WorldWideScience

Sample records for cu ga ge

  1. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  2. Characterization of as-grown and Ge-ion implanted CuGaSe{sub 2} thin films prepared by the CCSVT technique

    Energy Technology Data Exchange (ETDEWEB)

    Doka Yamigno, Serge

    2006-08-15

    Single phase polycrystalline thin films of CuGaSe{sub 2} in the compositional range of 1.0=[Ga]/[Cu]=1.3, corresponding to a thickness ranging from 1.6 {mu}m to 1.9 {mu}m deposited onto plain or Mo-coated soda lime glass (SLG) were prepared and found to be polycrystalline with a strongly preferred <221> orientation. A combination of microstructural investigations of the films by TEM, EDX within the TEM and ERDA measurements has shown that CuGaSe{sub 2} thin films possess high crystalline bulk quality with Cu, Ga and Se homogeneously distributed within the CuGaSe{sub 2} bulk. One of the main result of this present work was found to be the accumulation of Ga in the region of the CuGaSe2/Mo interface and the dependence of the CuGaSe{sub 2} surface composition on the integral [Ga]/[Cu] ratio in the film, namely Ga- and Cu-poor, Se-rich surface for stoichiometric films; and Cu- poor, and Ga- and Se- rich surface for increasing [Ga]/[Cu] ratios. These observations were also supported by optical measurements carried out through photoluminescence and absorption measurements. In order to gain a better understanding of the influence of the extrinsic doping of the CuGaSe{sub 2} films and why many attempts towards the type inversion in the p-type CuGaSe2 compounds by varying the composition or by doping with extrinsic defects have failed, ion implantation was used to introduce Ge into CuGaSe{sub 2}. Photoluminescence of the Ge containing films has evidenced the presence of new defects such as donor levels in the band gap. Electron spin resonance measurements of the Ge- containing CuGaSe2 films has highlighted an additional ESR resonance observed at g=2.003 ascribed to donors. However, Curie paramagnetism up to room temperature for all the Ge implanted films, characteristic of localized states has been observed for this resonance. (orig.)

  3. Development of high responsivity Ge:Ga photoconductors

    International Nuclear Information System (INIS)

    Haegel, N.M.; Hueschen, M.R.; Haller, E.E.

    1984-06-01

    Czochralski-grown gallium-doped germanium (Ge:Ga) single crystal samples with a compensation of 10 -4 have been modified by the indiffusion of Cu to produce photoconductors which provide NEPs comparable to current optimum Ge:Ga detectors, but exhibit responsivities a factor of 5 to 6 times higher when tested at a background photon flux of 10 8 photons/sec at lambda=93 μm. The introduction of Cu, a triple acceptor in Ge which acts as a neutral scattering center, reduces carrier mobility and extends the breakdown field significantly in this ultra-low compensation material

  4. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  5. Formation of the low-resistivity compound Cu_3Ge by low-temperature treatment in an atomic hydrogen flux

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Kazimirov, A. I.; Fedin, I. V.; Kagadei, V. A.

    2016-01-01

    The systematic features of the formation of the low-resistivity compound Cu_3Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i-GaAs substrate. Treatment of the Cu/Ge/i-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10"1"5 at cm"2 s"–"1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu_3Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/i-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu_3Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu_3Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/i-GaAs sample.

  6. 70Ge, 72Ge, 74Ge, 76Ge(d,3He)69Ga, 71Ga, 73Ga, 75Ga reactions at 26 MeV

    International Nuclear Information System (INIS)

    Rotbard, G.; La Rana, G.; Vergnes, M.; Berrier, G.; Kalifa, J.; Guilbaut, G.; Tamisier, R.

    1978-01-01

    The 70 Ge, 72 Ge, 74 Ge, 76 Ge(d, 3 He) 69 Ga, 71 Ga, 73 Ga, 75 Ga reactions have been studied at 26 MeV with 15 keV resolution (F.W.H.M), using the Orsay MP tandem accelerator and a split pole magnetic spectrometer. The spectroscopic factors are determined for 15 levels in 69 Ga and 11 levels in each of the 3 other Ga isotopes. Level schemes are proposed for the practically unknown 73 Ga and 75 Ga. Very simple model wave functions previously proposed for Ge nuclei are seen to reproduce quite well the measured occupation numbers for the proton orbitals. Anomalies in these occupation numbers are observed between Z=31 and 32 and between N=40 and 42, this last one corresponding to the structural transition observed recently in a comparison of the (p,t) and (t,p) reactions. These anomalies could be related to changes in the nuclear shape

  7. Uniaxially stressed Ge:Ga and Ge:Be

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  8. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....

  9. GaAs/Ge solar panels for the SAMPEX program

    Science.gov (United States)

    Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John

    1992-01-01

    GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.

  10. Structural study of Ge/GaAs thin films

    International Nuclear Information System (INIS)

    Lazarov, V K; Lari, L; Lytvyn, P M; Kholevchuk, V V; Mitin, V F

    2012-01-01

    Ge/GaAs heterostructure research is largely motivated by the application of this material in solar cells, metal-oxide-semiconductor field-effect transistors, mm-wave mixer diodes, temperature sensors and photodetectors. Therefore, understanding of how the properties of Ge/GaAs heterostructure depend on its preparation (growth) is of importance for various high-efficiency devices. In this work, by using thermal Ge evaporation on GaAs(100), we studied structural properties of these films as a function of the deposition rate. Film grains size and morphology show strong dependence of the deposition rate. Low deposition rates results in films with large crystal grains and rough surface. At high deposition rates films become flatter and their crystal grains size decreases, while at very high deposition rates films become amorphous. Cross-sectional TEM of the films show that the Ge films are granular single crystal epitaxially grown on GaAs. The Ge/GaAs interface is atomically abrupt and free from misfit dislocations. Stacking faults along the [111] directions that originate at the interface were also observed. Finally by using the Kelvin probe microscopy we show that work function changes are related to the grain structure of the film.

  11. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  12. High spin levels in 66Ga, 68Ga, 70Ga and 68Ge, 70Ge, 72Ge via fusion evaporation reactions induced by α-particles

    International Nuclear Information System (INIS)

    Morand, C.

    1979-01-01

    The high spin (J 70 Ga all the members (except the 3 - one) of the (πpsub(3/2), νgsub(9/2)) configuration have been identified, in addition with the (πfsub(5/2), νgsub(9/2))sub(7 - ) and (πgsub(9/2), νgsub(9/2))sub(9 + ) states. In 66 Ga and 68 Ga most of the levels with J>7 ca be described as a result of maximum coupling of a gsub(9/2) neutron with the odd Ga core. Thus the (πgsub(9/2), νgsub(9/2))sub(9 + ) states have been safely located. In the same way the even Ge, the backbending effect at the Jsup(π)=8 + state is less and less pronouced from the 68 Ge to the 72 Ge; that can be explained by the (νgsub(9/2)) 2 sub(8 + ) configuration of this state, so that the 8 + →6 + γ-transition is more and more allowed with increasing N, i.e. as the νgsub(9/2) shell acts more and more in the lower yrast levels Jsup(π)=0 + , 2 + , 4 + , 6 + configurations [fr

  13. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  14. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Description of the ternary system Cu-Ge-Te

    International Nuclear Information System (INIS)

    Dogguy, M.; Carcaly, C.; Rivet, J.; Flahaut, J.

    1977-01-01

    The Cu-Ge-Te ternary system has been studied by DTA and by crystallographic and metallographic analysis. The existence of a ternary compound Cu 2 GeTe 3 is demonstrated; this compound has a ternary incongruent melting point at 500 0 C. This ternary compound has a superstructure of a zinc blende type. The study shows the existence of five ternary eutectics. Two liquid-liquid miscibility gaps exist: the first is situated entirely in the ternary system; the second gives a monotectic region within the ternary system. (Auth.)

  16. Fabrication of Cu(x)Ge(y) Nanoplatelets

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Fajgar, Radek; Medlín, R.; Klementová, Mariana; Novotný, F.; Dřínek, Vladislav

    2011-01-01

    Roč. 11, č. 9 (2011), s. 8279-8283 ISSN 1533-4880. [EuroCVD-18. Kinsale, 04.09.2011-09.09.2011] Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : CuGe * alloy * nanoplatelet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.563, year: 2011

  17. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    International Nuclear Information System (INIS)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Vincent, B.; Gencarelli, F.; Clarysse, T.; Vandervorst, W.; Caymax, M.; Loo, R.; Jensen, A.; Petersen, D.H.; Zaima, S.

    2012-01-01

    We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge 1-x Sn x layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge 1-x Sn x layers. We achieved the growth of a fully strained Ge 0.922 Sn 0.078 layer on Ge with a Ga concentration of 5.5 × 10 19 /cm 3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge 1-x Sn x layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge 1-x Sn x epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge 0.950 Sn 0.050 layer annealed at 600°C for 1 min is 3.6 times less than that of the Ga-doped Ge/Ge sample. - Highlights: ► Heavy Ga-doping into fully strained GeSn layers without the introduction of dislocations ► The uniform Ga depth profile allowed the introduction of Sn ► The decrease in resistivity with an increase in the activation level of Ga was caused by the introduction of Sn

  18. Preparation and characterization of co-evaporated Cu{sub 2}ZnGeSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uday Bhaskar, P.; Suresh Babu, G.; Kishore Kumar, Y.B.; Sundara Raja, V., E-mail: sundararajav@rediffmail.com

    2013-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGSe), a member of Cu{sub 2}–II–IV–VI{sub 4} family, is a promising material for solar cell absorber layer in thin film heterojunction solar cells like Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} which have been explored in recent years as alternate to CuInGaSe{sub 2} solar cells. The effect of substrate temperature (523 K–723 K) on the growth of CZGSe films is investigated by studying their structural, morphological and optical properties. Raman spectroscopy studies have been done to identify the phases in addition to X-ray diffraction studies. CZGSe films deposited at different substrate temperatures and annealed at 723 K in selenium atmosphere are Cu-rich and Ge-poor and contained secondary phases Cu{sub (2−x)}Se and ZnSe. CZGSe films obtained by reducing the starting Cu mass by 10% were found to be single phase with stannite structure, the lattice parameters being a = 0.563 nm, c = 1.101 nm. The direct optical band gap of CZGSe films is found to be 1.63 eV which is close to ideal band gap of 1.50 eV for the highest photovoltaic conversion efficiency. The films are found to be p-type. - Highlights: • Synthesis of Cu{sub 2}ZnGeSe{sub 4} films for solar cell absorber layer • Effect of substrate temperature on the growth of co-evaporated Cu{sub 2}ZnGeSe{sub 4} films • X-ray diffraction, Raman and morphological studies of Cu{sub 2}ZnGeSe{sub 4} thin films.

  19. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates

    International Nuclear Information System (INIS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.; Keyes, B. M.

    2000-01-01

    Minority carrier lifetimes and interface recombination velocities for GaAs grown on a Si wafer using compositionally graded GeSi buffers have been investigated as a function of GaAs buffer thickness using monolayer-scale control of the GaAs/Ge interface nucleation during molecular beam epitaxy. The GaAs layers are free of antiphase domain disorder, with threading dislocation densities measured by etch pit density of 5x10 5 -2x10 6 cm -2 . Analysis indicates no degradation in either minority carrier lifetime or interface recombination velocity down to a GaAs buffer thickness of 0.1 μm. In fact, record high minority carrier lifetimes exceeding 10 ns have been obtained for GaAs on Si with a 0.1 μm GaAs buffer. Secondary ion mass spectroscopy reveals that cross diffusion of Ga, As, and Ge at the GaAs/Ge interface formed on the graded GeSi buffers are below detection limits in the interface region, indicating that polarity control of the GaAs/Ge interface formed on GeSi/Si substrates can be achieved. (c) 2000 American Institute of Physics

  20. Optical response of Cu3Ge thin films

    OpenAIRE

    Aboelfotoh, M. O.; Guizzetti, G.; Marabelli, F.; Pellegrino, Paolo; Sassella, A.

    1996-01-01

    We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the ...

  1. High temperature XRD of Cu2GeSe3

    International Nuclear Information System (INIS)

    Premkumar, D. S.; Malar, P.; Chetty, Raju; Mallik, Ramesh Chandra

    2015-01-01

    The Cu 2 GeSe 3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu 2 GeSe 3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature

  2. Production of prototype 68Ge/68Ga generator in Iran

    International Nuclear Information System (INIS)

    Shirazi, B.; Fateh, B.; Mirzaii, M.; Aslani, Gh. R.

    2007-01-01

    Ga-68 is a radioisotope material with a half life of 68 min. As it has a specific decay mode, it is a positron emitter and hence, is popularly used in nuclear medicine. The only way to obtain these nuclides is to produce the mother nuclease which is Germanium-68. There are many nuclear reactions from which the Ge-68 is obtained, however, the best reaction is 6 9 G a(p, 2n) 6 8 G e . The cross section of this nuclear reaction was calculated with the ALICE-91 Code and the result was compared with the practical work made by other researchers, and it was acceptable. Having the cross sections in mind, the best proton energy was calculated to be between 20-25 MeV. Further research showed that Ga 2 O 3 is the best type of target material. Therefore, it was necessary to design and make a suitable target holder for these kind of compositions, which for the first time in Iran was demonstrated in the Atomic Energy Organization of Iran. The thickness of the target, bearing in mind the rate of energy loss inside the target material, was calculated with the SRIM Code and the Ga 2 O 3 tablets were made with FT-IR facilities at the Nuclear Research Center for Agriculture and Medicine (NRCAM). They were, then bombarded with 22.5 MeV proton energy and the beam currents of 2 and 10 μA. Two weeks after the bombardment the radio chemical separation of Ge-68 was accompolished with concentrated acid HN0 3 and by applying heat. Then, the acid solution was evaporated till dried, after that, an EDTA solution (0.005 M, pH=11) was added to recover the Ge-68. By passing the EDTA solution with the rate of 0.5 ml/min through the AI 2 O 3 column, the Ge-68 radioisotope was observed. Then, about 50 ml of EDTA (0.005 M, pH=11) was passed through the loaded column, where almost all the natural Gallium impurities were removed. The prepared generators were milked many times with EDTA solution (0.005 M, pH=8) and the leakage of Ge-68 nuclease and natural Gallium were determined. The average of the

  3. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    International Nuclear Information System (INIS)

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  4. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  5. Biological behaviour of some 67Ga and 64Cu chelates

    International Nuclear Information System (INIS)

    Leonovicova, T.; Angelis, B.; Cifka, J.; Cifkova, I.

    1984-01-01

    Chelates of 67 Ga and 64 Cu with iminodiacetic acid (IDA) and its two phenyl derivatives as well as with nitrilotriacetic acid (NTA) and benzylnitrilotriacetic acid (BNTA) were prepared. All the chelates were found to be negatively charged. A study of the biological distribution of these chelates in rats during time intervals of 3 to 180 min showed that the chelate of 67 Ga with IDA substituted at a phenyl by a hydrophobic substituent is excreted by the kidneys into the urine at a much higher rate than the IDA chelate of 67 Ga. The excretion of NTA and BNTA chelates of 67 Ga is the opposite. Blood clearance of 64 Cu chelates is more rapid than that of 67 Ga chelates. Chelates of 64 Cu accumulate in the liver and with the bile are slowly excreted into the intestines, urinary excretion is negligible. (author)

  6. Backscattering analysis of AuGe-Ni ohmic contacts of n-GaAs

    International Nuclear Information System (INIS)

    Nassibian, A.G.; Kalkur, T.S.; Sutherland, G.J.; Cohen, D.

    1985-01-01

    AuGe-Ni is widely used for the fabrication of ohmic contacts to n-GaAs. The alloying behaviour of evaporated AuGe-Ni alloyed by furnace and Scanning Electron Beam, is characterised by Rutherford backscattering with 2MeV 4 He ions. Since the formation of alloyed AuGe-Ni contacts involves redistribution and diffusion of Ga, As, Ni, Ge and Au, it is difficult to separate the corresponding yields due to gold, Ga As, Ni and Ge in the spectrum. The technique used in the investigation involves assumption of depth distribution of elements and computing the resultant spectrum

  7. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  8. Optical constants of Cu(In, Ga)Se{sub 2} for arbitrary Cu and Ga compositions

    Energy Technology Data Exchange (ETDEWEB)

    Minoura, Shota; Kodera, Keita; Nakane, Akihiro; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Maekawa, Takuji [Research and Development Headquarters, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 (Japan); Niki, Shigeru [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-05-21

    The optical constants of Cu(In, Ga)Se{sub 2} (CIGS)-based polycrystalline layers with different Cu and Ga compositions are parameterized completely up to a photon energy of 6.5 eV assuming several Tauc-Lorentz transition peaks. Based on the modeled optical constants, we establish the calculation procedure for the CIGS optical constants in a two-dimensional compositional space of (Cu, Ga) by taking the composition-induced shift of the critical point energies into account. In particular, we find that the variation of the CIGS optical constants with the Cu composition can be modeled quite simply by a spectral-averaging method in which the dielectric function of the target Cu composition is estimated as a weighted average of the dielectric functions with higher and lower Cu compositions. To express the effect of the Ga composition, on the other hand, an energy shift model reported earlier is adopted. Our model is appropriate for a wide variety of CIGS-based materials having different Cu and Ga compositions, although the modeling error increases slightly at lower Cu compositions [Cu/(In + Ga) < 0.69]. From our model, the dielectric function, refractive index, extinction coefficient, and absorption coefficient for the arbitrary CIGS composition can readily be obtained. The optical database developed in this study is applied further for spectroscopic ellipsometry analyses of CIGS layers fabricated by single and multi-stage coevaporation processes. We demonstrate that the compositional and structural characterizations of the CIGS-based layers can be performed from established analysis methods.

  9. Decay Spectroscopy of 76-79Cu, 79-81Zn, and 83-85Ga

    International Nuclear Information System (INIS)

    Gross, C.J.; Winger, J.A.; Ilyushkin, S.; Rykaczewski, K.P.; Liddick, S.N.; Darby, I.G.; Grzywacz, R.K.; Bingham, C.R.; Shapira, D.; Mazzocchi, C.; Padgett, S.; Rajabali, M.M.; Cartegni, L.; Zganjar, E.F.; Piechaczek, A.; Batchelder, J.C.; Hamilton, J.H.; Goodin, C.T.; Korgul, A.; Krolas, W.

    2009-01-01

    The β-decay properties of neutron-rich fission fragments of Cu, Zn, and Ga isotopes were studied at the Holifield Radioactive Ion Beam Facility. Beams of 75-79 Cu, 79-81 Zn, and 83-85 Ga were formed and delivered to two new end-stations at the facility. The Low-energy Radioactive Ion Beam Spectroscopy Station is a traditional on-line low energy (200 keV) beam line with 4 clover Ge detectors, two half-cylindrical plastic β-detectors, and a moving tape collector. In addition, many of the beams were accelerated to above 2 MeV/u and delivered to a micro-channel plate and transmission ion chamber located just in front of the same detector setup. In both cases, fine adjustment of an isobar separator was used to enhance the isotope of interest. Excited levels in the daughters and β-delayed neutron branching ratios were measured and used to confirm isotope identification. The decays from 79 Cu and 85 Ga were observed for the first time as was the 84 Ge 2 1 + level populated by β and βn decay channels

  10. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    Bodnar', I.V.

    2003-01-01

    The results of studies on the chemical interaction in the CuGaTe 2 -CuAlTe 2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe 2 -CuAlTe 2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity [ru

  11. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  12. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  13. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  14. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  15. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  16. Stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on GaAs and Ge/Si(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yablonsky, A. N., E-mail: yablonsk@ipm.sci-nnov.ru; Morozov, S. V.; Gaponova, D. M.; Aleshkin, V. Ya. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Shengurov, V. G.; Zvonkov, B. N.; Vikhrova, O. V.; Baidus’, N. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Krasil’nik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    We report the observation of stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on Si(001) substrates with the application of a relaxed Ge buffer layer. Stimulated emission is observed at 77 K under pulsed optical pumping at a wavelength of 1.11 μm, i.e., in the transparency range of bulk silicon. In similar InGaAs/GaAsSb/GaAs structures grown on GaAs substrates, room-temperature stimulated emission is observed at 1.17 μm. The results obtained are promising for integration of the structures into silicon-based optoelectronics.

  17. Properties of the CuGaSe2 and CuInSe2 (001) surface

    International Nuclear Information System (INIS)

    Deniozou, T.

    2005-01-01

    The main task of this work was to investigate the (001) CuGaSe 2 and CuInSe 2 surface in dependence of preparation and stoichiometry. The knowledge of the atomic structure as well as other surface properties is important in respect to optimization of novel thin film solar cells. For the characterization of the layers mainly Auger electron Spectroscopy, low-energy electron diffraction and photoelectron spectroscopy were implemented. The development of an appropriate procedure with Ar + sputtering and annealing combined with decapping enabled the preparation of clean and well-ordered surfaces. Different surface structures were observed in dependence of the layer preparation and composition. A (4 x 1) reconstruction was observed for the first time on CuGaSe 2 layers grown with a moderate Cu-excess after preparation by sputtering and annealing. Similarly a (4 x 2) reconstruction was detected on CuInSe2 surfaces of Cu-poor layers. A reconstruction could be also observed on Cu-poorer layers, however the facets/steps could not be completely removed. Cu-richer layers were facet-free, however the observed reconstruction was also weaker. Thus it was shown that in contrary to recent expectations, according to which only the (112) surface is stable, also the (001) can be stable under particular conditions. The appearance of facets or steps is correlated with the presence of CuIn 3 Se 5 or CuGa 3 Se 5 phases. This information is furthermore important for the understanding of grain boundaries in polycrystalline CuGaSe 2 and CuInSe 2 . Binding energy shifts were observed for the first time on all Se3d, In4d, Ga3d, Cu3d core levels of the reconstructed surfaces. By comparison with results from the literature from the similar ZnSe (100) surface a modell for the (4 x 2) reconstruction was proposed. The surface components in the Se3d, In4d and Cu3d emission were attributed to Se dimers or In and Cu adatoms respectively. The x 1 periodicity of the (4 x 1) reconstruction of CuGaSe 2 is

  18. Fabrication of GaAs quantum dots by droplet epitaxy on Si/Ge virtual substrate

    International Nuclear Information System (INIS)

    Bietti, S; Sanguinetti, S; Somaschini, C; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2009-01-01

    We present here the fabrication, via droplet epitaxy, of GaAs/AlGaAs quantum dots with high optical efficiency on Si. The growth substrate lattice parameter was adapted to that of (Al)GaAs via Ge virtual substrates (GeVS). The samples clearly show the presence of quantum dot self-assembly, with the designed shape and density. Photoluminescence measurements, performed at low temperature, show an intense emission band from the quantum dots.

  19. Production of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Behrouz Shirazi; Behrouz Fateh; Mohammad Mirzaii; Gholamreza Aslani

    2004-01-01

    Background: Gallium-68 is a radioisotope with a half life of 68 min. As it has a specific decay mode, it is a positron emitter and hence, it is popularly used in nuclear medicine. The only way to obtain these nuclides is to produced the mother nuclease which is Germanium - 68. There are many nuclear reactions from which the Germanium - 68 is obtained, however, the best reaction is 69Ga (p,2n)68Ge. Materials and Methods: The cross section of this nuclear reaction was calculated with the ALICE-91 Code and the result was compared with the practical work done by other researchers. The comparing result was an acceptable one. Having the cross sections in mind, the best proton energy was calculated to be between 20-25 MeV Further research showed that Ga2O3 is the best type of target material. Therefore, it was necessary to design and make a suitable target holder for these k/nd of compositions, which for the very first time in Iran was done at Atomic Energy Organization of Iran (AEOI). The thickness of the target, bearing in mind the rate of energy loss in side the target material, was calculated with the SRIM Code and the Ga2O3 tablets were made with FT-IR instruments at Nuclear Research Center for Agriculture and Medicine (NRCAM). They were then bombarded with the 20, 21 and 22.5 MeV proton energy and the beam currents of 1.4, 7.5 and 13.3 μA.Two weeks after the bombardment the radio chemical separation of Germanium - 68 was done with concentrated acid HNO3 and applying heat. Then, the acid solution was evaporated till dried, after that, an EDTA solution (0.005 M, pH = 11) was added to recover the Germanium - 68. By passing the EDTA solution through the A12O3 column, Germanium - 68 radioisotope was adsorbed.Then another solution of EDTA (0.005 M, PH=11) was passed thorough the loaded column, almost all the natural Gallium impurities were removed.In this project the behavior of natural Gallium was studied via adding Gallium-67 as a tracer which it's half life is about

  20. Studies of adsorber materials for preparing 68Ge/68Ga generators

    International Nuclear Information System (INIS)

    Brambilla, Tania de Paula

    2013-01-01

    The 68 Ga is a promising radionuclide for nuclear medicine, decaying by positron emission with an abundance of 89%, with physical half-life of 68 minutes, which is compatible with the pharmacokinetics of many biomolecules and low molecular weight substrates. Another important feature is its availability through a generator system, where the parent radionuclide, 68 Ge (t 1/2 = 270.95 days) is adsorbed on a column and the daughter, 68 Ga, is eluted in an ionic form 68Ga 3+ . The development of 68 Ge/ 68 Ga generators began in the 60s, but its clinical use began to be acceptable and relevant only recently. The method of separation of 68 Ge and 68 Ga most used is the ion-exchange chromatographic system, due to its practical operation, but other generator systems have been proposed, such as solvent extraction and evaporation technique. Currently, 68 Ge/ 68 Ga generators are commercially available using inorganic matrices columns prepared with TiO 2 or SnO 2 as well using organic resin. The efficiency of 68 Ga elution ranges from 70% to 80%, decreasing over time. The 68 Ge breakthrough varies from 10 -2 to10 -3 % or lower in a fresh generator, but there is an increase in the levels of contamination after long periods of use. Even with all the technological advances in the development of 68 Ge/ 68 Ga generators in the past decades, the 68 Ga eluted from commercial generators is not suitable for direct use in humans and some improvements in the systems need to be made to reduce the 68 Ge breakthrough and chemical impurities levels. The main objective of this work was to develop a 68 Ge/ 68 Ga generator system is which 68 Ga could be eluted with quality required for clinical use. The chemical behavior of Ge and Ga was evaluated on various inorganic adsorbents materials. Two types of 68 Ge/ 68 Ga generator systems were developed using TiO 2 as adsorbent material: elution system with manual pressure and vacuum controlled. The efficiencies of the generators were similar to

  1. Structure of the N=50 As, Ge, Ga nuclei

    International Nuclear Information System (INIS)

    Sahin, E.; Angelis, G. de; Duchene, G.; Faul, T.; Gadea, A.; Lisetskiy, A.F.; Ackermann, D.; Algora, A.; Aydin, S.; Azaiez, F.; Bazzacco, D.; Benzoni, G.; Bostan, M.; Byrski, T.; Celikovic, I.; Chapman, R.; Corradi, L.

    2012-01-01

    The level structures of the N=50 83 As, 82 Ge, and 81 Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA-PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N=50 shell closure in the region of 78 Ni (Z=28). The comparison of the experimental level schemes with the shell-model calculations yields an N=50 energy gap value of 4.7(3) MeV at Z=28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N=50 shell gap down to Z=28.

  2. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to −190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from −20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  3. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    International Nuclear Information System (INIS)

    Chang, Yongwei; Zhang, Miao; Deng, Chuang; Men, Chuanling; Chen, Da; Zhu, Lei; Yu, Wenjie; Wei, Xing; Di, Zengfeng; Wang, Xi

    2015-01-01

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10 17 cm −2 , the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10 17 cm −2 . • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10 17 cm −2 , the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10 17 cm −2 H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF 6 plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era

  4. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongwei; Zhang, Miao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Deng, Chuang; Men, Chuanling [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Da [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhu, Lei; Yu, Wenjie; Wei, Xing [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-08-15

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10{sup 17} cm{sup −2}, the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10{sup 17} cm{sup −2}. • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10{sup 17} cm{sup −2}, the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10{sup 17} cm{sup −2} H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF{sub 6} plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era.

  5. Studies on the preparation of {sup 68}Ge-{sup 68}Ga generator with inorganic materials

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Tania P.; Osso Junior, Joao A., E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    {sup 68}Ga as a positron emitter is of great interest because of some important advantages. It has a physical half-life of 67.71 min, which is compatible with the pharmacokinetics of many radiopharmaceuticals of low molecular weight. Other important characteristic is its cyclotron-independent availability via the {sup 68}Ge-{sup 68}Ga radionuclide generator system. In Brazil only one positron emitter radionuclide is produced, {sup 18}F, and the medical class has a great interest in using {sup 68}Ga labeled molecules, in particular peptides such as DOTA-octriotide. A project for developing a home made {sup 68}Ge-{sup 68}Ga is under way at IPEN-CNEN/SP. The aim of this work is to develop an efficient and simplified generator system of {sup 68}Ge-{sup 68}Ga that offers {sup 68}Ga{sup 3+} adequate for clinical use. Initial results will be reported concerning the behavior of Ge and Ga in adsorbers such as calcined acid and basic Al{sub 2}O{sub 3}, HZO (hydrous zirconium oxide), TiO{sub 2}, microspheres of Zr (Zr mic) and microspheres of Al (Al mic). Adsorption studies were carried out using {gamma}-emitting tracers, {sup 67}Ga and {sup 68}Ga and chemical tracer, GeO{sub 2}. The samples containing {sup 67}/{sup 68}Ga were analysed using a dose calibrator CRC-15R from Capintec and the samples containing Ge were evaluated by the Optical Emission Spectrometry using Inductively Coupled Plasma (ICP-OES). The ICP-OES equipment used was a Varian Vista-MPX from Varian and calibration curves for Ge were constructed in the range of 0.2 to 1.0 {mu}g.mL{sup -1}. The use of basic Al{sub 2}O{sub 3}, TiO{sub 2}, HZO and Zr mic showed the more promising results. (author)

  6. CuGeO3 and CuO by respectively elastic and inelastic polarized neutrons

    International Nuclear Information System (INIS)

    Ain, M.; Regnault, L.P.; Lorenzo, J.; Dhalenne, G.; Revcolevschi, A.

    2005-01-01

    Polarization analysis permitted to verify very promptly that the plane of the helix in the incommensurate phase of CuO was not (a*,c*) as first proposed but another one containing without equivoque the b*-axis.Inelastic polarization analysis under applied magnetic field permitted to study the triplet magnon-like mode of spin-Peierls CuGeO 3 . This mode splits in three, as expected. Intensities of inelastic neutron scattering measurements with polarization analysis have been collected in both spin-flip and nonspin-flip channels. This Zeeman splitting revealed that two out of the three processes are purely spin-flip excitations, while the third undisplaced one is a nonspin-flip process in which the neutron conserves its spin orientation

  7. Potential Energy Surfaces for Reactions of X Metal Atoms (X = Cu, Zn, Cd, Ga, Al, Au, or Hg with YH4 Molecules (Y = C, Si, or Ge and Transition Probabilities at Avoided Crossings in Some Cases

    Directory of Open Access Journals (Sweden)

    Octavio Novaro

    2012-01-01

    Full Text Available We review ab initio studies based on quantum mechanics on the most important mechanisms of reaction leading to the C–H, Si–H, and Ge–H bond breaking of methane, silane, and germane, respectively, by a metal atom in the lowest states in Cs symmetry: X(2nd excited state, 1st excited state and ground state + YH4→ H3XYH → H + XYH3 and XH + YH3. with X = Au, Zn, Cd, Hg, Al, and G, and Y = C, Si, and Ge. Important issues considered here are (a the role that the occupation of the d-, s-, or p-shells of the metal atom plays in the interactions with a methane or silane or germane molecule, (b the role of either singlet or doublet excited states of metals on the reaction barriers, and (c the role of transition probabilities for different families of reacting metals with these gases, using the H–X–Y angle as a reaction coordinate. The breaking of the Y–H bond of YH4 is useful in the production of amorphous hydrogenated films, necessary in several fields of industry.

  8. Production status of GaAs/Ge solar cells and panels

    Science.gov (United States)

    Smith, B.; Gillanders, M.; Vijayakumar, P.; Lillington, D.; Yang, H.; Rolph, R.

    1991-01-01

    GaAs/Ge solar cells with lot average efficiencies in excess of 18 percent were produced by MOCVD growth techniques. A description of the cell, its performance and the production facility are discussed. Production GaAs/Ge cells of this type were recently assembled into circuits and bonded to aluminum honeycomb panels to be used as the solar array for the British UOSAT-F program.

  9. Cyclotron production of 68Ge with a Ga2O target

    International Nuclear Information System (INIS)

    Naidoo, C.; Walt, T.N. van der; Raubenheimer, H.G.

    2002-01-01

    Systematic information of exchange behavior of Ge(IV) and Ga(III) in varying oxalic acid (0.05M and 0.25M) and sulphuric acid (0.005M-2M range) mixtures is presented. These findings were used to develop a separation involving 68 Ge from a Ga 2 O target material. A method based on acid dissolution of the target and chromatography on an anion exchange resin (Bio-Rad R AG1-X8) was developed. The separated 68 Ge has high radionuclidic purity and an acceptable chemical purity. (author)

  10. Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Lamagna, Luca; Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI) (Italy); Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano (Italy); Brammertz, Guy; Meuris, Marc [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium)

    2010-01-01

    Capping III-V compound surfaces with Ge ultra-thin layer might be a viable pathway to passivate the electrically active interface traps which usually jeopardize the integration of III-V materials in metal-oxide-semiconductor devices. As the physical nature of such traps is intrinsically related to the chemical details of the interface composition, the structural and compositional features of the Ge/GaAs interface were thoroughly investigated in two different configurations, the atomic layer deposition of La-doped ZrO{sub 2} films on Ge-capped GaAs and the ultra-high vacuum based molecular beam deposition of GeO{sub 2}/Ge double stack on in situ prepared GaAs. In the former case, the intercalation of a Ge interface layer is shown to suppress the concentration of interface Ga-O, As-O and elemental As bonding which were significantly detected in case of the direct oxide deposition on GaAs. In the latter case, the incidence of two different in situ surface preparations, the Ar sputtering and the atomic H cleaning, on the interface composition is elucidated and the beneficial role played by the atomic H exposure in reducing the semiconductor-oxygen bonds at the interface level is demonstrated.

  11. On the decay of 73Ga to levels in 73Ge

    International Nuclear Information System (INIS)

    Forssten, K.; Brenner, M.

    1976-01-01

    The γ-radiation following the β - decay of 73 Ga has been studied. Singles γ and γγ coincidence spectra were recorded with Ge(Li)-detectors. 17 γ-rays were assigned to transitions in 73 Ge, where 11 excited levels are proposed. From log ft values based on γ-transition intensities, spin and parity assignments for the levels were deduced. The half-life of 73 Ga was measured to (4.86 +- 0.03)h. From allowed β-transitions the ground state of 73 Ga was assigned 3/2 - . (orig.) [de

  12. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification

    NARCIS (Netherlands)

    E. de Blois (Erik); H.S. Chan (Ho Sze); K. Roy (Kamalika); E.P. Krenning (Eric); W.A.P. Breeman (Wouter)

    2011-01-01

    textabstractPET with68Ga from the TiO2- or SnO2- based68Ge/68Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity (68Ge vs.68Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts

  13. Isothermal section of the Er-Cu-Ga ternary system at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Belgacem, B. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Pasturel, M., E-mail: mathieu.pasturel@univ-rennes1.fr [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Nouri, S. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Bekkachi, H. El; Peron, I. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Hassen, R. Ben [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Noeel, H. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France)

    2012-08-05

    Highlights: Black-Right-Pointing-Pointer The isothermal section at 973 K of the Er-Cu-Ga ternary phase diagram has been established for the first time. Black-Right-Pointing-Pointer Eight extensions of binary compounds in the ternary domain have been identified, as well as six ternary intermediate solid solutions characterized by an important Cu/Ga mutual substitution. Black-Right-Pointing-Pointer Magnetic properties of Er{sub 3}(Cu,Ga){sub 11} are reported for the first time and confirms the paramagnetic Curie-Weiss behavior of all the six intermediate intermetallics. - Abstract: Phase relations in the Er-Cu-Ga ternary system have been established at 973 K by means of powder X-ray diffraction complemented by energy dispersive spectroscopy coupled to scanning electron microscopy. The isothermal section of the phase diagram comprises eight extensions of binaries into the ternary system, ErCu{sub 1-x}Ga{sub x} (x {<=} 0.5), ErCu{sub 2-x}Ga{sub x} (x {<=} 1.1), ErCu{sub 5-x}Ga{sub x} (x {<=} 0.5), Er{sub 5}Cu{sub x}Ga{sub 3-x} (x {<=} 0.60), Er{sub 3}Cu{sub x}Ga{sub 2-x} (x {<=} 0.24), ErCu{sub x}Ga{sub 1-x} (x {<=} 0.10), ErCu{sub x}Ga{sub 2-x} (x {<=} 0.30) and ErCu{sub x}Ga{sub 3-x} (x {<=} 0.35), as well as six ternary intermediate phases, ErCu{sub x}Ga{sub 2-x} (0.4 {<=} x {<=} 0.7), Er{sub 14}Cu{sub 51-x}Ga{sub x} (5.5 {<=} x {<=} 11.0), ErCu{sub 5-x}Ga{sub x} (0.8 {<=} x {<=} 2.3), Er{sub 2}Cu{sub 17-x}Ga{sub x} (4.9 {<=} x {<=} 8.0), ErCu{sub 12-x}Ga{sub x} (5.7 {<=} x {<=} 6.7) and Er{sub 3}Cu{sub x}Ga{sub 11-x} (1.5 {<=} x {<=} 4.4), all deriving from binary structure-types.

  14. Adjusted NIEL calculations for estimating proton-induced degradation of GaInP/GaAs/Ge space solar cells

    International Nuclear Information System (INIS)

    Lu Ming; Wang Rong; Liu Yunhong; Hu Wentao; Feng Zhao; Han Zhaolei

    2011-01-01

    The non-ionizing energy loss (NIEL) values for protons in solar cells should be modified by taking into account the distribution of the Bragg damage peak in the active region to calculate the corresponding displacement damage dose. In this paper, based upon a thin target approximation, a new approach is presented to modify NIEL values for protons on a GaAs sub-cell. Adjusted NIEL values can be used to estimate the degradation induced by protons on GaInP/GaAs/Ge triple-junction space solar cells.

  15. Adsorption of Cu phthalocyanine on Pt modified Ge(001): A scanning tunneling microscopy study

    NARCIS (Netherlands)

    Saedi, A.; Berkelaar, Robin P.; Kumar, Avijit; Poelsema, Bene; Zandvliet, Henricus J.W.

    2010-01-01

    The adsorption configurations of copper phthalocyanine (CuPc) molecules on platinum-modified Ge(001) have been studied using scanning tunneling microscopy. After deposition at room temperature and cooling down to 77 K the CuPc molecules are still dynamic. However, after annealing at 550±50 K, the

  16. EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays

    Science.gov (United States)

    Woike, Thomas J.

    1993-01-01

    EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.

  17. Physical characterization of Cu{sub 2}ZnGeSe{sub 4} thin films from annealing of Cu-Zn-Ge precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: buffiere@imec.be [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium); ElAnzeery, H. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Microelectronics System Design department, Nile University, Cairo (Egypt); Oueslati, S.; Ben Messaoud, K. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Department of Physics, Faculty of Sciences of Tunis, El Manar (Tunisia); Brammertz, G.; Meuris, M. [Imec Division IMOMEC — Partner in Solliance, Diepenbeek (Belgium); Institute for Material Research (IMO) Hasselt University, Diepenbeek (Belgium); Poortmans, J. [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium)

    2015-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) can be considered as a potential alternative for wide band gap thin film devices. In this work, CZGeSe thin films were deposited on Mo-coated soda lime glass substrates by sequential deposition of sputtered Cu, Zn and e-beam evaporated Ge layers from elemental targets followed by annealing at high temperature using H{sub 2}Se gas. We report on the effect of the precursor stack order and composition and the impact of the annealing temperature on the physical properties of CZGeSe thin films. The optimal layer morphology was obtained when using a Mo/Cu/Zn/Ge precursor stack annealed at 460 °C. We have observed that the formation of secondary phases such as ZnSe can be prevented by tuning the initial composition of the stack, the stack order and the annealing conditions. This synthesis process allows synthesizing CZGeSe absorber with an optical band gap of 1.5 eV. - Highlights: • Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) thin films were deposited using a two-step process. • CZGeSe dense layers were obtained using a Mo/Cu/Zn/Ge precursor annealed at 460 °C. • Formation of ZnSe can be avoided by tuning the composition and order of the initial stack. • P-type CZGeSe absorber with an optical band gap of 1.5 eV was obtained.

  18. Local motifs in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pethes, I., E-mail: pethes.ildiko@wigner.mta.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary); Nazabal, V.; Chahal, R.; Bureau, B. [Institut Sciences Chimiques de Rennes, UMR-CNRS 6226, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes, Cedex (France); Kaban, I. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Belin, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif sur Yvette (France); Jóvári, P. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary)

    2016-07-15

    The structure of (GeS{sub 2}){sub 0.75}(Ga{sub 2}S{sub 3}){sub 0.25} and (GeS{sub 2}){sub 0.83}(Ga{sub 2}S{sub 3}){sub 0.17} glasses was investigated by Raman scattering, high energy X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges. The reverse Monte Carlo simulation technique (RMC) was used to obtain structural models compatible with diffraction and EXAFS datasets. It was found that the coordination number of Ga is close to four. While Ge atoms have only S neighbors, Ga binds to S as well as to Ga atoms showing a violation of chemical ordering in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses. Analysis of the corner- and edge-sharing between [GeS{sub 4/2}] units revealed that about 30% of germanium atoms participate in the edge-shared tetrahedra. - Highlights: • Structural models of GeS{sub 2}–Ga{sub 2}S{sub 3} glasses consistent with XRD + EXAFS data are created. • Chemical order is respected but Ga–Ga bonds are present caused by S-deficiency. • The coordination number of Ga is 3.7 ± 0.3. • The frequency and geometry of corner/edge-sharing [GeS{sub 4/2}] units were determined.

