination of Fe-oxyhydroxide precipitation within buoyant and non-buoyant hydrothermal plumes and Si flocculation in a silica-saturated ocean [1]. Observations from a modern basalt-hosted hydrothermal system indicate that Fe(II)aq in a buoyant plume gets fractionated towards heavier isotopic compositions due to precipitation of low-δ56Fe iron sulphides [3]. However, mass balance calculations of plume particles revealed that Fe-oxyhydroxides have δ56Fe values of around -0.2 ‰, thus significantly lighter than the heaviest Løkken signatures of 0.89 ‰. Possible scenarios to explain the Fe isotope compositions of Løkken jaspers and the modern Mohns Ridge Fe-Si deposits will be discussed. [1] Grenne, T. & Slack, J. (2003) Miner Deposita, 38, 625ff. [2] Little, C. et al. (2004) Geomicrobiol J, 21, 415ff. [3] Bennett, S. et al. (2009) Geochim. Cosmochim. Acta., 73, 5619ff.

  2. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  3. Compound specific isotopic fractionation patterns suggest different carbon metabolisms among Chloroflexus-like bacteria in hot spring microbial mats

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Meer, M.T.J. van der; Schouten, S.; Leeuw, J.W. de; Ward, D.M.

    2003-01-01

    Stable carbon isotope fractionations between dissolved inorganic carbon and lipid biomarkers suggest photoautotrophy by Chloroflexus-like organisms in sulfidic and nonsulfidic Yellowstone hot springs. Where co-occurring, cyanobacteria appear to cross-feed Chloroflexus-like organisms supporting photo

  4. Mother-embryo isotope (δ 15 N, δ 13 C) fractionation and mercury (Hg) transfer in aplacental deep-sea sharks : aplacental shark isotope fractionation and hg

    OpenAIRE

    Le Bourg, B.; Kiszka, J.; Bustamante, P.

    2014-01-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotopic values and total mercury (Hg) concentrations were analysed in muscle and liver of mothers and embryos of two aplacental shark species, Squalus megalops and Centrophorus moluccensis. Embryos of the two species had similar or lower isotopic values than their respective mothers, the only exception being for δ13C, which was higher in the liver of C. moluccensis embryos than in their mothers. Hg concentrations were systematically lower in embryos c...

  5. Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone

    Directory of Open Access Journals (Sweden)

    J. Gelting

    2009-07-01

    Full Text Available Measurements of the physiochemical speciation of Fe in the euphotic zone were performed at three different locations, over a well defined salinity gradient, during spring and summer in the Baltic Sea. The average of total Fe changed from 114 nM in the Bothnian Sea, 44 nM at Landsort Deep and 15 nM at Gotland Deep. Particulate Fe (PFe was the dominating phase at all stations and on average accounted for 75–85% of the total Fe pool. At all three locations, a decrease in total Fe of 80–90% from initial measurements compared to the summer was found. A strong positive correlation between PFe and chl-a was observed. Hence, primary production strongly regulates cycling of suspended Fe. However, this relation is not dominated by active uptake of Fe in phytoplankton; instead this reflects cycling of phosphorus, growth of diatoms, and removal of PFe during phytoplankton sedimentation. The average colloidal iron fraction, CFe, showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. The Fe isotope composition (δ56Fe of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰. Enrichment of heavy Fe in the Bothnian Sea PFe is most likely associated to input of aggregated land derived Fe-oxyhydroxides and a rapid overturn of Fe(II. At the Landsort deep, the fractionation of PFe changed between −0.08‰ to +0.28‰. The negative values, in early spring, probably indicate exchange over the oxic-anoxic boundary at ~80 m depth.

  6. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a consequent enrichment in heavy Hg isotopes in the upper crust through time.

  7. Diffusive fractionation of carbon isotopes in γ-Fe: Experiment, models and implications for early solar system processes

    Science.gov (United States)

    Mueller, Thomas; Watson, E. Bruce; Trail, Dustin; Wiedenbeck, Michael; Van Orman, James; Hauri, Erik H.