  19. Generalized stacking fault energies, cleavage energies, ionicity and brittleness of Cu(Al/Ga/In)Se2 and CuGa(S/Se/Te)2

    Science.gov (United States)

    Xue, H. T.; Tang, F. L.; Gruhn, T.; Lu, W. J.; Wan, F. C.; Rui, Z. Y.; Feng, Y. D.

    2014-04-01

    We calculate the generalized stacking fault (GSF) energies and cleavage energies γcl of the chalcopyrite compounds CuAlSe2, CuGaSe2, CuInSe2, CuGaS2 and CuGaTe2 using first principles. From the GSF energies, we obtain the unstable stacking fault energies γus and intrinsic stacking fault energies γisf. By analyzing γus and γisf, we find that the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) direction is the easiest slip direction for these five compounds. Also, for CuInSe2, it is most possible to undergo a dislocation-nucleation-induced plastic deformation along the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) slip direction. We show that the (1 1 2) plane is the preferable plane for fracture in the five compounds by comparing γcl of the (0 0 1) and (1 1 2) planes. It is also found that both γus and γcl decrease as the cationic or anionic radius increases in these chalcopyrites, i.e. along the sequences CuAlSe2 → CuGaSe2 → CuInSe2 and CuGaS2 → CuGaSe2 → CuGaTe2. Based on the values of the ratio γcl/γus, we discuss the brittle-ductile properties of these compounds. All of the compounds can be considered as brittle materials. In addition, a strong relationship between γcl/γus and the total proportion of ionic bonding in these compounds is found.

  20. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  1. Processing and characterization of new oxysulfide glasses in the Ge-Ga-As-S-O system

    International Nuclear Information System (INIS)

    Maurel, C.; Petit, L.; Dussauze, M.; Kamitsos, E.I.; Couzi, M.; Cardinal, T.; Miller, A.C.; Jain, H.; Richardson, K.

    2008-01-01

    New oxysulfide glasses have been prepared in the Ge-Ga-As system employing a two-step melting process which involves the processing of the chalcogenide glass (ChG) and its subsequent melting with amorphous GeO 2 powder. Optical characterization of the synthesized oxysulfide glasses has shown that the cut-off wavelength decreases with increasing oxygen content, and this has been correlated to results of Raman and infrared (IR) spectroscopies which show the formation of new oxysulfide structural units. X-ray photoelectron spectroscopy (XPS) analysis to probe the bonding environment of oxygen atoms in the oxysulfide glass network, has revealed the preferred formation of Ga-O and Ge-O bonds in comparison to As-O bonds. This work has demonstrated that melting a ChG glass with GeO 2 leads to the formation of new oxysulfide glassy materials. - Graphical abstract: In this paper, we explain how new oxysulfide glasses are prepared in the Ge-Ga-As system employing a two-step process: (1) the processing of the chalcogenide glass (ChG) and (2) the re-melting of the ChG with GeO 2 powder. Raman, infrared and XPS spectroscopies show the formation of new oxysulfide structural units

  2. Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates

    Science.gov (United States)

    Fu, Jiefei; Su, Xianli; Yan, Yonggao; Liu, Wei; Zhang, Zhengkai; She, Xiaoyu; Uher, Ctirad; Tang, Xinfeng

    2017-09-01

    Type-III Ba24Ge100 clathrates possess low thermal conductivity and high electrical conductivity at room temperature and, as such, have a great potential as thermoelectric materials for power generation. However, the Seebeck coefficient is very low due to the intrinsically high carrier concentration. In this paper, a series of Ba24CuxGe100-x and Ba24AgyGe100-y specimens were prepared by vacuum melting combined with the subsequent spark plasma sintering (SPS) process. Doping Cu or Ag on the Ge site not only suppresses the concentration of electrons but it also decreases the thermal conductivity. In addition, the carrier mobility and the Seebeck coefficient increase due to the decrease in the carrier concentration. Thus, the power factor is greatly improved, leading to an improvement in the dimensionless figure of merit ZT. Cu-doped Ba24Cu6Ge94 reaches the maximum ZT value of about 0.17 at 873 K, while Ag-doped Ba24Ag6Ge94 attains the dimensionless figure of merit ZT of 0.31 at 873 K, more than 2 times higher value compared to un-doped Ba24Ge100.

  3. The Relationship between Nanocluster Precipitation and Thermal Conductivity in Si/Ge Amorphous Multilayer Films: Effects of Cu Addition

    Directory of Open Access Journals (Sweden)

    Ahmad Ehsan Mohd Tamidi

    2016-01-01

    Full Text Available We have used a molecular dynamics technique to simulate the relationship between nanocluster precipitation and thermal conductivity in Si/Ge amorphous multilayer films, with and without Cu addition. In the study, the Green-Kubo equation was used to calculate thermal conductivity in these materials. Five specimens were prepared: Si/Ge layers, Si/(Ge + Cu layers, (Si + Cu/(Ge + Cu layers, Si/Cu/Ge/Cu layers, and Si/Cu/Ge layers. The number of precipitated nanoclusters in these specimens, which is defined as the number of four-coordinate atoms, was counted along the lateral direction of the specimens. The observed results of precipitate formation were considered in relation to the thermal conductivity results. Enhancement of precipitation of nanoclusters by Cu addition, that is, densification of four-coordinate atoms, can prevent the increment of thermal conductivity. Cu dopant increases the thermal conductivity of these materials. Combining these two points, we concluded that Si/Cu/Ge is the best structure to improve the conversion efficiency of the Si/Ge amorphous multilayer films.

  4. Development of GaInP/GaInAs/Ge TRIPLE-junction solar cells for CPV applications

    OpenAIRE

    Barrigón Montañés, Enrique

    2014-01-01

    La concentración fotovoltaica (CPV) es una de las estrategias más prometedoras para reducir el coste de la electricidad de origen fotovoltaico, y está basada en células multiunión de alta eficiencia. En este contexto, esta Tesis trata sobre el desarrollo de células monolíticas de triple unión (GaInP/Ga(In)As/Ge) para sistemas de CPV. Para ello, se ha transferido una estructura de doble unión de GaInP/GaAs —previamente desarrollada en el grupo de Semiconductores III-V del IESUPM— a un sustrato...

  5. Continuation of comprehensive quality control of the itG 68Ge/68Ga generator and production of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC for clinical research studies.

    Science.gov (United States)

    Amor-Coarasa, Alejandro; Kelly, James M; Gruca, Monika; Nikolopoulou, Anastasia; Vallabhajosula, Shankar; Babich, John W

    2017-10-01

    Performance of a second itG 68 Ge/ 68 Ga generator system and production of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were tested over one year as an accompaniment to a previously published study (J Nucl Med. 2016;57:1402-1405). Performance of a 1951MBq 68 Ge/ 68 Ga generator was characterized and the eluate used for preparation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC. Weekly elution profiles of 68 Ga elution yield and 68 Ge breakthrough were determined. 68 Ga elution yields averaged 82% (61.8-98.4%) and 68 Ge breakthrough averaged 0.002% (0.0007% to 0.004%). The radiochemical purities of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were determined by HPLC analysis to be >98% and specific activity was 12.6 and 42GBq/μmol, respectively. 68 Ge contamination in the product was under the detection limit (0.00001%). Final sterile, pyrogen-free formulation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC in physiologic saline with 5%-7% ethanol was achieved. Performance of a 68 Ge/ 68 Ga generator was studied over one year with satisfactory results. The generator eluate was used to synthesize 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC on a routine basis in high purity. Copyright © 2017. Published by Elsevier Inc.

  6. Optimization pathways to improve GaInP/GaInAs/Ge triple junction solar cells for CPV applications

    OpenAIRE

    Barrutia Poncela, Laura

    2017-01-01

    La tecnología de concentración fotovoltaica (en inglés, Concentration Photovoltaics, CPV) ha experimentado un intenso desarrollo desde principios de los años 2000. En particular, las células solares de triple unión (GaInP/GaInAs/Ge) ajustadas en red siguen dominando el mercado CPV. Esta tesis pretende contribuir en la investigación de este tipo de célula multiunión desarrollada previamente en el Grupo de Semiconductores III-V del Instituto de Energía Solar de la Universidad Politécnica de Mad...

  7. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts

    OpenAIRE

    Lee, Kevin C.

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere preven...

  8. Synthesis and optical properties of (GaAs)yGe5-2y alloys assembled from molecular building blocks

    Science.gov (United States)

    Sims, P. E.; Wallace, P. M.; Xu, Chi; Poweleit, C. D.; Claflin, B.; Kouvetakis, J.; Menéndez, J.

    2017-09-01

    Monocrystalline alloys of GaAs and Ge with compositions (GaAs)yGe5-2y have been synthesized following a chemical vapor deposition approach that promotes the incorporation of Ga and As atoms as isolated donor-acceptor pairs. The structural and optical properties show distinct behavior relative to (GaAs)1-xGe2x counterparts produced by conventional routes. Strong band gap photoluminescence is observed in the 0.5-0.6 eV range for samples whose compositions approach the GaAsGe3 limit for isolated Ga-As pairs. In such samples, the Ge-like Raman modes appear at higher frequencies and are considerably narrower than those observed in samples with higher Ge concentrations. These results suggest that the growth mechanism may favor the formation of ordered phases comprising Ga-As-Ge3 tetrahedra. In contrast with the diamond-to-zincblende ordering transition previously reported for III-V-IV alloys, ordered structures built from Ga-As-Ge3 tetrahedra feature III-III and V-V pairs as third-nearest neighbors, and therefore both the III- and V-components are equally present in each of two fcc sublattices of the average diamond-like structure. These bonding arrangements likely lead to the observed optical response, indicating potential applications of these materials in mid-IR technologies integrated on Si.

  9. Preparation of CuGaSe2 absorber layers for thin film solar cells by annealing of efficiently electrodeposited Cu-Ga precursor layers from ionic liquids

    International Nuclear Information System (INIS)

    Steichen, M.; Larsen, J.; Guetay, L.; Siebentritt, S.; Dale, P.J.

    2011-01-01

    CuGaSe 2 absorber layers were prepared on molybdenum substrates by electrochemical codeposition of copper and gallium and subsequential annealing in selenium vapour. The electrodeposition was made from a deep eutectic based ionic liquid consisting of choline chloride/urea (Reline) with a plating efficiency of over 85%. The precursor film composition is controlled by the ratio of the copper to gallium fluxes under hydrodynamic conditions and by the applied deposition potential. X-ray diffraction reveals CuGa 2 alloying during the electrodeposition and CuGaSe 2 formation after annealing. Photoluminescence (PL) and photocurrent spectroscopy revealed the good opto-electronic properties of the CuGaSe 2 absorber films. The absorber layers have been converted to full devices with the best device achieving 4.0 % solar conversion efficiency.

  10. Thermal analysis of sulfide Ge-Ga glasses doped by praseodymium

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Kozak, T.; Ležal, Dimitrij; Poulain, M.; Kalužný, J.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 223-227 ISSN 1418-2874 Institutional research plan: CEZ:AV0Z4032918 Keywords : glass transition * Pr dopand * sulfide Ge-Ga glasses Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  11. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    International Nuclear Information System (INIS)

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)

  12. Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4

    Science.gov (United States)

    Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.

    2018-04-01

    We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.

  13. Diffusion of $^{56}$Co in GaAs and SiGe alloys

    CERN Multimedia

    Koskelo, O K

    2007-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of cobalt in GaAs and SiGe alloys under intrinsic conditions. In the literature only three previous studies for Co diffusion in GaAs may be found and the results differ by over four orders of magnitude from each other. For Co diffusion in SiGe alloys no previous data is available in the literature. For Co diffusion in Ge one study may be found but the results have been obtained with material having increased dislocation density. For dislocation-free material no previous measurements are available. For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{56}$Co$^{+}$ ion beam.

  14. Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Sağlam, M.; Güzeldir, B., E-mail: msaglam@atauni.edu.tr

    2016-09-15

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ{sub b}), series resistance (R{sub s}), leakage current (I{sub 0}), and interface states (N{sub ss}) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.

  15. Time-dependent of characteristics of Cu/CuS/n-GaAs/In structure produced by SILAR method

    International Nuclear Information System (INIS)

    Sağlam, M.; Güzeldir, B.

    2016-01-01

    Highlights: • The CuS thin film used at Cu/n-GaAs structure is grown by SILAR method. • There has been no report on ageing of characteristics of this junction in the literature. • The properties of Cu/CuS/n-GaAs/In structure are examined with different methods. • It has been shown that Cu/CuS/n-GaAs/In structure has a stable interface. - Abstract: The aim of this study is to explain effects of the ageing on the electrical properties of Cu/n-GaAs Shottky barrier diode with Copper Sulphide (CuS) interfacial layer. CuS thin films are deposited on n-type GaAs substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The structural and the morphological properties of the films have been carried out by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) techniques. The XRD analysis of as-grown films showed the single-phase covellite, with hexagonal crystal structure built around two preferred orientations corresponding to (102) and (108) atomic planes. The ageing effects on the electrical properties of Cu/CuS/n-GaAs/In structure have been investigated. The current–voltage (I–V) measurements at room temperature have been carried out to study the change in electrical characteristics of the devices as a function of ageing time. The main electrical parameters, such as ideality factor (n), barrier height (Φ_b), series resistance (R_s), leakage current (I_0), and interface states (N_s_s) for this structure have been calculated. The results show that the main electrical parameters of device remained virtually unchanged.

  16. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

    KAUST Repository

    Barbe, Jeremy; Eid, Jessica; Ahlswede, Erik; Spiering, Stefanie; Powalla, Michael; Agrawal, Rakesh; Del Gobbo, Silvano

    2016-01-01

    Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning

  17. Quarternair CuGaSeTe and CuGa0.5In 0.5Te2 Thin Films Fabrication Using Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A Harsono Soepardjo

    2010-10-01

    Full Text Available Quarternair materials CuGaSeTe and CuGa0.5In 0.5Te2 are the basic materials to solar cell fabrication. These materials have high absorption coefficients around 103 - 105 cm-1 and band gap energy in the range of 1-5 eV. In this research, the films were made by flash evaporation method using quarternair powder materials of CuGaSeTe and CuGa0.5In 0.5Te2 to adhere in a glass substrate. After the films were obtained, the properties of these films will be characterized optically and electrically. The lattice parameter of the films and the crystalline film structure were obtained using X-Ray Diffraction (XRD spectroscopy. The XRD results show that the quarternair CuGaSeTe and CuGa0.5In 0.5Te2 films have a chalcopyrite structure. The absorption coefficient and the  band gap energy of the films were calculated using transmittance and reflectance patterns that measured using UV-VIS Difractometer. The films composition can be detected by using the Energy Dispersive Spectroscopy (EDS, while the films resistivity, mobility and the majority carrier of the films were obtained from Hall Effect experiments.

  18. Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from √s.sub.NN./sub. = 22.5 to 200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adare, A.; Adler, S. S.; Afanasiev, S.; Kubart, J.; Mašek, L.; Mikeš, P.; Tomášek, Lukáš; Vrba, Václav

    2008-01-01

    Roč. 78, č. 4 (2008), 044902/1-044902/15 ISSN 0556-2813 R&D Projects: GA MŠk LA08015; GA MŠk 1P04LA211; GA ČR GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : charged hadron * multiplicity fluctuations * Au+Au * Cu+Cu Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.124, year: 2008

  19. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC

    International Nuclear Information System (INIS)

    Asti, Mattia; De Pietri, Giovanni; Fraternali, Alessandro; Grassi, Elisa; Sghedoni, Roberto; Fioroni, Federica; Roesch, Frank; Versari, Annibale; Salvo, Diana

    2008-01-01

    Introduction: Imaging of somatostatin receptor expressing tumours has been greatly enhanced by the use of 68 Ga-DOTATOC and PET/CT. Methods: In this work, a purification method for the 68 Ge/ 68 Ga generator eluate and a method to produce 68 Ga-DOTATOC suitable for clinical use were evaluated. The generator eluate was purified and concentrated on a cation-exchange cartridge in HCl/acetone media. The efficacy of this procedure in eliminating metal impurities from the 68 Ga solution was investigated by ICP-MS. The radiotracer quality was evaluated by radio-TLC, GC and γ-ray spectrometry. Results: 68 Ga-DOTATOC preparations (n=33) were carried out with a mean synthesis yield of 59.3±2.8% (not corrected for decay) and a batch activity ranging from 555 to 296 MBq. The radiochemical and radionuclidic purity were >98% and 99.9999%, respectively. With this purification process, >95% of the Fe(III), Zn(II) and Mn(II) were eliminated from the solution. Conclusions: 68 Ga-DOTATOC produced with this method can be efficiently used in nuclear medicine departments for PET evaluations

  20. Characteristics of InAs/InGaAs/GaAs QDs on GeOI substrates with single-peak 1.3 µm room-temperature emission

    International Nuclear Information System (INIS)

    Liang, Y Y; Yoon, S F; Loke, W K; Ngo, C Y; Fitzgerald, E A

    2012-01-01

    GaAs-based quantum dot (QD) systems, especially InAs/InGaAs/GaAs QDs, have demonstrated superior device performances as compared with higher dimensional systems. However, to realize high-speed optical interconnects for Si-based electronics, one will need to grow the QDs on Si substrates. While it is promising to integrate the InAs/InGaAs/GaAs QDs on Si with the use of germanium-on-insulator-on-silicon (GeOI) substrates, reported results exhibit bimodal QD sizes and double emission peaks, i.e. unsatisfactory for realistic applications. In this paper, we showed that with an optimized GaAs buffer, single-peak 1.33 µm room-temperature emission can be obtained from InAs/InGaAs/GaAs QDs on GeOI substrates. (paper)

  1. Excitations of the field-induced quantum soliton lattice in CuGeO3

    DEFF Research Database (Denmark)

    Enderle, M.; Rønnow, H.M.; McMorrow, D.F.

    2001-01-01

    The incommensurate magnetic soliton lattice in the high-field phase of a spin-Peierls system results from quantum fluctuations. We have used neutron scattering techniques to study CuGeO3, allowing us to obtain the first complete characterization of the excitations of the soliton lattice. Three...

  2. The field-induced soliton phase of CuGeO3

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Mechthild, E.; McMorrow, D.F.

    2003-01-01

    The quasi-1D S = 1/2 antiferromagnet CuGeO3 undergoes a spin-Peierls transition to a dimerised singlet quantum ground state, with S = 1 carrying pairs of domain walls as elementary excitations. Applying a large magnetic field, the domain walls-solitons-can be condensed into the ground state...

  3. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  5. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  6. Detailed Visualization of Phase Evolution during Rapid Formation of Cu(InGa)Se2 Photovoltaic Absorber from Mo/CuGa/In/Se Precursors.

    Science.gov (United States)

    Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung

    2018-03-02

    Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

  7. Optical and structural properties of Cu-doped β-Ga2O3 films

    International Nuclear Information System (INIS)

    Zhang Yijun; Yan Jinliang; Li Qingshan; Qu Chong; Zhang Liying; Xie Wanfeng

    2011-01-01

    Graphical abstract: Highlights: → We prepare polycrystalline Cu-doped β-Ga2O3 films. → Cu dopants cause poor crystal quality and shrinkage of the optical band gap. → Cu-doping enhances the UV and blue emission. → A new blue emission peak centre at 475 nm appears by Cu-doping. → Cu dopants decrease the optical transmittance. - Abstract: The intrinsic and Cu-doped β-Ga 2 O 3 films were grown on Si and quartz substrates by RF magnetron sputtering in an argon and oxygen mixture ambient. The effects of the Cu doping and the post thermal annealing on the optical and structural properties of the β-Ga 2 O 3 films were studied. The surface morphology, microstructure, optical transmittance, optical absorption, optical energy gap and photoluminescence of the β-Ga 2 O 3 films were significantly changed after Cu-doping. After post thermal annealing, Polycrystalline β-Ga 2 O 3 films were obtained, the transmittance decreased. After Cu-doping, the grain size decreased, the crystal quality deteriorated and the optical band gap shrunk. The UV, blue and green emission bands were observed and discussed. The UV and blue emission were enhanced and a new blue emission peak centred at 475 nm appeared by Cu-doping.

  8. Magnetic properties of Heusler alloy Mn2RuGe and Mn2RuGa ribbons

    International Nuclear Information System (INIS)

    Yang, Ling; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Luo, Hongzhi; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    Heusler alloys Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning method successfully. Theoretical and experimental studies reveal a ferrimagnetic ground state in the two alloys. The Curie temperatures are 303 K for Mn 2 RuGe and 272 K for Mn 2 RuGa. The calculated total spin moments of Mn 2 RuGe and Mn 2 RuGa are integral values of 2.00 μ B and 1.03 μ B , respectively. And the theoretical spin polarization ratio is also quite high. However, due to the atomic disorder in the ribbons, the saturation moments of them measured at 5 K are smaller than the calculated values, especially that of Mn 2 RuGa. This coincides with the disappearance of the superlattice reflection (111) and (200) peaks in the XRD pattern of Mn 2 RuGa. Annealing Mn 2 RuGa ribbon at 773 K can enhance the atomic ordering. Both saturation magnetic moment and Curie temperature increase obviously after the heat treatment. - Highlights: • Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning successfully. • Ferrimagnetic ground state has been confirmed in Mn 2 RuGe and Mn 2 RuGa. • High spin polarization has been predicted in Mn 2 RuGe. • Melt-spinning can be a possible way to adjust the atomic order of Heusler alloys

  9. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.

    Science.gov (United States)

    Lee, Kevin C

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.

  10. Phase relations in the quasi-binary Cu{sub 2}GeS{sub 3}-ZnS and quasi-ternary Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems and crystal structure of Cu{sub 2}ZnGeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine)]. E-mail: oleg@lab.univer.lutsk.ua; Piskach, L.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Romanyuk, Y.E. [Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Zaremba, V.I. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 L' viv (Ukraine); Pekhnyo, V.I. [V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Sciences, Palladina Ave 32-34, 03680 Kiev (Ukraine)

    2005-07-19

    The isothermal section of the Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems at 670K was constructed using X-ray diffraction analysis. At this temperature, two quaternary intermediate phases, Cu{sub 2}CdGeS{sub 4} and {approx}Cu{sub 8}CdGeS{sub 7}, exist in the Cu{sub 2}S-CdS-GeS{sub 2} system, and only one phase, Cu{sub 2}ZnGeS{sub 4}, exists in the Cu{sub 2}S-ZnS-GeS{sub 2} system. The phase diagram of the Cu{sub 2}GeS{sub 3}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction, and the existence of Cu{sub 2}ZnGeS{sub 4} has been confirmed. It forms incongruently at 1359K. Powder X-ray diffraction was used to refine the crystal structure of Cu{sub 2}ZnGeS{sub 4}, which crystallizes in the tetragonal stannite-type structure at 670K (space group I4-bar 2m, a=0.534127(9)nm, c=1.05090(2)nm, R{sub I}=0.0477). The possibility of the formation of quaternary compounds in the quasi-ternary systems A{sup I}{sub 2}X-B{sup II}X-C{sup IV}X{sub 2}, where A{sup I}-Cu, Ag; B{sup II}-Zn, Cd, Hg; C{sup IV}-Si, Ge, Sn and X-S, Se, Te is discussed.

  11. On the ternary Ag – CuGa system: Electromotive force measurement and thermodynamic modeling

    International Nuclear Information System (INIS)

    Gierlotka, Wojciech; Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof; Handzlik, Piotr

    2015-01-01

    The ternary silver–copper–gallium system found application as a solder material in jewel crafting and electronics, thus a phase diagram of this system seems to be important tool, which is necessary for a proper application of different alloys. The activity of gallium in liquid phase was determined by electromotive measurement technique and after that the equilibrium diagram of Ag – CuGa was modeled based on available experimental data using Calphad approach. A set of Gibbs energies was found and used for calculation a phase diagram and thermodynamic properties of liquid phase. The experimental data was reproduced well by calculation. - Highlights: • For the first time activity of Ga in liquid Ag – CuGa alloys was measured. • For the first time the ternary Ag – CuGa system was thermodynamically modeled. • Modeled Ag – CuGa system reproduces experimental data well

  12. Synthesis of Cu(In,Ga)Se{sub 2} crystals using a crank ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Suzuka; Noji, Hideki; Akaki, Yoji [Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo Miyazaki 885-8567 (Japan); Okamoto, Tomoichiro [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2015-06-15

    Cu(In,Ga)Se{sub 2} (CIGS) crystals were synthesized by a mechanochemical (MC) process using a crank ball mill. The molar ratios of starting materials were Cu:In:Ga:Se=1:1-x:x:2 (0≤x≤1) and Cu:In:Ga:Se=1:0.7:0.3:y (2≤y≤3). The reaction time reduced with decreasing Se and Ga molar ratios. The collection rate decreased with longer reaction times. From XRD patterns, we confirmed that the CuInSe{sub 2} and/or CuGaSe{sub 2}crystals were successfully grown when the powders reacted. Although the crystals grown with a selenium molar ration of 2 were Se-poor, those grown at a molar ratio of 3 were Se-rich. When Se increasing molar ratio, Cu, In, and Ga were away from the stoichiometric. With a molar ratio of Cu:In:Ga:Se=1:0.7:0.3:2.5∝2.7, their composition became stoichiometric. Crystal morphology was varied. CIGS crystals were thus successfully synthesized using a crank ball mill. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    Science.gov (United States)

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  14. InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion

    Science.gov (United States)

    Kim, T. W.; Albert, B. R.; Kimerling, L. C.; Michel, J.

    2018-02-01

    InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2-5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104-3 × 107 cm-2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm-2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ˜0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9-2.4 eV varies from 16.6% to 34.3%.

  15. Properties of different temperature annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Liu Lian; Yan Yong; Zhang Yanxia; Li Shasha; Yan Chuanpeng; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The Cu(In,Ga)Se{sub 2} and Cu(In,Ga)2Se{sub 3.5} films follow different process to form CIGS phase. Black-Right-Pointing-Pointer Composition loss of the annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films are different. Black-Right-Pointing-Pointer Hexagonal CuSe phase exhibits unique transport feature. Black-Right-Pointing-Pointer Conductivity of the CIGS films is affected by the 'variable range hopping' mechanism. - Abstract: We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se{sub 2} films and meanwhile composition of the annealed Cu(In,Ga){sub 2}Se{sub 3.5} films keeps almost constant. The as-deposited Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se{sub 2} films annealed at 150 Degree-Sign C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the 'variable range hopping' transport mechanism. The annealed Cu(In,Ga){sub 2}Se{sub 3.5} films present higher density of disorders than the annealed Cu(In,Ga)Se{sub 2} films for their significant Cu deficient composition.

  16. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  17. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Dubinov, A. A.; Krasilnik, Z. F.; Kudryavtsev, K. E.; Novikov, A. V.; Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Baidus, N. V.; Samartsev, I. V. [Physical-Technical Research Institute of Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Fefelov, A. G. [FGUE “Salut,” 603950 Nizhny Novgorod (Russian Federation); Nekorkin, S. M. [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Physical-Technical Research Institute of Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Pavlov, D. A.; Sushkov, A. A. [Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yablonskiy, A. N.; Yunin, P. A. [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-08

    We report on realization of the InGaAs/GaAs/AlGaAs quantum well laser grown by metallorganic chemical vapor deposition on a virtual Ge-on-Si(001) substrate. The Ge buffer layer has been grown on a nominal Si(001) substrate by solid-source molecular beam epitaxy. Such Ge buffer possessed rather good crystalline quality and smooth surface and so provided the subsequent growth of the high-quality A{sub 3}B{sub 5} laser structure. The laser operation has been demonstrated under electrical pumping at 77 K in the continuous wave mode and at room temperature in the pulsed mode. The emission wavelengths of 941 nm and 992 nm have been obtained at 77 K and 300 K, respectively. The corresponding threshold current densities were estimated as 463 A/cm{sup 2} at 77 K and 5.5 kA/cm{sup 2} at 300 K.

  18. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Bi, Jinlian; Ao, Jianping; Gao, Qing; Zhang, Zhaojing; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2017-06-07

    Electrodepositon of Ga film is very challenging due to the high standard reduction potential (-0.53 V vs SHE for Ga 3+ ). In this study, Ga film with compact structure was successfully deposited on the Mo/Cu/In substrate by the pulse current electrodeposition (PCE) method using GaCl 3 aqueous solution. A high deposition rate of Ga 3+ and H + can be achieved by applying a large overpotential induced by high pulse current. In the meanwhile, the concentration polarization induced by cation depletion can be minimized by changing the pulse frequency and duty cycle. Uniform and smooth Ga film was fabricated at high deposition rate with pulse current density 125 mA/cm 2 , pulse frequency 5 Hz, and duty cycle 0.25. Ga film was then selenized together with electrodeposited Cu and In films to make a CIGSe absorber film for solar cells. The solar cell based on the Ga film presents conversion efficiency of 11.04%, fill factor of 63.40%, and V oc of 505 mV, which is much better than those based on the inhomogeneous and rough Ga film prepared by the DCE method, indicating the pulse current electrodeposition process is promising for the fabrication of CIGSe solar cell.

  19. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    Science.gov (United States)

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with 68 Ga from the TiO 2 - or SnO 2 - based 68 Ge/ 68 Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ( 68 Ge vs. 68 Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68 Ge activity is produced by eluting the 68 Ge/ 68 Ga generators and residues from PET chemistry. Since clearance level of 68 Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68 Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68 Ge activity is by sorption of TiO 2 or Fe 2 O 3 and subsequent centrifugation. The required 10 Bq per mL level of 68 Ge activity in waste was reached by Fe 2 O 3 logarithmically, whereas with TiO 2 asymptotically. The procedure with Fe 2 O 3 eliminates ≥90% of the 68 Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68 Ge activity sorption on TiO 2 , Fe 2 O 3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68 Ge activity containing waste could directly be used without further interventions. 68 Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68 Ge activity showed highest sorption.

  20. Possible mechanism for the room-temperature stabilization of the Ge(111) T > 300 deg.C phase by Ga

    DEFF Research Database (Denmark)

    Böhringer, M.; Molinás-Mata, P.; Zegenhagen, J.

    1995-01-01

    At low coverages, Ga on Ge(111) induces a hexagonal, domain wall modulated (2 x 2) adatom phase, stable at room temperature, that is characterized in low energy electron diffraction (LEED) by split 1/2-order reflections. This pattern closely resembles the one observed for a phase of clean Ge(111......) appearing at temperatures above 300 degrees C (T > 300 degrees C phase). We report scanning tunneling microscopy, LEED, as well. as surface x-ray diffraction measurements on the Ga-induced room-temperature (RT) phase and compare it with a model for the T > 300 OC phase of clean Ge(111). RT deposition of Ga...... yields a metastable c(2 x 8) structure which upon annealing transforms to the hexagonal (2 x 2) one. The transition occurs at considerably lower temperatures compared to clean Ge(111) and is irreversible due to pinning of adatom domains at Ga-induced defects, preventing the reordering of the adatoms...

  1. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    Science.gov (United States)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  2. Magnetic Excitations in Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.

    2005-01-01

    Magnetic excitations in the cooperative ordered state in a weakly coupled Fe chains and Cu dimers compound Cu 2 Fe 2 Ge 4 O 13 is studied by thermal neutron scattering technique. We show that the low energy excitations up to 10 meV in wide q range are well described by spin wave theory of weakly coupled Fe chains. In higher energy range a narrow band excitation that can be associated with Cu dimers is observed at ℎω-24 meV. Both types of excitations can be understood by treating the weak coupling between Fe chains and Cu dimers at the level of Mean Field/Random Phase Approximation.

  3. Effect of oxygen on the surface morphology of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, F., E-mail: fethi.smaili@voila.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2009-08-01

    Since the effect of oxygen is very significant during the heat treatment of the thin films, we study the effect of this during the annealing of CuGaS{sub 2} thin films by two different types. In this study, CuGaS{sub 2} thin films were deposited by vacuum thermal evaporation of CuGaS{sub 2} powder on heated glass substrates at 200 deg. C submitted to a thermal gradient. The films are annealed in air and under nitrogen atmosphere at 400 deg. C for 2 h. In order to improve our understanding of the influence of oxygen during two annealing types on device performance, we have investigated our CuGaS{sub 2} material by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) and spectrophotometry. A correlation was established between the surface roughness, growth morphology and optical properties, of the annealed CuGaS{sub 2} thin films. It was found that annealing of CuGaS{sub 2} film in nitrogen atmosphere leads to a decrease of the mean grain size and to an evolution of a (112) preferred film orientation. Annealing in air results in the growth of oxide phases such as CuO and modifies the films structure and their surface morphology.

  4. Triple Junction InGaP/GaAs/Ge Solar Cell Optimization: The Design Parameters for a 36.2% Efficient Space Cell Using Silvaco ATLAS Modeling & Simulation

    OpenAIRE

    Tsutagawa, Michael H.; Michael, Sherif

    2009-01-01

    This paper presents the design parameters for a triple junction InGaP/GaAs/Ge space solar cell with a simulated maximum efficiency of 36.28% using Silvaco ATLAS Virtual Wafer Fabrication tool. Design parameters include the layer material, doping concentration, and thicknesses.

  5. Low temperature formation of CuIn{sub 1−x}Ga{sub x}Se{sub 2} solar cell absorbers by all printed multiple species nanoparticulate Se + Cu-In + Cu-Ga precursors

    Energy Technology Data Exchange (ETDEWEB)

    Möckel, Stefan A., E-mail: Stefan.A.Moeckel@FAU.de [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany); Wernicke, Tobias; Arzig, Matthias; Köder, Philipp [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany); Brandl, Marco [Chair for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3, 91058 Erlangen (Germany); Ahmad, Rameez; Distaso, Monica; Peukert, Wolfgang [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen (Germany); Hock, Rainer [Chair for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3, 91058 Erlangen (Germany); Wellmann, Peter J. [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany)

    2015-05-01

    In this work an all nanoparticulate precursor for application in Cu(In{sub 1−x}Ga{sub x})Se{sub 2} solar cell absorbers is presented. Binary Cu-In nanoparticles, Cu-Ga powder and elemental Se nanoparticles were mixed in dispersion and deposited on Mo-coated substrates. Research was focused on Cu(In{sub 1−x}Ga{sub x})Se{sub 2} layer formation kinetics, phase composition characterised by differential scanning calorimetry and in-situ X-ray diffraction (XRD). Furthermore phase composition and morphology were studied by ex-situ XRD, Raman spectroscopy and scanning electron microscopy. The results revealed a fast consumption of the precursor and the formation of CuInSe{sub 2} below 340 °C. Binary secondary phases were not observed at any temperature. - Highlights: • All printable precursor for CIGSe • Formation of Ga droplets • Complete consumption below 340 °C.

  6. Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells

    International Nuclear Information System (INIS)

    Cappelletti, M A; Cédola, A P; Peltzer y Blancá, E L

    2014-01-01

    The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 10 15 cm −2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values. (paper)

  7. Strain, doping, and disorder effects in GaAs/Ge/Si heterostructures: A Raman spectroscopy investigation

    Science.gov (United States)

    Mlayah, A.; Carles, R.; Leycuras, A.

    1992-01-01

    The present work is devoted to a Raman study of GaAs/Ge/Si heterostructures grown by the vapor-phase epitaxy technique. We first show that the GaAs epilayers are submitted to a biaxial tensile strain. The strain relaxation generates misfit dislocations and thus disorder effects which we analyze in terms of translational invariance loss and Raman selection rules violation. The first-order Raman spectra of annealed samples exhibit an unexpected broadband we identify as due to scattering by a coupled LO phonon-damped plasmon mode. This is corroborated by an accurate line-shape analysis which accounts for the recorded spectra and makes evident the presence of free carriers within the GaAs layers. Their density is estimated from the deduced plasmon frequency and also using a method we have presented in a previous work.

  8. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  9. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Richter, M.; Uccelli, E.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-01

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images

  10. One, step electrodeposition of Cu(Ga,In)Se2 thin films from aqueous solution

    Science.gov (United States)

    Fahoume, M.; Boudraine, H.; Aggour, M.; Chraïbi, F.; Ennaoui, A.; Delplancke, J. L.

    2005-03-01

    Cu(In,Ga)Se{2} (CIGS) semiconducting thin films films were prepared by electrodeposition from aqueous solution containing CuCl{2}, InCl{3}, GaCl{3} and H{2}SeO{3}. The deposited material was characterized by cyclic voltammetry. The compositional, structural studies were carried out using scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). X-ray analysis showed the formation of CuIn{1-x}GaxSe{2} films, in the optimum conditions, with preferred orientation in the (112) direction. We observed a shift of the peaks to higher angles with increasing x, accounting for a decrease of the lattice constants when In atoms are substituted by Ga atoms. Element mapping and scanline (EDX) indicate that the Cu, In, Ga, and Se elements are homogeneously distributed.

  11. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  12. Disposal of radioactive contaminated waste from Ga-68-PET. Calculation of a clearance level for Ge-68+; Entsorgung radioaktiv kontaminierter Reststoffe aus der Ga-68-PET. Berechnung eines Freigabewertes fuer Ge-68+

    Energy Technology Data Exchange (ETDEWEB)

    Solle, Alexander; Wanke, Carsten; Geworksi, Lilli [Medizinische Hochschule Hannover (Germany). Stabsstelle Strahlenschutz und Abt. Medizinische Physik

    2017-05-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68 minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined.

  13. Electronic, magnetic, elastic and thermodynamic properties of Cu{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sukriti [Department of Physics, Government Kamla Raja Girls Autonomous Post Graduate College, Gwalior 474001, Madhya Pradesh (India); Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India); Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India)

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu{sub 2}MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu{sub 2}MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young’s moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu{sub 2}MnGa as ductile. Cu{sub 2}MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu{sub 2}MnGa. - Highlights: • It is the first attempt to predict a variety of crystal properties of Cu{sub 2}MnGa. • Cu{sub 2}MnGa shows magnetism and hence can prove to be important in modern technology. • Cu{sub 2}MnGa is ductile and hence can attract attention of scientists and technologists.

  14. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of Ge addition on mechanical properties and fracture behavior of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Gholamipour, R.; Seyedein, S.H.

    2009-01-01

    Effect of the addition of a small amount of Ge on mechanical properties and fracture behavior of Cu 50 Zr 43 Al 7 (at.%) bulk metallic glass were studied. The Cu 50 Zr 43 Al 7 alloy has a surprising glass-forming ability (GFA), and the glassy rods up to 4 mm in diameter can be formed. Partial addition of Ge causes the crystalline phases precipitate in the glassy matrix of (Cu 50 Zr 43 Al 7 ) 100-x Ge x (x = 0, 1, 2) rods with a diameter of 4 mm. In uniaxial compression, Cu 50 Zr 43 Al 7 bulk metallic glass exhibit high strength of 1692 MPa and very limited plasticity of 0.05%. When Ge increases from 0 to 2 at.%, the strength decreases, but plastic strain increases about 2.5%. Fracture surface and shear bands of samples were investigated by scanning electron microscopy (SEM).

  16. The contribution of valence unstable ytterbium states into kinetic properties of YbNi{sub 2-x}Ge{sub 2+x} and YbCu{sub 2-x}Si{sub 2+x}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhel, B.C. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine)]. E-mail: kuzhelb@org.lviv.net; Shcherba, I.D. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine); Institute of Techniques, Academy of Pedagogy, Podchorozych 2, 30-084, Krakow (Poland); Kravchenko, I.I. [Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611 (United States)]. E-mail: kravch@phys.ufl.edu

    2006-11-30

    The intermetalic YbNi{sub 2-x}Ge{sub 2+x} (-0.25>=x>=0.25) and YbCu{sub 2-x}Si{sub 2+x} (-0.20>=x>=0.20) alloy systems (CeGa{sub 2}Al{sub 2} -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:{delta}{rho}{sub Yb}(T)={rho}{sub exp}(T)-{rho}{sub YbCu{sub 2}Ge{sub 2}}(T)-{delta}{rho}{sub 4.2K},where {delta}{rho}{sub YbCu{sub 2}Ge{sub 2}}(T) is the temperature dependence of YbCu{sub 2}Ge{sub 2} electrical resistance, {delta}{rho}{sub 4.2}={rho}{sub 4.2}(exp)-{rho}{sub 4.2}(YbCu{sub 2}Ge{sub 2})

  17. The contribution of valence unstable ytterbium states into kinetic properties of YbNi2-xGe2+x and YbCu2-xSi2+x

    International Nuclear Information System (INIS)

    Kuzhel, B.C.; Shcherba, I.D.; Kravchenko, I.I.

    2006-01-01

    The intermetalic YbNi 2-x Ge 2+x (-0.25>=x>=0.25) and YbCu 2-x Si 2+x (-0.20>=x>=0.20) alloy systems (CeGa 2 Al 2 -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:Δρ Yb (T)=ρ exp (T)-ρ YbCu 2 Ge 2 (T)-Δρ 4.2K ,where Δρ YbCu 2 Ge 2 (T) is the temperature dependence of YbCu 2 Ge 2 electrical resistance, Δρ 4.2 =ρ 4.2 (exp)-ρ 4.2 (YbCu 2 Ge 2 )

  18. [Disposal of radioactive contaminated waste from Ga-68-PET - calculation of a clearance level for Ge-68].

    Science.gov (United States)

    Solle, Alexander; Wanke, Carsten; Geworski, Lilli

    2017-03-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined. Copyright © 2016. Published by Elsevier GmbH.

  19. Disposal of radioactive contaminated waste from Ga-68-PET. Calculation of a clearance level for Ge-68+

    International Nuclear Information System (INIS)

    Solle, Alexander; Wanke, Carsten; Geworksi, Lilli

    2017-01-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68 minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined.

  20. Reconstructed Jet Results in p + p, d + Au and Cu + Cu collisions at 200 GeV from PHENIX

    International Nuclear Information System (INIS)

    Perepelitsa, D.V.

    2013-01-01

    Jet reconstruction in heavy ion collisions at RHIC and the LHC is becoming a popular tool to explore medium effects including the energy loss and modified fragmentation of hard-scattered partons. In p + A and d + A collisions, reconstructed jets are important for evaluating cold nuclear matter effects such as the impact parameter dependence of nuclear parton distribution functions and initial state energy loss. We present current PHENIX results from p + p, d + Au, and Cu + Cu collisions at 200 GeV using the Gaussian filter and anti-k T algorithms. The systematic study of direct jet reconstruction across a variety of collisions systems at PHENIX will help to tell a coherent story of jet physics at RHIC

  1. Photoluminescence of highly compensated GaAs doped with high concentration of Ge

    Science.gov (United States)

    Watanabe, Masaru; Watanabe, Akira; Suezawa, Masashi

    1999-12-01

    We have studied the photoluminescence (PL) properties of Ge-doped GaAs crystals to confirm the validity of a theory developed by Shklovskii and Efros to explain the donor-acceptor pair (DAP) recombination in potential fluctuation. GaAs crystals doped with Ge of various concentrations were grown by a liquid-encapsulated Czochralski method. They were homogenized by annealing at 1200°C for 20 h under the optimum As vapor pressure. Both quasi-continuous and time-resolved PL spectra were measured at 4.2 K. The quasi-continuous PL spectra showed that the peak position shifted to lower energy as the Ge concentration increased, which was consistent with the Shklovskii and Efros's theory. Under very strong excitation in time-resolved measurements, the exciton peak appeared within short periods after excitation and then the peak shifted to that of DAP recombination. This clearly showed that the potential fluctuation disappeared under strong excitation and then recovered as the recombination proceeded.

  2. Two concepts of introducing thin-film superconductivity in Ge and Si by use of Ga-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Skrotzki, Richard [Dresden High Magnetic Field Laboratory (HLD) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Department of Chemistry and Food Chemistry, TU Dresden (Germany); Herrmannsdoerfer, Thomas; Fiedler, Jan; Heera, Viton; Voelskow, Matthias; Muecklich, Arndt; Schmidt, Bernd; Skorupa, Wolfgang; Helm, Manfred; Wosnitza, Joachim [Dresden High Magnetic Field Laboratory (HLD) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2012-07-01

    We report on two unconventional routes of embedding superconducting nanolayers in a semiconducting environment. Ion implantation and subsequent annealing have been used for preparation of superconducting thin-films of Ga-doped germanium (Ge:Ga) as well as 10 nm thin amorphous Ga-rich layers in silicon (Si:Ga). Structural investigations by means of XTEM, EDX, RBS/C, and SIMS have been performed in addition to low-temperature electrical transport and magnetization measurements. Regarding Ge:Ga, we unravel the evolution of T{sub c} with charge-carrier concentration while for Si:Ga recently implemented microstructuring renders critical-current densities or more than 50 kA/cm{sup 2}. Combined with a superconducting onset at around 10 K, this calls for on-chip application in novel heterostructured devices.

  3. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Meduňa, M.; Salvalaglio, M.; Miglio, L.; Isa, F.; Barthazy Meier, E.; Müller, E.; Isella, G.

    2016-01-01

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images

  4. High-aspect-ratio and high-flatness Cu3(SiGe) nanoplatelets prepared by chemical vapor deposition.

    Science.gov (United States)

    Klementová, Mariana; Palatinus, Lukás; Novotný, Filip; Fajgar, Radek; Subrt, Jan; Drínek, Vladislav

    2013-06-01

    Cu3(SiGe) nanoplatelets were synthesized by low-pressure chemical vapor deposition of a SiH3C2H5/Ge2(CH3)6 mixture on a Cu-substrate at 500 degrees C, total pressure of 110-115 Pa, and Ge/Si molar ratio of 22. The nanoplatelets with composition Cu76Si15Ge12 are formed by the 4'-phase, and they are flattened perpendicular to the [001] direction. Their lateral dimensions reach several tens of micrometers in size, but they are only about 50 nm thick. Their surface is extremely flat, with measured root mean square roughness R(q) below 0.2 nm. The nanoplatelets grow via the non-catalytic vapor-solid mechanism and surface growth. In addition, nanowires and nanorods of various Cu-Si-Ge alloys were also obtained depending on the experimental conditions. Morphology of the resulting Cu-Si-Ge nanoobjects is very sensitive to the experimental parameters. The formation of nanoplatelets is associated with increased amount of Ge in the alloy.

  5. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  6. Fabrication of PureGaB Ge-on-Si photodiodes for well-controlled 100-pA-level dark currents

    NARCIS (Netherlands)

    Sammak, A.; Aminian, M.; Qi, L.; De Boer, W.B.; Charbon, E.; Nanver, L.K.

    2014-01-01

    The selective epitaxial growth of Ge-on-Si followed by in-situ deposition of a nm-thin Ga/B layer stack (PureGaB) has previously been shown to be a robust CMOS-compatible process for fabrication of Ge-on-Si photodiodes. In this paper, strategies to improve the control and reproducibility of PureGaB

  7. Development of a nano-zirconia based {sup 68}Ge/{sup 68}Ga generator for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Rubel [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Shukla, Rakesh [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Ram, Ramu [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Tyagi, Avesh Kumar [Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Dash, Ashutosh, E-mail: adash@barc.gov.i [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Venkatesh, Meera [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2011-05-15

    Introduction: Most of the commercially available {sup 68}Ge/{sup 68}Ga generator systems are not optimally designed for direct applications in a clinical context. We have developed a nano-zirconia based {sup 68}Ge/{sup 68}Ga generator system for accessing {sup 68}Ga amenable for the preparation of radiopharmaceuticals. Methods: Nano-zirconia was synthesized by the in situ reaction of zirconyl chloride with ammonium hydroxide in alkaline medium. The physical characteristics of the material were studied by various analytical techniques. A 740 MBq (20 mCi) {sup 68}Ge/{sup 68}Ga generator was developed using this sorbent and its performance was evaluated for a period of 1 year. The suitability of {sup 68}Ga for labeling biomolecules was ascertained by labeling DOTA-TATE with {sup 68}Ga. Results: The material synthesized was nanocrystalline with average particle size of {approx}7 nm, pore-size of {approx}4 A and a high surface area of 340{+-}10 m{sup 2} g{sup -1}. {sup 68}Ga could be regularly eluted from this generator in 0.01N HCl medium with an overall radiochemical yield >80% and with high radionuclidic (<10{sup -5}% of {sup 68}Ge impurity) and chemical purity (<0.1 ppm of Zr, Fe and Mn ions). The compatibility of the product for preparation of {sup 68}Ga-labeled DOTA-TATE under the optimized reaction conditions was found to be satisfactory in terms of high labeling yields (>99%). The generator gave a consistent performance with respect to the elution yield and purity of {sup 68}Ga over a period of 1 year. Conclusions: The feasibility of preparing an efficient {sup 68}Ge/{sup 68}Ga generator which can directly be used for biomedical applications has been demonstrated.

  8. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  9. Defining the Thermal Stability of Ba8Ga16Ge30 and its Future in Thermoelectrics

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    The majority of research on the auspicious n/p-Ba8Ga16-xGe30+x (BGG) Type-I thermoelectric clathrates has been focused on property measurements at low temperature. High temperature property measurements have also been reported for BGG, although they have not yet been fully explained. Therefore...... to evaluate the underlying chemistry of the anomalies seen in thermoelectric property measurements. Using X-ray diffraction and DTA-TG, we have discovered that BGG is not chemically stable at high temperatures over a range of thermal treatment periods. Our variable temperature synchrotron XRD measurements...... and longer term annealing experiments reveal that Ge evolution is the first indicator of BGG decomposition. This presentation summarizes the results from these research activities and highlight that the slow decomposition kinetics of BGG have been overlooked on the timescales typically used...

  10. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se{sub 2} for solar cells applications: Microstructure and Ga in-depth alloying

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@helmholtz-berlin.de [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Izquierdo-Roca, V. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Eicke, A. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Industriestrasse 6, 70565 Stuttgart (Germany); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Perez-Rodriguez, A. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Morante, J.R. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain)

    2010-05-15

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se{sub 2} (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  11. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    Science.gov (United States)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  12. Technology computer aided design for Si, SiGe and GaAs integrated circuits

    CERN Document Server

    Armstrong, GA

    2007-01-01

    The first book to deal with a broad spectrum of process and device design, and modelling issues related to semiconductor devices, bridging the gap between device modelling and process design using TCAD. Examples for types of Si-, SiGe-, GaAs- and InP-based heterostructure MOS and bipolar transistors are compared with experimental data from state-of-the-art devices. With various aspects of silicon heterostructures, this book presents a comprehensive perspective of emerging fields and covers topics ranging from materials to fabrication, devices, modelling and applications. Aimed at research-and-

  13. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  14. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  15. Effect of the ITO substrate on the growth of Cu(In,Ga)Se{sub 2}, CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films by flash evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, E J; Merino, J M; Leon, M [Department of Applied Physics, Universidad Autonoma de Madrid (UAM), Cantoblanco, 28049 Madrid (Spain); Trigo, J F; Guillen, C [Department of Energy, CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Ramiro, J, E-mail: josue.friedrich@uam.e [Department of Theory of Signal and Communications, URJC, Campus Fuenlabrada, 122, 28943 Madrid (Spain)

    2009-04-21

    Structural, compositional, electrical and morphological properties of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (x = 0.15, 0.30) and ordered defect compounds (ODC) CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8}, CuIn{sub 3}Se{sub 5} thin films grown by flash evaporation onto soda lime glass substrates (SLG) and ITO/SLG have been studied. Polycrystalline thin films with accentuated preferential orientation in the (1 1 2) plane of the tetragonal structure have been obtained. Annealing in Se atmosphere improves the structural, morphological, electrical and optical properties of the evaporated films, but provokes the formation of a CuIn{sub x}Se{sub y} phase on the surface of the films. Band gap values ranging between 1.01 and 1.21 eV have been obtained for the as-grown CuIn{sub 1-x}Ga{sub x}Se{sub 2} thin films and between 1.09 and 2.01 eV for the CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films.

  16. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Darin [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Han, Sang M., E-mail: meister@unm.ed [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-08-31

    subsequent growth morphology of GaAs deposited by metal-organic chemical vapor deposition. Room temperature photoluminescence shows that films of GaAs grown on Ge-on-oxidized Si have an intensity that is 20 to 25% compared to the intensity from GaAs grown on commercial Ge or GaAs substrates. Cathodoluminescence shows that nonradiative defects occur in the GaAs that spatially correspond to the stacking faults terminating at the Ge surface. The exact nature of these nonradiative defects in the GaAs is unknown, however, GaAs grown on annealed samples of Ge-on-oxidized Si, whereby annealing removes the stacking faults, have photoluminescence intensity that is comparable to GaAs grown on a GaAs substrate.

  17. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    International Nuclear Information System (INIS)

    Leonhardt, Darin; Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S.; Han, Sang M.

    2010-01-01

    We have demonstrated the scalability of a process previously dubbed as Ge 'touchdown' on Si to substantially reduce threading dislocations below 10 7 /cm 2 in a Ge film grown on a 2 inch-diameter chemically oxidized Si substrate. This study also elucidates the overall mechanism of the touchdown process. The 1.4 nm thick chemical oxide is first formed by immersing Si substrates in a solution of H 2 O 2 and H 2 SO 4 . Subsequent exposure to Ge flux creates 3 to 7 nm-diameter voids in the oxide at a density greater than 10 11 /cm 2 . Comparison of data taken from many previous studies and ours shows an exponential dependence between oxide thickness and inverse temperature of void formation. Additionally, exposure to a Ge or Si atom flux decreases the temperature at which voids begin to form in the oxide. These results strongly suggest that Ge actively participates in the reaction with SiO 2 in the void formation process. Once voids are created in the oxide under a Ge flux, Ge islands selectively nucleate within the void openings on the newly exposed Si. Island nucleation and growth then compete with the void growth reaction. At substrate temperatures between 823 and 1053 K, nanometer size Ge islands that nucleate within the voids continue to grow and coalesce into a continuous film over the remaining oxide. Coalescence of the Ge islands is believed to result in the creation of stacking faults in the Ge film at a density of 5 x 10 7 /cm 2 . Additionally, coalescence results in films of 3 μm thickness having a root-mean-square roughness of 8 to 10 nm. We have found that polishing the films with dilute H 2 O 2 results in roughness values below 0.5 nm. However, stacking faults originating at the Ge-SiO 2 interface and terminating at the Ge surface are polished at a slightly reduced rate, and show up as 1 to 2 nm raised lines on the polished Ge surface. These lines are then transferred into the subsequent growth morphology of GaAs deposited by metal-organic chemical vapor

  18. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    Science.gov (United States)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  19. Investigation of CuGaSe2/CuInSe2 double heterojunction interfaces grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Sathiabama Thiru

    2015-02-01

    Full Text Available In-situ reflection high-energy electron diffraction (RHEED observation and X-ray diffraction measurements were performed on heterojunction interfaces of CuGaSe2/CnInSe2/CuGaSe2 grown on GaAs (001 using migration-enhanced epitaxy. The streaky RHEED pattern and persistent RHEED intensity oscillations caused by the alternate deposition of migration-enhanced epitaxy sequence are observed and the growths of smooth surfaces are confirmed. RHEED observation results also confirmed constituent material interdiffusion at the heterointerface. Cross-sectional transmission electron microscopy showed a flat and abrupt heterointerface when the substrate temperature is as low as 400 °C. These have been confirmed even by X-ray diffraction and photoluminescence measurements.

  20. Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses

    International Nuclear Information System (INIS)

    Guo Haitao; Zhai Yanbo; Tao Haizheng; Dong Guoping; Zhao Xiujian

    2007-01-01

    Chalcohalide glasses in the GeS 2 -Ga 2 S 3 -CdI 2 pseudo-ternary system were prepared by 3-5N pure raw materials. Structures of these glasses were studied with Raman spectroscopy. Several properties, namely, glass transition temperature, optical transmission, density and microhardness have also been measured. Based on the Raman spectra, it can be speculated that the glass network is mainly constituted by [GeS 4 ], [GaS 4 ] tetrahedra with some mixed-anion tetrahedra [S 3 GeI], [S 2 GeI 2 ] and [S 3 GaI], which are interconnected by bridging sulfurs and/or short S-S chains. In the glasses with little CdI 2 , some part of Ge(Ga) exists in the forms of the ethane-like units [S 3 (Ga)Ge-Ge(Ga)S 3 ] because of the lack of sulfur, but the amount of these units will decrease with the addition of CdI 2 . Additionally, in the glasses with high content of CdI 2 , some [CdI n ] structural units (s.u.) will be formed and dispersed homogenously in glass network. These novel glasses have relatively high glass transition temperatures (T g ranges from 512 to 670 K), good thermal stabilities (the maximum of difference between T x and T g is 185 K) and UV-vis optical transmission, large densities (d ranges from 3.162 to 3.863 g/cm 3 ) and microhardness (large than 150 kg/mm 2 generally). All properties evolutions follow the structural variations

  1. Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses

    International Nuclear Information System (INIS)

    Tang Gao; Liu Cunming; Luo Lan; Chen Wei

    2010-01-01

    The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.

  2. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    Science.gov (United States)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  3. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  4. A one-dimensional Fickian model to predict the Ga depth profiles in three-stage Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Alvarez, H., E-mail: humberto.rodriguez@helmholtz-berlin.de [International Iberian Nanotechnology Laboratory, Avenida Mestre Jose Veiga s/n, 4715-330 Braga (Portugal); Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Mainz, R. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Sadewasser, S. [International Iberian Nanotechnology Laboratory, Avenida Mestre Jose Veiga s/n, 4715-330 Braga (Portugal)

    2014-05-28

    We present a one-dimensional Fickian model that predicts the formation of a double Ga gradient during the fabrication of Cu(In,Ga)Se{sub 2} thin films by three-stage thermal co-evaporation. The model is based on chemical reaction equations, structural data, and effective Ga diffusivities. In the model, the Cu(In,Ga)Se{sub 2} surface is depleted from Ga during the deposition of Cu-Se in the second deposition stage, leading to an accumulation of Ga near the back contact. During the third deposition stage, where In-Ga-Se is deposited at the surface, the atomic fluxes within the growing layer are inverted. This results in the formation of a double Ga gradient within the Cu(In,Ga)Se{sub 2} layer and reproduces experimentally observed Ga distributions. The final shape of the Ga depth profile strongly depends on the temperatures, times and deposition rates used. The model is used to evaluate possible paths to flatten the marked Ga depth profile that is obtained when depositing at low substrate temperatures. We conclude that inserting Ga during the second deposition stage is an effective way to achieve this.

  5. A one-dimensional Fickian model to predict the Ga depth profiles in three-stage Cu(In,Ga)Se2

    International Nuclear Information System (INIS)

    Rodriguez-Alvarez, H.; Mainz, R.; Sadewasser, S.

    2014-01-01

    We present a one-dimensional Fickian model that predicts the formation of a double Ga gradient during the fabrication of Cu(In,Ga)Se 2 thin films by three-stage thermal co-evaporation. The model is based on chemical reaction equations, structural data, and effective Ga diffusivities. In the model, the Cu(In,Ga)Se 2 surface is depleted from Ga during the deposition of Cu-Se in the second deposition stage, leading to an accumulation of Ga near the back contact. During the third deposition stage, where In-Ga-Se is deposited at the surface, the atomic fluxes within the growing layer are inverted. This results in the formation of a double Ga gradient within the Cu(In,Ga)Se 2 layer and reproduces experimentally observed Ga distributions. The final shape of the Ga depth profile strongly depends on the temperatures, times and deposition rates used. The model is used to evaluate possible paths to flatten the marked Ga depth profile that is obtained when depositing at low substrate temperatures. We conclude that inserting Ga during the second deposition stage is an effective way to achieve this.

  6. Investigation of Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2}/CdS interfaces using hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ümsür, B., E-mail: buenyamin.uemsuer@helmholtz-berlin.de [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Calvet, W.; Höpfner, B.; Steigert, A.; Lauermann, I.; Gorgoi, M.; Prietzel, K.; Navirian, H.A.; Kaufmann, C.A.; Unold, T. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, M. Ch. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin (Germany)

    2015-05-01

    Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2} (CIGSe) absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe/CdS interface accessible by hard X-ray photo-emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures (200 °C, 300 °C and 400 °C). It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu-poor surface after the 400 °C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu-rich surface after the same treatment at 400 °C. - Highlights: • Cd diffusion into Cu(In,Ga)Se{sub 2} (CIGSe) absorber is investigated. • Cu-poor and Cu-rich CIGSe samples are compared. • Cd diffusion into CIGSe is found to be dependent on the surface composition of CIGSe.

  7. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    International Nuclear Information System (INIS)

    Mitrovic, B.; Schachinger, E.; Carbotte, J.P.

    1984-01-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon--coupling spectra α 2 F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α 2 F = CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ 0 /k/sub B/T/sub c/approx. =4.6, ΔC/γT/sub c/approx. =2.5--2.6, -T/sub c/[dH/sub c/(T)/dT]c/ H/sub c/(0)approx. =2.1, γ[T/sub c//H/sub c/(0)] 2 approx. =0.134, and positive D(t)'s with the maximum value around 0.02. For Nb 3 Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γapprox. =52 mJ/mol K 2 ). The same applies to V 3 Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔC/γT/sub c/, -T/sub c/[dH/sub c/(T)/dT]c/H/sub c/(0), γ[T/sub c//H/sub c/(0)] 2 , and experimental values for Nb 3 Al and Nb 3 Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α 2 F

  8. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    Science.gov (United States)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  9. Composition-dependent nanostructure of Cu(In,Ga)Se{sub 2} powders and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C.S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Kämmer, H.; Steinbach, T.; Gnauck, M. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Rissom, T.; Kaufmann, C.A.; Stephan, C. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Schorr, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)

    2015-05-01

    Atomic-scale structural parameters of Cu(In,Ga)Se{sub 2} powders and polycrystalline thin films were determined as a function of the In and Cu contents using X-ray absorption spectroscopy. No difference in the two sample types is observed for the average bond lengths demonstrating the strong tendency towards bond length conservation typical for tetrahedrally coordinated semiconductors. In contrast, the bond length variation is significantly smaller in the thin films than in the powders, particularly for Cu-poor material. This difference in the nanostructure is proposed to originate from differences in the preparation conditions, most prominently from the different history of Cu composition. - Highlights: • Cu(In,Ga)Se{sub 2} powders and thin films are studied with X-ray absorption spectroscopy. • Structural parameters are determined as a function of the In and Cu contents. • The element-specific average bond lengths are identical for powders and thin films. • The Ga-Se/In-Se bond length variation is smaller for thin films than for powders. • The differences are believed to stem from the different history of the Cu content.

  10. Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Aardaneh, K.; Walt, T.N. van der

    2006-01-01

    The target for the production of 68 Ge consists of a disc of gallium suboxide, Ga 2 O, with a 19 mm diameter. The suboxide was primarily prepared by repeatedly mixing metallic Ga and Ga 2 O 3 at 700 deg C. The target (2.4 g) was quite stable under a long-time irradiation with a 34 MeV proton beam at a current of ∼80 μA. The dissolution of the target was performed using 12M sulphuric acid solution, assisted with the dropwise addition of 30% H 2 O 2 solution, and took less than 4 hours. A solvent extraction method, using a 9M H 2 SO 4 - 0.3M HCl/CCl 4 system, was employed for the radiochemical separation of 68 Ge from Ga and Zn radionuclides, while 0.05M HCl was used for the back extraction of 68 Ge from the organic phase. The 68 Ge obtained in the dilute HCl was directly loaded onto a column containing either a hydrous tin dioxide or a crystalline tin dioxide, obtained by calcinations of the hydrous oxide at 450, 700, and 900 deg C. The calcinated hydrous tin dioxide at 900 deg C showed the highest crystallinity and highest 68 Ga elution yield and was selected for use in the generator. The 68 Ga elution from the column generator packed with 2 g of tin dioxide, using 3 ml of 1M HCl, and yielded an average of 65%. The breakthrough of 68 Ge was 6.1 x 10 -4 %. (author)

  11. 4-CM2 CuInGaSe2 based solar cells

    International Nuclear Information System (INIS)

    Devaney, W.E.; Stewart, J.M.; Chen, W.S.

    1990-01-01

    This paper reports that polycrystalline thin-film solar cells with the structure ZnO/CdZnS/CuInGaSe 2 have been fabricated with larger single cell areas than have been previously reported. A cell of area 4-cm 2 has been made with an Am1.5, 100 mW/cm 2 total area conversion efficiency of (11.1% 912.0% active area) and AMO conversion efficiency of 10.0% (10.9% active area). The CuInGaSe 2 layer had a gallium to indium ratio of 0.26:0.74 with a band gap of approximately 1.15 eV. The cells use an isolated tab design for the negative (grid) contact, demonstrating the ability to pattern the semiconductor layers. Such CuInGaSe 2 based cells may be suitable both for large area terrestrial applications and for single-junction space cell applications

  12. Inkjet printed Cu(In,Ga)S{sub 2} nanoparticles for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barbé, Jérémy, E-mail: jeremy.barbe@kaust.edu.sa; Eid, Jessica [King Abdullah University of Science and Technology, Solar and Photovoltaics Engineering Research Center (SPERC), Division of Physical Sciences and Engineering (Saudi Arabia); Ahlswede, Erik; Spiering, Stefanie; Powalla, Michael [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) (Germany); Agrawal, Rakesh [Purdue University, School of Chemical Engineering (United States); Del Gobbo, Silvano, E-mail: silvano.delgobbo@gmail.com [King Abdullah University of Science and Technology, Solar and Photovoltaics Engineering Research Center (SPERC), Division of Physical Sciences and Engineering (Saudi Arabia)

    2016-12-15

    Cu(In,Ga)Se{sub 2} (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S{sub 2} (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

  13. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

    KAUST Repository

    Barbe, Jeremy

    2016-12-13

    Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

  14. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  15. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    International Nuclear Information System (INIS)

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-01-01

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  16. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jahangeer [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States); Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States)

    2016-10-15

    Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.

  17. Defect chemistry in CuGaS2 thin films: A photoluminescence study

    International Nuclear Information System (INIS)

    Botha, J.R.; Branch, M.S.; Berndt, P.R.; Leitch, A.W.R.; Weber, J.

    2007-01-01

    In this paper, the radiative recombination in CuGaS 2 thin films, deposited by metalorganic vapour phase epitaxy (MOVPE), is studied by photoluminescence (PL) spectroscopy. From PL studies of several series of layers grown under various growth conditions, a clear picture emerges of the radiative emission dominating for Cu-rich and Ga-rich layers. For near-stoichiometric layers, weak excitonic recombination at ∼ 2.48 eV and a donor-acceptor line at ∼ 2.4 eV are observed in the low temperature PL spectra. In Cu-rich layers, a donor-acceptor band at ∼ 2.18 eV dominates, while a band at ∼ 2.25 eV dominates for slightly Ga-rich material. For Ga-rich layers, deviations from the ideal Cu/Ga ratio of more than a few percent strongly quenches the emission above 2 eV in favour of a very broad band at ∼ 1.8 eV. The PL response is discussed within the context of fluctuating potentials in compensated material and compared to available reports in literature

  18. J /ψ production at low pT in Au + Au and Cu + Cu collisions at √sNN =200 GeV with the STAR detector

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    The J /ψ pT spectrum and nuclear modification factor (RAA) are reported for pT<5GeV /c and |y|<1 from 0% to 60% central Au +Au and Cu +Cu collisions at √sNN =200GeV at STAR. A significant suppression of pT-integrated J /ψ production is observed in central Au +Au events. The Cu +Cu data are consistent with no suppression, although the precision is limited by the available statistics. RAA in Au +Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with pT. The data are compared to high-pT STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low pT are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

  19. Magnetic and transport behaviour in Pr3X(X=In,Sn,Ga,Ge,Ni,Co,Ru,Ir) systems

    International Nuclear Information System (INIS)

    Garde, C.S.; Ray, J.

    1998-01-01

    Magnetic and transport studies on Pr 3 X (X=In, Sn, Ga, Ge, Ni, Co, Ru, Ir) systems gave evidence for complex magnetic behaviour. All the systems, except X=Sn, exhibit ferromagnetic ordering. The X=Sn system exhibits antiferromagnetic ordering. For X=Ga and Sn, metamagnetic behaviour has been observed. Crystal field effects are found to play an important role in influencing magnetic behaviour. The strength of the crystal field term has also been estimated. (orig.)

  20. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  1. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  2. Magnetic properties and low-temperature large magnetocaloric effect in the antiferromagnetic HoCu{sub 0.33}Ge{sub 2} and ErCu{sub 0.25}Ge{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Xu, Z.Y., E-mail: zhyxu@nim.ac.cn [National Institute of Metrology, Beijing 100029 (China); Wang, L.C. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dong, Q.Y.; Zhang, Y. [Department of Physics, Capital Normal University, Beijing 100048 (China); Liu, F.H. [National Space Science Center, Beijing 100190 (China); Mo, Z.J. [School of material Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Niu, E. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fu, C.L.; Cai, W.; Chen, G.; Deng, X.L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2015-05-15

    Highlights: • Antiferromagnetic material RCu{sub x}Ge{sub 2} of high purity was prepared. • Large MCE as −10.2 J/kg K and −10.5 J/kg K for RCu{sub x}Ge{sub 2} (Ho, Er) was obtained for field change of 0–50 kOe. • The RCu{sub x}Ge{sub 2} compounds with variable x had different transition temperature which made them suitable for ‘table-like’ magnetocaloric refrigerant. - Abstract: Magnetic properties and magnetocaloric effect (MCE) of HoCu{sub 0.33}Ge{sub 2} and ErCu{sub 0.25}Ge{sub 2} compounds have been investigated. The compounds were determined to be antiferromagnetic with the Néel temperatures T{sub N} = 9 K and 3.9 K, respectively. The critical transition magnetic fields for the metamagnetic transition from antiferromagnetic to ferromagnetic state below T{sub N} were determined to be 10 kOe for HoCu{sub 0.33}Ge{sub 2} at 5 K and 6 kOe for ErCu{sub 0.25}Ge{sub 2} at 2 K. Large MCE with the maximal values of magnetic entropy changes (ΔS{sub M}) as −10.2 J/kg K at 10.5 K were found in HoCu{sub 0.33}Ge{sub 2} for field changes of 0–70 kOe and −10.5 J/kg K at 5.5 K in ErCu{sub 0.25}Ge{sub 2} for field changes of 0–50 kOe, respectively. The large ΔS{sub M} around T{sub N} as well as no hysteresis loss made RCu{sub x}Ge{sub 2} competitive candidates as low temperature magnetic refrigerant.

  3. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  4. Lattice parameters values and phase diagram for the Cu2Zn1-zFezGeSe4 alloy system

    International Nuclear Information System (INIS)

    Caldera, D.; Quintero, M.; Morocoima, M.; Quintero, E.; Grima, P.; Marchan, N.; Moreno, E.; Bocaranda, P.; Delgado, G.E.; Mora, A.E.; Briceno, J.M.; Fernandez, J.L.

    2008-01-01

    X-ray powder diffraction and differential thermal analysis (DTA) measurements were made on polycrystalline samples of the Cu 2 Zn 1-z Fe z GeSe 4 alloy system. The diffraction patterns were used to show the equilibrium conditions and to estimate crystalline parameter values. It was found that, at room temperature, a single phase solid solution with the tetragonal stannite α structure (I4-bar2m) occurs across the whole composition range. The DTA thermograms were used to construct the phase diagram of the Cu 2 Zn 1-z Fe z GeSe 4 alloy system. It was confirmed that the Cu 2 ZnGeSe 4 compound melts incongruently. It was observed that undercooling effects occur for samples with z > 0.9

  5. The natural catalytic function of CuGE glucuronoyl esterase in hydrolysis of genuine lignin-carbohydrate complexes from birch

    DEFF Research Database (Denmark)

    Mosbech, Caroline; Holck, Jesper; Meyer, Anne S.

    2018-01-01

    Glucuronoyl esterases belong to carbohydrate esterase family 15 and catalyze de-esterification. Their natural function is presumed to be cleavage of ester linkages in lignin-carbohydrate complexes particularly those linking lignin and glucuronoyl residues in xylans in hardwood. Here, we show...... for the first time a detailed product profile of aldouronic acids released from birchwood lignin by a glucuronoyl esterase from the white-rot fungus Cerrena unicolor (CuGE). CuGE releases substrate for GH10 endo-xylanase which results in significantly increased product release compared to the action of endo......-xylanase alone. CuGE also releases neutral xylo-oligosaccharides that can be ascribed to the enzymes feruloyl esterase side activity as demonstrated by release of ferulic acid from insoluble wheat arabinoxylan. The data verify the enzyme's unique ability to catalyze removal of all glucuronoxylan associated...

  6. Microstructural evolution of ternary Ag33Cu42Ge25 eutectic alloy inside ultrasonic field

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2014-12-01

    Full Text Available Ultrasonic field with a frequency of 20 kHz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W, the primary ε2 phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary (Ag+ε2 eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary (Ag+Ge+ε2 eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary (Ag+Ge+ε2 eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2 phase. The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.

  7. Luminescence investigation of Cu(In,Ga)Se{sub 2}solar cells with different Ga-contents grown in a three-stage-process on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Kristin; Mueller, Mathias; Hempel, Thomas; Bertram, Frank; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Abou-Ras, Daniel; Rissom, Thorsten; Unold, Thomas; Schock, Hans-Werner [Helmholtz-Zentrum Berlin for Materials and Energy (Germany)

    2011-07-01

    A fundamental advantage of Cu(In,Ga)Se{sub 2} (CIGS) alloys as absorber materials in thin-film solar cells is their direct band gap energies which can be varied between 1.04 eV (CuInSe{sub 2}) and 1.68 eV (CuGaSe{sub 2}). Photoluminescence (PL) spectra of complete CIGS solar cells with a systematic variation of the Ga-content in the absorber layer will be presented. The CIGS cells investigated were grown on a Mo back contact sputtered on soda lime glass and have a Ga-concentration ranging over the entire range from CuInSe{sub 2} to CuGaSe{sub 2}. Samples with Ga-contents between 100 % and 33 % show two broad luminescence bands. In contrast, CuInSe{sub 2} exhibits only one broad luminescence band. Each band is composed of two or three different transitions. Varying excitation density over four orders of magnitude results for samples with Ga-content of 0 % and 33 % in a blueshift of the main peak with increasing excitation density. For higher Ga-concentrations, first a blue- and then a redshift of the dominating peak with increasing excitation density is visible. The temperature dependence of the PL spectra is investigated going from 4 K to 300 K.

  8. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    Science.gov (United States)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  9. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  10. Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge

    International Nuclear Information System (INIS)

    Victoria Castro Riglos, M.; Taquire de la Cruz, M.; Tolley, Alfredo

    2011-01-01

    An extremely fast hardening response with no reduction in peak hardness was obtained in Al-Cu with minor additions of Si and Ge by 8% plastic deformation before artificial aging. The mechanism for the accelerated hardening was determined by detailed characterization with transmission electron microscopy. Plastic deformation was found to enhance the nucleation rate of Si-Ge precipitates, resulting in a higher volume density. Such precipitates catalyzed the formation of θ' precipitates that are responsible for hardening.

  11. K vacancy production in collisions of 63 MeV Cu ions with Ge and Ag atoms

    International Nuclear Information System (INIS)

    Frank, W.; Jaracz, R.; Kaun, K.-H.; Rudiger, J.; Stachura, Z.

    1980-01-01

    The mechanism of K-shell vacancy production is studied in t in an X-ray-scattered ion coincidence experiment with 1 MeV/a.m.u. 63 Cu 4+ ion incident onto natural Ge and Ag targets. The impact parameter dependent K-shell vacancy production probability measured in the experiment is interpreted in terms of the rotational coupling and the statistical models. The dependence of the vacancy sharing process in the Cu-Ge collision system on the impact parameter is obtained and compared with the predictions of the Briggs-Myerhof-Demkov model

  12. Optics of the CuGaSe{sub 2} solar cell for highly efficient tandem concepts; Optik der CuGaSe{sub 2}-Solarzelle fuer hocheffiziente Tandemkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martina

    2010-01-25

    A principle aim of solar cell research lies in optimizing the exploitation of the incident solar light. Yet, for single junction solar cells there exists an efficiency limit as described by Shockley and Queisser. The only concept realized so far to overcome this threshold is - apart from concentration - the multijunction solar cell. However, any kind of multijunction design poses new challenges: The upper wide-gap solar cell (top cell) needs to show efficient light absorption in the short-wavelength region. At the same time sufficient transmission for long-wavelength light is required which then needs to be absorbed effectively by the low-gap bottom cell. In tandem solar cells a proper light management in top and bottom solar cell is of great importance. This work focuses on chalcopyrite-based tandem solar cells. For the wide-bandgap IR-transparent ZnO:Al/i-ZnO/CdS/CuGaSe{sub 2}/SnO{sub 2}:F/glass solar cell an optical model has been established. Starting from modeling each of the individual layers building the stack the optical behavior of the complete thin film system of the top cell could be described. Carefully selected layer combinations and comparison of experimental and calculated data allowed for the attribution of transmission losses to the distinct material properties. Defects in the absorber are of crucial importance but also free carrier absorption in the window and in the transparent back contact contribute significantly to optical losses. The quantification of the losses was achieved by calculating the effects of reduced top cell transmission on the photo current of a simplified bottom cell. An extension of the optical model allowed to calculate the effective absorption in the individual layers and to determine reflection losses at the interfaces. From these results an optimized top cell stack was derived which is characterized by A) simulation of the monolithic integration, B) reduced layer thicknesses wherever possible from the electrical point of

  13. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Science.gov (United States)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  14. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Directory of Open Access Journals (Sweden)

    Wei-Fu Wang

    2018-01-01

    Full Text Available Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3 along with diffused germanium donors whose concentration (>>1018/cm3 determined by electro-chemical capacitance-voltage (ECV profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  15. Stability of Cu(In,Ga)Se2 solar cells: A literature review

    NARCIS (Netherlands)

    Theelen, M.; Daume, F.

    2016-01-01

    As Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) technology matures to production on an industrial scale, its long-term stability becomes increasingly important: The electric yield and thus the revenue of a PV system depend on both the initial conversion efficiency as well as its development over time.

  16. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    Science.gov (United States)

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  17. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures

    International Nuclear Information System (INIS)

    Nogales, E; Hidalgo, P; Mendez, B; Piqueras, J; Lorenz, K; Alves, E

    2011-01-01

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga 2 O 3 and GeO 2 structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the 5 D 0 - 7 F 2 Eu 3+ intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga 2 O 3 , which is assigned to the lattice recovery. Gd 3+ as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd 3+ is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd 3+ 6 P 7/2 - 8 S 7/2 intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  18. Photoconductive properties of organic-inorganic Ag/p-CuPc/n-GaAs/Ag cell

    Energy Technology Data Exchange (ETDEWEB)

    Karimov, Khasan Sanginovich; Saeed, Muhammad Tariq; Khalid, Fazal Ahmad [GIK Institute of Engineering Sciences and Technology, Top 23640, Swabi, Khyber Pakhtunkhwa (Pakistan); Karieva, Zioda Mirzoevna, E-mail: tariqchani@hotmail.com [Tajik Technical University, Rajabov St.10, Dushanbe, 734000 (Tajikistan)

    2011-07-15

    A thin film of copper phthalocyanine (CuPc), a p-type semiconductor, was deposited by thermal evaporation in vacuum on an n-type gallium arsenide (GaAs) single-crystal semiconductor substrate. Then semi-transparent Ag thin film was deposited onto the CuPc film also by thermal evaporation to fabricate the Ag/p-CuPc/n-GaAs/Ag cell. Photoconduction of the cell was measured in photoresistive and photodiode modes of operation. It was observed that with an increase in illumination, the photoresistance decreased in reverse bias while it increased in forward bias. The photocurrent was increased in reverse bias operation. In forward bias operation with an increase in illumination, the photocurrent showed a different behavior depending on the voltage applied. (semiconductor physics)

  19. Electronic structure, defect formation energy, and photovoltaic properties of wurtzite-derived CuGaO2

    Science.gov (United States)

    Okumura, H.; Sato, K.; Kakeshita, T.

    2018-04-01

    Wurtzite-derived CuGaO2 (β-CuGaO2) is a recently synthesized oxide and expected as a candidate material for photovoltaic solar cells. In this paper, we propose computational material design concerning β-CuGaO2 based on the first-principles calculations. We perform hybrid calculations by using the VASP code. It is predicted that β-CuGaO2 has a direct bandgap (Eg = 1.56 eV), which is nearly optimal for high efficiency solar cells. The calculated formation energy of Cu vacancy (VCu) is very small and can be negative depending on the Fermi level. This result reasonably explains the observed p-type conduction in this material. As for the n-type doping, Cd doping could be suitable; however, VCu formation needs to be repressed in order to realize n-type β-CuGaO2. It is also shown that halogen impurities are not suitable for n-type β-CuGaO2 because of their large formation energy. Band alignment between β-CuGaO2 and ZnO is predicted to be type-II, leading to a suggestion of photovoltaic device based on the heterojunction.

  20. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  1. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-01-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm 2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  2. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Nam [Pukyung National University, Pusan (Korea, Republic of); Noh, Sam Kyu [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of)

    2014-05-15

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J{sub sc}. The maximum J{sub sc}, which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J{sub sc} value of 13.92 mA/cm{sup 2} is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  3. Effects of a GaSb buffer layer on an InGaAs overlayer grown on Ge(111) substrates: Strain, twin generation, and surface roughness

    Science.gov (United States)

    Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.

    2018-04-01

    InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.

  4. Applications of a Ga-68/Ge-68 generator system to brain imaging using a multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Chu, D.; Perez-Mendez, V.

    1976-01-01

    A Ge-68/Ga-68 generator system has been applied to brain imaging in conjunction with a novel coincidence detection based positron camera. The camera consists of two opposed large area multiwire proportional chamber (MWPC) detectors interfaced to multichannel lead converter plates. Event localization is effected of delay lines. Ten patients with brain lesions have been studied 1-2 hours after the administration of Ga-68 formulated as DTPA. The images were compared to conventional brain scans, and to x-ray section scans (CAT). The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy compared to conventional brain scans. Central necrosis of lesions observed in positron images, but not in the conventional scans has been confirmed in CAT. The economy of MWPC positron cameras combined with the ideal characteristics of the Ge-68/Ga-68 generator promise a cost efficient imaging system for the future

  5. Lattice parameter values and phase transitions for the Cu2Cd1-zMn zGeSe4 and Cu2Cd1-zFe zGeSe4 alloys

    International Nuclear Information System (INIS)

    Quintero, E.; Tovar, R.; Quintero, M.; Delgado, G.E.; Morocoima, M.; Caldera, D.; Ruiz, J.; Mora, A.E.; Briceno, M.; Fernandez, J.L.