    2014-02-01

    Carbon is an abundant element of planets and meteorites whose isotopes provide unique insights into both organic and inorganic geochemical processes. The identities of carbonaceous phases and their textural and isotopic characters shed light on dynamical processes in modern Earth systems and the evolution of the early solar system. In meteorites and their parent bodies, reduced carbon is often associated with Fe-Ni alloys, so knowledge of the mechanisms that fractionate C isotopes in such phases is crucial for deciphering the isotopic record of planetary materials. Here we present the results of a diffusion-couple experiment in which cylinders of polycrystalline Fe containing 11,500 and 150 μg/g of C were juxtaposed at 1273 K and 1.5 GPa for a duration of 36 min. Diffusion profiles of total C concentration and 13C/12C were measured by secondary ion mass spectrometry (SIMS). The elemental diffusivity extracted from the data is ˜3.0 × 10-11 m2 s-1, where 13C/12C was observed to change significantly along the diffusion profile, reflecting a higher diffusivity of 12C relative to 13C. The maximum isotopic fractionation along the diffusion profile is ˜30-40‰. The relative diffusivities (D) of the carbon isotopes can be related to their masses (M) by D/D=(C/M)β; the exponent β calculated from our data has a value of 0.225 ± 0.025. Similarly high β values for diffusion of other elements in metals have been taken as an indication of interstitial diffusion, so our results are consistent with C diffusion in Fe by an interstitial mechanism. The high β-value reported here means that significant fractionation of carbon isotopes in nature may arise via diffusion in Fe(-Ni) metal, which is an abundant component of planetary interiors and meteorites.

  8. Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

    2003-08-28

    Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

  9. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    Science.gov (United States)

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  10. Accidental Predissociation: A Special Case of Photo-Induced Isotope Fractionation Effect and Possible Occurrence in Nature

    Science.gov (United States)

    Chakraborty, S.; Thiemens, M. H.

    2009-12-01

    Photo-Induced Isotope Fractionation Effects (PHIFE) are known to produce isotopic frac-tionation in some photo-dissociating molecules (1-2). The PHIFE formalism is based on the Born-Oppenheimer approximation and the Reflection Principle. The isotopic fractionation arises principally from the spectral shift induced by the small difference in zero point energy between isotopologues and the contraction of the wave function due to isotopic substitution, consequently, the associated isotopic fractionations depends on the reduced mass of the isotopically substi-tuted species. The PHIFE formalism is only applicable to the molecules which undergo direct photo-dissociation that possess continuous absorption spectra. Simple molecules (N2, O2, CO) however do not follow a direct dissociation pathway and dissociate through an indirect process termed predissociation, which occurs when the molecule is excited to a quasi-bound state energetically above the dissociation continuum. The PHIFE formalism is not applicable when the absorption spectra are discrete. The assumption that the lightest isotopologues are preferentially predissociated is only valid for restricted predissociation cases. There is a special case of predissociation known as ‘accidental predissociation’ (3), which takes place through an intermediate bound state in two steps (i) leakage to an intermediate bound state (coupled through spin orbit interaction) and, (ii) predissociation to a third quasi-bound state from the intermediate state. Line broadening at an accidental predissociation is a function of the magnitude of coupling matrix elements and the linewidths are strongly influenced by isotopic substitution (4). An anomalous isotopic effect in accidental predissociation was spectroscopically observed in CO (5), N2 (4) and BeH (6). We measured the isotopic fractionation for the first time in two accidental predissociating states of CO through VUV photodissociation using the 9.0.2 beamline at ALS (7-8). In

  11. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    Science.gov (United States)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  12. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.

    Science.gov (United States)

    Day, James M D; Moynier, Frederic

    2014-09-13

    The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.

  13. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    Science.gov (United States)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  14. Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Rijkenberg, Micha J. A.

    2017-04-01

    The isotopic compositions of redox-sensitive metals, including uranium (U), in marine sediments have recently emerged as powerful diagnostic tracers of the redox state of the ancient ocean-atmosphere system. Reliable interpretation of sedimentary isotopic information requires a thorough understanding of the environmental controls on isotopic fractionation in modern anoxic environments before being applied to the paleo-record. In this study, the relationship between ocean anoxia and the isotopic fractionation of U was investigated in the water column and sediments of the Black Sea, the world's largest anoxic basin. Paired measurements of 238U/235U and U concentration, supported by other redox parameters, were obtained for water column and sediment samples collected during the 2013 GA04N GEOTRACES expedition to the Black Sea. Removal of U from the water column occurs during the redox transition of soluble U(VI) to relatively insoluble U(IV), resulting in up to 43% of U being removed from solution in euxinic bottom waters. Uranium reduction and removal is accompanied by a progressive shift in 238U/235U towards isotopically light values in the water column as heavier 238U is preferentially exported to sediments over lighter 235U. This gives rise to apparent isotope enrichment factors of ε = -0.63 ± 0.09‰ and ε = -0.84 ± 0.11‰ when U removal is modelled by Rayleigh and closed system equilibrium isotope fractionation, respectively. These ε values fall within the range determined for bacterial U reduction experiments, and together with a striking correlation between the distributions of U and H2S, implicate microbially-mediated U(VI)-U(IV) reduction as the primary mechanism controlling U isotopic shifts in the Black Sea. The 238U/235U of underlying sediments is related to the the 238U/235U of Black Sea bottom waters through the isotope enrichment factor of the U reduction reaction but the relationship between sedimentary and water column 238U/235U is complicated