    2007-01-01

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu 2 Cd 1-z Mn z GeSe 4 and Cu 2 Cd 1-z Fe z GeSe 4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. The effect of the annealing temperature and cooling rate to room temperature are discussed. For the Cu 2 Cd 1-z Fe z GeSe 4 system, only two single solid phase fields, the tetragonal stannite α and the wurtz-stannite δ structures were found to occur in the diagram. For the Cu 2 Cd 1-z Mn z GeSe 4 system, in addition to the tetragonal stannite α and the wurtz-stannite δ phases, MnSe was found to exist in the diagram. The DTA experiments showed that the cooling curves for both systems exhibited effects of undercooling

  6. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2

    International Nuclear Information System (INIS)

    Werner, Juergen H.; Mattheis, Julian; Rau, Uwe

    2005-01-01

    Small-area Cu(In,Ga)Se 2 thin film solar cells have reached more than 19% efficiencies. Compared to other polycrystalline materials this efficiency value is remarkable. Nevertheless, the 19% for Cu(In,Ga)Se 2 range more than 6% (absolute) below the world's best single-crystalline Si cells and almost 14% below the upper theoretical limit of 33% for an ideal black body cell with infinitely large mobility and radiative recombination only. About 4% out of the 14% are of optical nature, additional 3% stem from the limited mobility/diffusion length and from band gap fluctuations with a standard deviation no. sigmano. g no. approxno. 50 meV due to spatial variations of composition and stoichiometry of the quaternary compound Cu(In,Ga)Se 2 . Thus, about 26% efficiency would be possible if there were only these band gap fluctuations. Additional, voltage-dependent electrostatic potential fluctuations push down the efficiency further to 19%: The polycrystalline Cu(In,Ga)Se 2 which is unavoidably structurally inhomogeneous due to dislocations, grain boundaries, point defects, etc. is also electrostatically inhomogeneous because of charged defects. Electrostatic potential fluctuations at the valence and conduction band edge may be not only responsible for a high saturation current density but also for the ideality factor in the current/voltage curve. The band gap and electrostatic potential fluctuations make the effective band gap which controls the intrinsic carrier density smaller than the average optical gap. The (zero bias) electrostatic potential fluctuations are here derived from the ideality factors of the current/voltage curve. The ideality factor reflects the voltage-induced electrostatic homogenization of the sample. For the world's best Cu(In,Ga)Se 2 cells with an ideality factor of n id =1.5, we estimate zero bias electrostatic potential fluctuations with a standard deviation no. sigmano. elec no. approxno. 140 meV

  7. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    Science.gov (United States)

    Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.

    1993-01-01

    The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.

  8. Electronic structure and optical properties of noncentrosymmetric LiGaGe{sub 2}Se{sub 6}, a promising nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentyev, A.A.; Gabrelian, B.V.; Vu, V.T.; Ananchenko, L.N. [Department of Electrical Engineering and Electronics, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, 43 Russkaya Street, 630090 Novosibirsk (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk (Russian Federation); Yelisseyev, A.; Krinitsin, P.G. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, 43 Russkaya Street, 630090 Novosibirsk (Russian Federation); Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, UA-03142 Kyiv (Ukraine)

    2016-11-15

    X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar{sup +} ion-bombarded surfaces of LiGaGe{sub 2}Se{sub 6} single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe{sub 2}Se{sub 6} is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe{sub 2}Se{sub 6} compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe{sub 2}Se{sub 6}, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe{sub 2}Se{sub 6}, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe{sub 2}Se{sub 6} single crystal. The main optical characteristics of the LiGaGe{sub 2}Se{sub 6} compound are elucidated by the first-principles calculations.

  9. High-field study of the spin-Peierls system CuGeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L P [CEA Centre d` Etudes de Grenoble, 38 (France)

    1997-04-01

    The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.

  10. Hydrostatic pressure effect on the magnetocaloric behavior of Ga-doped MnNiGe magnetic equiatomic alloy

    International Nuclear Information System (INIS)

    Dutta, P; Das, D; Chatterjee, S; Pramanick, S; Majumdar, S

    2016-01-01

    The magnetocaloric properties of a new class of ferromagnetic shape memory alloys of nominal composition MnNiGe 0.928 Ga 0.072 have been investigated in ambient conditions as well as in the presence of external hydrostatic pressure. Both inverse (6.35 Jkg −1 K −1 for 0  −  50 kOe around 160 K) and conventional (−4.54 Jkg −1 K −1 for 0–50 kOe around 210 K) magnetocaloric effects (MCEs) have been observed around the structural and magnetic transitions respectively. The sample can be thought of as being derived from the parent MnNiGe alloy, where Ga was doped at the expense of the Ge atom. Ga doping at Ge sites brings down the martensitic transition temperature to below room temperature and induces ferromagnetism by affecting the lattice volume of the alloy. However, below the first-order martensitic transition the alloy loses its ferromagnetism. Application of external hydrostatic pressure results in a revival of ferromagnetic interactions in the martensitic phase of the alloy and a considerable increase in the refrigeration capacity around the conventional MCE region. (paper)

  11. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  12. The Effect of Cu and Ge Additions on Strength and Precipitation in a lean 6xxx Aluminium Alloy

    International Nuclear Information System (INIS)

    Mørtsell, E A; Holmestad, R; Marioara, C D; Andersen, S J; Røyset, J; Reiso, O

    2015-01-01

    It has been demonstrated that the strength loss in a lean Al-Mg-Si alloy due to solute reduction could be compensated by back-adding a lower at % of Ge and Cu. Nanosized precipitate needles which are the main cause of strength in these alloys, and material hardness has been correlated to parameters quantified by TEM. It was found that additions of Ge and Cu strongly affect the precipitation process by increasing precipitate density and reducing precipitate size. Investigations of precipitate atomic structure by HAADF-STEM indicated that they contain mixed areas of known phases and disordered regions. A hexagonal Si/Ge-network was found to be present in all precipitate cross sections. (paper)

  13. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides.

    Science.gov (United States)

    de Blois, Erik; Sze Chan, Ho; Naidoo, Clive; Prince, Deidre; Krenning, Eric P; Breeman, Wouter A P

    2011-02-01

    PET scintigraphy with (68)Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO(2)-based (68)Ge/(68)Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Characteristics of 4 SnO(2)-based generators (range 0.4-1 GBq (68)Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO(2)-based (68)Ge/(68)Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the (68)Ga eluate were performed using anion and cation exchange. Concentrated (68)Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. (68)Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. The amount of elutable (68)Ga activity varies when the concentration of the eluens, HCl, was varied, while (68)Ge activity remains virtually constant. SnO(2)-based (68)Ge/(68)Ga generator elutes at 0.6 M HCl >100% of the (68)Ga activity at calibration time and ±75% after 300 days. Eluate at discharge was sterile and Endotoxins were 80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a (68)Ga desorption of 68±8%. With all (68)Ge/(68)Ga generators and for all 3 purification methods a SA up to 50 MBq/nmol with >95% incorporation (ITLC) and RCP (radiochemical purity) by HPLC ±90% could be achieved. Purification and concentration of the eluate with anion exchange has the benefit of more elutable (68)Ga with 1 M HCl as eluens. The additional washing step of the anion column

  14. Characterization of Cu(In,Ga)(S,Se)2 thin films prepared by sequential evaporation from ternary compounds

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Hatori, M.; Niiyama, S.; Miyake, Y.

    2006-01-01

    Cu(In,Ga)(S,Se) 2 thin films were fabricated by sequential evaporation from CuGaSe 2 , CuInSe 2 and In 2 S 3 compounds for photovoltaic device applications. From XRF analysis, the Cu:(In+Ga):(S+Se) atomic ratio in all thin films was approximately 1:1:2. As the [In 2 S 3 ]/([CuGaSe 2 ]+[CuInSe 2 ]) mole ratio in the evaporating materials increased, the S/(S+Se) atomic ratio in the thin films increased from 0 to 0.16 determined by XRF and to 0.43 by EPMA. XRD studies demonstrated that the prepared thin films had a chalcopyrite Cu(In,Ga) (S,Se) 2 structure and the preferred orientation to the 112 plane. The SEM images demonstrated that Cu(In,Ga)(S,Se) 2 thin films had large and columnar grains. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Progress in Polycrystalline Thin-Film Cu(In,GaSe2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Udai P. Singh

    2010-01-01

    Full Text Available For some time, the chalcopyrite semiconductor CuInSe2 and its alloy with Ga and/or S [Cu(InGaSe2 or Cu(InGa(Se,S2], commonly referred as CIGS, have been leading thin-film material candidates for incorporation in high-efficiency photovoltaic devices. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies among all thin-film solar cells, reaching 20%. A variety of methods have been reported to prepare CIGS thin film. Efficiency of solar cells depends upon the various deposition methods as they control optoelectronic properties of the layers and interfaces. CIGS thin film grown on glass or flexible (metal foil, polyimide substrates require p-type absorber layers of optimum optoelectronic properties and n-type wideband gap partner layers to form the p-n junction. Transparent conducting oxide and specific metal layers are used for front and back contacts. Progress made in the field of CIGS solar cell in recent years has been reviewed.

  16. An optimized In–CuGa metallic precursors for chalcopyrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: junfeng.han@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Department of Physics, Peking University, Beijing 100871 (China); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan Province 601207 (China); Jiang, Tao; Xie, Hua-mu; Zhao, Kui [Department of Physics, Peking University, Beijing 100871 (China); Besland, M.-P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-10-31

    We report a study of CuGa–In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film. - Highlights: • An optimized sputtered indium film • An optimized alloying process of metallic precursor • An observation of nodules forming on the indium film and precursor surface • An observation of cauliflower structure in copper indium gallium selenide film • The relationship between precursor and CIGS film surface morphology.

  17. Study on synthesis of {sup 68}GeO{sub 2} and behavior of {sup 68}Ga{sup 3+} Generator column

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gun Gyun; Lee, Jun Young; Hur, Min Gu; Yang, Srung Dae; Park, Jeong Hoon [Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Kim, Sang Wook [Dept. of Advanced Materials Chemistry, Dongguk University, Gyeongju (Korea, Republic of)

    2017-02-15

    {sup 68}Ga has emerged as a promising candidate for non-invasive diagnostic imaging within Positron Emission Tomography (PET) because of its advantageous radiochemical characteristics (t{sub 1/2}= 68 min, β{sup +} yield ⁓89%). {sup 68}Ga forms a stable chelation with various ligands and it is possible to be quickly and easily study using a {sup 68}Ge/{sup 68}Ga generator. Commercial {sup 68}Ge/{sup 68}Ga generators are chromatographic system using the inorganic materials such as alumina and tin dioxide which are employed as column matrixes for {sup 68}Ge. In this study, we tried out to make {sup 68}Ge/{sup 68}Ga generator system with the {sup 68}GeO{sub 2} microstructures for column matrix. {sup 68}Ge tends to have stable bond with oxide as {sup 68}GeO{sub 2} microstructures. The {sup 68}GeO{sub 2} has been synthesized by hydrolysis of GeCl{sub 4} (sol-gel method) and characterized by X-ray diffraction and scanning electron microscope for geometrical analysis. The stability of GeO{sub 2} was tested using eluent with diverse solvents (water, ethanol and 0.1 N HCl). The radioactivity of {sup 68}Ga{sup 3+} in eluate through GeO{sub 2} was measured to prove a function as column material for a generation eluate through GeO{sub 2} was measured to prove a function as column material for a generator.

  18. In-situ GISAXS study on the oxidation behavior of liquid Ga on Ni(Cu)/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Liu, Mingling [Department of Mechanical and Electrical Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang; Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hong, E-mail: lhong68@sina.com.cn [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China)

    2015-11-01

    Liquid Ga could be used as a flexible heat-transfer medium or contact medium in the synchrotron-radiation-based instruments. The chemical stability of liquid Ga on other metal surface determines the serviceability of liquid Ga. In this paper, the oxidation evolutions of liquid Ga on Ni and Cu substrates have been investigated by in-situ grazing incidence small angle X-ray scattering (GISAXS) as a function of substrate temperature. The liquid Ga on Ni and Cu substrates shows different oxidation behaviors. A successive and slower oxidation from oxide clusters to oxide layer takes place with temperature increasing from 25 to 190 °C on the surface of the Ga/Ni/Si specimen, but a quick oxidation occurs on the entire surface of the Ga/Cu/Si specimen at the initial 25 °C. The subsequent heating increases the surface roughness of both liquid Ga, but increases simultaneously the surface curvature of the Ga/Cu/Si specimen. The understanding of the substrate-dependent oxidation behavior of liquid Ga is beneficial to its application as a heat-transfer medium.

  19. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  20. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  1. Preparation and layer-by-layer solution deposition of Cu(In,GaO2 nanoparticles with conversion to Cu(In,GaS2 films.

    Directory of Open Access Journals (Sweden)

    Walter J Dressick

    Full Text Available We present a method of Cu(In,GaS2 (CIGS thin film formation via conversion of layer-by-layer (LbL assembled Cu-In-Ga oxide (CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH, and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA or polystyrenesulfonate (PSS and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization.

  2. Investigation of defects in Cu(In,Ga)S{sub 2} and Cu(In,Ga)Se{sub 2} solar cells by space charge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riediger, Julia; Ohland, Joerg; Knipper, Martin; Parisi, Juergen; Riedel, Ingo [Thin Film Photovoltaics, Energy- and Semiconductor Research Laboratory, University of Oldenburg, D-26111 Oldenburg (Germany); Meeder, Alexander [Soltecture GmbH, 12487 Berlin (Germany)

    2012-07-01

    If deep defect states in the absorber of a solar cell act as recombination centers, they may limit the carrier lifetime and thus the open circuit voltage. This is related to the defect's activation energy and spatial position. In this study the defect landscape of chalcopyrite thin film solar cells with varied absorber composition was investigated by space charge spectroscopy. The absorber layer in Cu(In,Ga)S{sub 2} samples arises from rapid thermal process (RTP) in sulfur vapor while Cu(In,Ga)Se{sub 2} absorbers were processed via co-evaporation of the constituents. Several defect states were found by deep level spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). With the knowledge of the defect activation energies we derived the spatial defect concentrations from (illuminated) capacitance-voltage (CV) measurements and discuss the results for both material systems. To identify the often discussed ''N1'' defect, the measurements were repeated after annealing and changes in the defect spectra were evaluated.

  3. Local structure analysis of Cu(In,Ga)Se{sub 2} by X-ray fluorescence holography

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Kitamura, Yuma [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Happo, Naohisa [Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Hosokawa, Shinya [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Hayashi, Kouichi [Faculty of Engineering, Nagoya Institute of technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-15

    X-ray Fluorescence Holography (XFH) study of Cu(In,Ga)Se{sub 2} single crystals has been performed using an inverse mode. Energies of incident X-ray are from 9.2 to 13.2 keV. The Cu-Kα X-ray fluorescence hologram has been constructed, and atomic images were reconstructed using Barton's algorithm. Dependence of fluorescent X-ray, either Cu or Ga, on the reconstructed atomic images of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was examined. The atomic image of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was compared with that of CuIn{sub 0.8}Ga{sub 0.2}Se{sub 2}. The reconstructed atomic images of the cation (Cu, Ga, and In) plane and that of the anion (Se) plane are discussed in terms of the alloy composition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermal and galvanomagnetic properties of monocrystals CuInGa{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Abilov, Ch. I., E-mail: cabilov@yahoo.com; Hasanova, M. Sh., E-mail: mhsh28@mail.ru; Huseynova, N. T. [Azerbaijan Technical University, Baku (Azerbaijan); Zeynalov, S. A. [Azerbaijan Institute of Teachers, Baku (Azerbaijan)

    2016-03-25

    By the methods of the physic-chemical analysis, determination of density and by measurement of micro hardness the character of chemical interaction in the In{sub 2}Te{sub 3}-Cu{sub 2}Ga{sub 4}Te{sub 7} system has been investigated and its faze diagram has been plotted. It is established that the system is quasibinary, of eutectic type. In the system the chemical combination of CuGa{sub 2}InTe{sub 5} composition melting congruently at 855°C is generated. There have been revealed solid solutions boundary of which based on In{sub 2}Te{sub 3} reach 5mol% at room temperatures. Temperature dependences of electric conductivity, the coefficient of thermo-emf, general heat conductivity, the Hall mobility of charge carriers.The mechanisms of electron-phonon diffusion in crystals of its compound have been revealed.

  5. Properties of dislocations in Cu(In,Ga)Se2 film and their formation during growth

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Jens; Boit, Christian [Technische Universitaet Berlin, Department of Semiconductor Devices, Einsteinufer 19, 10587 Berlin (Germany); Abou-Ras, Daniel; Rissom, Thorsten; Unold, Thomas; Schock, Hans-Werner [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Niermann, Tore; Lehmann, Michael [Technische Universitaet Berlin, Institute of Optics and Atomic Physics, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2012-07-01

    Transmission electron microscopy (TEM) studies were performed on Cu(In,Ga)Se2 (CIGSe) thin films for solar cells with a special focus on dislocations. A sample series of glass/Mo/CIGSe stacks with varying [Cu]/([Ga]+[In]) ratio were prepared by interrupting the growth processes at several stages. TEM imaging and elemental distribution maps by energy-dispersive X-ray spectroscopy gave structural and compositional information at certain film growth states. Furthermore, high resolution TEM imaging was used to confirm a structural model of dislocations in complete CIGSe solar cells and by means of in-line electron holography we examined changes in the mean inner potential. A decrease of the mean inner potential at the position of the dislocations was observed. This might be attributed to a change of the atomic density due to the dislocation, a local segregation or a charge at the dislocation core.

  6. Design and Synthesis of novel CuxGeOy/Cu/C nanowires by in situ chemical reduction process with highly reversible capacity for Lithium Batteries

    International Nuclear Information System (INIS)

    Wang, Linlin; Zhang, Xiaozhu; Peng, Xia; Tang, Kaibin

    2015-01-01

    The synthesis and use of ternary metal oxides/metal particles/carbon hybrids, especially 1D naowires composed of MGeO 3 /M/C hybrids for energy storage, remains very few reports. In this work, 1D Cu x GeO y /Cu/C NWs (x < 1, y < 3) were successfully prepared by a simple method involving chemical reduction process and simultaneous carbon coating. It was found that through the polydopamine(PDA)-assisted chemical reduction process performed on the CuGeO 3 NWs, the phase partially transformed to a mixture of crystalline Cu (∼70 nm) and amorphous Cu x GeO y NWs with carbon coating, but the nanowire-shaped morphology was maintained. Electrochemical measurements showed that the Cu x GeO y /Cu/C NWs exhibited a stable reversible capacity of ∼900 mA h g −1 after 100 cycles. Even at 800 mA g −1 , it also exhibited excellent high rate capacity of 350 mA h g −1 . The newly generated Cu x GeO y @Cu@CNWs exhibit enhanced cycle stability with high lithium-storage capability compared to that of the as-preparedCuGeO 3 NWs. (*) The in situ-synthesized Cu nanoparticles, amorphous state and carbon coating might play an important role in activating and enhancing the reversibility of the conversion reaction of Cu x GeO y . In addition, this effective synthetic method might provide the methodology for the development of other ternary metal oxides/metal particles/carbon hybrids materials for energy storage.

  7. Band alignment studies of Al2O3/CuGaO2 and ZnO/CuGaO2 hetero-structures grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ajimsha, R.S.; Das, Amit K.; Joshi, M.P.; Kukreja, L.M.

    2014-01-01

    Highlights: • Band offset studies at the interface of Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures were performed using X-ray photoelectron spectroscopy. • Valance band offsets (VBO) of these hetero-structures were obtained from respective XPS peak positions and VB spectra using Kraut's equation. • Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. • Schematic band alignment diagram for the interface of these hetero-structures has been constructed. • Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures. - Abstract: We have studied the band offset and alignment of pulsed laser deposited Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures using photoelectron spectroscopy. Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. Schematic band alignment diagram for the interface of these hetero-structures has been constructed. Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures

  8. Electro-chemical development of CuInGaSe2-based photovoltaic solar cells

    Science.gov (United States)

    Tolan, Gavin James

    The aim of this work was to make low cost, high efficiency, graded bandgap, thin film CuInGaSe2 solar cells by electrodeposition, using novel device designs proposed by Dharmadasa et al. These new designs were first experimentally tested using well researched GaAs and AlxGa(1-x)As materials grown using MOCVD, these ideas were then transferred to electrodeposited CuInGaSe2.New designs of graded bandgap solar cells based on p-type window materials, using the well researched GaAs and AlxGa(1-x)As alloy system, have been experimentally tested. The size of the cell was gradually scaled up from 0.5 mm diameter (0.002 cm2) to 3x3 mm2 (0.090 cm2) and to 5x5 mm2 (0.250 cm2), these were then assessed using I-V and QE techniques. The devices showed Voc in the range of 1070-1175 mV, exceeding reported values, FF in the range 0.80-0.87, and Jsc in the range 11-12 mA cm-2. The reason for the low current density was believed to be due to the GaAs capping layer used in the device, which acted as a filter. To confirm this, a second set of devices was fabricated, replacing the GaAs cap with GaAlP, this increased the Jsc to 14 mA cm-2, Voc and FF remained the same.New PV device structures based on CuInGaSe2 starting from the front contact, instead of the conventional Mo back contact, have been grown by electrodeposition from aqueous solutions using a single bath. In order to investigate the effect of bath concentrations on the film properties, 3 different bath concentrations were used. PEC was used to determine the electrical conduction of these layers, and it was found that it was possible to grow p+, p, i, n, n+ layers by changing the deposition voltage. XRF was used to determine the stoichiometry of the corresponding layers, and XRD to investigate the bulk structure. The morphological properties were studied using AFM and SEM. A four-layer n-n-i-p solar cell structure was initially fabricated and I-V measurements were carried out to assess the devices. The devices were PV active

  9. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  10. Investigation of lattice defects and compositional gradients in Cu(In,Ga)Se{sub 2} thin films for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Jens; Boit, Christian [Department of Semiconductor Devices, Berlin University of Technology, Einsteinufer 19, 10587 Berlin (Germany); Abou-Ras, Daniel; Rissom, Thorsten; Unold, Thomas; Schock, Hans-Werner [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2011-07-01

    Cu(In,Ga)Se{sub 2} absorber layers used in thin-film solar cells exhibit, when grown in a multi-stage process, compositional gradients of gallium and indium, dependent on process parameters such as the Ga content. The high lateral resolution of transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDX) allows the determination of lattice defects and the elemental concentrations at identical sample positions. Cross-sectional TEM samples of ZnO/CdS/Cu(In,Ga)Se{sub 2}/Mo/glass stacks were prepared with varying [Ga]/([In]+[Ga]) ratio in the absorber. The shape of the Ga distribution was measured by means of EDX and differs for the various [Ga]/([In]+[Ga]) ratios. Linear (dislocations) and planar defects (stacking faults, microtwins) were studied by means of TEM bright field and dark field images along the lengths of the Cu(In,Ga)Se{sub 2} layers. Strong Ga compositional gradients were found even within individual grains. It appears that these Ga gradients correlate with the occurrence of dislocation networks in large grains (diameter > 1 {mu}m). We assume that these dislocations compensate for lattice mismatch due to the change in composition in this area of the lattice.

  11. Chronological change of electrical resistance in GeCu2Te3 amorphous film induced by surface oxidation

    International Nuclear Information System (INIS)

    Saito, Yuta; Shindo, Satoshi; Sutou, Yuji; Koike, Junichi

    2014-01-01

    Unusual chronological electrical resistance change behavior was investigated for amorphous GeCu 2 Te 3 phase change material. More than a 1 order decrease of electrical resistance was observed in the air even at room temperature. The resistance of the amorphous film gradually increased with increasing temperature and then showed a drop upon crystallization. Such unusual behavior was attributed to the oxidation of the amorphous GeCu 2 Te 3 film. From the compositional depth profile measurement, the GeCu 2 Te 3 film without any capping layer was oxidized in air at room temperature and the formed oxide was mainly composed of germanium oxide. Consequently, a highly-conductive Cu-rich layer was formed in the vicinity of the surface of the film, which reduced the total resistance of the film. The present results could provide insight into the chronological change of electrical resistance in amorphous chalcogenide materials, indicating that not only relaxation of the amorphous, but also a large atomic diffusion contributes to the chronological resistance change. (paper)

  12. The influence of growth parameters on the structure and composition of CuGaS2 epilayers grown by MOVPE

    International Nuclear Information System (INIS)

    Branch, M.S.; Berndt, P.R.; Leitch, A.W.R.; Botha, J.R.; Weber, J.

    2006-01-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS 2 is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac) 2 .Et 3 N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac) 2 .Et 3 N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS 2 , yet enhance the formation of Ga x S y phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material

  13. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  14. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    Science.gov (United States)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  15. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    .5 GHz and ≫ 10 GHz for SiGe BiCMOS and GaAs MMIC, respectively. Analysis of the frequency behaviour of frequency converting devices is presented for improved mixer design. Millimeter-wave front-end components for advanced microwave imaging and communications purposes have also been demonstrated......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  16. Band alignment study of lattice-matched In{sub 0.49}Ga{sub 0.51}P and Ge using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Man Hon Samuel, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org; Zhou, Qian; Gong, Xiao; Yeo, Yee-Chia, E-mail: m.owen.sg@ieee.org, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260 (Singapore); Zhang, Zheng; Pan, Ji Sheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-09-08

    Lattice-matched In{sub 0.49}Ga{sub 0.51}P was grown on a p-type Ge(100) substrate with a 10° off-cut towards the (111) by low temperature molecular beam epitaxy, and the band-alignment of In{sub 0.49}Ga{sub 0.51}P on Ge substrate was obtained by high resolution x-ray photoelectron spectroscopy. The valence band offset for the InGaP/Ge(100) interface was found to be 0.64 ± 0.12 eV, with a corresponding conduction band offset of 0.60 ± 0.12 eV. The InGaP/Ge interface is found to be of the type I band alignment.

  17. Structure-composition sensitivity in 'Metallic' Zintl phases: A study of Eu(Ga1-xTtx)2 (Tt=Si, Ge, 0≤x≤1)

    International Nuclear Information System (INIS)

    You, Tae-Soo; Zhao Jingtai; Poettgen, Rainer; Schnelle, Walter; Burkhardt, Ulrich; Grin, Yuri; Miller, Gordon J.

    2009-01-01

    Two isoelectronic series, Eu(Ga 1-x Tt x ) 2 (Tt=Si, Ge, 0≤x≤1), have been synthesized and characterized by powder and single-crystal X-ray diffraction, physical property measurements, and electronic structure calculations. In Eu(Ga 1-x Si x ) 2 , crystal structures vary from the KHg 2 -type to the AlB 2 -type, and, finally, the ThSi 2 -type structure as x increases. The hexagonal AlB 2 -type structure is identified for compositions 0.18(2)≤x 3 nets. As smaller Si atoms replace Ga atoms while the number of valence electrons increases, the lattice parameters, unit cell volumes, and Ga-Si distances in this phase region decrease significantly. Although aspects of X-ray diffraction results suggest puckering of the 6 3 nets for the Si-richest example of the AlB 2 -type Eu(Ga 1-x Si x ) 2 , the complete experimental evidence remains inconclusive. On the other hand, in Eu(Ga 1-x Ge x ) 2 , six different structural types were observed as x varies. In addition to EuGa 2 (KHg 2 -type; space group Imma) and EuGe 2 (own structure type, space group P3-barm1), the ternary phases studied show four different structures: the AlB 2 -type for Ga-rich compositions; the YPtAs-type structure for EuGaGe; and two new structures, which are intergrowths of the YPtAs-type EuGaGe and EuGe 2 , for Ge-rich compositions. These two Ge-rich phases include: (1) Eu(Ga 0.45(2) Ge 0.55(2) ) 2 containing two YPtAs-type motifs of EuGaGe plus one EuGe 2 motif; and (2) Eu(Ga 0.40(2) Ge 0.60(2) ) 2 containing one YPtAs-type motif alternating with a split site at x=2/3 ,y=1/3 and z=0.4798(2) with ca. 50% site occupancy by Ga and Ge along the c-axis. Magnetic susceptibilities of three Eu(Ga 1-x Ge x ) 2 compounds display Curie-Weiss behavior above ca. 100 K, and show effective magnetic moments indicative of divalent Eu with a 4f 7 electronic configuration, consistent with. X-ray absorption spectra (XAS). Density of states (DOS) and crystal orbital Hamilton population (COHP) analyses, based on first

  18. Green luminescence from Cu-diffused LiGaO2 crystals

    International Nuclear Information System (INIS)

    Holston, M.S.; Ferguson, I.P.; Giles, N.C.; McClory, J.W.; Winarski, D.J.; Ji, Jianfeng; Selim, F.A.; Halliburton, L.E.

    2016-01-01

    An intense green luminescence is observed from single crystals of LiGaO 2 doped with copper. Czochralski-grown undoped crystals are wrapped in thin copper foil and then held at 900 °C for 1 h in a flowing nitrogen atmosphere. Large concentrations of Cu + ions enter the crystals during this process and occupy Li + sites. These copper-diffused crystals are characterized with optical absorption, photoluminescence (PL), photoluminescence excitation (PLE), thermoluminescence (TL), and electron paramagnetic resonance (EPR). An optical absorption band peaking near 350 nm is assigned to the Cu + ions at Li + sites and represents an excitation from a 3d 10 ground state to a 3d 9 4s 1 excited state. A broad PL emission from these excited Cu + ions has a peak near 523 nm and the related PLE band has a peak near 356 nm (this PLE band links the emission to the optical absorption band). Illuminating a Cu-diffused crystal at room temperature with 325 nm laser light converts a portion of the Cu + ions to Cu 2+ ions. EPR spectra from these 3d 9 ions are easily seen at low temperatures and their angular dependence is used to determine the g matrix and the 63 Cu hyperfine matrix. Subsequent heating produces a TL peak near 122 °C with a maximum in its spectral dependence near 535 nm. Correlated EPR measurements show that this TL peak occurs when trapped electrons are thermally released from unintentionally present transition-metal ions (most likely Fe) and recombine with holes at the Cu 2+ ions.

  19. Green luminescence from Cu-diffused LiGaO{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Holston, M.S.; Ferguson, I.P.; Giles, N.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433 (United States); Winarski, D.J.; Ji, Jianfeng; Selim, F.A. [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403 (United States); Halliburton, L.E., E-mail: Larry.Halliburton@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States)

    2016-02-15

    An intense green luminescence is observed from single crystals of LiGaO{sub 2} doped with copper. Czochralski-grown undoped crystals are wrapped in thin copper foil and then held at 900 °C for 1 h in a flowing nitrogen atmosphere. Large concentrations of Cu{sup +} ions enter the crystals during this process and occupy Li{sup +} sites. These copper-diffused crystals are characterized with optical absorption, photoluminescence (PL), photoluminescence excitation (PLE), thermoluminescence (TL), and electron paramagnetic resonance (EPR). An optical absorption band peaking near 350 nm is assigned to the Cu{sup +} ions at Li{sup +} sites and represents an excitation from a 3d{sup 10} ground state to a 3d{sup 9}4s{sup 1} excited state. A broad PL emission from these excited Cu{sup +} ions has a peak near 523 nm and the related PLE band has a peak near 356 nm (this PLE band links the emission to the optical absorption band). Illuminating a Cu-diffused crystal at room temperature with 325 nm laser light converts a portion of the Cu{sup +} ions to Cu{sup 2+} ions. EPR spectra from these 3d{sup 9} ions are easily seen at low temperatures and their angular dependence is used to determine the g matrix and the {sup 63}Cu hyperfine matrix. Subsequent heating produces a TL peak near 122 °C with a maximum in its spectral dependence near 535 nm. Correlated EPR measurements show that this TL peak occurs when trapped electrons are thermally released from unintentionally present transition-metal ions (most likely Fe) and recombine with holes at the Cu{sup 2+} ions.

  20. Photocatalytic Conversion of Carbon Dioxide Using Zn–Cu–Ga Layered Double Hydroxides Assembled with Cu Phthalocyanine: Cu in Contact with Gaseous Reactant is Needed for Methanol Generation

    Directory of Open Access Journals (Sweden)

    Kawamura Shogo

    2015-09-01

    Full Text Available Photocatalytic conversion of CO2 into fuels is an attractive option in terms of both reducing the increased concentration of atmospheric CO2 as well as generating renewable hydrocarbon fuels. It is necessary to investigate good catalysts for CO2 conversion and to clarify the mechanism irradiated by natural light. Layered Double Hydroxides (LDH have been attracting attention for CO2 photoreduction with the expectation of sorption capacity for CO2 in the layered space and tunable semiconductor properties as a result of the choice of metal cations. This study first clarifies the effects of Cu doping to LDH comprising Zn and Al or Ga. Cu could be incorporated in the cationic layers of LDH as divalent metal cations and/or interlayer anions as Cu(OH42−. The formation rates of methanol and CO were optimized for [Zn1.5Cu1.5Ga(OH8]+2Cu(OH42−·mH2O at a total rate of 560 nmol h−1 gcat−1 irradiated by UV–visible light. Cu phthalocyanine tetrasulfonate hydrate (CuPcTs4− and silver were effective as promoters of LDH for CO2 photoreduction. Especially, the total formation rate using CuPcTs-[Zn3Ga(OH8]+2CO32−·mH2O irradiated by visible light was 73% of that irradiated by UV–visible light. The promotion was based on HOMO–LUMO excitation of CuPcTs4− by visible light. The LUMO was distributed on N atoms of pyrrole rings bound to central Cu2+ ions. The photogenerated electrons diffused to the Cu site would photoreduce CO2 progressively in a similar way to inlayer and interlayer Cu sites in the LDH in this study.

  1. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  2. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    Science.gov (United States)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  3. Low-energy excitations in impurity substituted CuGeO3

    International Nuclear Information System (INIS)

    Jones, B. R.; Sushkov, A. B.; Musfeldt, J. L.; Wang, Y. J.; Revcolevschi, A.; Dhalenne, G.

    2001-01-01

    We report far-infrared reflectance measurements of Zn- and Si-doped CuGeO 3 single crystals as a function of applied magnetic field at low temperature. Overall, the low-energy far-infrared spectra are extraordinarily sensitive to the various phase boundaries in the H-T diagram, with the features being especially rich in the low-temperature dimerized state. Zn impurity substitution rapidly collapses the 44 cm -1 zone-boundary spin Peierls gap, although broadened magnetic excitations are observed at the lightest doping level (0.2%) and a remnant is still observable at 0.7% substitution. In a 0.7% Si-doped sample, there is no evidence of the spin gap. Impurity substitution effects on the intensity of the 98 cm -1 zone-folding mode are striking as well. The lightly doped Zn crystals display an enhanced response, and even at intermediate doping levels, the mode intensity is larger than that in the pristine material. The Si-doped sample also displays an increased intensity of the 98 cm -1 mode in the spin Peierls phase relative to the pure material. The observed trends are discussed in terms of the effect of disorder on the spin gap and 98 cm -1 mode, local oscillator strength sum rules, and broken selection rules

  4. Preparation and electrical characterization of the compound CuAgGeSe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, M A; Chalbaud, L M de; Fernandez, B J; Velasquez-Velasquez, A; Pirela, M, E-mail: mavu@ula.v, E-mail: clio@ula.v [Laboratorio de Temperaturas Bajas, Centro de Estudios en Semiconductores, Departamento de Fisica, Universidad de Los Andes, Apartado de Correos No 1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2009-05-01

    This work reports the synthesis and electrical characterization of the compound CuAgGeSe{sub 3}. This material was synthesized by direct melting of the constituent elements, in their stoiochiometric ratio inside an evacuated quartz ampoule. The chemical analysis (EDX) confirmed the 1:1:1:3 stoichiometric ratios for the compound. The differential thermal analysis showed the existence of a principal phase that melts at 558 deg. C and a second phase at 636{sup 0}C. The X-ray powder diffraction analysis indicated that the compound crystallizes in the monoclinic system, space group Cc, with unit cell parameters: a = 6.776(0) A, b = 11.901(5) A, c = 6.772(0) and beta = 108.2(0){sup 0}. The study of the electrical properties was realized in the temperature range from 80 to 300 K and under a magnetic field of 14 kG. Employing the Mott transition model, we were able to obtain the temperature dependence of the resistivity and we estimated that the activation energy is 25.3 meV in the low temperatures region. The mobility temperature dependence is analyzed by taking into account the scattering of charge carriers by acoustic phonons, polar optic phonons and thermally activated hopping. From the analysis, the activation energy is estimated to be around 38 meV and the characteristic temperature of the phonons is estimated to be around 400 K.

  5. Influence of band-gap grading on luminescence properties of Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Haarstrich, Jakob; Metzner, Heiner; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich Schiller Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Rissom, Thorsten; Kaufmann, Christian A.; Schock, Hans-Werner [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Solar Energy Research, Institute for Technology, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Undisz, Andreas [Institute for Material Science and Technology, Metallic Materials, Friedrich-Schiller-University Jena, Loebdergraben 32, 07743 Jena (Germany)

    2011-07-01

    Cathodoluminescence (CL) has been measured on Cu(In,Ga)Se{sub 2} with Ga-grading as it is used in high-efficiency thin-film solar cells at 10 K in both cross-section and plain view configuration. In cross-section geometry, we show that the vertical profile of the emission energy represents the Ga-profile in the film and, thus, we are able to measure the band-gap grading present by means of CL methods. At the same time, we observe a strong drift of excited charge carriers towards the minimum of the band-gap which can be explained by the Ga-grading. It is shown by voltage-dependent CL, how these results directly influence the interpretation of luminescence spectra obtained on Ga-graded Cu(In,Ga)Se{sub 2} and, thus, they will have to be considered as a basis for all forthcoming investigations on this topic.

  6. Measurement of the beauty production cross section in 350 GeV/c π-Cu interactions

    International Nuclear Information System (INIS)

    Adamovich, M.; Alexandrov, Y.; Adinolfi, M.

    1998-01-01

    Using a sample of 10 8 triggered events, produced in π - - Cu interactions at 350 GeV/c, we have identified 26 beauty events. The estimated background in this sample is 0.6 ±0.6 events. From these data, assuming a linear A-dependence, we measure a beauty production cross section integrated over all x F of 5.7 +1.3 -1.1 (stat.) +0.6 -0.5 (syst.) nb/N. (orig.)

  7. CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals

    Science.gov (United States)

    Guardia, Pablo; Estradé, Sònia; Peiró, Francesca; Cabot, Andreu

    2018-01-01

    The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS2 (CGS) and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs). We further produce NC-based porous CGS/ZnS bilayers and NC-based CGS–ZnS composite layers using the same strategy. Photoelectrochemical measurements are used to demonstrate the efficacy of porous layers, and particularly the CGS/ZnS bilayers, for improved current densities and photoresponses relative to denser films deposited from as-produced NCs. PMID:29621198

  8. CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals

    Directory of Open Access Journals (Sweden)

    Taisiia Berestok

    2018-04-01

    Full Text Available The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS2 (CGS and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs. We further produce NC-based porous CGS/ZnS bilayers and NC-based CGS–ZnS composite layers using the same strategy. Photoelectrochemical measurements are used to demonstrate the efficacy of porous layers, and particularly the CGS/ZnS bilayers, for improved current densities and photoresponses relative to denser films deposited from as-produced NCs.

  9. Defect chalcopyrite Cu(In{sub 1-x}Ga{sub x}){sub 3}Se{sub 5} (0Ga-content Cu(In,Ga) Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M.A.; Wiesner, H.; Niles, D.; Ramanathan, K.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Crystallographic, optical, and electrical properties of defect chalcopyrite Cu(In{sub 1{minus}x}Ga{sub x}){sub 3}Se{sub 5} (0CuIn{sub 1 {minus}x}Ga{sub x}Se{sub 2} absorber materials is presented. Considering the chalcopyrite/defect chalcopyrite junction model, the authors postulate that the traditionally poor device performance of uniform high-Ga-content absorbers (x>0.3) is due to a relatively inferior character - both structural and electrical - at the very chalcopyrite/defect chalcopyrite interface. They demonstrate that this situation can be circumvented (for absorbers with x>0.3) by properly engineering such an interface by reducing Ga content in the region near the surface of the absorber.

  10. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    OpenAIRE

    Italiano, Antonio; Amato, Ernesto; Minutoli, Fabio; Margarone, Daniele; Baldari, Sergio

    2016-01-01

    The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By mean...

  11. The role of Cd and Ga in the Cu(In,Ga)S{sub 2}/CdS heterojunction studied with X-ray spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin E.

    2010-08-15

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S{sub 2}/CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S{sub 2} (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S{sub 2}/CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S{sub 2}/CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S{sub 2} conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot

  12. The role of Cd and Ga in the Cu(In,Ga)S2/CdS heterojunction studied with X-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Johnson, Benjamin E.

    2010-01-01

    Photovoltaic cells with the structure Glass/Mo/Cu(In,Ga)S 2 /CdS/i-ZnO/n+-ZnO are currently among the most successful and promising thin-layer solar cells. In this system, the Cu(In,Ga)S 2 (CIS) acts as the absorber, the CdS as the buffer layer and the ZnO as the window layer. The goal of this work is the investigation of the Cu(In,Ga)S 2 /CdS semiconductor heterojunction both as a component of the solar cell and as a separate material system. The characteristics of this junction were investigated both during junction formation through chemical bath deposition (CBD) and after the junction was completed. It is currently thought that the Cu(In,Ga)S 2 /CdS junction is responsible for several different properties of the solar cell: lattice matching and band offset optimization between the absorber and window layer and chemical passivation of the absorber surface by the CBD-CdS process on CIS which acts to reduce the surface defect density. The Cd may also pin the Fermi Level on the CIS surface or cause a type inversion of the absorber surface from p-type to n-type. In order to investigate the junction several new methods were used along side the conventional methods of X-ray, Ultraviolet and Inverse Photoelectron Spectroscopy. These were Near-UV Constant Final State Yield Spectroscopy for the measurement of the valence band offset at the interface between CIS and CdS and Near Edge X-ray Absorption Fine Structure to follow the development of the Cu(In,Ga)S 2 conduction band edge with increasing Ga concentration. Additionally, the advantages and disadvantages of the established and new methods were compared and discussed. It was discovered that the deposition of CdS neither pins the Fermi Level on the CIS surface at a position important for the solar cell, nor does it dope the absorber surface, although the deposition does lead to the formation of a Cd-containing CIS surface layer (CIS:Cd). Because this surface layer is not soluble in HCl it cannot be CdS as this is

  13. Cu(InGa)Se{sub 2} absorber formation by in-situ, low-temperature annealing of co-evaporated bilayer (InGa){sub 2}Se{sub 3}/CuSe precursors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyeongchan; Kim, Woo Kyoung, E-mail: wkim@ynu.ac.kr

    2015-12-01

    Chalcopyrite Cu(InGa)Se{sub 2} (CIGS) absorbers were fabricated by the formation of bilayer stacked glass/Mo/(InGa){sub 2}Se{sub 3}/CuSe precursors followed by in-situ thermal annealing at 450 °C for approximately 10 min in a vacuum evaporator. The material properties (e.g., crystal orientation, compositional depth profile, and overall composition) and device performance of the resulting CIGS absorbers were compared with those of the CIGS absorbers formed by conventional 1-stage and 3-stage CIGS formation processes at a similar temperature. X-ray diffraction confirmed that the 1-stage co-evaporation and in-situ annealing of the bilayer precursor produced a polycrystalline CIGS absorber without a specific texture, whereas the CIGS absorber formed by the 3-stage process showed a highly (220) preferred orientation. Secondary ion mass spectrometry revealed Ga accumulation at the bottom of CIGS formed by in-situ annealing of the bilayer precursors. The cell efficiency of the device with the CIGS absorber formed by the in-situ, low-temperature (450 °C) annealing of bilayer stacked glass/Mo/(InGa){sub 2}Se{sub 3}/CuSe precursors was comparable to that produced by the conventional 3-stage process at a similar temperature. - Highlights: • Annealing of (InGa){sub 2}Se{sub 3}/CuSe precursors was compared with coevaporation process. • In-situ annealing of (InGa){sub 2}Se{sub 3}/CuSe precursors at 450 °C produced about 9% solar cell. • Ga profile within Cu(InGa)Se{sub 2} depended on process profile during co-evaporation.

  14. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  15. Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors

    Science.gov (United States)

    Shah, Syed Hatim; Khan, Shah Haider; Laref, A.; Murtaza, G.

    2018-02-01

    Half-Heusler compounds LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) are comprehensively investigated using state of the art full potential linearized augmented plane wave (FP-LAPW) method. Stable geometry of the compounds obtained through energy minimization procedure. Lattice constant increased while bulk modulus decreased in replacing the ions of size increasing from top to bottom of the periodic table. Band structure calculations show LiInGe and LiInSn as direct bandgap while LiAlSi, LiInGe and LiGaSn indirect bandgap semiconductors. Density of states demonstrates mixed s, p, d states of cations and anions in the valence and conduction bands. These compounds have mixed ionic and covalent bonding. Compounds show dominant optical response in the visible and low frequency ultraviolet energy region. The transport properties of the compounds are described in terms of Seebeck coefficient, electrical and thermal conductivities. The calculated figure of merit of LiAlSi is in good agreement with the recent experimental results.

  16. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(InGaAs/Ge Solar Cells

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lei

    2018-06-01

    Full Text Available We synthesized a silver nanoparticle/zinc oxide (Ag NP/ZnO thin film by using spin-coating technology. The treatment solution for Ag NP/ZnO thin film deposition contained zinc acetate (Zn(CH3COO2, sodium hydroxide (NaOH, and silver nitrate (AgNO3 aqueous solutions. The crystalline characteristics, surface morphology, content of elements, and reflectivity of the Ag NPs/ZnO thin film at various concentrations of the AgNO3 aqueous solution were investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and ultraviolet–visible–near infrared spectrophotometry. The results indicated that the crystalline structure, Ag content, and reflectance of Ag NP/ZnO thin films depended on the AgNO3 concentration. Hybrid antireflection coatings (ARCs composed of SiNx and Ag NPs/ZnO thin films with various AgNO3 concentrations were deposited on GaInP/(InGaAs/Ge solar cells. We propose that the optimal ARC consists of SiNx and Ag NP/ZnO thin films prepared using a treatment solution of 0.0008 M AgNO3, 0.007 M Zn(CH3COO2, and 1 M NaOH, followed by post-annealing at 200 °C. GaInP/(AlGaAs/Ge solar cells with the optimal hybrid ARC and SiNx ARC exhibit a conversion efficiency of 34.1% and 30.2% with Voc = 2.39 and 2.4 V, Jsc = 16.63 and 15.37 mA/cm2, and fill factor = 86.1% and 78.8%.

  17. Comparison of polycrystalline Cu(In,Ga)Se2 device efficiency with junction depth and interfacial structure

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gabor, A.M.; Contreras, M.A.; Tuttle, J.R.; Noufi, R.; Sobol, P.E.; Asoka-Kumar, P.; Lynn, K.G.

    1995-01-01

    X-ray photoemission spectroscopy (XPS) and positron annihilation spectroscopy (PAS) have been used to characterize the surface versus bulk composition, electronic, and physical structure of polycrystalline Cu(In,Ga)Se 2 thin-film interfaces. Angle-resolved high-resolution photoemission measurements on the valence-band electronic structure and Cu 2p, In 3d, Ga 2p, and Se 3d core lines were used to evaluate the surface and near surface chemistry of CuInSe 2 and Cu(In,Ga)Se 2 device grade thin films. XPS compositional depth profiles were also acquired from the near surface region. PAS was used as a nondestructive, depth-sensitive probe for open-volume-type defects. Results of these measurements are related to device efficiencies to show the effects of compositional variations and defect concentrations in the near surface region on device performance. copyright 1995 American Institute of Physics

  18. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Hongling Wei

    2017-11-01

    Full Text Available Ga2O3 with a wide bandgap of ∼ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It’s also demonstrated that the CuGa2O4 film has a bandgap of ∼ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  19. Synthesis of compositionally controllable Cu{sub 2}(Sn{sub 1−x}Ge{sub x})S{sub 3} nanocrystals with tunable band gaps

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang, E-mail: lqs671@163.com [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)

    2016-06-15

    In this work, we show that compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.

  20. Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.

    2005-01-01

    Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.

  1. Effect of high temperature annealing on the thermoelectric properties of GaP doped SiGe

    Science.gov (United States)

    Vandersande, Jan W.; Wood, Charles; Draper, Susan

    1987-01-01

    Silicon-germanium alloys doped with GaP are used for thermoelectric energy conversion in the temperature range 300-1000 C. The conversion efficiency depends on Z = S-squared/rho lambda, a material's parameter (the figure of merit), where S is the Seebeck coefficient, rho is the electrical resistivity and lambda is the thermal conductivity. The annealing of several samples in the temperature range of 1100-1300 C resulted in the power factor P (= S-squared/rho) increasing with increased annealing temperature. This increase in P was due to a decrease in rho which was not completely offset by a drop in S-squared suggesting that other changes besides that in the carrier concentration took place. SEM and EDX analysis of the samples indicated the formation of a Ga-P-Ge rich phase as a result of the annealing. It is speculated that this phase is associated with the improved properties. Several reasons which could account for the improvement in the power factor of annealed GaP doped SiGe are given.

  2. First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50

    Science.gov (United States)

    Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei

    2018-06-01

    The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.

  3. Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap

    Science.gov (United States)

    Latha, M.; Aruna Devi, R.; Velumani, S.

    2018-05-01

    CuIn1-xGaxSe2 nanocrystals (CIGSe NCs) were synthesized with different gallium (Ga) content by the hot injection process at low reaction temperature for the first time. The Ga content [x = Ga(In + Ga)] was varied such as 0, 0.25, 0.50 and 0.75 to study their influences on the structural, morphological, compositional and optical properties of CIGSe NCs. X-ray diffraction (XRD) analysis showed the peak shift towards higher 2θ angle. The lattice parameters a and c were decreased linearly as x value increases which propitiated Vegard's law. Transmission electron microscopy (TEM) analysis revealed a decrease in the particle size from 55 to 22 nm. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra indicated a blue shift towards the lower wavelength and bandgap was tuned from 1.04 to 1.41eV. Apart from this, CIGSe thin films were prepared by doctor blade coating method followed by annealing under Se/Ar atmosphere. The mobility of CIGSe thin film increased whereas resistivity decreased. Moreover, the photoconductivity of CIGSe annealed thin film exhibited almost 2-fold increase under an illumination of light. We realize from these results that the synthesized CIGSe NCs with x = 0.25 is expected to have the important perspective to be efficiently exploited as an absorber layer in cost-effective thin film solar cells.

  4. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    OpenAIRE

    Hongling Wei; Zhengwei Chen; Zhenping Wu; Wei Cui; Yuanqi Huang; Weihua Tang

    2017-01-01

    Ga2O3 with a wide bandgap of ∼ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. Th...

  5. Properties of spin-1/2 triangular-lattice antiferromagnets CuY2Ge2O8 and CuLa2Ge2O8

    Science.gov (United States)

    Cho, Hwanbeom; Kratochvílová, Marie; Sim, Hasung; Choi, Ki-Young; Kim, Choong Hyun; Paulsen, Carley; Avdeev, Maxim; Peets, Darren C.; Jo, Younghun; Lee, Sanghyun; Noda, Yukio; Lawler, Michael J.; Park, Je-Geun

    2017-04-01

    We found new two-dimensional (2D) quantum (S =1 /2 ) antiferromagnetic systems: Cu R E2G e2O8 (R E =Y and La). According to our analysis of high-resolution x-ray and neutron diffraction experiments, the Cu network of Cu R E2G e2O8 (R E =Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg≅2 eV . Taken together, our observations make Cu R E2G e2O8 (R E =Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.

  6. Some physical parameters of CuInGaS{sub 2} thin films deposited by spray pyrolysis for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kotbi, Ahmed [Hassan II Casablanca University, MAC and PM Laboratory, ANEPMAER Group, FSTM, Mohammedia (Morocco); Hassan II Casablanca University, LIMAT Laboratory, Department of Physics, FSB, Casablanca (Morocco); Hartiti, Bouchaib; Fadili, Salah [Hassan II Casablanca University, MAC and PM Laboratory, ANEPMAER Group, FSTM, Mohammedia (Morocco); Ridah, Abderraouf [Hassan II Casablanca University, LIMAT Laboratory, Department of Physics, FSB, Casablanca (Morocco); Thevenin, Philippe [University of Lorraine, LMOPS Laboratory, Department of Physics, Metz (France)

    2017-05-15

    Copper-indium-gallium-disulphide (CuInGaS{sub 2}) is a promising absorber material for thin film photovoltaic. In this paper, CuInGaS{sub 2} (CIGS) thin films have been prepared by chemical spray pyrolysis method onto glass substrates at ambient atmosphere. Structural, morphological, optical and electrical properties of CuInGaS{sub 2} films were analysed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-Vis spectrophotometer and Hall Effect measurement, respectively. The films exhibited single phase chalcopyrite structure. The strain and dislocation density decreased with increase of spray time. The grain size of the films increased from 4.45 to 9.01 nm with increase of spray time. The Raman spectrum indicated the presence of the principal chalcopyrite peak at 295 cm{sup -1}. The optical properties of the synthesized films have been carried out through the measurement of the absorbance spectrum. The optical band gap was estimated by the absorption spectrum fitting (ASF) method. For each sample, the width of the band tail (E{sub Tail}) of CuInGaS{sub 2} thin films was determined. The resistivity (ρ), conductivity (σ), mobility (μ), carrier concentration and conduction type of the films were determined using Hall Effect measurements. The interesting optical properties of CuInGaS{sub 2} make them an attractive material for photovoltaic devices. (orig.)

  7. Some physical parameters of CuInGaS_2 thin films deposited by spray pyrolysis for solar cells

    International Nuclear Information System (INIS)

    Kotbi, Ahmed; Hartiti, Bouchaib; Fadili, Salah; Ridah, Abderraouf; Thevenin, Philippe

    2017-01-01

    Copper-indium-gallium-disulphide (CuInGaS_2) is a promising absorber material for thin film photovoltaic. In this paper, CuInGaS_2 (CIGS) thin films have been prepared by chemical spray pyrolysis method onto glass substrates at ambient atmosphere. Structural, morphological, optical and electrical properties of CuInGaS_2 films were analysed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-Vis spectrophotometer and Hall Effect measurement, respectively. The films exhibited single phase chalcopyrite structure. The strain and dislocation density decreased with increase of spray time. The grain size of the films increased from 4.45 to 9.01 nm with increase of spray time. The Raman spectrum indicated the presence of the principal chalcopyrite peak at 295 cm"-"1. The optical properties of the synthesized films have been carried out through the measurement of the absorbance spectrum. The optical band gap was estimated by the absorption spectrum fitting (ASF) method. For each sample, the width of the band tail (E_T_a_i_l) of CuInGaS_2 thin films was determined. The resistivity (ρ), conductivity (σ), mobility (μ), carrier concentration and conduction type of the films were determined using Hall Effect measurements. The interesting optical properties of CuInGaS_2 make them an attractive material for photovoltaic devices. (orig.)

  8. X-ray study of CuGa sub x In sub 1-x Se sub 2 solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Suri, D.K.; Nagpal, K.C. (National Physical Lab., New Delhi (India). Materials Characterization Div.); Chadha, G.K. (Delhi Univ. (India). Dept. of Physics and Astrophysics)

    1989-12-01

    The semiconducting compound CuGa{sub x}In{sub 1-x}Se{sub 2} crystallizes in the chalcopyrite structure (space group Ianti 42d, Z=4). The X-ray powder data for x=1, 0.75, 0.6, 0.5, 0.4, 0.25 and 0.0 have been collected and it is found that the lattice parameters a and c and their ratio c/a vary linearly with x. Thus the composition of any chalcopyrite in the pseudo-binary system CuGaSe{sub 2} and CuInSe{sub 2} can be obtained from the accurate lattice parameters. The crystallite size determined from the (112) plane is minimum for x=0.50 ({proportional to}1000 A) and away from x=0.50 it increases. A value of u=0.240 (5) has been established for fixing, the Se-atom positions in the CuGa{sub 0.5}In{sub 0.5}Se{sub 2} solid solution. The JCPDS Diffraction File No. for CuInSe{sub 2} is 40-1487 and for CuGa{sub 0.5}In{sub 0.5}Se{sub 2} is 40-1488. (orig.).

  9. NMR and computational study of Ba{sub 8}Cu{sub x}Ge{sub 46-x} clathrate semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-04-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba{sub 8}Cu{sub x}Ge{sub 46-x} is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition.

  10. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Du, H. W.; Li, Y.; Gao, M.; Wan, Y. Z.; Xu, F. [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Ma, Z. Q., E-mail: zqma@shu.edu.cn [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai, 200444 (China); Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444 (China)

    2016-08-15

    The carriers’ behavior in neutral region (NTR) and space charged region (SCR) of Cu(In,Ga)Se{sub 2} thin film based solar cells has been investigated by temperature dependent photoluminescence (PL-T), electroluminescence (EL-T) and current-voltage (IV-T) from 10 to 300 K. PL-T spectra show that three kinds of defects, namely V{sub Se}, In{sub Cu} and (In{sub Cu}+V{sub Cu}), are localized within the band gap of NTR and SCR of CIGS layer, corresponding to the energy levels of E{sub C}-0.08, E{sub C}-0.20 and E{sub C}-0.25 eV, respectively. The In{sub Cu} and (In{sub Cu}+V{sub Cu}) deep level defects are non-radiative recombination centers at room temperature. The IV-T and EL-T analysis reveals that the injection modes of electrons from ZnO conduction band into Cu(In,Ga)Se{sub 2} layer are tunneling, thermally-excited tunneling and thermionic emission under 10-40, 60-160, and 180-300 K, respectively. At 10-160 K, the electrons tunnel into (In{sub Cu}+V{sub Cu}) and V{sub se} defect levels in band gap of SCR and the drifting is involved in the emission bands at 0.96 and 1.07 eV, which is the direct evidence for a tunneling assisted recombination. At 180-300 K, the electrons are directly injected into the Cu(In,Ga)Se{sub 2} conduction band, and the emission of 1.13 eV are ascribed to the transitions from the conduction band to the valence band.

  11. Transient effects of ionizing radiation in Si, InGaAsP, GaAlSb, and Ge photodiodes

    International Nuclear Information System (INIS)

    Wiczer, J.J.; Barnes, C.E.; Dawson, L.R.

    1980-01-01

    Certain military applications require the continuous operation of optoelectronic information transfer systems during exposure to ionizing radiation. In such an environment the optical detector can be the system element which limits data transmission. We report here the measured electrical and optical characteristics of an irradiation tolerant photodiode fabricated from a double heterojunction structure in the gallium aluminum antimonide (GaAlSb) ternary semiconductor system. A series of tests at Sandia Laboratories' Relativistic Electron Beam Accelerator (REBA) subjected this device and commercially available photodiodes (made from silicon, germanium, and indium gallium arsenide phosphide) to dose rate levels of 10 7 to 10 8 rads/sec. The results of these tests show that the thin GaAlSb double heterojunction photodiode structure generates significantly less unwanted radiation induced current density than that of the next best commercial device

  12. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  13. Red-blue effect in Cu(In,Ga)Se2-based devices revisited

    International Nuclear Information System (INIS)

    Igalson, M.; Urbaniak, A.; Zabierowski, P.; Maksoud, H. Abdel; Buffiere, M.; Barreau, N.; Spiering, S.

    2013-01-01

    The controversial issue of a source for the fill factor losses in Cu(In,Ga)Se 2 -based solar cells observed under red light is discussed. Experimental evidence is presented that removal of the fill factor loss by blue light is accompanied by a decrease in capacitance. Similar kinetics for both effects are observed. This effect is demonstrated not only on CdS-buffered devices but also on Zn(O,S)- and In 2 S 3 -buffered cells. The explanation, supported by simulations, is based on a model of a reduction of the p + layer by holes photogenerated in the buffer. This effect might be differentiated from the effect of a photosensitive secondary barrier in the buffer-window part of the junction by a sign of the capacitance change under blue light. - Highlights: ► High-energy photons improve fill factor in Cu(In,Ga)Se 2 -based solar cells. ► The effect is demonstrated on three types of buffer layers. ► Fill factor improvement under blue light is correlated with a decrease of doping. ► p + layer is the main cause of fill factor deficiency under red light

  14. Red-blue effect in Cu(In,Ga)Se{sub 2}-based devices revisited

    Energy Technology Data Exchange (ETDEWEB)

    Igalson, M., E-mail: igalson@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Urbaniak, A.; Zabierowski, P.; Maksoud, H. Abdel [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Buffiere, M.; Barreau, N. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3 (France); Spiering, S. [Zentrum fur Sonnenenergie-und Wasserstoff-Forschung (ZSW) Baden-Württemberg, Industriestrasse 6, 70565 Stuttgart (Germany)

    2013-05-01

    The controversial issue of a source for the fill factor losses in Cu(In,Ga)Se{sub 2}-based solar cells observed under red light is discussed. Experimental evidence is presented that removal of the fill factor loss by blue light is accompanied by a decrease in capacitance. Similar kinetics for both effects are observed. This effect is demonstrated not only on CdS-buffered devices but also on Zn(O,S)- and In{sub 2}S{sub 3}-buffered cells. The explanation, supported by simulations, is based on a model of a reduction of the p + layer by holes photogenerated in the buffer. This effect might be differentiated from the effect of a photosensitive secondary barrier in the buffer-window part of the junction by a sign of the capacitance change under blue light. - Highlights: ► High-energy photons improve fill factor in Cu(In,Ga)Se{sub 2}-based solar cells. ► The effect is demonstrated on three types of buffer layers. ► Fill factor improvement under blue light is correlated with a decrease of doping. ► p + layer is the main cause of fill factor deficiency under red light.

  15. Sub-band-gap absorption of Cu(In,Ga)Se{sub 2} thin film semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Max; Brueggemann, Rudolf; Bauer, Gottfried H. [Carl von Ossietzky University Oldenburg (Germany)

    2012-07-01

    The sub-band-gap absorption of Cu(In,Ga)Se{sub 2} thin films has been studied by photothermal deflection spectroscopy (PDS) in conjunction with optical transmittance spectroscopy. The resulting absorption coefficients are compared to those calculated from photoluminescence spectra using Planck's generalized law. Quantities related to the absorption like Urbach energy and defect densities are derived from the absorption curves. This concept has been applied to a series of bromine-methanol etched Cu(In{sub x-1},Ga{sub x})Se{sub 2} (x=0.3) absorbers with varying thicknesses. A shift in the band gap is observed with both methods and can be related to the gallium gradient in the samples. In contrast, the Urbach energy and defect absorption values are not substantially affected by the etching process. The influence of CdS buffer layers or highly thermally conductive metallic back contacts on PDS results is studied by measuring nominally identical samples with and without those layers.

  16. Defects in Cu(InGa)Se2/CdS heterostructure films induced by hydrogen ion implantation

    International Nuclear Information System (INIS)

    Yakushev, M.V.; Tomlinson, R.D.; Hill, A.E.; Pilkington, R.D.; Mudryi, A.V.; Bondar, I.V.; Victorov, I.A.; Gremenok, V.F.; Shakin, I.A.; Patuk, A.I.

    1999-01-01

    The influence of H + ion implantation on the photoluminescence properties of Cu(InGa)Se 2 /CdS heterostructures has been studied. This treatment was found to increase the photoluminescence intensity of donor-acceptor band at 1.13 eV because of the passivation by hydrogen atoms of the non-radiative recombination centers on the boundary of Cu(InGa)Se 2 and CdS layers. Two broad bands peaks at 0.96 eV and at 0.82 eV in photoluminescence spectra of ion-implanted Cu(InGa)Se 2 films have been found. The tentative model to explain the origin of the broad photoluminescence bands has been discussed

  17. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  18. Evaporación de Cu(In,GaSe2 en lámina delgada para aplicaciones fotovoltaicas

    Directory of Open Access Journals (Sweden)

    Guillén, C.

    2004-04-01

    Full Text Available The aim of this work is to study the structural and optical properties of Cu(In,GaSe2 (CIGS thin films after thermal and chemical treatments. Cu(In,GaSe2 thin films have been obtained by means of the selenization in vacuum or Ar of the metallic precursors evaporated sequentially. The sequence of evaporation was In/Ga/Cu/In. Single-phase chalcopyrite and polycrystalline CIGS films with (112 preferred orientation were obtained. An improvement in the crystallite feature and optical properties is observed after Ar selenization. Band gap energies, Eg, between 0.98 and 1.10 were obtained for different atomic ratios, being dominated by the Ga content. Thin films high absorption coefficient was reduced in band tails, specially when Cu content increases after chemical treatment in KCN.El objetivo de este trabajo es estudiar las propiedades estructurales y ópticas del Cu(In,GaSe2 (CIGS en lámina delgada tras diferentes tratamientos térmicos y químicos. El Cu(In,GaSe2 se ha obtenido mediante la selenización en vacío o Ar de los precursores metálicos evaporados secuencialmente. La secuencia de evaporación seguida fue In/Ga/Cu/In. Se obtuvieron láminas policristalinas de CIGS con estructura calcopirita fuertemente orientada en la dirección (112. Se observó una mejora de la naturaleza cristalina y de las propiedades ópticas tras la selenización en Ar. Se obtuvieron energías de banda prohibida, Eg, entre 0.98 y 1.10 eV para las diferentes relaciones atómicas, estando dominadas por el contenido de Ga. Se consiguió reducir la alta absorción por colas de banda de las láminas delgadas, especialmente cuando aumentaba el contenido de Cu, tras un tratamiento químico en KCN.

  19. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  20. Specific features of band structure and optical anisotropy of Cu{sub 2}CdGeSe{sub 4} quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: brik@fi.tartu.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Parasyuk, O.V. [Department of Chemistry, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Myronchuk, G.L. [Department of Physics, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Kityk, I.V. [Institute of Materials Science and Engineering, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2014-09-15

    Complex theoretical and experimental studies of the band structure and optical functions of a new Cu{sub 2}CdGeSe{sub 4} quaternary crystal are reported. The benchmark band structure calculations were performed using the first-principles methods. As a result, the structural, electronic, optical and elastic properties of Cu{sub 2}CdGeSe{sub 4} were calculated in the general gradient approximation (GGA) and local density approximation (LDA). The calculated dielectric function and optical absorption spectra exhibit some anisotropic behavior. Detailed analysis of the band energy dispersion and effective space charge density helped in establishing the origin of the band structure anisotropy. All calculated properties are compared with the experimental data. An additional comparison with a similar crystal of Cu{sub 2}CdGeSe{sub 4} allowed to reveal the role played by the anions (S or Se) in formation of the optical properties of these two materials. - Highlights: • The structural, electronic, optical properties of Cu{sub 2}CdGeSe{sub 4} were calculated. • Pressure effects on these properties were modeled. • Comparison with a similar compound of Cu{sub 2}CdGeS{sub 4} was performed.

  1. Measurements of directed, elliptic, and triangular flow in Cu + Au collisions at √{sNN}=200 GeV

    Science.gov (United States)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-11-01

    Measurements of anisotropic flow Fourier coefficients (vn) for inclusive charged particles and identified hadrons π±, K±, p , and p ¯ produced at midrapidity in Cu +Au collisions at √{s NN}=200 GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC). The particle azimuthal distributions with respect to different-order symmetry planes Ψn, for n =1 , 2, and 3 are studied as a function of transverse momentum pT over a broad range of collision centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared with hydrodynamical and transport model calculations. We also compare these Cu +Au results with those in Cu +Cu and Au +Au collisions at the same √{sNN} and find that the v2 and v3, as a function of transverse momentum, follow a common scaling with 1 /(ɛnNpart1 /3) .

  2. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu3Se2/n-GaAs/In structure

    International Nuclear Information System (INIS)

    Güzeldir, B.; Sağlam, M.; Ateş, A.; Türüt, A.

    2015-01-01

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu 3 Se 2 /n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu 3 Se 2 /n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu 3 Se 2 /n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence

  3. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure

    Energy Technology Data Exchange (ETDEWEB)

    Güzeldir, B.; Sağlam, M. [Department of Physics, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey); Ateş, A. [Department of Material Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Türüt, A. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34000 Istanbul (Turkey)

    2015-04-05

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence.

  4. Strangeness Enhancement in Cu-Cu and Au-Au Collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C.; Arkhipkin, D.; Bielčík, J.; Bielčíková, Jana; Chaloupka, Petr; Chung, Paul; Hajková, O.; Kapitán, Jan; Kushpil, Vasilij; Pachr, M.; Rusnak, J.; Šumbera, Michal; Tlustý, David

    2012-01-01

    Roč. 108, č. 6 (2012), 072301/1-072301/6 ISSN 0031-9007 R&D Projects: GA MŠk LA09013 Institutional support: RVO:61389005 Keywords : heavy ion collision Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.943, year: 2012

  5. Photoluminescence of polycrystalline CuIn 0.5 Ga 0.5 Te 2 thin films grown by flash evaporation

    KAUST Repository

    Yandjah, L.; Bechiri, L.; Benabdeslem, M.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Ziani, Ahmed

    2018-01-01

    Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz . The as-obtained films were characterized by X

  6. Influence of γ-ray radiation on the electrical properties of CuGaSe2

    International Nuclear Information System (INIS)

    Gasimov, I.K.; Kerimova, T.G.; Mamedova, I.A.

    2002-01-01

    The ternary A 1 B 3 C 3 6 compounds are perspective materials for creation on their base the high effective transformers of solar energy, photodetectors with the high efficiency. In this paper the results of the investigation of the short-circuit current dependence on the wavelength and influence of the γ-ray radiation on the electrical properties of the p-type CuGaSe 2 crystals have been reported. The (Co 60 ) with the quantum energy of 1.25 MeV was used as a g amma - ray source. The CnGaSe 2 crystals were obtained by the chemical transport reactions. Iodine crystalline was used as a transporter. The lattice parameters were determined by the X-ray method as a=5.607 Angstroms, c=10.99 Angstroms, c/a=l.96. The In-Ga eutectic contacts were put on the nature surfaces of the films for the earring out the measurements. The films with the ρ=10 2 -10 7 Ω·cm resistivity were investigated. The films one can divide into two group: low resistance ρ=10 2 -10 3 Ω·cm and high resistance ρ=10 5 -10 7 Ω·cm films. The inverse of the current is observed in the I ns ∼f(λ) short-circuit current dependence with the wavelength in the low resistance films. The inverse is not observed in the high resistance ones. The measurement of the resistivity of the CuGaSe 2 films radiated by γ-ray radiation were carried out at 77 K. The resistivity of the low-resistance films under the radiation up to 50 p/s changes slowly, then increases sharply and achieves the value ρ=10 6 Ω·cm. Beginning from 300 p/s the resistivity decreases. Further increasing of the power doesn't influence on the resistivity. The resistivity of the high resistance films decreases up to 10 6 Ω·cm at 100 p/s with the increasing of the dose of γ-ray radiation and then doesn't change with the radiation dose. The investigation of the temperature dependence of the resistivity in the low resistance films previously radiated under the γ-ray radiation showed that increasing of the γ-ray radiation doesn't almost

  7. New Phases of YBaCuGeO Superconductors Identified from X-ray Diffraction and Infra-red Absorption Measurements

    Science.gov (United States)

    Abo-Arais, Ahmed; Dawoud, Mohamad Ahmad Taher

    2005-01-01

    X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed for the Y1 Ba2 Cu3 O7-d - Gex compound samples prepared by the solid state reaction with x values ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between 83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii) BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases in YBCO-Ge composite system. The I-R absorption spectra for the samples with orthorhombic symmetry have been determined. The phonon modes between ~ 400 cm-1 and 630 cm-1 are attributed to the Cu - O octahedron and pyramid vibrations for the CuO2 -planes and CuO-chains, while the peaks in the range from ~ 700 cm-1 to ~ 860 cm-1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5. The obtained results are discussed according to the superconductor - semi-conductor composite model and with the phonon-mediated charge transfer between CuO2 -planes and CuO- chains through apex oxygen (BaO).

  8. Structural characterization of the high-temperature modification of the Cu_2ZnGeTe_4 quaternary semiconductor compound

    International Nuclear Information System (INIS)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C.; Delgado, G.E.; Lopez-Rivera, S.A.

    2016-01-01

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu_2ZnGeTe_4 quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm"-"1 have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm"-"1 tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu_2GeTe_3 secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    Science.gov (United States)

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  10. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    2017-06-01

    Full Text Available To achieve radio frequency (RF power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively.

  11. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  12. Photoelectrochemical water splitting using a Cu(In,Ga)Se{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Daisuke; Minegishi, Tsutomu; Maeda, Kazuhiko; Katayama, Masao; Kubota, Jun; Domen, Kazunari [Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamada, Akira; Konagai, Makoto [Department of Physical Electronics, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-06-15

    The effects of surface modification and reaction conditions on the photoelectrochemical properties of polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) thin films for water splitting were studied. CIGS modified with platinum particles (Pt/CIGS) generated a cathodic photocurrent at potentials up to + 0.4 V vs. RHE at pH = 9.5. The photocurrent was stable for 16 h, which resulted in a turnover number of over 500. A CdS-inserted film (Pt/CdS/CIGS) had significantly improved properties compared to Pt/CIGS: a 0.3 V higher onset potential of cathodic photocurrent and a three-fold increase in the quantum efficiency. Our results suggest the feasibility of CIGS as a photocathode for biphotoelectrochemical water splitting. (author)

  13. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  14. Metoda pentru analiza spectrometrica cu detector de Ge(Li) a probelor de trasori radioactivi cu rasini schimbatoare de ioni

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Farcasiu, O.M.

    1981-07-01

    The radioactive tracers methods presently in use in hydrology are based on ''in situ'' low resolution gamma-ray spectrometry measurements. However sometimes the information obtained in this way is not conclusive and the need for better spectrometry systems is evident. Therefore the authors present a method for measuring in laboratory conditions samples of radioactive tracers collected ''in situ'' and concentrated on ions exchange resins, sing low level gamma-ray spectrometry with Ge(Li) detector. The advantages of this method in comparison with the methods based on Na(Tl) detectors are also presented in the paper. (authors)

  15. Lattice parameters values and phase diagram for the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Caldera, D. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Quintero, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)], E-mail: mquinter@ula.ve; Morocoima, M.; Quintero, E.; Grima, P.; Marchan, N.; Moreno, E.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Mora, A.E.; Briceno, J.M.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructura de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela)

    2008-06-12

    X-ray powder diffraction and differential thermal analysis (DTA) measurements were made on polycrystalline samples of the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system. The diffraction patterns were used to show the equilibrium conditions and to estimate crystalline parameter values. It was found that, at room temperature, a single phase solid solution with the tetragonal stannite {alpha} structure (I4-bar2m) occurs across the whole composition range. The DTA thermograms were used to construct the phase diagram of the Cu{sub 2}Zn{sub 1-z}Fe{sub z}GeSe{sub 4} alloy system. It was confirmed that the Cu{sub 2}ZnGeSe{sub 4} compound melts incongruently. It was observed that undercooling effects occur for samples with z > 0.9.

  16. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    Science.gov (United States)

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  17. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production

    KAUST Repository

    Kandiel, Tarek; Anjum, Dalaver H.; Takanabe, Kazuhiro

    2014-01-01

    The synthesis of quaternary metal sulfide (QMS) nanocrystals is challenging because of the difficulty to control their stoichiometry and phase structure. Herein, quaternary CuGa2In3S8 photocatalysts with a primary particle size of ≈4nm

  18. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

    International Nuclear Information System (INIS)

    Zhao Zongyan; Zhou Dacheng; Yi Juan

    2014-01-01

    3d transition metals doped CuGaS 2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS 2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS 2 host. However, in the case of CuGa 1−x TM x S 2 (TM = Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them. (semiconductor materials)

  19. Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells

    DEFF Research Database (Denmark)

    Sun, Yun; Lin, Shuping; Li, Wei

    2017-01-01

    surface structure and electronic property variation induced by alkali fluoride (NaF and KF) post-deposition treatment (PDT), we discuss and interpret the following issues: ① The delamination of CIGS thin films induced by Na incorporation facilitates CuInSe2 formation and inhibits Ga during low...

  20. Numerical study of the electronic structure, elastic and optical properties of defect quaternary semiconductor CuGaSnSe4

    Science.gov (United States)

    Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.

  1. Investigation of Cu(In,Ga)Se{sub 2} using Monte Carlo and the cluster expansion technique

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Christian D.R.; Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz (Germany); Windeln, Johannes [IBM Germany, Mgr. Technology Center ISC EMEA, Mainz (Germany)

    2010-07-01

    CIGS based solar cells are among the most promising thin-film techniques for cheap, yet efficient modules. They have been investigated for many years, but the full potential of CIGS cells has not yet been exhausted and many effects are not understood. For instance, the band gap of the absorber material Cu(In,Ga)Se{sub 2} varies with Ga content. The question why solar cells with high Ga content have low efficiencies, despite the fact that the band gap should have the optimum value, is still unanswered. We are using Monte Carlo simulations in combination with a cluster expansion to investigate the homogeneity of the In-Ga distribution as a possible cause of the low efficiency of cells with high Ga content. The cluster expansion is created by a fit to ab initio electronic structure energies. The results we found are crucial for the processing of solar cells, shed light on structural properties and give hints on how to significantly improve solar cell performance. Above the transition temperature from the separated to the mixed phase, we observe different sizes of the In and Ga domains for a given temperature. The In domains in the Ga-rich compound are smaller and less abundant than the Ga domains in the In-rich compound. This translates into the Ga-rich material being less homogeneous.

  2. The structural and material properties of Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya-Fen; Hsu, Hung-Pin [Department of Electronic Engineering, Ming Chi University of Technology, 84 Gongzhuan Rd., New Taipei City 243 (China); Wang, Jen-Cheng; Chen, Hui-Ying [Department of Electronic Engineering, Chang Gung University, 259 Wenhwa 1st Rd., Taoyuan 333 (China)

    2012-06-15

    We report on the structural and material properties of Cu-poor CuIn{sub 1-x}Ga{sub x} Se{sub 2} (CIGS) thin films with different gallium contents grown using the co-evaporation technique. Temperature-dependent photoluminescence (PL) and high-resolution X-ray diffraction measurements were performed. The PL emission peaks observed around 1.0-1.2 eV are attributed to donor-acceptor pair luminescence. These donor-acceptor pair emissions are considered to originate from relatively shallow acceptor and donor energy levels. In addition, the X-ray diffraction spectra of the samples are simulated using a theoretical model. From the analysis, it is found that the sample with higher gallium content exhibits smaller grain size and the microstructure size uniformity is reduced. The theoretical calculation result is consistent with the experimental results derived from the PL spectra. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Ion beam analysis of Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Karydas, A.G. [International Atomic Energy Agency (IAEA), IAEA Laboratories, Nuclear Science and Instrumentation Laboratory, A-2444 Seibersdorf (Austria); Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153 10 Aghia Paraskevi, Athens Greece (Greece); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Radovic, I. Bogdanovic [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Kaufmann, C.; Rissom, T. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Jaksic, M. [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E. N. 10, Apartado 21, 2686-953 Sacavém (Portugal)

    2015-11-30

    Graphical abstract: - Highlights: • Elemental depth profiles for various CIGS thin films were quantitatively determined. • Pure absorbers, complete cell and bilayer solar cells were prepared and analyzed. • Synergistic PIXE and RBS analysis of thin solar cells using alpha beam particles. • High energy alpha beam resolved completely the Indium depth profile. • Synchrotron based Reference Free GIXRF quantitative analysis validated IBA results. - Abstract: The present work investigates the potential of ion beam analysis (IBA) techniques such as the Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) using helium ions to provide quantitative in-depth elemental analysis of various types of Cu(In,Ga)Se{sub 2} thin films. These films with a thickness of about 2 μm are used as absorber layers in photovoltaic devices with continuously increasing the performance of this technology. The preparation process generally aims to obtain an in-depth gradient of In and Ga concentrations that optimizes the optoelectronic and electrical properties of the solar cell. The measurements were performed at directly accessible single or double layered CIGS absorbers and at buried absorbers in completed thin film solar cells. The IBA data were analyzed simultaneously in order to derive best fitted profiles that match all experimental RBS and PIXE spectra. For some samples elemental profiles deduced form synchrotron based, reference free grazing incidence X-ray fluorescence analysis were compared with the IBA results and an overall good agreement was observed within quoted uncertainties.

  4. Tailoring the optical properties of amorphous heavily Er3+-doped Ge-Ga-S thin films

    Czech Academy of Sciences Publication Activity Database

    Reddy, N.K.; Devika, M.; Prashantha, M.; Rames, K.; Ivanova, Z.G.; Zavadil, Jiří

    2013-01-01

    Roč. 15, 3-4 (2013), s. 182-186 ISSN 1454-4164 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 Keywords : Chalcogenide thin films * Optical properties * Photoinduced changes Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering Impact factor: 0.563, year: 2013

  5. Radiation exposure to nuclear medicine personnel handling positron emitters from 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Dwivedi, Durgesh Kumar; Snehlata; Kumar, Rakesh; Naswa, Niraj; Sharma, Punit; Malhotra, Arun; Bandopadhayaya, Guru Pad; Bal, Chandrashekhar; Dwivedi, Alok Kumar; Lochab, Satya Pal; Pant, Gauri Shankar

    2011-01-01

    To measure the radiation exposure to nuclear medicine personnel during synthesis and injection to the patients of 68 Ga 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-1-Nal -octreotide (NOC)- (DOTA-NOC) using ring thermoluminescence dosimeters (TLDs). Synthesis of 68 Ga DOTA-NOC was done on a semi-automated system. Finger doses were measured during synthesis and injection of 68 Ga DOTA-NOC. The occupational workers wore TLDs at the base of ring finger of both hands. The finger doses of two radio chemists were measured during synthesis of 68 Ga DOTA-NOC while that of a physician during its injection to the patients. Duration of the study was eight months and a total of 20 samples were prepared. During synthesis, the mean dose to base of left ring finger was 3.02 ± 1.01 mSv and to base of right ring finger was 1.96 ±0.86 mSv. Mean dose to base of left ring finger was 1.26 ± 0.35 mSv while that to base of right ring finger was 1.03 ± 0.13 mSv during injection. The mean dose was observed to be higher during synthesis than injection. However, the difference was not significant (P = 0.27 and P = 0.18, respectively). Overall mean finger dose of left hand was 2.43 ±1.21 mSv, whereas for the right hand the same was 1.65±0.82 mSv. Finger doses to radio chemists during semi-automated synthesis of 68 Ga DOTA-NOC and that to the physician involved in injection of 68 Ga DOTA-NOC were found to be within permissible limits. Ring dosimeters must be worn for the safety of the nuclear medicine personnel involved in synthesis and injection of 68 Ga DOTA-NOC. (author)

  6. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  7. Synthesis and characterization of CuGeO3 photocatalyst using Green Chemistry and its application for the degradation of direct black dye

    Directory of Open Access Journals (Sweden)

    Ashok. V. Borhade

    2013-03-01

    Full Text Available In this paper, we report synthesis of CuGeO3 photocatalyst by mechanochemical, solid state synthesis, method with green chemistry approach. The product obtained was characterized by various investigative techniques like UV-Diffuse Reflectance Spectroscopy, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy, with Energy Dispersive X-ray Spectroscopy, and BET Surface area. The study confirm orthorhombic pervoskite crystal structure of photocatalyst with band gap 3.7 eV. The photocatalytic activity of the catalysts CuGeO3 was evaluated by photochemical bleaching of Direct black dye, under sun light.

  8. Triangle islands and cavities on the surface of evaporated Cu(In, Ga)Se2 absorber layer

    International Nuclear Information System (INIS)

    Han Anjun; Zhang Yi; Liu Wei; Li Boyan; Sun Yun

    2012-01-01

    Highlights: ► Lots of uncommon triangle islands and cavities are found on (1 1 2) planes terminated by Se atoms of evaporated Cu(In, Ga)Se 2 thin films. ► Se ad-dimer as a nucleus, Cu atom diffusion from Cu(In, Ga)Se 2 grains brings the epitaxial triangle island. ► The triangle islands grow with a two-dimensional layered mode. ► The triangle cavities are formed due to the insufficient coalescence of triangle islands. ► The performance of solar cell without triangle islands is improved. - Abstract: Cu(In, Ga)Se 2 (CIGS) thin films are co-evaporated at a constant substrate temperature of 500 °C on the Mo/soda lime glass substrates. The structural properties and chemical composition of the CIGS films are studied by an X-ray diffractometer (XRD) and an X-ray fluorescent spectrometer (XRF), respectively. A scanning electron microscope (SEM) is used to study the surface morphology. Lots of uncommon triangle islands and cavities are found on some planes of the CIGS thin films. We investigate the formation mechanism of these triangle islands. It is found that the planes with the triangle islands are (1 1 2) planes terminated by Se atoms. Se ad-dimer as a nucleus, Cu diffusion from CIGS grains brings the epitaxial triangle islands which grow with a two-dimensional layered mode. The film with Cu/(Ga + In) = 0.94–0.98 is one key of the formation of these islands. The triangle cavities are formed due to the insufficient coalescence of triangle islands. The growth of triangle islands brings a compact surface with large layered grains and many jagged edges, but no triangle cavity. Finally, we compare the performance of solar cell with triangle islands and layered gains. It is found that the performance of solar cell with large layered gains is improved.