  15. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  16. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    2015-01-01

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable fo

  17. Numerical prediction of fraction of eutectic phase in Sn-Ag-Cu soldring using the phase-field method

    Science.gov (United States)

    Ode, Machiko; Ueshima, Minoru; Abe, Taichi; Murakami, Hideyuki; Onodera, Hidehiro

    2006-11-01

    A combination of macroscale solidification simulation and phase-field calculation is employed to predict the volume fraction of the eutectic phase in Sn-4.0 mass% Ag-XCu solder alloys (X=0.5 1.1 mass%). The solidification simulation incorporates the cooling rate in the phase-field simulation. We assume the residual liquid solidifies as eutectic phase when the driving force for the nucleation of Cu6Sn5 amounts to a critical value, which is determined based on the experimental data. Though the calculation results depend on the experimental data, the obtained fractions are about 40% for 0.5 mass% Cu and more than 90% for 1.1 mass% Cu alloy, which shows good agreement with the experimental data.

  18. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low sulfate, iron rich environment

    Science.gov (United States)

    Weber, Hannah; Thamdrup, Bo; Habicht, Kirsten

    2016-06-01

    Sulfur isotope signatures provide key information for the study of microbial activity in modern systems and the evolution of the Earth surface redox system. Microbial sulfate reducers shift sulfur isotope distributions by discriminating against heavier isotopes. This discrimination is strain-specific and often suppressed at sulfate concentrations in the lower micromolar range that are typical to freshwater systems and inferred for ancient oceans. Anaerobic oxidation of methane (AOM) is a sulfate-reducing microbial process with a strong impact on global sulfur cycling in modern habitats and potentially in the geological past, but its impact on sulfur isotope signatures is poorly understood, especially in low sulfate environments. We investigated sulfur cycling and 34S fractionation in a low-sulfate freshwater sediment with biogeochemical conditions analogous to Early Earth environments. The zone of highest AOM activity was associated in situ with a zone of strong 34S depletions in the pool of reduced sulfur species, indicating a coupling of sulfate reduction and AOM at sulfate concentrations oceanic levels. Therefore, we suggest that sulfur isotope fractionation during AOM must be considered when interpreting 34S signatures in modern and ancient environment.

  19. Evaluating zinc isotope fractionation under sulfate reducing conditions using a flow-through cell and in situ XAS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson-Hanes, Julia H.; Shrimpton, Heather K.; Veeramani, Harish; Ptacek, Carol J.; Lanzirotti, Antonio; Newville, Matthew; Blowes, David W.

    2017-04-01

    A flow-through cell experiment was conducted to evaluate Zn isotope fractionation during ZnS precipitation under microbially-mediated sulfate-reducing conditions. Synthetic groundwater containing 0.90 mM Zn was pumped through a cell containing creek sediment that was biostimulated to promote sulfate reducing conditions. Real-time, in situ X-ray absorption spectroscopy (XAS) was applied at the Zn K-edge to collect spectra via a Kapton® window in the front of the cell over the course of the experiment. Aqueous effluent samples were collected and analysed to determine concentrations of anions and cations, and Zn isotope ratios. The flow rate was increased step-wise during the experiment to modify the residence time and produce changes in the extent of sulfate reduction, which in turn controlled the extent of ZnS precipitation. Greater enrichment in the heavier isotope in the aqueous phase relative to the input solution was associated with more extensive Zn removal. A Rayleigh curve was fit to the isotope data, where ε = -0.27 ± 0.06‰ (2σ). Evaluation of Zn isotope fractionation under controlled flow conditions is critical to improve the efficacy of this powerful analytical technique when applied to natural systems or remediation projects in the field.

  20. Modeling position-specific isotope fractionation of organic micropollutants degradation via different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    : dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model successfully reproduces the multi-element isotope data, and precisely captures the dual element isotope trends, characterizing the different degradation pathways. Besides illustrating the model capability of mechanistic evaluation...