  9. Characteristics of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator and aspects of radiolabelling DOTA-peptides

    Energy Technology Data Exchange (ETDEWEB)

    Blois, Erik de; Chan, Ho Sze [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Naidoo, Clive; Prince, Deidre [iThemba Labs, Somerset West, Republic of South Africa (South Africa); Krenning, Eric P. [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Breeman, Wouter A.P., E-mail: w.a.p.breeman@erasmusmc.n [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    Objectives: PET scintigraphy with {sup 68}Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Methods: Characteristics of 4 SnO{sub 2}-based generators (range 0.4-1 GBq {sup 68}Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the {sup 68}Ga eluate were performed using anion and cation exchange. Concentrated {sup 68}Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. {sup 68}Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. Results: The amount of elutable {sup 68}Ga activity varies when the concentration of the eluens, HCl, was varied, while {sup 68}Ge activity remains virtually constant. SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator elutes at 0.6 M HCl >100% of the {sup 68}Ga activity at calibration time and {+-}75% after 300 days. Eluate at discharge was sterile and Endotoxins were <0.5 EU/mL, RNP was always <0.01%. Metal ions in the eluate were <10 ppm (in total). Highest desorption for anion purification was obtained with the 30 mg Oasis WAX column (>80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a {sup 68}Ga desorption of 68{+-}8%. With all {sup 68}Ge/{sup 68}Ga generators and for all 3 purification methods a

  10. Reduced Cu(InGa)Se2 Thickness in Solar Cells Using a Superstrate Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, William N. [Univ. of Delaware, Newark, DE (United States)

    2015-03-30

    This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se2 manufacturing by reducing the thickness of the Cu(InGa)Se2 absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se2 thicknesses less than 1 µm. The primary objective was to demonstrate a Cu(InGa)Se2 cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se2 deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se2 but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light

  11. Magnetic excitations in single crystals of Cu1-xNixGeO3

    DEFF Research Database (Denmark)

    Coad, S.; Petrenko, O.; Paul, D.M.

    1997-01-01

    Ni2+ is substituted for Cu2+ in CuGeO3, the 1D chains are broken into finite segments, suppressing the S-P phase and inducing a tow-temperature transition to coexistence with antiferromagnetic order. We show that for the 1.7% Ni-doped crystal the S-P gap is renormalised to approximate to 1.7 me...

  12. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2015-11-01

    Full Text Available We report on the direct conversion of carbon dioxide (CO2 in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu cathode. Various products including methane (CH4, carbon monoxide (CO, and formic acid (HCOOH were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO2 reduction reaction on low cost, large area Si substrates.

  13. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  14. Submicron resolution X-ray diffraction from periodically patterned GaAs nanorods grown onto Ge[111

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Solid State Physics, Siegen University (Germany); Grenzer, Joerg [FZ-Dresden Rossendorf, Dresden (Germany); Paetzelt, Hendrik; Gottschalch, Volker; Bauer, Jens [Solid State Chemistry, University of Leipzig (Germany)

    2009-08-15

    We present high-resolution X-ray diffraction pattern of periodic GaAs nanorods (NRs) ensembles and individual GaAs NRs grown catalyst-free throughout a pre-patterned amorphous SiN{sub x} mask onto Ge[111]B surfaces by selective-area MOVPE method. To the best of our knowledge this is the first report about nano-structure X-ray characterization growth on non-polar substrate. The experiment has been performed at home laboratory and using synchrotron radiation using a micro-sized beam prepared by compound refractive lenses. Due to the non-polar character of the substrate the shapes of NRs appear not uniform and vary between deformed hexagonal and trigonal in symmetry. Because the average diameter of NRs equals the experimental resolution certain cuts through slightly inclined edges or corners of individual NRs with lateral size of about 225 nm could be selected using spatially resolved reciprocal space mapping. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Real time observation of phase formations by XRD during Ga-rich or In-rich Cu(In, Ga)Se{sub 2} growth by co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, Paul; Zahedi-Azad, Setareh; Hartnauer, Stefan; Waegele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland [Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany)

    2015-09-15

    Solar cells with Cu(In, Ga)Se{sub 2} absorbers rely on the three-stage co-evaporation process with Cu-poor/Cu-rich/Cu-poor absorber deposition conditions for highest efficiency devices. During the three-stage process, the formation and evolution of different selenide phases with changing compositions throughout the process crucially determine the final absorber quality. In this contribution, we monitor the evolution of crystalline phases in real-time with an X-ray diffraction (XRD) line detector setup implemented into an evaporation setup. Using the common three-stage process, we prepare and compare samples covering the full alloying range from CuInSe{sub 2} to CuGaSe{sub 2}. The in situ XRD allows the detection of the crystalline phases present at all times of the process as well as an advanced analysis of the phase evolution through a closer look at peak shifts and the full width at half maximum. For samples with a Ga/(Ga + In) ratio (GGI) < 0.5, distinct phase transitions associated with the transition to the reported vacancy compounds Cu(In,Ga){sub 5}Se{sub 8} and Cu(In, Ga){sub 3}Se{sub 5} are observed. No such indication was found for samples with a GGI > 0.5. For Ga-rich Cu(In, Ga)Se{sub 2} phases with a GGI of 0.55, the XRD analysis evidenced a Ga-rich phase segregation before the stoichiometric point was reached. The above findings are discussed in view of their implication on wide gap solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and 64Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors

    DEFF Research Database (Denmark)

    Oxbøl, Jytte; Brandt-Larsen, Malene; Schjøth-Eskesen, Christina

    2014-01-01

    INTRODUCTION: The aim of this study was to synthesize and perform a side-by-side comparison of two new tumor-angiogenesis PET tracers (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) in vivo using human xenograft tumors in mice. Human radiation burden was estimated to evaluate...... potential for future use as clinical PET tracers for imaging of neo-angiogenesis. METHODS: A (68)Ge/(68)Ga generator was used for the synthesis of (68)Ga-NODAGA-E[c(RGDyK)](2). (68)Ga and (64)Cu labeled NODAGA-E[c(RGDyK)](2) tracers were administrated in nude mice bearing either human glioblastoma (U87MG......) or human neuroendocrine (H727) xenograft tumors. PET/CT scans at 3 time points were used for calculating the tracer uptake in tumors (%ID/g), integrin αVβ3 target specificity was shown by blocking with cold NODAGA-E[c(RGDyK)](2), and biodistribution in normal organs were also examined. From biodistribution...

  17. Ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu_2 and CaCu_5 related slabs

    International Nuclear Information System (INIS)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer; Janka, Oliver

    2017-01-01

    Fourteen ternary gallides RE_4Rh_9Ga_5, RE_5Rh_1_2Ga_7 and RE_7Rh_1_8Ga_1_1 (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce_4Rh_9Ga_5, Ce_5Rh_1_2Ga_7, Ce_7Rh_1_8Ga_1_1, Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_), Nd_4Rh_9Ga_5 and Gd_4Rh_9Ga_5 were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE_2_+_n Rh_3_+_3_n Ga_1_+_2_n structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu_2 (Mg_2Ni_3Si as ternary variant) and CaCu_5 (CeCo_3B_2 as ternary variant). Only the Nd_5Rh_1_0_._4_4_(_4_)Ga_8_._5_6_(_4_) crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y_4Rh_9Ga_5 and Curie-Weiss paramagnetism for Gd_4Rh_9Ga_5 and Tb_4Rh_9Ga_5. Low-temperature data show ferromagnetic ordering at T_C=78.1 (Gd_4Rh_9Ga_5) and 55.8 K (Tb_4Rh_9Ga_5).

  18. Microstructure characterization of the soda-lime-glass/copper-indium-gallium-selenium interface in Cu-poor Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: wangjustb@gmail.com; Qiao, Yi; Zhu, Jie, E-mail: jiezhu@ustb.edu.cn

    2015-05-29

    The microstructure characteristics of the soda-lime-glass/Cu(In,Ga)Se{sub 2} (SLG/CIGS) interface in Cu-poor CIGS films are investigated by transmission electron microscopy and selected area electronic diffraction (SAED). The SAED patterns show very sharp and strong spots, indicating the main structure of CIGS chalcopyrite. Small dispersed crystals with size distribution from 2 to 5 nm seem to be embedded in amorphous matrix, and additional spots indicate the presence of an ordered vacancy compound (OVC). This observation is consistent with the Raman results, and the OVC phase with the nanoclusters exists in the CIGS matrix, instead of layer structure. Lattice distortion results in local changes in contrast. Some pseudo-disordered structure is observed, however, the structure is actually the chalcopyrite CIGS structure. 180° rotation twins are also observed at the SLG/CIGS interface. Lattice distortion is widely observed at the interface of the Cu-poor CIGS films, and the extra spots could be caused by different lattice orientations. - Highlights: • Cu(In,Ga)Se{sub 2} (CIGS) were prepared on bare soda-lime-glass (SLG) substrates. • Microstructure of the SLG/CIGS interface was investigated. • An ordered vacancy compound (OVC) phase was observed. • The OVC phase with nanoclusters exists in the CIGS matrix, instead of layer structure. • 180° rotation twins were observed at the SLG/CIGS interface.

  19. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  20. Transverse Momentum Spectra of KS0 and K*0 at Midrapidity in d + Au, Cu + Cu, and p+p Collisions at √(sNN)=200 GeV

    International Nuclear Information System (INIS)

    Zhang, Guo-Xing; Li, Bao-Chun; Guo, Yuan-Yuan

    2015-01-01

    We analyze transverse momentum spectra of K S 0 and K *0 at midrapidity in d + Au, Cu + Cu, and p+p collisions at √(s NN )=200 GeV in the formworks of Tsallis statistics and Boltzmann statistics, respectively. Both of them can describe the transverse momentum spectra and extract the thermodynamics parameters of matter evolution in the collisions. The parameters are helpful for us to understand the thermodynamics factors of the particle production

  1. Epitaxial growth of chalcopyrite CuInS2 films on GaAs (001) substrates by evaporation method with elemental sources

    International Nuclear Information System (INIS)

    Nozomu, Tsuboi; Satoshi, Kobayash; Nozomu, Tsuboi; Takashi, Tamogami

    2010-01-01

    Full text : Ternary chalcopyrite semiconductor CuInS 2 is one of the potential candidates for absorber layers in high-efficiency thin film solar cells due to its direct bandgap Eg of 1.5 eV, which matches with solar spectrum. However, CuInS 2 solar cells face the problem of lower solar conversion efficiency compared with Cu(InGa)Se 2 solar cells. Investigation of fundamental properties of CuInS 2 films is necessary to understand key issues for solar cell performance. Although in bulk CuInS 2 is known to crystallize into chalcopyrite (CH) structure, in thin film other structures such as Cu-Au (CA) and sphalerite (SP) structures may coexist. It was reported epitaxial growth of slightly Cu-rich CuInS 2 films with c-axis orientated CA only and/or with a mixture of a- and c-axes orientated CH structures on GaP (001) at substrate temperature of 500 degrees using the conventional evaporation method with three elemental sources. Successful growth of epitaxial CH structured CuInS 2 were observed for films grown on GaP at 570 degrees with slightly Cu-rich composition. In this paper, CuInS 2 films with various [Cu]/[In] ratios are grown on GaAs(001) substrates, and the composition range in terms of the [Cu]/[In] ratio where epitaxial films with CH structure grow and the structural qualities of the films are discussed in comparison with those on GaP substrates. Films with various ratios of [Cu]/[In]=0.8 ≤1.9 are grown at 500 degrees and 570 degrees using the evaporation system described in our previous reports. Regardless of the substrate temperature, noticeable X-ray diffraction (XRD) peaks of CH structured CuInS 2 phase are observed in slightly Cu-rich films. However, reflection high energy electron diffraction (RHEED) patterns of the slightly Cu-rich films grown at 570 degrees exhibit noticeable spots not only due to the CH structure but also due to the CA structure. The amount of the CA structure is considered to be small because of the absence of the XRD peaks of the CA

  2. Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.

    Science.gov (United States)

    Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong

    2016-01-13

    The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.

  3. Charge-Dependent Directed Flow in Cu +Au Collisions at √{sN N } =200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, C.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, R.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, F.; Wang, J. S.; Wang, Y.; Wang, H.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Q. H.; Xu, Y. F.; Xu, H.; Xu, Z.; Xu, N.; Xu, J.; Yang, C.; Yang, Y.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, Y.; Zhang, J. B.; Zhang, Z.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2017-01-01

    We present the first measurement of charge-dependent directed flow in Cu +Au collisions at √{sN N }=200 GeV . The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics model, which suggests that most of the electric charges, i.e., quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1 fm /c .

  4. Improving the survivability of Nb-encapsulated Ga targets for the production of 68Ge

    Science.gov (United States)

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Olivas, E. R.; Kelsey, C. T., IV; Engle, J. W.; Connors, M. A.; Nortier, F. M.; Runde, W. H.; Moddrell, C.; Lenz, J. W.; John, K. D.

    2013-03-01

    At the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF), radioisotopes are produced for medical, scientific, and industrial applications by irradiating various targets with a 100 MeV, 230 μA proton beam. The medical isotope germanium-68 is produced by irradiating Nb capsules containing molten Ga target material. During irradiation, the Nb is subjected to intense radiation damage, corrosive attack by Ga, and mechanical and thermally-induced stresses for an extended period. Maintaining the structural integrity of the Nb target capsules during irradiation is crucial to contain the molten Ga target and the radioisotope product. In the present work, we focus on potential material related factors and assess the effect of the Nb stock material on target durability. We do so by comparing post-irradiation target mortality information to data collected during pre-irradiation ultrasound testing and X-ray imaging. We also explore possible failure mechanisms by using MCNP6 simulations and ANSYS codes to predict the induced atom displacement levels, hydrogen gas built-up, temperature distribution, and mechanical stresses. Our analysis, performed entirely in the context of an aggressive production program that allows for only limited diagnostic interference, suggests that using Nb stock with reasonably large and uniform grains is the most important factor in reducing early target failure at integrated beam current values <18 mAh and random failure at the face of the rear window at <60 mAh. We discuss possible failure mechanisms of failed targets that were fabricated using the same stock material and grain structure and then irradiated to integrated beam current values of up to 60 mAh and more. Based on these observations, we have enacted new specifications for Nb stock material quality, target design, and limits on integrated beam current. These changes have resulted in improved Nb capsule survivability.

  5. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  6. Large magnetoresistance in Heusler-alloy-based epitaxial magnetic junctions with semiconducting Cu(In{sub 0.8}Ga{sub 0.2})Se{sub 2} spacer

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, S. [Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takahashi, Y. K.; Ohkubo, T. [Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Cheng, P.-H.; Ikhtiar,; Mitani, S.; Hono, K. [Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577 (Japan); Kondou, K. [Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Otani, Y. [Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581 (Japan)

    2016-07-18

    We investigated the structure and magneto-transport properties of magnetic junctions using a Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy as ferromagnetic electrodes and a Cu(In{sub 0.8}Ga{sub 0.2})Se{sub 2} (CIGS) semiconductor as spacers. Owing to the semiconducting nature of the CIGS spacer, large magnetoresistance (MR) ratios of 40% at room temperature and 100% at 8 K were obtained for low resistance-area product (RA) values between 0.3 and 3 Ω μm{sup 2}. Transmission electron microscopy observations confirmed the fully epitaxial growth of the chalcopyrite CIGS layer, and the temperature dependence of RA indicated that the large MR was due to spin dependent tunneling.

  7. Growth and process identification of CuInS 2 on GaP by chemical vapor deposition

    Science.gov (United States)

    Hwang, H. L.; Sun, C. Y.; Fang, C. S.; Chang, S. D.; Cheng, C. H.; Yang, M. H.; Lin, H. H.; Tuwan-Mu, H.

    1981-10-01

    Experimental techniques for growing CuInS 2 layers on GaP substrates by the metalorganic method have been developed. Hydrogen sulfide gas together with the vapors of CuCl( NCCH3) n and InCl3( NCCH3) both of which were generated by bubbling nitrogen through sources, using a solvent of acetonitride, were used as transport agents. Various characterization techniques such as atomic absorption (AA), neutron activation analysis (NAA), energy dispersive analysis by X-rays (EDAX), Rutherford back-scattering analysis (RBS), and X-ray analyses were used to help understand the fundamental mechanism of the CVD growth.

  8. Penning-trap Q-value determination of the 71Ga(ν,e−)71Ge reaction using threshold charge breeding of on-line produced isotopes

    International Nuclear Information System (INIS)

    Frekers, D.; Simon, M.C.; Andreoiu, C.; Bale, J.C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J.R.; Delheij, P.; Ejiri, H.; Ettenauer, S.; Gallant, A.T.; Gavrin, V.; Grossheim, A.; Harakeh, M.N.; Jang, F.; Kwiatkowski, A.A.

    2013-01-01

    We present a first direct Q-value measurement of the 71 Ga(ν,e − ) 71 Ge reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like 71 Ga 21+ and 71 Ge 22+ using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoionic samples of 71 Ga 21+ and 71 Ge 21+ were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5±1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in 71 Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced 51 Cr and 37 Ar sources and the theoretical expectation

  9. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    Directory of Open Access Journals (Sweden)

    Antonio Italiano

    2016-05-01

    Full Text Available The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By means of the TALYS software we simulated the nuclear reactions leading to the above radionuclides, hypothesizing three possible scenarios of broad proton spectra, with maximum energies of about 9, 40 and 100 MeV. The production yields of the studied radionuclides, within the expected fluences, appear to be suitable for pre-clinical applications.

  10. Reduced recombination in a surface-sulfurized Cu(InGa)Se2 thin-film solar cell

    Science.gov (United States)

    Kim, Shinho; Nishinaga, Jiro; Kamikawa, Yukiko; Ishizuka, Shogo; Nagai, Takehiko; Koida, Takashi; Tampo, Hitoshi; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru

    2018-05-01

    This study demonstrates surface sulfurization effects on Cu(InGa)Se2 (CIGSe) thin-film solar cells with a single back-graded band gap. Single back-graded CIGSe thin films were prepared via a three-stage process in a high-vacuum molecular beam epitaxial growth chamber and were subsequently annealed in a tube furnace under environmental conditions with H2S gas. After sulfurization, an ∼80- to ∼100-nm-thick CuIn(SSe)2 layer with significantly small Ga contents (CISSe:Ga) was formed on the CIGSe layer. The newly formed CISSe:Ga layer exhibited graded S contents from surface to bulk, thus resulting in a front-graded band gap. In addition, CISSe:Ga was covered with S-enriched CISSe region that was extended from the surface to a depth of a few nm and was depleted of Ga. A device with the sulfurized CIGSe showed reduced recombination at the buffer–absorber interface, in space-charge region and in bulk. Consequently, the open circuit voltage increased from 0.58 V (in the non-sulfurized case) to 0.66 V, and the conversion efficiency improved from 15.5 to 19.4%. This large improvement is caused by the front graded band gap at the surface and the hole-blocking barrier, which suppress recombination at the CdS/CISSe:Ga interface. In addition, sulfurization followed by KF post-deposition treatment (PDT) increased the efficiency to 20.1%. Compared to the untreated sulfurized device, the KF-PDT device delivered an increased carrier lifetime and reduced the recombination in bulk probably because the defects were passivated by the K, which penetrated into the bulk region.

  11. Investigation of the diffusion behavior of sodium in Cu(In,Ga)Se{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Laemmle, Anke, E-mail: anke.laemmle@zsw-bw.de; Wuerz, Roland; Powalla, Michael [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden Württemberg, Industriestraße 6, 70565 Stuttgart (Germany); Schwarz, Torsten; Cojocaru-Mirédin, Oana; Choi, Pyuck-Pa [Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2014-04-21

    Sodium diffusion in Cu(In,Ga)Se{sub 2} (CIGS) layers was investigated over a temperature range from 157 °C to 400 °C. The diffusion profiles were measured by secondary ion mass spectrometry. Sodium ions diffused from a sodium fluoride (NaF) layer on the CIGS surface into the CIGS layer. From Na diffusion profiles, the diffusion along grain boundaries could be distinguished from the diffusion into the grain interior. Atom-probe tomography measurements reveal that even at a low temperature of 157 °C bulk diffusion of sodium into CIGS occurs. Based on this data, the slower diffusion coefficient in the volume can be described by the Arrhenius equation D{sub Na}{sup V} = 9.7 × 10{sup −9} exp(−0.36 eV/k{sub B}T) cm{sup 2} s{sup −1} and the fast diffusion along the grain boundaries by D{sub Na}{sup GB} = 6.5 × 10{sup −9} exp(−0.21 eV/k{sub B}T) cm{sup 2} s{sup −1}. Hence, we propose that sodium ions do not only passivate grain boundaries, but also act as dopants in the CIGS bulk.

  12. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I.; García, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); and others

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.

  13. The development of hydrazine-processed Cu(In,Ga)(Se,S){sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bob, Brion; Lei, Bao; Chung, Choong-Heui; Yang, Wenbing; Hsu, Wan-Ching; Duan, Hsin-Sheng; Hou, William Wei-Jen; Li, Sheng-Han; Yang, Yang [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2012-05-15

    The hydrazine-based deposition of Cu(In,Ga)(S,Se){sub 2} (CIGS) thin films has attracted considerable attention in recent years due to its potential for the high-throughput production of photovoltaic devices based on this absorber material. This article provides an introduction as well as presenting a complete picture of the current status of hydrazine-based CIGS solar-cell fabrication, including the three major steps of this deposition process: dissolution of the precursor materials in hydrazine, deposition of a film from the resulting precursor solution, and the completion and characterization of a photovoltaic device following absorber deposition. Recent discoveries are then discussed, regarding the dissolution chemistry of the relevant precursor complexes in hydrazine, which together represent the true foundation of this processing method. Recent studies on CIGS film formation are then summarized, including the control and analysis of the crystalline phase, electronic bandgap, and film morphology. Finally, the latest progress in high-performance device fabrication is highlighted, with a focus on optoelectronic characterization including current-voltage, junction capacitance, and minority carrier lifetime measurements. Finally, a discussion and future outlook is provided. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Ionization effects on Cu(In, Ga)Se{sub 2} thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Shirou; Imaizumi, Mitsuru [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0031 (Japan); Ishizuka, Shogo; Shibata, Hajime [Institute of National Advanced Industrial Science and Technology, 1-1 Umezono, Tsukuba 305-8568 (Japan); Okuda, Shuichi [Osaka Prefecture University, 1-2 Gakuenmachi, Sakai 599-8570 (Japan)

    2017-06-15

    Cu (In, Ga) Se{sub 2} (CIGS) solar cells were irradiated with 60, 100, and 250 keV electrons to reveal the characteristics of radiation induced defects. Electrons with less than 200 keV energy cannot generate any displacement defects in CIGS materials. In addition, a low amount of the electrons can improve the roll-over behavior in current-voltage characteristics of CIGS solar cells. However, the deterioration of the electrical performance in CIGS solar cells irradiated with a high amount of electrons was observed. The deterioration rate on the cells irradiated with lower-energy electrons was higher than that induced by electrons with higher-energy. The degradation curve of J{sub SC} based on the ionizing dose estimated from the ionizing energy loss model does not depend on the energy of electrons. Therefore, it implies that the electrons can degrade CIGS solar cells due to the ionization effect. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  16. Damp Heat Treatment of Cu(In,GaSe2 Solar Cells with Different Sodium Content

    Directory of Open Access Journals (Sweden)

    Felix Daume

    2013-11-01

    Full Text Available Long term stability is crucial to maturing any photovoltaic technology. We have studied the influence of sodium, which plays a key role in optimizing the performance of Cu(In,GaSe2 (CIGSe solar cells, on the long-term stability of flexible CIGSe solar cells on polyimide foil. The standardized procedure of damp heat exposure (85% relative humidity at 85 °C was used to simulate aging of the unencapsulated cells in multiple time steps while they were characterized by current-voltage analysis, capacitance-voltage profiling, as well as electroluminescence imaging. By comparing the aging process to cells that were exposed to heat only, it could be confirmed that moisture plays the key role in the degradation process. We found that cells with higher sodium content suffer from a more pronounced degradation. Furthermore, the experimental results indicate the superposition of an enhancing and a deteriorating mechanism during the aging process. We propose an explanation based on the corrosion of the planar contacts of the solar cell.

  17. Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules

    Science.gov (United States)

    Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi

    2015-08-01

    Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.

  18. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Recombination mechanisms in highly efficient thin film Zn(S,O)/Cu(In,Ga)S2 based solar cells

    Science.gov (United States)

    Merdes, S.; Sáez-Araoz, R.; Ennaoui, A.; Klaer, J.; Lux-Steiner, M. Ch.; Klenk, R.

    2009-11-01

    Progress in fabricating Cu(In,Ga)S2 based solar cells with Zn(S,O) buffer is presented. An efficiency of 12.9% was achieved. Using spectral response, current-voltage and temperature dependent current-voltage measurements, current transport in this junction was studied and compared to that of a highly efficient CdS/Cu(In,Ga)S2 solar cell with a special focus on recombination mechanisms. Independently of the buffer type and despite the difference in band alignment of the two junctions, interface recombination is found to be the main recombination channel in both cases. This was unexpected since it is generally assumed that a cliff facilitates interface recombination while a spike suppresses it.

  20. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  1. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  2. Effect of Ga2O3 buffer layer thickness on the properties of Cu/ITO thin films deposited on flexible substrates

    International Nuclear Information System (INIS)

    Zhuang Huihui; Yan Jinliang; Xu Chengyang; Meng Delan

    2014-01-01

    Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga 2 O 3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thickness on the optical and electrical properties of the Cu film deposited on a PET substrate with a Ga 2 O 3 buffer layer was studied, and an appropriate Cu layer thickness of 4.2 nm was obtained. Changes in the optoelectrical properties of Cu(4.2 nm)/ITO(30 nm) films were investigated with respect to the Ga 2 O 3 buffer layer thickness. The optical and electrical properties of the Cu/ITO films were significantly influenced by the thickness of the Ga 2 O 3 buffer layer. A maximum transmission of 86%, sheet resistance of 45 Ω/□ and figure of merit of 3.96 × 10 −3 Ω −1 were achieved for Cu(4.2 nm)/ITO(30 nm) films with a Ga 2 O 3 layer thickness of 15 nm. (semiconductor materials)

  3. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunHo, E-mail: jhk@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States); Kim, SeongYeon [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M. [National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States)

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  4. The competing roles of i-ZnO in Cu(ln,Ga)Se¬2 solar cells

    NARCIS (Netherlands)

    Williams, B.L.; Zardetto, V.; Kniknie, B.J.; Verheijen, M.A.; Kessels, W.M.M.; Creatore, M.

    2016-01-01

    The electrical role of the highly resistive and transparent (HRT) i-ZnO layer in Cu(In, Ga)Se2(CIGS) solar cells is investigated. By tuning the resistivity of atomic layer deposited (ALD) i-ZnO through the use of post-growth O2-plasma treatments, it is shown that low i-ZnO carrier densities (i.e.

  5. The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Williams, B.L.; Zardetto, V.; Kniknie, B.; Verheijen, M.A.; Kessels, W.M.M.; Creatore, M.

    2016-01-01

    The electrical role of the highly resistive and transparent (HRT) i-ZnO layer in Cu(In, Ga)Se2(CIGS) solar cells is investigated. By tuning the resistivity of atomic layer deposited (ALD) i-ZnO through the use of post-growth O2-plasma treatments, it is shown that low i-ZnO carrier densities (i.e.

  6. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2

    OpenAIRE

    Michael Powalla; Stefan Paetel; Dimitrios Hariskos; Roland Wuerz; Friedrich Kessler; Peter Lechner; Wiltraud Wischmann; Theresa Magorian Friedlmeier

    2017-01-01

    In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS techno...

  7. Raman scattering analysis of Cu-poor Cu(In,Ga)Se{sub 2} cells fabricated on polyimide substrates: Effect of Na content on microstructure and phase structure

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo-Roca, V. [IN2UB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); Caballero, R. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Saucedo, E. [IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Perez-Rodriguez, A., E-mail: aperezr@irec.cat [IN2UB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Morante, J.R. [INUB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany)

    2011-08-31

    This work reports the Raman scattering surface and in-depth resolved analysis of Cu-poor Cu(In,Ga)Se{sub 2} (CIGS) grown on polyimide substrates. In order to study the effect of Na on the formation and microstructure of the CIGS and the corresponding Cu-poor ordered vacancy compound (OVC) phases, a NaF precursor layer with different thicknesses was deposited on the Mo-coated substrates before growing of the samples. The Raman spectroscopy data are correlated with the analysis of the samples by Auger electron spectroscopy and scanning electron microscopy. These data corroborate the significant role of Na on the inhibition of Ga-In interdiffusion and on the formation of the MoSe{sub 2} interfacial phase at the back region of the layers. Presence of Na also leads to an enhancement in the formation of the chalcopyrite CIGS phase and a decrease in the occurrence of the dominant OVC phase at the surface region. This study confirms the strong dependence of the microstructure and phase distribution in CIGS absorber layers on the Na available during their growth.

  8. The influence of growth parameters on the structure and composition of CuGaS{sub 2} epilayers grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Branch, M.S. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)]. E-mail: Matthew.Branch@nmmu.ac.za; Berndt, P.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Weber, J. [Institute for Low Temperature Physics, University of Technology, D-01062 Dresden (Germany)

    2006-04-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS{sub 2} is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac){sub 2}.Et{sub 3}N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac){sub 2}.Et{sub 3}N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS{sub 2}, yet enhance the formation of Ga{sub x}S{sub y} phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material.

  9. Homogeneity of single phase Cu(In,Ga)Se2 produced by selenisation of metal precursors: An optical investigation

    International Nuclear Information System (INIS)

    Botha, J.R.; Schumacher, S.A.; Leitch, A.W.R.; Alberts, V.

    2006-01-01

    Two-stage processes involving the selenisation of metallic precursor layers are among the most promising techniques for the formation of chalcopyrite-based solar cell absorber layers on a commercial scale. In this paper, the homogeneity of Cu(In 0.75 Ga 0.25 )Se 2 prepared by a new two-stage technique [V. Alberts, Semicond. Sci. Technol., 19 (2004) 65.], which involves the selenisation of sputtered CuIn 0.75 Ga 0.25 precursor films in steps designed to control the reaction rates of the binary selenide phases and to prevent the formation of the more stable CuGaSe 2 phase, is studied. Photoluminescence spectroscopy, optical absorption measurements and X-ray diffraction measurements confirm that layers grown by a traditional process, which involves a single selenisation step, contain separate quaternary phases: gallium-rich phases are found closer to the substrate, while gallium-poor phases reside near the front surface. Layers produced by the novel process do not show this grading. A line appearing at ∼ 0.8 eV is ascribed to Na III , which results from the out-diffusion of Na from the glass substrate

  10. Effects of NaF evaporation during low temperature Cu(In,Ga)Se{sub 2} growth

    Energy Technology Data Exchange (ETDEWEB)

    Bissig, B., E-mail: benjamin.bissig@empa.ch; Reinhard, P.; Pianezzi, F.; Hagendorfer, H.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N.

    2015-05-01

    Co-evaporation of NaF during the 3{sup rd} stage of the low temperature Cu(In,Ga)Se{sub 2} multi-stage process is compared to post-deposition treatment (PDT) with NaF in view of their influence on the electronic and structural properties. In case of NaF co-evaporation, quantum efficiency losses in the near infrared region and thus lower short circuit current density cause a reduced efficiency compared to solar cells prepared with NaF PDT. The formation of a deep defect with activation energy of ~ 250 meV is measured by capacitance spectroscopy and can explain the deteriorated performance in such devices. In addition, NaF co-evaporation during the 3{sup rd} stage causes reduced grain size in the top part of Cu(In,Ga)Se{sub 2} and altered In, Ga, and Cu distribution. - Highlights: • NaF was co-evaporated in a low temperature CIGS process during and after the 3rd stage. • CIGS grains size is reduced in the top 300 nm when NaF is co-evaporated. • C-f measurements indicate deep defect formation when NaF is co-evaporated.

  11. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  12. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production

    KAUST Repository

    Kandiel, Tarek

    2014-09-03

    The synthesis of quaternary metal sulfide (QMS) nanocrystals is challenging because of the difficulty to control their stoichiometry and phase structure. Herein, quaternary CuGa2In3S8 photocatalysts with a primary particle size of ≈4nm are synthesized using a facile hot-injection method by fine-tuning the sulfur source injection temperature and aging time. Characterization of the samples reveals that quaternary CuGa2In3S8 nanocrystals exhibit n-type semiconductor characteristics with a transition band gap of ≈1.8eV. Their flatband potential is located at -0.56V versus the standard hydrogen electrode at pH6.0 and is shifted cathodically by 0.75V in solutions with pH values greater than 12.0. Under optimized conditions, the 1.0wt% Ru-loaded CuGa2In3S8 photocatalyst exhibits a photocatalytic H2 evolution response up to 700nm and an apparent quantum efficiency of (6.9±0.5)% at 560nm. These results indicate clearly that QMS nanocrystals have great potential as nano-photocatalysts for solar H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of stacked elemental layers for Cu(In,Ga)Se{sub 2} thin film preparation by rapid thermal selenization

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, Christiane; Ohland, Joerg; Mikolajczak, Ulf; Madena, Thomas; Keller, Jan; Parisi, Juergen; Hammer, Maria; Riedel, Ingo [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany)

    2013-07-01

    Rapid thermal selenization of pure metallic (Cu-In-Ga) or selenium-containing (Cu-In-Ga-Se) precursors is a favorable method to fabricate Cu(In,Ga)Se{sub 2} absorber films for application in thin film solar cells. Because of its upscaling potential and the short process time it is a promising approach for the fabrication of CIGSe photovoltaic modules on industrial scale. As a preliminary work for prospective plasma-enhanced selenization of stacked elemental layers (SEL) the elements copper, indium and gallium were sequentially deposited on molybdenum coated soda-lime glass by thermal evaporation. The stacking order was varied and the precursors were annealed with different heating rates. Morphology, elemental depth distribution and phases of the layers were investigated before and after annealing using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Furthermore the influence of different heating rates on phase transitions during annealing was studied by in-situ X-ray diffraction.

  14. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, P.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)]. E-mail: pearl.berndt@nmmu.ac.za; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Branch, M.S. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Kirmse, H. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Neumann, W. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Weber, J. [Institute for Applied Physics-Semiconductor Physics, University of Technology, Dresden (Germany)

    2007-05-31

    In this study, various CuGaS{sub 2} layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures.

  15. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS2 thin films

    International Nuclear Information System (INIS)

    Berndt, P.R.; Botha, J.R.; Branch, M.S.; Leitch, A.W.R.; Kirmse, H.; Neumann, W.; Weber, J.

    2007-01-01

    In this study, various CuGaS 2 layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures

  16. High efficiency Cu(In,Ga)Se{sub 2} thin film solar cells without intermediate buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Wiesner, H.; Asher, S.; Niles, D.; Bhattacharya, R.N.; Keane, J.; Contreras, M.A.; Noufi, R. [National Renewable Energy Lab., Golden, CO (United States). Electronic Materials and Devices Div.

    1998-09-01

    The nature of the interface between CuInGaSe{sub 2} (CIGS) and the chemical bath deposited CdS layer has been investigated. The authors show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up an interfacial reaction with the possibility of an ion exchange occurring between Cd and Cu. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. The authors suggest that this aspect might be more important than the CdS layer in the formation of the junction. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction between CdS and CIGS. The authors use these ideas to develop methods for fabricating diodes without CdS or Cd.

  17. Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2

    Science.gov (United States)

    Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.

    2017-12-01

    The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

  18. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  19. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  20. Device Modeling of the Performance of Cu(In,GaSe2 Solar Cells with V-Shaped Bandgap Profiles

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available The effect of Cu(In,GaSe2 (CIGS with V-shaped bandgap on device performance is investigated in detail. A series of Ga/(In+Ga ratio are set to study the influence of V-shaped bandgap profile on the electricity of CIGS thin film solar cells. The modeling of device current density-voltage (J-V curve and bandgap grading profile corresponded well to measurement results. Detailed characteristic and modeling results show that an increased gradient of bandgap from valley to the buffer layer CdS will result in a barrier and lead to an enhanced recombination in the valley. This phenomenon can be modified by the back electric field resulting from a gradient bandgap from valley (bandgap minimum to the Mo back contact. These results indicate CIGS-based solar cells can achieve higher performance by optimizing the V-shaped bandgap profile.

  1. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  2. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  3. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF BIS(CITRATEGERMANATES(IV (Hbipy2[Ge(HCit2]•2H2O AND [CuCl(bipy2]2[Ge(HCit2]•8H2O

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2016-12-01

    Full Text Available The crystalline compounds (Hbipy2[Ge(HCit2]·2H2O (1 and CuCl(bipy2]2[Ge(HCit2]·8H2O (2 (where H4Cit is citric acid, bipy is 2,2ʹ-bipyridine were obtained for the fi rst time and their structures were determined by the single-crystal X-ray diffraction method. Compounds were characterized by IR spectroscopy, thermogravimetric (TGA and elemental analyses. Both compounds are formed with complex bis(citrategermanate anion and protonated 2,2’-bipyridine or [Cu(bipy2Cl]+ as cations in compounds 1 and 2, respectively.

  4. Opto-electronic characterization of polycrystalline CuInS2 and Cu(In,Ga)S2 absorber layers by photoluminescence

    International Nuclear Information System (INIS)

    Heidemann, Florian

    2011-01-01

    Photoluminescence (PL) is an established method to characterize the optoelectronic properties of solar cell absorber layers. With the help of Planck's generalized law it is in principle possible to determine the quasi-Fermi level splitting - which is the upper limit of the open circuit voltage V oc - and the absorption coefficient of a solar cell before its actual completion. For large-scale measurements (mm/cm regime) this is valid for absorber layers with lateral homogeneous properties, however it is not directly transferable to polycrystalline semiconductors due to laterally fluctuating opto-electronic and structural parameters. The lateral fluctuations in opto-electronic properties of polycrystalline Cu(In 1-ξ Ga ξ )S 2 have been analyzed (e.g. with respect to fluctuations in quasi-Fermi level splitting, optical band-gap and sub band-gap absorbance) by measuring laterally and spectrally resolved PL on the μm-scale and providing the transition towards macroscopic PL measurements on the mm-scale. To give a comprehensive characterization, surface roughness and optical properties have been studied and methods for feature extraction have been applied. On the microscopic scale variations in the quasi-Fermi level splitting Δ x,y E Fnp of about 38 meV (CuInS 2 ) and 53 meV (Cu(In,Ga)S 2 ) have been found. From local absorbance spectra extracted from PL measurements on Cu(In,Ga)S 2 fluctuations in the optical band-gap E opt with a full width at half maximum of FWHM E opt ∼80 meV could be extracted, whereas band-gap fluctuations in CuInS 2 are found to be negligible. Thus band-gap fluctuations seem to be mainly caused by a varying gallium (Ga) content. Furthermore, regions with higher E opt and with it a potential higher Ga content, show a higher quasi-Fermi level splitting. As a major limiting factor for the local quasi-Fermi level splitting E Fnp the local density of deep defects could be identified. Due to low luminescence yields of Cu(In 1-ξ Ga ξ )S 2 under

  5. Opto-electronic characterization of polycrystalline CuInS{sub 2} and Cu(In,Ga)S{sub 2} absorber layers by photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Heidemann, Florian

    2011-09-29

    Photoluminescence (PL) is an established method to characterize the optoelectronic properties of solar cell absorber layers. With the help of Planck's generalized law it is in principle possible to determine the quasi-Fermi level splitting - which is the upper limit of the open circuit voltage V{sub oc} - and the absorption coefficient of a solar cell before its actual completion. For large-scale measurements (mm/cm regime) this is valid for absorber layers with lateral homogeneous properties, however it is not directly transferable to polycrystalline semiconductors due to laterally fluctuating opto-electronic and structural parameters. The lateral fluctuations in opto-electronic properties of polycrystalline Cu(In{sub 1-{xi}}Ga{sub {xi}})S{sub 2} have been analyzed (e.g. with respect to fluctuations in quasi-Fermi level splitting, optical band-gap and sub band-gap absorbance) by measuring laterally and spectrally resolved PL on the {mu}m-scale and providing the transition towards macroscopic PL measurements on the mm-scale. To give a comprehensive characterization, surface roughness and optical properties have been studied and methods for feature extraction have been applied. On the microscopic scale variations in the quasi-Fermi level splitting {delta}{sub x,y}E{sub Fnp} of about 38 meV (CuInS{sub 2}) and 53 meV (Cu(In,Ga)S{sub 2}) have been found. From local absorbance spectra extracted from PL measurements on Cu(In,Ga)S{sub 2} fluctuations in the optical band-gap E{sub opt} with a full width at half maximum of FWHM{sub E{sub opt}}{approx}80 meV could be extracted, whereas band-gap fluctuations in CuInS{sub 2} are found to be negligible. Thus band-gap fluctuations seem to be mainly caused by a varying gallium (Ga) content. Furthermore, regions with higher E{sub opt} and with it a potential higher Ga content, show a higher quasi-Fermi level splitting. As a major limiting factor for the local quasi-Fermi level splitting E{sub Fnp} the local density of deep

  6. Benefits of oxygen in CuInSe{sub 2} and CuGaSe{sub 2} containing Se-rich grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chunbao, E-mail: chunbaofeng@126.com [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Luo, Min; Li, Bolin; Li, Dengfeng [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Nie, Jinlan [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Dong, Huining [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China)

    2014-05-01

    Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CuInSe{sub 2} and CuGaSe{sub 2}. The Se atoms with dangling bonds in a Se-rich Σ3 (114) grain boundary (GB) create deep gap states due to strong interaction between Se atoms. However, when such a Se atom is substituted by an O atom, the deep gap states can be shifted into valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically to substitute these Se atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close or even below the top of the valence band.

  7. Investigation of gallium redistribution processes during Cu(In,Ga)Se{sub 2} absorber formation from electrodeposited/annealed oxide precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Sidali, T., E-mail: tarik.sidali@edf.fr; Duchatelet, A.; Chassaing, E.; Lincot, D.

    2015-05-01

    A way to prepare metallic precursors for CuIn{sub 1−x},Ga{sub x}Se{sub 2} (CIGS) solar cells has been recently introduced leading to efficiencies above 12.4%. It consists in the electrodeposition of Cu-In-Ga mixed oxides in an acidic nitrate aqueous solution followed by thermal reduction and selenization. This paper investigates, in a first part, the nucleation and growth mechanisms taking place during the co-electrodeposition of Cu-In-Ga oxide/hydroxide film. Scanning Electron Microscope observations coupled to Energy Dispersive X-ray spectrometry point out that the deposition is initiated by the formation of metallic copper nuclei. These nuclei enable the growth of Cu-In-Ga oxide film. This observation confirms that freshly deposited copper catalyzes nitrate reduction leading to an increase in the surface pH enabling the precipitation of the Cu-In-Ga hydroxides. In a second part, precursor films were elaborated with increasing Ga(NO{sub 3}){sub 3} concentration. After reduction of the films in hydrogen and selenization heat treatments, X-ray diffraction analysis shows the incorporation of Ga into the CIGS phase with increasing Ga content in the optimal composition range for photovoltaic applications (x = 0.25-0.34). Gallium composition profiles are evidenced in the films with a tendency to higher concentration near the Mo surface. Increasing annealing temperature allows a better homogenization of Ga in the film. The consequences are correlated to optoelectronic measurements (Eg and cell efficiency) with bandgap measurement and cell efficiencies (10 to 12%). - Highlights: • Electrodeposition starts with copper nucleation. • Gallium content in the precursor is tuned by Ga(III) concentration. • Increasing selenization temperature promotes Ga homogenization in CIGS.

  8. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application

    International Nuclear Information System (INIS)

    Otte, Karsten; Makhova, Liudmila; Braun, Alexander; Konovalov, Igor

    2006-01-01

    Thin film solar cells (TFSC) with Cu(In,Ga)Se 2 (CIGS) as absorber layer have been produced on rigid glass substrates for the terrestrial market. There exist, however, different investigations for manufacturing of TFSC on flexible substrates in order to achieve very thin and highly flexible (rollable) solar cells. Besides their capability to open new terrestrial market segments, they are considered as competitive candidates for future flexible thin film space power generators compared to traditional crystalline solar cells. This paper explains the advantages of flexible TFSC for usage in space, including:-low mass and storage volume, -high power/mass ratio [>100 W/kg at array level], -high radiation resistance against proton and electron radiation and, -lower production costs. These cells can be produced on flexible conductive and insulating substrate materials and have efficiency potentials of up to 15%. We report on the current development steps to adopt the TFSC technology to space requirements as well as the first European industrial approach to the roll-to-roll production of flexible CIGS-TFSC on polyimide as substrate material. Stability issues in space environment concern not only the TFSC itself, but all system components such as interconnects, cell assembly and flexible blankets. The adhesion of the back-contact to the substrate, the emissivity control in the infrared wavelength range, the electrical contacting and interconnection as well as flexible encapsulation are currently under investigation and are discussed in the paper. The production costs for TFSC for space application can be further reduced by sharing resources for the production of flexible TFSC for the terrestrial market; namely by using both, the existing terrestrial investment in production facilities as well as the synergies in R and D

  9. Investigating the electronic properties of Al2O3/Cu(In,GaSe2 interface

    Directory of Open Access Journals (Sweden)

    R. Kotipalli

    2015-10-01

    Full Text Available Atomic layer deposited (ALD Al2O3 films on Cu(In,GaSe2 (CIGS surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf and interface-trap charge density (Dit, for as-deposited (AD and post-deposition annealed (PDA ALD Al2O3 films on CIGS surfaces using capacitance–voltage (C-V and conductance-frequency (G-f measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm−2, whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm−2. The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1 for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns, preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  10. Total fragmentation cross section of 158A GeV lead projectiles in Cu target

    International Nuclear Information System (INIS)

    Mukhtar Ahmed Rana; Shahid Manzoor

    2008-01-01

    Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ Z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (authors)

  11. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Total fragmentation cross section for the reaction 158 A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63 ≤ Z ≤ 83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (nuclear physics)

  12. Resolved nuclear hyperfine structure of muonium centres in CuCl and GaAs by means of the avoided-level-crossing technique

    International Nuclear Information System (INIS)

    Schneider, J.W.; Keller, H.; Schmid, B.; Boesiger, K.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Puempin, B.; Simmler, H.; Savic, I.M.; Heming, M.; Reid, I.D.; Roduner, E.; Louwrier, P.W.F.

    1988-01-01

    Avoided-level-crossing resonances from isotropic muonium centres interacting with neighbouring nuclear spins in powdered CuCl are reported. The prominent resonances have a complex multiline structure and are strongly temperature-dependent. In addition, previously unobserved resonances in single-crystal GaAs from anomalous muonium interacting with a 71 Ga neighbour are presented. (orig.)

  13. Electronic, bonding, linear and non-linear optical properties of novel Li{sub 2}Ga{sub 2}GeS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)

    2016-07-25

    Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.

  14. Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benkabou, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Département de Physique, Faculté des Sciences, Université Hassiba Benbouali, Chlef 02000 (Algeria); Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); and others

    2015-10-25

    First-principle calculations are performed to predict the electronic structure and elastic and magnetic properties of CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys. The calculations employ the full-potential linearized augmented plane wave. The exchange-correlations are treated within the generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE). The electronic structure calculations show that these compounds exhibit a gap in the minority states band and are clearly half-metallic ferromagnets, with the exception of the CoRhMnAl and CoRhMnGa, which are simple ferromagnets that are nearly half metallic in nature. The CoRhMnGe and CoRhMnSi compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, which indicates the half metallicity and high spin polarization for these compounds. At the pressure transitions, these compounds undergo a structural phase transition from the Y-type I → Y-type II phase. We have determined the elastic constants C{sub 11}, C{sub 12} and C{sub 44} and their pressure dependence, which have not previously been established experimentally or theoretically. - Highlights: • Based on DFT calculations, CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • The mechanical properties were investigated.

  15. Investigation of the effect of potassium on Cu(In,Ga)Se{sub 2} layers and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laemmle, A., E-mail: anke.laemmle@zsw-bw.de; Wuerz, R.; Powalla, M.

    2015-05-01

    We investigate the influence of potassium (K) on the Cu(In,Ga)Se{sub 2} (CIGS) growth kinetics on alkali-free alumina substrates and the electrical parameters of the CIGS solar cell by intentional K doping of the CIGS layer by a KF-precursor layer and KF-post deposition treatment (PDT). Secondary ion mass spectroscopy measurements revealed that K can be incorporated into the CIGS layer by both processes. The CIGS composition of the KF-precursor sample shows a stronger [Ga]/([Ga] + [In]) (GGI) profile. By analysing the samples with scanning electron microscopy we observed smaller CIGS grains for the KF-precursor sample compared to the K-free reference and KF-PDT sample. jV-measurements of the KF-PDT and the KF-precursor sample show an increase in the cell efficiency η from 10.7% to 13.6% and 13.7%, respectively, compared to the K-free reference sample. The external quantum efficiency measurements of the KF-precursor sample show an increased absorption in the infrared region. Capacitance-voltage measurements reveal an increase in the net doping concentration of both samples treated with K. We assume that the enhancement is caused by passivation of grain boundaries and donor-like defects by K, as previously demonstrated for Na. - Highlights: • K-doped Cu(In,Ga)Se{sub 2} (CIGS) layers from KF-precursor and KF-post deposition treatment • Separation of the K-effect from the Na-effect by using alkali-free substrates • Interdiffusion of CIGS elements during CIGS growth is hindered by K • KF-precursor leads to smaller CIGS grains and a stronger Cu depletion at the CIGS surface. • K leads to an increase in the conversion efficiency.

  16. The conversion of the conductivity type of CuGaSe2 monocrystals under the influence of γ-radiation

    International Nuclear Information System (INIS)

    Kasumov, I.G.; Kerimova, T.G.; Mamedova, I.A.

    2003-01-01

    The CuGaSe 2 is a perspective material for use as a solar elements. In the present work the results of investigation of the dependence of current of short circuit from wavelength of incident light in the fundamental absorption range of both initial and radiated p-CuGaSe 2 samples. The investigation were carried out on low resistance (ρ=10 2 Ω·cm) monocrystalline samples at 77 K, obtained by gas transport reactions. The eutectic In-Ga was use as a contacts. Co 60 with 1.25 MeV quantum energy was the source of radiation. The dependence of the short circuit current from wavelength of the non radiated sample has dome-like form with maxima of 730 nm. The dependence of the short circuit current with the wavelength was measured on this sample after continuous radiation by γ-quantum with capacity of 300 R/s within 20 hours. The saturation is observed with the increasing of wavelength from 400 nm to 690 nm, at the further increasing the current of short circuit takes negative magnitude with the minima of 730 nm and increases to 800 nm and further takes positive magnitude. Thus the inverse of the short circuit current is observed. The experiment was repeated. After the radiation the resistance of samples was increased by three order (from kΩ to MΩ). Such behavior of the dependence of the short circuit current with wavelength testifies, on seen, to change the conductivity, i.e. p-CuGaSe 2 samples are got n-type conductivity under the influence of γ-radiation. Under the influence of γ-radiation the the defects increases, which influences as the scattering electronic centers. The number of electronic centres increases with dose and intensity of γ-radiation which changes the conductivity type

  17. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Science.gov (United States)

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  18. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vermang, Bart, E-mail: Bart.Vermang@angstrom.uu.se [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)

    2015-05-01

    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  19. Measurement of cross sections for the 63Cu(α,γ)67Ga reaction from 5.9-8.7 MeV

    International Nuclear Information System (INIS)

    Basunia, M. Shamsuzzoha; Norman, Eric B.; Shugart, Howard A.; Smith, Alan R.; Dolinski, Michelle J.; Quiter, Brian J.

    2004-01-01

    We have measured cross sections for the 63Cu(alpha,gamma)67Ga reaction in the 5.9-8.7 MeV energy range using an activation technique. Natural Cu foils were bombarded with alpha beams from the 88 Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Activated foils were counted using gamma spectrometry system at LBNL's Low Background Facility. The 63Cu(alpha,gamma)67Ga cross-sections were determined and compared with the latest NON-SMOKER theoretical values. Experimental cross sections were found to be in agreement with theoretical values

  20. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  1. Review on Alkali Element Doping in Cu(In,GaSe2 Thin Films and Solar Cells

    Directory of Open Access Journals (Sweden)

    Yun Sun

    2017-08-01

    Full Text Available This paper reviews the development history of alkali element doping on Cu(In,GaSe2 (CIGS solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strategies on CIGS absorbers and device performances are also reviewed. By analyzing CIGS surface structure and electronic property variation induced by alkali fluoride (NaF and KF post-deposition treatment (PDT, we discuss and interpret the following issues: ① The delamination of CIGS thin films induced by Na incorporation facilitates CuInSe2 formation and inhibits Ga during low-temperature co-evaporation processes. ② The mechanisms of carrier density increase due to defect passivation by Na at grain boundaries and the surface. ③ A thinner buffer layer improves the short-circuit current without open-circuit voltage loss. This is attributed not only to better buffer layer coverage in the early stage of the chemical bath deposition process, but also to higher donor defect (CdCu+ density, which is transferred from the acceptor defect (VCu− and strengthens the buried homojunction. ④ The KF-PDT-induced lower valence band maximum at the absorber surface reduces the recombination at the absorber/buffer interface, which improves the open-circuit voltage and the fill factor of solar cells.

  2. Optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Y.; Warasawa, M. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Takakura, K. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Kimura, S. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, S.F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Ohyama, H. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Sugiyama, M., E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2011-08-31

    The optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 x 10{sup 18} cm{sup -2}. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing J{sub SC} and increasing R{sub s} reflected the influence of irradiated ZnO:Al, and decreasing V{sub OC} and increasing R{sub sh} mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.

  3. Structural characterization of GaAs self-assembled quantum dots grown by Droplet Epitaxy on Ge virtual substrates on Si

    International Nuclear Information System (INIS)

    Frigeri, C.; Bietti, S.; Isella, G.; Sanguinetti, S.

    2013-01-01

    The structure of self-assembled quantum dots (QDs) grown by Droplet Epitaxy on Ge virtual substrates has been investigated by TEM. The QDs have a pyramidal shape with base and height of 50 nm. By (0 0 2) dark field TEM it was seen that the pyramid top is Ga poor and Al rich most likely because of the higher mobility of Ga along the pyramid sides down to the base. The investigated QDs contain defects identified as As precipitates by Moirè fringes. The smallest ones (3–5 nm) are coherent with the GaAs lattice suggesting that they could be a cubic phase of As precipitation. It seems to be a metastable phase since the hexagonal phase is recovered as the precipitate size increases above ∼5 nm.

  4. Degradation of Cu(In, Ga)Se{sub 2} thin-film solar cells due to the ionization effect of low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Shirou, E-mail: kawakita.shirou@jaxa.jp [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Imaizumi, Mitsuru [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Okuda, Shuichi [Osaka Prefecture University (OPU), Sakai, Osaka 599-8570 (Japan); Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan)

    2015-05-01

    Cu (In, Ga)Se{sub 2} (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in III{sub Cu} defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of III{sub Cu} defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2.

  5. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Tovar, R. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Quintero, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: mquinter@ula.ve; Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Caldera, D. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Ruiz, J. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Mora, A.E. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela); Briceno, M. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela); Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-04-25

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. The effect of the annealing temperature and cooling rate to room temperature are discussed. For the Cu{sub 2}Cd{sub 1-z}Fe {sub z}GeSe{sub 4} system, only two single solid phase fields, the tetragonal stannite {alpha} and the wurtz-stannite {delta} structures were found to occur in the diagram. For the Cu{sub 2}Cd{sub 1-z}Mn {sub z}GeSe{sub 4} system, in addition to the tetragonal stannite {alpha} and the wurtz-stannite {delta} phases, MnSe was found to exist in the diagram. The DTA experiments showed that the cooling curves for both systems exhibited effects of undercooling.

  6. First-principle investigations of the magnetic properties and possible martensitic transformation in Ni2MnX (X=Al, Ga, In, Si, Ge and Sn)

    International Nuclear Information System (INIS)

    Wang, Wei; Gao, She-Sheng; Meng, Yang

    2014-01-01

    The magnetic and electronic properties of Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys have been studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The possible non-modulated martensitic transformation in these six alloys has been investigated. Both austenitic and martensitic Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys are found to be ferromagnets. In martensitic phase, the energies minimum occurs at c/a=0.99 for Ni 2 MnX (X=Al, In, Ge and Sn), and the energy minimum occurs at c/a=1.02 for Ni 2 MnSi. But there is a negligible energy difference ΔE (<6 meV/cell) between the austenitic and martensitic phases for each alloy. Meanwhile, around c/a=1, an anomaly is observed in the E-c/a curve, which is related to a very slightly tetragonal distortion trend in Ni 2 MnX (X=Al, In, Si, Ge and Sn). The energy difference ΔE between the austenitic and martensitic phases for Ni 2 MnGa is as large as 99 meV/cell, so it is more likely to realize martensitic transformation in it. - Highlights: • Both austenitic and martensitic Ni 2 MnX alloys are found to be ferromagnets. • The energy difference between the martensitic and austenitic phases is negligible. • The total moment in martensitic phase is close to corresponding to austenitic phase

  7. Ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu{sub 2} and CaCu{sub 5} related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Univ. Oldenburg (Germany). Inst. fuer Chemie

    2017-07-01

    Fourteen ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce{sub 4}Rh{sub 9}Ga{sub 5}, Ce{sub 5}Rh{sub 12}Ga{sub 7}, Ce{sub 7}Rh{sub 18}Ga{sub 11}, Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)}, Nd{sub 4}Rh{sub 9}Ga{sub 5} and Gd{sub 4}Rh{sub 9}Ga{sub 5} were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE{sub 2+n} Rh{sub 3+3n} Ga{sub 1+2n} structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu{sub 2} (Mg{sub 2}Ni{sub 3}Si as ternary variant) and CaCu{sub 5} (CeCo{sub 3}B{sub 2} as ternary variant). Only the Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)} crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y{sub 4}Rh{sub 9}Ga{sub 5} and Curie-Weiss paramagnetism for Gd{sub 4}Rh{sub 9}Ga{sub 5} and Tb{sub 4}Rh{sub 9}Ga{sub 5}. Low-temperature data show ferromagnetic ordering at T{sub C}=78.1 (Gd{sub 4}Rh{sub 9}Ga{sub 5}) and 55.8 K (Tb{sub 4}Rh{sub 9}Ga{sub 5}).

  8. Influence of indium/gallium gradients on the Cu(In,Ga)Se{sub 2} devices deposited by the co-evaporation without recrystallisation

    Energy Technology Data Exchange (ETDEWEB)

    Drobiazg, Tomasz, E-mail: drobiazg@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Arzel, Ludovic [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Dönmez, Adem [Faculty of Science, Department of Physics, Muğla Sıtkı Koçman University, 48000, Muğla (Turkey); Zabierowski, Paweł [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS-UMR 6502, 2, rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France)

    2015-05-01

    In the laboratory scale, cells based on Cu(In,Ga)Se{sub 2} grown by the 3-stage process reach the best performance because of high open-circuit voltage and short-circuit current (V{sub OC}-J{sub SC}) combination. One of the reasons for that could be the V-shaped gradient of Ga to In atomic ratio throughout the Cu(In,Ga)Se{sub 2} layer, which results from large differences in the diffusion coefficients of In and Ga. The location of the lowest Ga-content in the Cu(In,Ga)Se{sub 2} (i.e. Ga notch), also corresponds to the Cu-poor to Cu-rich transition during the 2nd stage. Since this transition is associated to a phenomenon of recrystallisation, the arising question is whether high V{sub OC}-J{sub SC} combination is effectively inherent to V-shaped gradient or to recrystallisation. In our work we attempt to eliminate the influence of recrystallisation to exclusively study the influence of Ga/In gradients. Our approach was to co-evaporate samples by the one-step process with different gradients by the continuous modification of In and Ga fluxes during the deposition and keeping constant that of Cu in a way that its ratio to group III elements was 0.9. With this method, we could obtain a set of Cu(In,Ga)Se{sub 2} layers either free of gradient, with linear gradient (i.e. no notch) or V-shaped gradient with notch at a different distance from the Cu(In,Ga)Se{sub 2} surface. We observe that depending on the presence of notch in conduction band or the position of notch it is possible to modify the impact of secondary barriers on current-voltage characteristics. - Highlights: • Investigation of the indium and gallium gradients apart from the recrystallisation • Short-circuit current and open-circuit voltage benefit from the band gap gradient. • Constant band gap gradient decreases the influence of secondary barriers. • With the presence of gallium notch the secondary barriers are more pronounced.

  9. Photoluminescence of Cu(In,Ga)Se2 in the solar cell preparation process

    International Nuclear Information System (INIS)

    Sho, Shirakata; Shinji, Yudate; Jyunji, Honda; Naoki, Iwado

    2010-01-01

    Full text : Sequential step by step photoluminescence (PL) measurements have been carried out on Cu(In,Ga)Se 2 (CIGS) films just after each thin-film processes for the fabrication of the CIGS solar cell. These include, (i) the CIGS film deposition on the Mo-coated soda-lime glass substrate by three-stage method (CIGS/Mo/SLG), (ii) the chemical-bath deposition (CBD) of CdS buffer layer, (iii) deposition of undoped ZnO window layer by RF sputtering, (iv) deposition of Al doped ZnO high-conductive window layer by RF sputtering, (v) Al grid electrode deposition for the CIGS solar cell, and (vi) the mechanical scribing for the electrical isolation of small test cells. Roomtemperature PL measurements have been done with the excitation of a He-Ne laser (632.8 nm, 1 mW) focused on the sample surface to 0.2 mm diameter. PL was dispersed by a polycromator (Horiba: MicroHR) and detected by a cooled InGaAs multichannel detector (1024 pixels). In order to study the uniformity of PL within CIGS films, the two dimensional PL spectrum mapping measurement has been done (0.4-0.6 mm step) using an x-y stage operating in the raster scanning mode. Acquisition time of one PL spectrum was 1 s. Once the fresh CIGS film is exposed to the air, intensity of the near-band-edge PL decreases slowly with time. After few days, PL intensity was one order of magnitude weaker than its initial value. Thus, PL measurement was performed just after the deposition. It was shown that PL spectra of CIGS films taken for each process in the CIGS solar cell preparation. PL of the CIGS film exhibited nearband-edge peak at 1.18 eV. The slight increase of PL intensity was observed after depositions of CdS and ZnO films. After the high conductive ZnO:Al deposition, PL intensity decreases to one third of the initial PL intensity of the fresh CIGS film. No change has been observed with respect to the line shape of PL peaks during the process. In the CIGS solar cell (open circuit condition), PL intensity recovers

  10. An investigation of semiconducting behavior in the minority spin of Co2CrZ (Z = Ga, Ge, As): LSDA and LSDA + U method

    International Nuclear Information System (INIS)

    Rai, D.P.; Thapa, R.K.

    2012-01-01

    Highlights: ► Volume optimization was done to find the theoretical lattice parameters. ► LSDA was performed to calculate electronic and magnetic properties of Co 2 CrZ. ► The result shows the half-metal ferromagnetic behavior of Co 2 CrGa and Co 2 CrGe. ► Co 2 CrAs fails to give HMF within LSDA thus treated with LSDA + U, to obtain HMF. - Abstract: We have calculated the electronic and magnetic properties of 3d transition metal based full Heusler compounds Co 2 CrZ (Z = Ga, Ge, As), by using full potential linearized augmented plane wave (FP-LAPW) method. The calculated density of states (DOS) and band structure for Co 2 CrZ shows the existence of band gap in their minority-spin channel. The respective energy gaps of Co 2 CrGe and Co 2 CrGa are 0.24 and 0.38 eV with their Fermi energies (E F s) lie exactly at the gap. The compound Co 2 CrAs when treated with local spin density approximation (LSDA) does not show half metallic ferromagnetism (HMF) even though there exist a gap this is because the E F does not lie at the middle of the gap. We have considered Co 2 CrAs as strongly correlated system as Cr-d states at E F are strongly localized thus the system was treated in terms of the LSDA + U. The total magnetic moment of Co 2 CrAs was found to be an exact integer value 5.00 μ B within LSDA + U. We have also found that the total magnetic moments increase as the Z goes from Ga to As.

  11. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at square root sNN=200 and 62.4 GeV.

    Science.gov (United States)

    Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X

    2007-06-08

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  12. Copper variation in Cu(In,Ga)Se{sub 2} solar cells with indium sulphide buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, S., E-mail: stefanie.spiering@zsw-bw.de [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Paetel, S.; Kessler, F. [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Igalson, M.; Abdel Maksoud, H. [Warsaw University of Technology (WUT), Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland)

    2015-05-01

    In the manufacturing of Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells the application of a buffer layer on top of the absorber is essential to obtain high efficiency devices. Regarding the roll-to-roll production of CIGS cells and modules a vacuum deposition process for the buffer is preferable to the conventional cadmium sulphide buffer deposited in a chemical bath. Promising results have already been achieved for the deposition of indium sulphide buffer by different vacuum techniques. The solar device performance is very sensitive to the conditions at the absorber-buffer heterojunction. In view of optimization we investigated the influence of the Cu content in the absorber on the current-voltage characteristics. In this work the integral copper content was varied between 19 and 23 at.% in CIGS on glass substrates. An improvement of the cell performance by enhanced open circuit voltage was observed for a reduction to ~ 21 at.% when thermally evaporated indium sulphide was applied as the buffer layer. The influence of stoichiometry deviations on the transport mechanism and secondary barriers in the device was studied using detailed dark and light current-voltage analysis and admittance spectroscopy and compared to the reference CdS-buffered cells. We conclude that the composition of the absorber in the interface region affects current transport in In{sub x}S{sub y}-buffered and CdS-buffered cells in different ways hence optimal Cu content in those two types of devices is different. - Highlights: • Influence of Cu-variation in CIGS cells with In{sub x}S{sub y} buffer layer on cell performance • Enhanced efficiency by slight reduction of Cu-content to 21 at.% • Contribution of tunnelling-enhanced interface recombination for higher Cu-content.

  13. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  14. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  15. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2

    Institute of Scientific and Technical Information of China (English)

    Michael Powalla; Stefan Paetel; Dimitrios Hariskos; Roland Wuerz; Friedrich Kessler; Peter Lechner; Wiltraud Wischmann; Theresa Magorian Friedlmeier

    2017-01-01

    In this article,we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS)compound semiconductor.This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in worldrecord-level conversion efficiency,production,applications,stability,and future developments with respect to a flexible product.Once in large-scale mass production,the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.

  16. Scanning tunneling spectroscopy on the chalcopyrite solar cell absorber material Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Saez-Araoz, Rodrigo; Lux-Steiner, Martha [Freie Universitaet Berlin (Germany); Sadewasser, Sascha; Ennaoui, Ahmed; Kaufmann, Christian; Kropp, Timo; Lauermann, Iver; Muenchenberg, Tim; Schock, Hans-Werner; Streicher, Ferdinand [Hahn- Meitner-Institut Berlin (Germany)

    2007-07-01

    Cu(In,Ga)Se{sub 2}-based thin film solar cells have reached efficiencies close to 20%. Nevertheless, little is known about electronic transport and carrier recombination in this material on a microscopic scale. Especially grain boundaries in these polycrystalline materials are considered to play an important role in the performance of these solar cells. We applied scanning tunneling microscopy and spectroscopy to gain more insight in the electronic microstructure of the material. Our results point to lateral electronic inhomogeneities on the absorber surface and to an enhanced density of states at grain boundaries. The influence of charging effects is discussed.

  17. The dependence of the short circuit current with γ-radiation in CuGaSe2

    International Nuclear Information System (INIS)

    Gasimoglu, I.; Mamedova, I.A.; Bagirov, A.G.

    2005-01-01

    Full text: The A I B III C IV semiconducting compounds are of interest for semiconducting devising. In particular the presence of the birefringence makes the compounds as a perspective materials for using in nonlinear optical transformers. Besides, the complex generation-recombination processes in these compounds are due to the local states in the band gap, which is also due to the complex chemical structure of these compounds. In this report the results of the influence of γ-radiation on the short circuit current in CuGaSe 2 are presented. The Co 6 0 with the quantum energy of 1.25 MeV was a source of radiation. The resistance was 10 2 kΩ at 300 K. The In-Ga eutectic was used as a contact. The measurements have been carried out at 77 K. The electrometer B7-30 was used for the short circuit current measurements, sensitivity of which is 10 -15 A. The intensity of γ-rays was 20 R/s, durability of radiation was 15 min. The spectrometer SPM-2 was used as a source of radiation of monoxrmator light. The spectral dependence of short circuit current of non radiated CuGaSe 2 crystal has a maximum at λ=700 nm (0.77 eV) with the half width of 0.26 eV. The maximum of short circuit current is in good agreement with the value 1.8 eV at 300 K. That is why one can assume that observed peak in J sc ∼∼f(λ) dependence with the maximum at 1.77 eV is due to electronic transitions from the valence band to conduction band. After radiation of CuGaSe 2 crystal new maximum is observed in the spectral dependence of short circuit current at λ=770 nm (1.61 eV) at 77 K. Splitting between the peaks is 0.13 eV. The appearance of the second peak maybe is due to the formation of radiation defects of acceptor type, which are located for 0.13 eV above than the top of valence band. The peak at 1.59 eV, which is due the donor-acceptor recombination, is observed in photoluminescence spectra. It is assumed that, Se vacancy forms the donor levels, Cu vacancy -acceptor levels

  18. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,GaSe2

    Directory of Open Access Journals (Sweden)

    Michael Powalla

    2017-08-01

    Full Text Available In this article, we discuss the leading thin-film photovoltaic (PV technology based on the Cu(In,GaSe2 (CIGS compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.

  19. Surface resistance of YBa2Cu3O7 films deposited on LaGaO3 substrates

    International Nuclear Information System (INIS)

    Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Javadi, H.H.S.; Maez, M.A.; Bennett, B.L.; Rusnak, B.; Meyer, E.A.; Arendt, P.N.; Beery, J.G.; Brown, D.R.; Garzon, F.H.; Raistriek, I.D.; Bolmaro, B.; Elliott, N.E.; Rollett, A.D.; Klein, N.; Muller, G.; Orbach, S.; Piel, H.; Josefowicz, J.Y.; Rensch, O.B.; Drabeck, L.; Gruner, G.

    1989-01-01

    Superconducting films of YBa 2 Cu 3 O 7 deposited onto LaGaO 3 substrates were prepared by e-beam and magnetron sputtering techniques. Surface resistance measurements made at 22 GHz, 86 GHz, and 148 GHz show that these films are superior to those deposited by similar techniques onto SrTiO 3 . Typical surface resistance values measured at 22 GHz and 12 K are ∼2 m(cgom) with the lowest value being 0.2 m(cgom), which is only 2 to 4 times higher than Nb. The surface resistance is proportional to the square of the measuring frequency

  20. High performance Ω-gated Ge nanowire MOSFET with quasi-metallic source/drain contacts.

    Science.gov (United States)

    Burchhart, T; Zeiner, C; Hyun, Y J; Lugstein, A; Hochleitner, G; Bertagnolli, E

    2010-10-29

    Ge nanowires (NWs) about 2 µm long and 35 nm in diameter are grown heteroepitaxially on Si(111) substrates in a hot wall low-pressure chemical vapor deposition (LP-CVD) system using Au as a catalyst and GeH(4) as precursor. Individual NWs are contacted to Cu pads via e-beam lithography, thermal evaporation and lift-off techniques. Self-aligned and atomically sharp quasi-metallic copper-germanide source/drain contacts are achieved by a thermal activated phase formation process. The Cu(3)Ge segments emerge from the Cu contact pads through axial diffusion of Cu which was controlled in situ by SEM, thus the active channel length of the MOSFET is adjusted without any restrictions from a lithographic process. Finally the conductivity of the channel is enhanced by Ga(+) implantation leading to a high performance Ω-gated Ge-NW MOSFET with saturation currents of a few microamperes.

  1. Radiochemical studies relevant to cyclotron production of the radionuclides 71,72As, 68Ge/68Ga and 76,77,80mBr

    International Nuclear Information System (INIS)

    Shehata, Mohamed Mostafa Mostafa

    2011-01-01

    The radionuclides 71,72,73,74 As, 68 Ge/ 68 Ga and 76,77,80m Br are gaining considerable interest in nuclear medicine. A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO 2 target as well as from coproduced radiogallium was developed. The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO 4 , HNO 3 , HBr, H 2 SO 4 ) as well as of KI was studied using cyclohexane. The practical application of the optimized procedure in the production of 71 As and 72 As is demonstrated. The batch yields achieved were in the range of 75-84% of the theoretical values. The radiochemical separation of radiogallium from radiogermanium was studied using ion exchange chromatography (Amberlite IR-120) and solvent extraction (Aliquat 336 in o-xylene). At first optimized methods for the separation of no-carrier-added 68 Ge/ 69 Ge formed via the nat Ga(p,xn) 69 Ge process in a Ga 2 O 3 target and for n.c.a. 67 Ga formed via the nat Zn(p,xn) 67 Ga reaction in a Zn target were developed. Using those radionuclides as tracers several factors affecting the separation of radiogallium from radiogermanium were studied and for each procedure the optimum conditions were determined. The solvent extraction using Aliquat 336 was found to be more suitable and was adapted to the separation of n.c.a. 68 Ga from its parent n.c.a. 68 Ge. The quality of the product thus obtained is discussed. The separation of no-carrier-added radiobromine and no-carrier-added radiogallium from proton irradiated ZnSe target was studied in detail. The adsorption behaviour of n.c.a. radiobromine, n.c.a. radiogallium, zinc and selenium towards the cation-exchange resin Amberlyst 15, in H + form, and towards the anion-exchange resin Dowex 1X10 in Cl - and OH - forms, was investigated. The elution of n.c.a. radiobromine and n

  2. Room-temperature-processed flexible n-InGaZnO/p-Cu2O heterojunction diodes and high-frequency diode rectifiers

    International Nuclear Information System (INIS)

    Chen, Wei-Chung; Hsu, Po-Ching; Chien, Chih-Wei; Chang, Kuei-Ming; Hsu, Chao-Jui; Chang, Ching-Hsiang; Lee, Wei-Kai; Chou, Wen-Fang; Wu, Chung-Chih; Hsieh, Hsing-Hung

    2014-01-01

    In this work, we report successful implementation of room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diodes on polyethylene naphthalate (PEN) plastic substrates using the sputtering technique. Using n-type InGaZnO and p-type Cu 2 O films deposited by sputtering at room temperature, flexible n-InGaZnO/p-Cu 2 O heterojunction diodes were successfully fabricated on PEN plastic substrates. The didoes on PEN substrates exhibited a low apparent turn-on voltage of 0.44 V, a high rectification ratio of up to 3.4 × 10 4 at ±1.2 V, a high forward current of 1 A cm −2 around 1 V and a decent ideality factor of 1.4, similar to the characteristics of n-InGaZnO/p-Cu 2 O diodes fabricated on glass substrates. The characterization of the frequency response of the room-temperature-processed flexible n-InGaZnO/p-Cu 2 O heterojunction diode rectifiers indicated that they are capable of high-frequency operation up to 27 MHz, sufficient for high-frequency (13.56 MHz) applications. Preliminary bending tests on diode characteristics and rectifier frequency responses indicate their promise for applications in flexible electronics. (paper)

  3. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    Science.gov (United States)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  4. Model experiments on growth modes and interface electronics of CuInS{sub 2}: Ultrathin epitaxial films on GaAs(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Wolfram [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Lewerenz, Hans-Joachim [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91101 (United States); Pettenkofer, Christian [Institute Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Kekulestrasse 5, 12489, Berlin (Germany)

    2014-09-15

    The heterojunction formation between GaAs(100) and CuInS{sub 2} is investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). Thin layers of CuInS{sub 2} films were deposited in a step-by-step process on wet chemically pre-treated GaAs(100) surfaces by molecular beam epitaxy (MBE) with a total upper thickness limit of the films of 60 nm. The film growth starts from a sulfur-rich GaAs(100) surface. XPS core level analysis of the substrate and film reveals initially a transitory growth regime with the formation of a Ga containing chalcopyrite phase. With increasing film thickness, a change in stoichiometry from Cu-poor to Cu-rich composition is observed. The evaluation of the LEED data shows the occurrence of a recrystallization process where the film orientation follows that of the substrate with the epitaxial relation GaAs{100} parallel CuInS{sub 2}{001}. On the completed junction with a CuInS{sub 2} film thickness of 60 nm, the band discontinuities of the GaAs(100)/CuInS{sub 2} structure measured with XPS and UPS were determined as ΔE{sub V} = 0.1 ± 0.1 eV and ΔE{sub C} = 0.0 ± 0.1 eV, thus showing a type II band alignment. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Pion interferometry in Au plus Au and Cu plus Cu collisions at s(NN)=62.4 and 200 GeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Waggoner, W.T.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Tlustý, David; Yang, Y.; Yepes, P.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 80, č. 2 (2009), 024905/1-024905/12 ISSN 0556-2813 R&D Projects: GA MŠk LC07048; GA MŠk LA09013; GA ČR GA202/07/0079 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * quark-gluon plasma * femtoscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  6. Thioaluminogermanate M(AlS2)(GeS2)4 (M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27Al and 23Na NMR Spectroscopy

    KAUST Repository

    Alahmary, Fatimah S.

    2018-03-14

    The new thioaluminogermanate Na(AlS2)(GeS2)4 (1) was successfully synthesized by a direct combination reaction. The compound crystallizes in the monoclinic space group P21/n (no. 14) with unit cell parameters a = 6.803(3) Å, b = 38.207(2) Å, c = 6.947(4) Å, and β = 119.17(3)°. The crystal structure is composed of a [(AlS2)(GeS2)4]− 3D polyanionic network, in which Al and Ge atoms share the atomic positions and Na cations occupy the channels and voids formed by the connection of (Ge/Al)S4 tetrahedra. The title compound shows a cation-exchange property with monovalent Ag+ and Cu+ ions at room temperature in solvent media, resulting in the formation of the isostructural compounds Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3), respectively. The ion-exchange products Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3) show higher air stability and narrower bandgap energies compared to those of the parent compound Na(AlS2)(GeS2)4 (1).

  7. Thioaluminogermanate M(AlS2)(GeS2)4 (M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27Al and 23Na NMR Spectroscopy

    KAUST Repository

    Alahmary, Fatimah S.; Davaasuren, Bambar; Emwas, Abdul-Hamid M.; Rothenberger, Alexander

    2018-01-01

    The new thioaluminogermanate Na(AlS2)(GeS2)4 (1) was successfully synthesized by a direct combination reaction. The compound crystallizes in the monoclinic space group P21/n (no. 14) with unit cell parameters a = 6.803(3) Å, b = 38.207(2) Å, c = 6.947(4) Å, and β = 119.17(3)°. The crystal structure is composed of a [(AlS2)(GeS2)4]− 3D polyanionic network, in which Al and Ge atoms share the atomic positions and Na cations occupy the channels and voids formed by the connection of (Ge/Al)S4 tetrahedra. The title compound shows a cation-exchange property with monovalent Ag+ and Cu+ ions at room temperature in solvent media, resulting in the formation of the isostructural compounds Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3), respectively. The ion-exchange products Ag(AlS2)(GeS2)4 (2) and Cu(AlS2)(GeS2)4 (3) show higher air stability and narrower bandgap energies compared to those of the parent compound Na(AlS2)(GeS2)4 (1).

  8. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at √{sN N}=19.6 and 22.4 GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.; Phobos Collaboration

    2016-08-01

    Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z =7 ), are measured in PHOBOS. These fragments are observed in Au+Au (√{sNN}=19.6 GeV ) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η ). The dominant multiply-charged fragment is the tightly bound helium (α ), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.

  9. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba{sub 8}Ga{sub 16}Sn{sub 30} clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanxian [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Li, Decong [College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500 (China); Liu, Hongxia; Liu, Zuming [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Deng, Shukang, E-mail: skdeng@126.com [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China)

    2016-12-01

    In this study, the structural and electronic structural properties of Ba{sub 8}Ga{sub 16}Sn{sub 30−x}Ge{sub x} (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  10. Arrays of ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} nanocables with tunable shell composition for efficient photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad Aftab; Javed, Sofia [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (Hong Kong); City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057 (Hong Kong); School of Chemical and Materials Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Xu, Jun, E-mail: apjunxu@hfut.edu.cn [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Mujahid, Mohammad, E-mail: principal@scme.nust.edu.pk [School of Chemical and Materials Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Lee, Chun-Sing, E-mail: c.s.lee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (Hong Kong); City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (Hong Kong)

    2015-05-28

    Arrays of one-dimensional (1D) nanostructure are receiving much attention for their optoelectronic and photovoltaic applications due to their advantages in light absorption, charge separation, and transportation. In this work, arrays of ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} core/shell nanocables with tunable shell compositions over the full range of 0 ≤ x ≤ 1 have been controllably synthesized. Chemical conversions of ZnO nanorods to a series of ZnO-based nanocables, including ZnO/ZnSe, ZnO/CuSe, ZnO/CuSe/In{sub x}Ga{sub 1−x}, ZnO/CuSe/(In{sub x}Ga{sub 1−x}){sub 2}Se{sub 3}, and ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2}, are well designed and successfully achieved. Composition-dependent influences of the CuIn{sub x}Ga{sub 1−x}Se{sub 2} shells on photovoltaic performance are investigated. It is found that the increase in indium content (x) leads to an increase in short-circuit current density (J{sub SC}) but a decrease in open-circuit voltage (V{sub OC}) for the ZnO/CuIn{sub x}Ga{sub 1−x}Se{sub 2} nanocable solar cells. An array of ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} nanocables with a length of ∼1 μm and a shell thickness of ∼10 nm exhibits a bandgap of 1.20 eV, and yields a maximum power conversion efficiency of 1.74% under AM 1.5 G illumination at an intensity of 100 mW/cm{sup 2}. It dramatically surpasses that (0.22%) of the ZnO/CuIn{sub 0.67}Ga{sub 0.33}Se{sub 2} planar thin-film device. Our work reveals that 1D nanoarray allows efficient photovoltaics without using toxic CdS buffer layer.