  1. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  2. Two-Dimensional Stable Isotope Fractionation During Aerobic and Anaerobic Alkane Biodegradation and Implications for the Field

    Science.gov (United States)

    El Morris, Brandon; Suflita, Joseph M.; Richnow, Hans-Hermann

    2010-05-01

    Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring in situ [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. Desulfoglaeba alkanexedens and Pseudomonas putida GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors (bulk) for anaerobic and aerobic biodegradation of hexane were -5.52 ± 0.2‰ and -4.34 ± 0.3‰, respectively. Hydrogen enrichment during hexane degradation was -43.14 ± 6.32‰ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation (may be used to help elucidate in situ microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts. References 1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 2009, 40, (3), 301-311. 2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 2008, 42, 4356-4363.

  3. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    Science.gov (United States)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  4. Calcium and strontium isotope fractionation during precipitation from aqueous solutions as a function of temperature and reaction rate; II. Aragonite

    Science.gov (United States)

    AlKhatib, Mahmoud; Eisenhauer, Anton

    2017-07-01

    In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in aragonite we performed precipitation experiments decoupling temperature and precipitation rates (R∗, μmol/m2 h) in the interval of about 2.3-4.5 μmol/m2 h. Aragonite is the only pure solid phase precipitated from a stirred solutions exposed to an atmosphere of NH3 and CO2 gases throughout the spontaneous decomposition of (NH4)2CO3. The order of reaction with respect to Ca ions is one and independent of temperature. However, the order of reaction with respect to the dissolved inorganic carbon (DIC) is temperature dependent and decreases from three via two to one as temperature increases from 12.5 and 25.0 to 37.5 °C, respectively. Strontium distribution coefficient (DSr) increases with decreasing temperature. However, R∗ responds differently depending on the initial Sr/Ca concentration and temperature: at 37.5 °C DSr increase as a function of increasing R∗ but decrease for 12.5 and 25 °C. Not seen at 12.5 and 37.5 °C but at 25 °C the DSr-R∗ gradient is also changing sign depending on the initial Sr/Ca ratio. Magnesium (Mg) adsorption coefficient between aragonite and aqueous solution (DMg) decreases with temperature but increases with R∗ in the range of 2.4-3.8 μmol/m2 h. Strontium isotope fractionation (Δ88/86Sraragonite-aq) follows the kinetic type of fractionation and become increasingly negative as a function of R∗ for all temperatures. In contrast Ca isotope fractionation (Δ44/40Caaragonite-aq) shows a different behavior than the Sr isotopes. At low temperatures (12.5 and 25 °C) Ca isotope fractionation (Δ44/40Caaragonite-aq) becomes positive as a function of R∗. In contrast, at 37.5 °C and as a function of increasing R∗ the Δ44/40Caaragonite-aq show a Sr type like behavior and becomes increasingly negative. Concerning both the discrepant behavior of DSr as a function of temperature as well as for the Ca isotope fractionation as a

  5. A Teaching Exercise to Introduce Stable Isotope Fractionation of Metals into Geochemistry Courses

    Science.gov (United States)

    Weiss, Dominik J.; Harris, Caroline; Maher, Kate; Bullen, Thomas

    2013-01-01

    Variations in the isotopic composition of elements have been widely used to study earth's climate, biosphere, and interior, and more recently to track the fate of contaminants. Within the broad range of elements that exhibit measureable isotopic variations, metal stable isotopes are increasingly applied across the biological, geological,…

  6. Adsorption Behavior of Metasilicate on N-Methyl d-Glucamine Functional Groups and Associated Silicon Isotope Fractionation.

    Science.gov (United States)

    Wang, Wei; Wei, Hai-Zhen; Jiang, Shao-Yong; Eastoe, Christopher J; Guo, Qi; Lin, Yi-Bo

    2016-09-01

    Significant isotope fractionation of silicon provides a powerful geochemical tracer for biological and physicochemical processes in terrestrial and marine environments. The exact mechanism involved in silicon uptake as part of the biological process is not well known. The silicon uptake in biological processes is investigated using silicate adsorption onto the N-methylglucamine functional group (sugarlike structure, abbreviated as L) of Amberlite IRA-743 resin as an analogue of the formation of silicate-sugar complexes in plants. This study provides new evidence that certain sugars can react readily with basic silicic acid to form sugar-silicate chelating complexes, and the equilibrium adsorption behavior of silicate can be well described by the Langmuir isotherm with a Gibbs free energy (ΔG) of -11.94 ± 0.21 kJ·mol(-1) at 293 K. The adsorption kinetics corresponds well to a first-order kinetic model in which the adsorption rate constant ka of 1.25 × 10(-4) s(-1) and the desorption rate constant kd of 4.00 × 10(-6) s(-1) are obtained at 293 K. Both ka and kd increase with increasing temperature. The bonding configurations of silicate-sugar complexes imply the principal coordination complex of hexacoordinated silicon (silicon/L = 1:3) in the liquid phase and the dominant tetracoordinated silicon in the solid phase. Similar to those of many natural processes, the biological uptake via the sugar-silicate chelating complexes favors the preferential enrichment of light Si isotopes into solids, and the Rayleigh model controls the dynamic isotope fractionation with an estimated silicon isotope fractionation factor (i.e., αsolid-solution = [Formula: see text]) of 0.9971. This study advanced the fundamental understanding of the dynamic isotope fractionation of silicon during silicon cycling from the lithosphere to the biosphere and hydrosphere in surficial processes.

  7. Sulfur isotopic fractionation and its implication: Sulfate formation in PM2.5 and coal combustion under different conditions

    Science.gov (United States)

    Chen, Shanli; Guo, Ziyan; Guo, Zhaobing; Guo, Qingjun; Zhang, Yanlin; Zhu, Bin; Zhang, Haixiao

    2017-09-01

    In order to exactly explore sulfur source and sulfate formation under highly polluted atmosphere, we determined δ34S values of sulfate in PM2.5 and atmospheric SO2 in Nanjing region from 1 to 23 Jan. 2014. The secondary sulfate formation mechanism was discussed based on sulfur isotopic fractionation in the process of SO2 oxidation. Meanwhile, we synchronously studied δ34S values of raw coals used locally as well as sulfur isotopic fractionation during the combustion under coal burning and smoldering. The results show that δ34S average values of SO2 and sulfate in PM2.5 were 1.5‰ and 5.1‰, respectively. δ34S values of sulfate in PM2.5 were consistent with those of coals widely used in Nanjing region and Northern China, indicating coal combustion was an important sulfur source for PM2.5. Sulfur isotopic fractionation factors ranged from 1.0014 to 1.0075, implying that SO2 heterogeneous and homogeneous oxidation were coexisting during the formation of the secondary sulfate. The contribution of SO2 heterogeneous oxidation to sulfate varied from 40.7% to 64.8% during the observation period. δ34S values of coals presented moderately positive sulfur isotopic signatures due to organic sulfur in low sulfur coals were mainly formed by plant assimilation. Besides, the negative relationship between δ34S values of coals and total sulfur contents was also found. In addition, there existed a significant sulfur isotopic fractionation effect during coal combustion. Sulfate in PM2.5 in flue gas enriched 34S, while SO2 in flue gas enriched 32S. There was presence of the difference of δ34S values in PM2.5 and SO2 in flue gas between coal burning and smoldering, which was related to coal property and combustion temperature.

  8. Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia

    Science.gov (United States)

    Bekker, A.; Grokhovskaya, T. L.; Hiebert, R.; Sharkov, E. V.; Bui, T. H.; Stadnek, K. R.; Chashchin, V. V.; Wing, B. A.

    2016-12-01

    We present the results of a pilot investigation of multiple sulfur isotopes for the Ni-Cu-PGE sulfide mineralization of the ˜2.5 Ga Monchegorsk Igneous Complex (MIC). Base Metal Sulfide (BMS) compositions, Platinum Group Element (PGE) distributions, and Platinum Group Mineral (PGM) assemblages were also studied for different types of Ni-Cu-PGE mineralization. The uniformly low S content of the country rocks for the MIC as well as variable Sm-Nd isotope systematics and low-sulfide, PGE-rich mineralization of the MIC suggest that S saturation was reached via assimilation of silicates rather than assimilation of sulfur-rich lithologies. R-factor modeling suggests that the mixing ratio for silicate-to-sulfide melt was very high, well above 15,000 for the majority of our mineralized samples, as might be expected for the low-sulfide, PGE-rich mineralization of the MIC. Small, negative Δ33S values (from -0.23 to -0.04 ‰) for sulfides in strongly metamorphosed MIC-host rocks indicate that their sulfur underwent mass-independent sulfur isotope