  11. Arrays of ZnO/CuInxGa1−xSe2 nanocables with tunable shell composition for efficient photovoltaics

    International Nuclear Information System (INIS)

    Akram, Muhammad Aftab; Javed, Sofia; Xu, Jun; Mujahid, Mohammad; Lee, Chun-Sing

    2015-01-01

    Arrays of one-dimensional (1D) nanostructure are receiving much attention for their optoelectronic and photovoltaic applications due to their advantages in light absorption, charge separation, and transportation. In this work, arrays of ZnO/CuIn x Ga 1−x Se 2 core/shell nanocables with tunable shell compositions over the full range of 0 ≤ x ≤ 1 have been controllably synthesized. Chemical conversions of ZnO nanorods to a series of ZnO-based nanocables, including ZnO/ZnSe, ZnO/CuSe, ZnO/CuSe/In x Ga 1−x , ZnO/CuSe/(In x Ga 1−x ) 2 Se 3 , and ZnO/CuIn x Ga 1−x Se 2 , are well designed and successfully achieved. Composition-dependent influences of the CuIn x Ga 1−x Se 2 shells on photovoltaic performance are investigated. It is found that the increase in indium content (x) leads to an increase in short-circuit current density (J SC ) but a decrease in open-circuit voltage (V OC ) for the ZnO/CuIn x Ga 1−x Se 2 nanocable solar cells. An array of ZnO/CuIn 0.67 Ga 0.33 Se 2 nanocables with a length of ∼1 μm and a shell thickness of ∼10 nm exhibits a bandgap of 1.20 eV, and yields a maximum power conversion efficiency of 1.74% under AM 1.5 G illumination at an intensity of 100 mW/cm 2 . It dramatically surpasses that (0.22%) of the ZnO/CuIn 0.67 Ga 0.33 Se 2 planar thin-film device. Our work reveals that 1D nanoarray allows efficient photovoltaics without using toxic CdS buffer layer

  12. Improved quantitative analysis of Cu(In,Ga)Se{sub 2} thin films using MCs{sup +}-SIMS depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihye; Kim, Seon Hee; Lee, Kang-Bong; Lee, Yeonhee [Korea Institute of Science and Technology, Advanced Analysis Center, Seoul (Korea, Republic of); Min, Byoung Koun [Korea Institute of Science and Technology, Clean Energy Research Center, Seoul (Korea, Republic of)

    2014-06-15

    The chalcopyrite semiconductor, Cu(InGa)Se{sub 2} (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs{sup +} (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs{sup +} ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs{sup +} ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs{sup +} ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs{sup +}-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs{sup +} distribution for the CIGS thin films. (orig.)

  13. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.

    Science.gov (United States)

    Chirilă, Adrian; Reinhard, Patrick; Pianezzi, Fabian; Bloesch, Patrick; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Keller, Debora; Gretener, Christina; Hagendorfer, Harald; Jaeger, Dominik; Erni, Rolf; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-12-01

    Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.

  14. Correlation of surface contour, optoelectronic and spectroscopic properties of Cu(In,Ga)Se{sub 2} by SNOM and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Oliver; Heise, Stephan J.; Brueggemann, Rudolf; Meessen, Max; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Chalcopyrite absorbers exhibit local fluctuations of structural, optical and optoelectronic properties. We study the correlation of the surface contour and the local properties such as the integrated photoluminescence (PL) yield and the splitting of the quasi-Fermi levels in a Cu(In,Ga)Se{sub 2}-based thin-film system at room temperature by AFM and spatially resolved PL measurements at the identical position with a scanning near-field optical microscope (SNOM). The Cu(In,Ga)Se{sub 2} layer is deposited on glass, etched with bromine-methanol to smooth the surface for a more homogeneous incoupling of laser light, and passivated with cadmium sulfide. Our measurements reveal a high structural correlation between surface contour, integrated PL yield and quasi-Fermi level splitting. Additionally, we observe trenches in the surface contour which correspond to a dip or to a peak in the splitting of the quasi-Fermi levels and integrated PL yield. Furthermore some trenches show spectral variation of the PL compared to their direct environment. We discuss these observations with respect to the optoelectronic property and the composition of the absorber.

  15. Substrate temperature optimization for Cu(In, Ga)Se{sub 2} solar cells on flexible stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, X.; Zhu, H.; Chen, J., E-mail: chenjingwei@126.com; Zhou, D.; Zhang, C.; Guo, Y.; Niu, X.; Li, Z.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-04-15

    Graphical abstract: - Highlights: • CIGS thin films are deposited on flexible SS substrates at different substrate temperatures. • CIGS thin films deposited at different T{sub S2} show different Ga/(Ga + In) ratio profiles. • All CIGS thin films show (112) and (220/204) preferred orientations with a shift to higher angles. • Conversion efficiency of 11.3% is obtained for CIGS solar cells deposited at 500 °C. - Abstract: Cu(In, Ga)Se{sub 2} (CIGS) thin films are deposited on flexible stainless steel (SS) substrates using the so called 3-stage co-evaporation process at different substrate temperatures ranging from 440 °C to 640 °C during the 2nd stage and the 3rd stage (T{sub S2}). The effects of T{sub S2} on the properties of CIGS thin films are systematically investigated. It is found by secondary ion mass spectrometry measurement that CIGS thin films deposited at different T{sub S2} show different Ga/(Ga + In) ratio (GGI) profiles along the growth direction. High T{sub S2} facilitates the grain growth and leads to larger grain size. However, high T{sub S2} worsens the spectral response of CIGS solar cells in the long wavelength range, which is partly attributed to the too much iron atom diffusion from the SS substrates into the CIGS thin films. All CIGS thin films show (112) preferred orientations with a shift to higher angle due to variation of compositions. A shoulder-like two-peak structure of (112) and (220/204) peaks appears for CIGS thin films deposited at lower T{sub S2}. Conversion efficiency of 11.3% is obtained for CIGS thin film solar cells deposited at the T{sub S2} of 500 °C.

  16. Optical waveguide based on amorphous Er{sup 3+}-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.f [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Nemec, P. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Jurdyc, A.M [Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), UMR CNRS 5620, Universite Claude Bernard-Lyon 1, Villeurbanne (France); Zhang, S.; Charpentier, F. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Lhermite, H. [IETR-Microelectronique, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Charrier, J. [FOTON, UMR 6082-ENSSAT, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Guin, J.P. [LARMAUR, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Frumar, M. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Adam, J.-L. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France)

    2010-06-30

    Amorphous chalcogenide films play a motivating role in the development of integrated planar optical circuits due to their potential functionality in near infrared (IR) and mid-IR spectral regions. More specifically, the photoluminescence of rare earth ions in amorphous chalcogenide films can be used in laser and amplifier devices in the IR spectral domain. The aim of the present investigation was to optimize the deposition conditions for the fabrication of undoped and Er{sup 3+} doped sulphide and selenide thin films with nominal composition Ga{sub 5}Ge{sub 20}Sb{sub 10}S(Se){sub 65} or Ga{sub 5}Ge{sub 23}Sb{sub 5}S{sub 67} by pulsed laser deposition (PLD). The study of compositional, morphological and structural characteristics of the layers was realized by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy and Raman spectroscopy analyses, respectively. Some optical properties (transmittance, index of refraction, optical band gap, etc.) of prepared chalcogenide films and optical losses were investigated as well. The clear identification of near-IR photoluminescence of Er{sup 3+} ions was obtained for both selenide and sulphide films. The decay of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition at 1.54 {mu}m in Er{sup 3+} doped Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} PLD sulphide films was studied to assess the effects of film thickness, rare earth concentration and multilayer PLD deposition on their spectroscopic properties.

  17. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  18. Magnetic properties of Ni-Mn-Ga-Co-Cu tetragonal martensites exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Rameš, Michal; Heczko, Oleg; Sozinov, A.; Ullakko, K.; Straka, Ladislav

    2018-01-01

    Roč. 142, Jan (2018), s. 61-65 ISSN 1359-6462 R&D Projects: GA ČR GA16-00043S Institutional support: RVO:68378271 Keywords : ferromagnetic shape memory alloy * magnetic anisotropy * martensitic phase transformation * Heusler phases * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.747, year: 2016

  19. Enhanced stability of magic clusters: A case study of icosahedric Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As

    International Nuclear Information System (INIS)

    Gong, X.G.; Kumar, V.

    1992-10-01

    We present results of the electronic structure and stability of some 40 valence electron icosahedric Al 12 X (X=B, Al, Ga, C, Si, Ge, Ti and As) clusters within the local spin density functional theory. It is shown that the stability of Al 13 cluster can be substantially enhanced by proper doping. For neutral clusters, substitution of C at the center of the icosahedron leads to the largest gain in energy. However, Al 12 B - is the most bounded in this family. These results are in agreement with the recent experiments which also find Al 12 B - to be highly abundant. (author). 12 refs, 4 figs, 2 tabs

  20. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    Energy Technology Data Exchange (ETDEWEB)

    Isella, Giovanni, E-mail: giovanni.isella@polimi.it; Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  1. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes

    Science.gov (United States)

    Parlak, Cemal; Alver, Özgür

    2017-06-01

    Amantadine is a well-known drug for its treatment effect on Parkinson's disease and influenza infection or hepatitis. Heteroatom doped fullerenes have been extensively examined for their possible usage in sensor technology and medical applications as drug delivery vehicles. In this research, pristine and B, Al, Si, Ga, Ge doped C60 fullerenes and their interaction with amantadine drug molecule were investigated based on the density functional theory calculations. Findings suggest that doped C60 fullerenes might be used to detect the presence of amantadine and they might be used as drug delivery vehicles because of their moderately high adsorption energies with amantadine.

  2. Relationship between open-circuit voltage in Cu(In,Ga)Se2 solar cell and peak position of (220/204) preferred orientation near its absorber surface

    International Nuclear Information System (INIS)

    Chantana, J.; Minemoto, T.; Watanabe, T.; Teraji, S.; Kawamura, K.

    2013-01-01

    Cu(In,Ga)Se 2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V OC ) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V OC before solar cell fabrication

  3. Raman-scattering results from Y1-xCaxSr2Cu2GaO7

    International Nuclear Information System (INIS)

    Salamon, D.; Liu, R.; Klein, M.V.; Groenke, D.A.; Poeppelmeier, K.R.; Dabrowski, B.; Han, P.D.; Payne, D.A.

    1993-01-01

    We present a Raman-scattering study of Y 1-x Ca x Sr 2 Cu 2 GaO 7 for both the x=0 parent compound and doped compositions with x=0.25 and x=0.40. Extrapolation from YBa 2 Cu 3 O 7-d and other cuprates allows us to assign many of the Raman-active phonon modes in the x=0 material, as well as identify a two-magnon scattering peak, a second-order phonon scattering peak, and a Raman continuum out to 4000 cm -1 . Despite compositional inhomogeneities, the doped superconducting samples show some of the same low-energy phonon features as the x=0 material. There is, however, a doping-dependent shift in the positions of features in the 500--700 cm -1 range, possibly due to Ca locating on Sr sites instead of Y sites. The relative intensities of the phonon peaks in the doped material are also changed from the insulator (x=0), suggesting that a resonant Raman phenomenon is occurring. The temperature-dependent spectra show what appears to be a superconducting dip in the background intensity, but the low superconducting fractions in these samples make this difficult to verify. The doped material also has a Raman continuum out to 4000 cm -1 just as in the x=0 samples, but with the two-magnon and second-order phonon scattering peaks significantly reduced in intensity. This may be a result of changes in the long-range ordering, or another manifestation of the same resonance phenomena occurring at lower energies. Single-crystal samples of the doped material Y 1-x Ca x Sr 2 Cu 2 GaO 7 are necessary for a more conclusive Raman study

  4. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  5. Thermodynamic properties of the solid solutions CuCr/sub 2/S/sub 4/ in Cu/sub 1///sub 2/M/sub 1///sub 2/Cr/sub 2/S/sub 4/ (M=Ga, In)

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Gordeev, I.V.; Kesler, Y.A.; Shchelkotunov, V.A.; Tret' yakov, Y.D.

    1985-09-01

    Using an adiabatic calorimeter and a quartz dilatometer, the temperature dependences of the heat capacity for the solid solutions CuCr/sub 2/S/sub 4/ in Cu/sub 1///sub 2/M/sub 1///sub 2/Cr/sub 2/S/sub 4/ (M - Ga, In) were determined, the different components of the heat capacity were evaluated, and the thermodynamic parameters of the magnetic transformation were calculated.

  6. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Varley, J. B.; Lordi, V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); He, X.; Rockett, A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  7. $\\pi^0$ Production at High Transverse Momenta from $\\pi^-$ Collisions at 520-GeV/c on Be and Cu Targets

    Energy Technology Data Exchange (ETDEWEB)

    Varelas, Nikos [Univ. of Rochester, NY (United States)

    1994-01-01

    The inclusive $\\pi^0$ cross section in 520 GeV/c $\\pi^-$ Be and $\\pi^-$ Cu interactions has been measured as a function of transverse momentum and rapidity, using the E706 spectrometer at FNAL. The production of $\\pi^0$ s was studied using = 5.2 events/pb of $\\pi^-$ Be data and = 0.84 events/pb of $\\pi^-$ Cu data collected during the 1990 run of the E706 experiment. This data sample represents an order of magnitude increase in statistics over the data recorded during the initial run of the experiment in 1988. The $\\pi^0$ decay photons were detected by a finely segmented liquid argon electromagnetic calorimeter. The $\\pi^0$ cross section was measured for transverse momenta between 3.5 and 10 GeV/c and rapidities between -0.75 and 0.75. From the data on Be and Cu, we have extracted the nuclear dependence of $\\pi^0$ production. The measurements are compared with earlier results, as well as with recent next-to-leading-log calculations from Quantum Chromodynamics (QCD).

  8. Syntheses and structural characterization of non-centrosymmetric Na{sub 2}M{sub 2}M'S{sub 6} (M, M′=Ga, In, Si, Ge, Sn, Zn, Cd) sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Seven new non-centrosymmetric Na{sub 2}M{sub 2}M’S{sub 6} sulfides, namely, Na{sub 2}Sn{sub 2}ZnS{sub 6}(1){sub ,} Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-α), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-β){sub ,} Na{sub 2}Ge{sub 2}ZnS{sub 6}(4){sub ,} Na{sub 2}Ge{sub 2}CdS{sub 6}(5){sub ,} Na{sub 2}In{sub 2}SiS{sub 6}(6) and Na{sub 2}In{sub 2}GeS{sub 6}(7), were synthesized by high temperature solid state reactions and structurally characterized by single crystal X-ray diffraction. They crystallize in non-centrosymmetric Fdd2 and Cc space groups and their three-dimensional [M{sub 2}M′S{sub 6}]{sup 2-}framework structures consist of MS{sub 4} and M′S{sub 4} tetrahedra corner-connected to one another in either orderly or disordered fashion. Sodium ions reside in the tunnels of the anionic framework. Compounds 1, 2 and 3-α have the structure of known Li{sub 2}Ga{sub 2}GeS{sub 6}, whereas compounds 6 and 7 are isostructural with known Li{sub 2}In{sub 2}GeS{sub 6} compound. Isostructural compounds 4 and 5 represent a new structural variant. Compounds 3-α and its new monoclinic structural variant 3-β have disordered structural framework. All of them are wide band gap semiconductors. Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3), Na{sub 2}Ge{sub 2}ZnS{sub 6}(4) and Na{sub 2}In{sub 2}GeS{sub 6}(7) compounds are found to be second-harmonic generation (SHG) active. Compounds 1, 2 and 3-α melt congruently. - Graphical abstract: Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2}Ga{sub 2}SnS{sub 6}, Na{sub 2}Ge{sub 2}ZnS{sub 6}, Na{sub 2}In{sub 2}GeS{sub 6}, Na{sub 2}Sn{sub 2}ZnS{sub 6}, Na{sub 2}Ge{sub 2}CdS{sub 6} and Na{sub 2}In{sub 2}SiS{sub 6} have non-centrosymmetric structures and the first four compounds are SHG active. Display Omitted - Highlights: • Seven new Na{sub 2}M{sub 2}M′S{sub 6} compounds with non-centrosymmetric structures were synthesized. • They are wide band gap semiconductors. • Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2

  9. Spectra of identified high-p(T) pi(+/-) and p((p)over-bar ) in Cu + Cu collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bnzarov, I.; Bombara, M.; Bonner, B.E.; Bouchet, J.; Braidot, E.; Brandin, A.V.; Bruna, E.; Bueltmann, S.; Burton, T.P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Calderon, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Dunlop, J.C.; Mazumdar, M.R.D.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L. (ed.); Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Huo, L.; Igo, G.; Lordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.S.; Matulenko, Yu.A.; McDonald, D.; McShane, T.S.; Meschanin, A.; Millner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Mondal, M.M.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Pile, P.; Planinic, M.; Ploskon, M.A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Pujahari, P.R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, K.-Y.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2010-01-01

    Roč. 81, č. 5 (2010), 054907/1-054907/8 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : LARGE TRANSVERSE-MOMENTUM * D+AU COLLISIONS * HADRONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.416, year: 2010

  10. Charged and strange hadron elliptic flow in Cu plus Cu collisions at root s(NN)=62.4 and 200 GeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bnzarov, I.; Bombara, M.; Bonner, B.E.; Bouchet, J.; Braidot, E.; Brandin, A.V.; Bruna, E.; Bueltmann, S.; Burton, T.P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Calderon, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Dunlop, J.C.; Mazumdar, M.R.D.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L. (ed.); Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Huo, L.; Igo, G.; Lordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.S.; Matulenko, Yu.A.; McDonald, D.; McShane, T.S.; Meschanin, A.; Millner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Mondal, M.M.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Pile, P.; Planinic, M.; Ploskon, M.A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Pujahari, P.R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, K.-Y.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2010-01-01

    Roč. 81, č. 4 (2010), 044902/1-044902/14 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : QUARK-GLUON PLASMA * HEAVY-ION COLLISIONS * RELATIVISTIC NUCLEAR COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.416, year: 2010

  11. Phase formation and reaction kinetics during the processing of the chalkopyrite-solar-cell-material Cu(In,Ga)(Se,S){sub 2}; Phasenbildung und Reaktionskinetik bei der Herstellung des Chalkopyrit-Solarzellenmaterials Cu(In,Ga)(Se,S){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Purwins, Michael

    2010-02-05

    The SEL/RTP-procedure (Stacked-Elemental-Layer/Rapid-Thermal-Process) is a method which is used to produce CuInSe{sub 2}-based absorbers/semiconductors for the application in thin film solar cells and modules, respectively. The SEL/RTP-procedure consists of two consecutive steps. During the first step a stack of several layers of the metals Cu, Ga and In as well as Se and/or S are deposited onto a substrate to form the so called precursor. By annealing the precursor, reaching temperatures of about 550 C, the stacked layers are converted into the compound semiconductor Cu(In{sub 1-x}Ga{sub x})(S{sub 1-y}Se{sub y}){sub 2} (CIGSSe). During the thermal process the central component of the later solar cell, the highly light absorbing, photoelectric active layer is formed. Thus, the second step is of great importance. This is not only because of the fact that the absorbers physical properties are established by the thermal process. Additionally the profitability of the whole manufacturing process is affected. To be able to optimize the SEL/RTP-procedure a deep and comprehensive understanding of the occurring phase formation processes and reaction kinetic mechanisms associated with them is necessary. This was the goal of the present thesis which therefore deals with the phase formation processes during the deposition of the precursor and its reaction kinetics during the following selenization and sulfurization process. Therefore the influence of different sputtering parameters on the formation of phases and the evolution of the precursor's morphology during its production by sputtering alternating stacked layers of Cu:Ga-alloys (i.e. Cu{sub 85}Ga{sub 15}, Cu{sub 75}Ga{sub 25} and CuGa{sub 2}) and/or the elements Cu and In was investigated. It was found that the deposition of Cu{sub 75/85}Ga{sub 25/15} onto In leads to the formation of CuIn{sub 2} and/or a metastable Cu(In,Ga)-alloy that is rich in copper. This deposition sequence is crucial for the precursor

  12. J/psi production at high transverse momenta in p plus p and Cu plus Cu collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David

    2009-01-01

    Roč. 80, č. 4 (2009), 041902/1-041902/6 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * particle and resonance production * QUARK-GLUON PLASMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  13. Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T=Co,Cu) at extreme conditions of pressure and temperature

    International Nuclear Information System (INIS)

    Dionicio, G.A.

    2006-01-01

    This investigation addresses the effect that pressure, p, and temperature, T, have on 4f states of the rare-earth elements in the isostructural YbRh 2 Si 2 , EuCo 2 Ge 2 , and EuCu 2 Ge 2 compounds. Upon applying pressure the volume of the unit cell reduces, enforcing either the enhancement of the hybridization of the 4f localized electrons with the ligand or a change in the valence state of the rare-earth ions. Here, we probe the effect of a pressure-induced lattice contraction on these system by means of electrical-resistivity measurements, ρ(T), from room temperature down to 100 mK. (orig.)

  14. Electrical and optical characterization of the influence of chemical bath deposition time and temperature on CdS/Cu(In,Ga)Se{sub 2} junction properties in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han-Kyu; Ok, Eun-A [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Won-Mok; Park, Jong-Keuk [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Dong Wha; Cho, Hoon Young [Department of Physics, College of Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, Jeung-hyun, E-mail: jhjeong@kist.re.kr [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)

    2013-11-01

    The effects of varying the conditions for the chemical bath deposition (CBD) of cadmium sulfide (CdS) layers on CdS/Cu(In,Ga)Se{sub 2} (CIGS) hetero-junctions were investigated using photoluminescence (PL), electroluminescence (EL), deep level transient spectroscopy (DLTS), and red-light-illuminated current-voltage (I–V) measurements. We demonstrated that varying CBD-CdS conditions such as the temperature and time influenced the recombination pathways around the CdS/CIGS junction via the formation of different electronic defects, which eventually changed the photovoltaic conversion efficiency. As the CBD-CdS time and temperature were increased, the cell efficiency decreased. PL measurements revealed that this degradation of the cell efficiency was accompanied by increases in the defect-related recombination, which were attributed to the existence of donor defects around CdS/CIGS having an energy level of 0.65 eV below conduction band, as revealed by DLTS. Increasing distortions in the red-light-illuminated I–V characteristics suggested that the related defects might also have played a critical role in metastable changes around the CdS/CIGS junction. Because the CBD-CdS time and temperature were considered to influence the diffusion of impurities into the CIGS surface, the evolution of the efficiency, PL spectra, defect populations, and red-light-illuminated I–V characteristics observed in this work could be attributed to the diffusion of impurities during the CBD-CdS process. - Highlights: • CdS layers were grown by chemical bath deposition (CBD). • The CBD-CdS influenced the efficiency of Cu(In,Ga)Se{sub 2} (CIGS) solar cell. • It could be related to slight alteration in carrier recombination around CdS/CIGS. • Photo- and electroluminescence spectra detected those alterations in recombination. • The variation of results could be related to the changes in deep-level defects.

  15. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  16. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  17. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    Science.gov (United States)

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  18. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  19. Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV

    OpenAIRE

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.

    2015-01-01

    Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\\pi^{\\pm}$, $K^{\\pm}$, $p$, and $\\bar{p}$ produced at midrapidity in Cu+Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function o...

  20. Glass formation and the third harmonic generation of Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Klymovych, O. S.; Zmiy, O. F. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Myronchuk, G. L.; Zamuruyeva, O. V. [Department of Physics, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Alahmed, Z. A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, J.; Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2014-10-14

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu{sub 2}Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  1. Glass formation and the third harmonic generation of Cu2Se–GeSe2–As2Se3 glasses

    International Nuclear Information System (INIS)

    Reshak, A. H.; Klymovych, O. S.; Zmiy, O. F.; Myronchuk, G. L.; Zamuruyeva, O. V.; Alahmed, Z. A.; Chyský, J.; Bila, Jiri; Kamarudin, H.

    2014-01-01

    We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu 2 Se–GeSe 2 –As 2 Se 3 system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu 2 Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.

  2. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  3. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up

    Science.gov (United States)

    Bermudez, Veronica; Perez-Rodriguez, Alejandro

    2018-06-01

    Cu(In,Ga)(S,Se)2 (CIGS) solar cells show record efficiencies comparable to those of crystalline Si-based technologies. Their industrial module production costs are also comparable to those of Si photovoltaics in spite of their much lower production volume. However, the competitiveness of CIGS is compromised by the difference in performance between cell and module scales, known as the cell-to-module efficiency gap, which is significantly higher than in competing industrial photovoltaic technologies. In this Review, we quantify the main cell-to-module efficiency loss mechanisms and discuss the various strategies explored in academia and industry to reduce the efficiency gap: new transparent conductive oxides, hybrid modularization approaches and the use of wide-bandgap solar absorbers in the 1.4-1.5 eV range. To implement these strategies, research gaps relating to various device layers need to be filled.

  4. Influence of substrate temperature and post annealing of CuGaO2 thin films on optical and structural properties

    International Nuclear Information System (INIS)

    Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie; Alias, Afishah; Mohamad, Khairul Anuar; Sulaiman, Salina

    2015-01-01

    A transparent p-type thin film CuGaO 2 was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10 −2 Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. The details of the results will be discussed in the conference

  5. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    Science.gov (United States)

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  6. Spectrally and spatially resolved photoluminescence. Lateral fluctuations and depth profiles of Cu(In,Ga)Se2-absorbers

    International Nuclear Information System (INIS)

    Neumann, Oliver

    2013-01-01

    The aim of this thesis is the development and refinement of photoluminescence (PL) methods for inhomogeneous absorbers to identify lateral fluctuations and depth-dependent variations of spectroscopic, optical and opto-electronic properties in the submicron/micron range. The first approach deals with the spectral investigation of PL emission from the front and the rear side of an absorber, whereas the second idea is about the analysis of PL spectra from the front side of the absorber for different absorber thicknesses. Another technique for determination of depth-dependent variations are confocal PL measurements at cross sections of absorbers. The last concept pursues the study of lateral fluctuations with an optical near-field microscope on specially prepared absorbers. These four strategies are demonstrated with samples based on Cu(In,Ga)Se 2 .

  7. Advantages of using amorphous indium zinc oxide films for window layer in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Warasawa, Moe [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Kaijo, Akira [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, 229-0293 (Japan); Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2012-01-01

    The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30-40 cm{sup 2}/Vs) and lower resistivity (4-5 Multiplication-Sign 10{sup -4} {Omega} cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.

  8. B -meson production at forward and backward rapidity in p +p and Cu + Au collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Metzger, W. J.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-12-01

    The fraction of J /ψ mesons which come from B -meson decay, FB →J /ψ, is measured for J /ψ rapidity 1.2 0 in p +p and Cu+Au collisions at √{sNN} = 200 GeV with the PHENIX detector. The extracted fraction is FB →J /ψ=0.025 ±0.006 (stat) ± 0.010(syst) for p +p collisions. For Cu+Au collisions, FB →J /ψ is 0.094 ± 0.028(stat) ± 0.037(syst) in the Au-going direction (-2.2 Cu-going direction (1.2 Cu+Au collisions is consistent with binary scaling of measured yields in p +p at both forward and backward rapidity.

  9. Superconductivity in Multiple Phase Sr2Ln1–xCaxGaCu2O7 and Characterization of La2–xSrxCaCu2O6+δ

    NARCIS (Netherlands)

    Cava, R.J.; Dover, R.B. van; Batlogg, B.; Krajewski, J.J.; Schneemeyer, L.F.; Siegrist, T.; Hessen, B.; Chen, H.; Peck, Jr.; Rupp, Jr. L.W.

    1991-01-01

    We have observed the occurrance of superconductivity at temperatures between 40 and 50K for multiple phase samples of Sr2Ln1–xCaxGaCu2O7 treated at 950-1000°C at 25 atmospheres oxygen pressure. We have not been able to find conditions at oxygen pressures of 25 atmospheres or below which make single

  10. Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation

    International Nuclear Information System (INIS)

    Luo, Shi; Jang, Dongchan; Greer, Julia R.; Lee, Jiun-Haw; Liu, Chee-Wee; Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta

    2014-01-01

    This work examines Cu(In,Ga)Se 2 thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  11. Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells on Ti foils

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Charles, E-mail: charles.rgr@gmail.com [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Noël, Sébastien; Sicardy, Olivier; Faucherand, Pascal; Grenet, Louis; Karst, Nicolas; Fournier, Hélène; Roux, Frédéric [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ducroquet, Frédérique [IMEP-LAHC, Minatec, Grenoble-INP, CNRS UMR 5130, 38016 Grenoble (France); Brioude, Arnaud [Laboratoire des Multimatériaux et Interfaces, UMR 5615, Villeurbanne (France); Perraud, Simon [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-02

    Molybdenum back contact properties are critical for Cu(In,Ga)Se{sub 2} (CIGS) solar cell performance on metallic substrates. In this work, we investigated the properties of sputter-deposited Mo bilayer back contacts on Ti foils. The morphology, electrical resistivity, optical reflectance and residual mechanical stress of the bottom Mo layer were modified by varying the working pressure during its deposition. Working pressures ranging from 0.27 Pa to 4.00 Pa were used. The top Mo layer was deposited using constant conditions at a pressure of 0.13 Pa. It was demonstrated that unlike a Mo monolayer, the use of a Mo bilayer allows controlling the mechanical stress at the Mo/CIGS interface without degrading the optical reflectance and the electrical resistance of the back contact. It was also found that the morphology of the bottom Mo layer affects the growth of the top Mo layer, resulting in a modified back contact surface morphology. This induces changes in the crystalline orientation of the CIGS layer. The resulting solar cell characteristics strongly vary as a function of the bottom Mo layer deposition pressure. A bottom Mo layer growth at 2.93 Pa allows improving the solar cell conversion efficiency by 1.5 times compared to a bottom Mo layer deposited at 0.27 Pa. Using the improved Mo bilayer back contact, a maximum solar cell efficiency of 10.0% was obtained without sodium addition nor anti-reflection coating. - Highlights: • Mo bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells were grown on Ti substrates. • The sputtering pressure of the bottom Mo layer was varied between 0.27 Pa and 4 Pa. • The top Mo layer controls the optical and electrical properties of the back contact. • The structure of the bottom Mo layer influences the morphology of the top Mo layer. • The back contact affects the CIGS texture, device series resistance and efficiency.

  12. Annealing of wet treated Cu(In,Ga)(S,Se){sub 2} solar cells with an indium sulfide buffer

    Energy Technology Data Exchange (ETDEWEB)

    Hönes, C., E-mail: christian.hoenes.001@student.uni.lu; Siebentritt, S., E-mail: susanne.siebentritt@uni.lu

    2015-05-01

    Compound evaporated indium sulfide is one commonly utilized cadmium free buffer layer for Cu(In,Ga)(S,Se){sub 2} solar cells. However, cells with such a buffer layer usually need a post-deposition annealing step to reach the maximum short circuit current, fill factor and open circuit voltage. In this work wet chemical treatments, partly containing cadmium ions, are applied to commercially available absorber material prior to indium sulfide evaporation in order to enhance the initial solar cell parameters. Cells built on treated absorbers show maximum open circuit voltage directly after window layer deposition and a drop in open circuit voltage is observed upon annealing. All samples, however, show an increased collection length and higher fill factor after annealing. A one diode model fit to the current-voltage curves gives ideality factors of 1.7 before annealing which are reduced to values around 1.5 after annealing. Supporting calculations show that the changes upon annealing can be explained within a model including a highly p-doped absorber surface layer. During annealing the acceptor density at the absorber surface might be reduced thus leading to a larger space charge region and thereby increasing the collection length and fill factor while reducing the open circuit voltage. - Highlights: • Wet treatments raise initial voltage of In{sub 2}S{sub 3} buffered Cu(In,Ga)(S,Se){sub 2} solar cells. • Collection length increase after annealing of treated cells is observed. • Voltage decay is explained within a model including a highly p-doped surface layer. • Supporting simulations are in good agreement with the experiments.

  13. Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils

    International Nuclear Information System (INIS)

    Roger, Charles; Noël, Sébastien; Sicardy, Olivier; Faucherand, Pascal; Grenet, Louis; Karst, Nicolas; Fournier, Hélène; Roux, Frédéric; Ducroquet, Frédérique; Brioude, Arnaud; Perraud, Simon

    2013-01-01

    Molybdenum back contact properties are critical for Cu(In,Ga)Se 2 (CIGS) solar cell performance on metallic substrates. In this work, we investigated the properties of sputter-deposited Mo bilayer back contacts on Ti foils. The morphology, electrical resistivity, optical reflectance and residual mechanical stress of the bottom Mo layer were modified by varying the working pressure during its deposition. Working pressures ranging from 0.27 Pa to 4.00 Pa were used. The top Mo layer was deposited using constant conditions at a pressure of 0.13 Pa. It was demonstrated that unlike a Mo monolayer, the use of a Mo bilayer allows controlling the mechanical stress at the Mo/CIGS interface without degrading the optical reflectance and the electrical resistance of the back contact. It was also found that the morphology of the bottom Mo layer affects the growth of the top Mo layer, resulting in a modified back contact surface morphology. This induces changes in the crystalline orientation of the CIGS layer. The resulting solar cell characteristics strongly vary as a function of the bottom Mo layer deposition pressure. A bottom Mo layer growth at 2.93 Pa allows improving the solar cell conversion efficiency by 1.5 times compared to a bottom Mo layer deposited at 0.27 Pa. Using the improved Mo bilayer back contact, a maximum solar cell efficiency of 10.0% was obtained without sodium addition nor anti-reflection coating. - Highlights: • Mo bilayer back contacts for Cu(In,Ga)Se 2 solar cells were grown on Ti substrates. • The sputtering pressure of the bottom Mo layer was varied between 0.27 Pa and 4 Pa. • The top Mo layer controls the optical and electrical properties of the back contact. • The structure of the bottom Mo layer influences the morphology of the top Mo layer. • The back contact affects the CIGS texture, device series resistance and efficiency

  14. Investigation of electrical and optical properties of Ge-Ga-As-S glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Zavadil, Jiří; Kubliha, M.; Kostka, Petr; Iovu, M.; Labaš, V.; Ivanova, Z.G.

    -, č. 377 (2013), s. 85-89 ISSN 0022-3093 R&D Projects: GA ČR GAP106/12/2384; GA MŠk 7AMB12SK147 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Chalcogenide glass * Direct electrical conductivity * Photoluminescence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; DB - Geology ; Mineralogy (USMH-B) Impact factor: 1.716, year: 2013

  15. Thermodynamic properties of CuCr2S4 solid solutions in Cusub(1/2)Msub(1/2)Crsub(2)Ssub(4) (M - Ga, In)

    International Nuclear Information System (INIS)

    Titov, V.V.; Kesler, Ya.A.; Shelkotunov, V.A.; Gordeev, I.V.; Tret'yakov, Yu.D.

    1985-01-01

    By means of an adiabatic calorimeter and quartz dilatometer for CuCr 2 S 4 in Cusub(1/2)Msub(1/2)Crsub(2)Ssub(4) (M-Ga, In) temperature dependences of heat capacity are determined. The contribution of various components into heat capacity is estimated, thermodynamic parameters of magnetic transformation are calculated

  16. The influence of pressure on the birefringence in semiconductor compounds ZnS, CuGaS2, and InPS4

    International Nuclear Information System (INIS)

    Lavrentyev, A.A.; Gabrelian, B.V.; Kulagin, B.B.; Nikiforov, I.Ya.; Sobolev, V.V.

    2007-01-01

    Using the modified method of augmented plane waves and the code WIEN2k the calculations of the electron band structure, densities of electron states, and imaginary part of dielectric response function were carried out for different polarization of the vector of electrical field ε xx and ε zz for the semiconductor compounds ZnS, CuGaS 2 , and InPS 4 . The calculations were performed both for undisturbed crystals and for distorted crystals due to the applied pressure. The compounds studied have the similar crystallographic structures: ZnS - sphalerite, CuGaS 2 - chalcopyrite, and InPS 4 - twice defective chalcopyrite. It is known, that in cubic ZnS there is no birefringence, whereas in CuGaS 2 and InPS 4 there is one. But CuGaS 2 has so called isotropic point (where ε xx =ε zz ) in the visible optical range, and InPS 4 has no such point. Our calculations of ε xx and ε zz have shown that in ZnS under the pressure the isotropic points arise, but in InPS 4 they do not exist. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J. J.; Noufi, R.

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

  18. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior

  19. Solvent-Induced Deposition of Cu-Ga-In-S Nanocrystals onto a Titanium Dioxide Surface for Visible-Light-Driven Photocatalytic Hydrogen Production

    KAUST Repository

    Kandiel, Tarek; Takanabe, Kazuhiro

    2015-01-01

    In this paper, copper-gallium-indium-sulfide (CGIS) nanocrystals with different Ga/In ratios, i.e., CuGaxIn5-xS8, where x = 0, 1, 2, 3, 4 and 5, were synthesized and investigated for visible-light-driven hydrogen (H2) evolution from aqueous

  20. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    Science.gov (United States)

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  1. Study of K* meson production in PHENIX for d + Au and Cu + Cu systems at √sNN = 200 GeV at RHIC

    International Nuclear Information System (INIS)

    Sett, P.; Mishra, D.K.; Shukla, P.; Choudhury, R.K.

    2011-01-01

    Quantum Chromodynamics (QCD) predicts a phase transition from nuclear matter to quark gluon plasma (QGP) at energy density higher than >1 GeV/fm 3 achievable in high energy heavy ion collisions. Measurements of various mesons and baryons provide the information about the interaction dynamics in heavy ion collision. Lighter systems such as p+p are used as baseline for production mechanism and d+Au for the cold nuclear matter effects such as shadowing and Cronin effect. The K* transverse momentum spectra for d+Au system for different centralities has been measured in the pT range of 0.9 GeV/c within the uncertainties

  2. Surface treatments and properties of CuGaSe{sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, S.; Ennaoui, A.; Schuler, S.; Siebentritt, S.; Lux-Steiner, M.Ch

    2003-05-01

    Polycrystalline CuGaSe{sub 2} (CGS) films with slightly Ga-rich composition were prepared on Mo/soda-lime substrates by the 'bi-layer' process. The film surfaces were modified by chemical bath treatment with In{sub 2}(SO{sub 4}){sub 3}, thioacetamid, and triethanolamin to improve the performance in solar cell applications. The film compositions were characterized by X-ray fluorescence and the surface of treated films was investigated by X-ray photoelectron spectroscopy (XPS). Solar cells with ZnO/CdS/CGS/Mo/soda-lime glass structure were fabricated, and the current-voltage properties and the quantum efficiency were analyzed. Improvement of the spectral response, especially in the long wavelength region, was observed for the samples treated with the chemical bath, which results in increase in a short circuit current density. An increase in the parallel and series resistance of the cells was also observed with the treatment. The surface compositions of the CGS thin films modified by the chemical bath are discussed on the base of the results of XPS.

  3. The Effect of Ga2Se3 Doping Ratios on Structure, Composition, and Electrical Properties of CuIn0.5Ga0.5Se2 Absorber Formed by Thermal Sintering

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2013-01-01

    Full Text Available Chalcopyrite compounds of copper indium gallium diselenide (CIGS absorber were fabricated by using binary-particle (Cu2Se, In2Se3, and Ga2Se3 precursors with thermal sintering method. The binary-particle ink was firstly prepared by milling technology and then printed onto a soda lime glass substrate, which was baked at a low temperature to remove solvents and form a dry precursor. Following milling, the average particle size of agglomerated CIGS powder is smaller than 1.1 μm. Crystallographic, stoichiometric, and electrical properties of precursor CIGS films with various doping amounts of Ga2Se3 had been widely investigated by using thermal sintering in a nonvacuum environment without selenization. Analytical results reveal that the CIGS absorption layer prepared with a Ga2Se3 doping ratio of 3 has a chalcopyrite structure and favorable composition. The mole ratio of Cu : In : Ga : Se of this sample was 1.03 : 0.49 : 0.54 : 1.94, and related ratios of Ga/(In + Ga and Cu/(In + Ga were 0.52 and 0.99, respectively. The resistivity and carrier concentration were 3.77 ohm-cm and 1.15 E  +  18 cm-3.

  4. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  5. Plasma-assisted self-formation of nanotip arrays on the surface of Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zimin, Sergey P.; Mokrov, Dmitry A. [Yaroslavl State University (Russian Federation); Gorlachev, Egor S.; Amirov, Ildar I.; Naumov, Viktor V. [Institute of Physics and Technology, Russian Academy of Sciences, Yaroslavl (Russian Federation); Gremenok, Valery F. [Scientific-Practical Materials Research Center, NAS of Belarus, Minsk (Belarus); Bente, Klaus [Applied Mineralogy, University Tuebingen (Germany); Kim, Woo Y. [Fusion Research Center, Hoseo University, Asan-City (Korea, Republic of)

    2017-06-15

    In this paper, we report on the phenomenon of nanostructure self-formation on the surface of Cu(In,Ga)Se{sub 2} (CIGS) thin films during inductively coupled argon plasma treatment with its duration varied from 10 to 120 s. The initial films were grown on glass substrates using the selenization technique. During the CIGS film surface treatment in the high-density low-pressure radio-frequency inductively coupled argon plasma there took place a formation of arrays of uniform vertical nanostructures, which shape with increasing processing duration changed from nanocones to nanorods and back to nanocones. A model of the nanotip plasma-assisted self-formation associated with the implementation of micromasking and vapor-liquid-solid mechanisms involving metallic In-Ga (In-Ga-Cu) liquid alloy droplets is proposed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. X-ray diffraction measurements on CuGeO3 under high pressures to 81 GPa using synchrotron radiation and imaging plates

    International Nuclear Information System (INIS)

    Ming, L C; Eto, T; Takeda, K; Kobayashi, Y; Suzuki, E; Endo, S; Sharma, S K; Jayaraman, A; Kikegawa, T

    2002-01-01

    Angle-dispersive x-ray diffraction measurements using CuGeO 3 (I) and CuGeO 3 (III) as the starting materials were carried out to 81 and 31 GPa, respectively, at room temperature. Data for phase (I) show that phase transitions occur at ∼7, ∼14, and ∼22 GPa, respectively, corresponding to (I) → (II), (II) → (II'), and (II') → (VI) transitions, as reported previously. The tetragonal phase (VI) was found to be stable up to 81 GPa, the highest pressure determined in this study. The volume changes at the transition pressures are estimated to be of ∼5%, ∼0%, and ∼14% for (I) → (II), (II) → (II'), and (II') → (VI) transitions, respectively. Data from measurements where phase (III) was the starting material show that phase (III) first changes to phase (IV) at ∼7 GPa and then to (IV') at 13.5 GPa, and finally to phase (V) at ∼18 GPa, with volume changes of 1.5%, 0%, and 20%, respectively, at the transition pressure. The volume change of 20% at 18 GPa is consistent with the pyroxene-perovskite transition

  7. Structural characterization of the high-temperature modification of the Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor compound

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Lopez-Rivera, S.A. [Grupo de Fisica Aplicada, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of)

    2016-06-15

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm{sup -1} have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm{sup -1} tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu{sub 2}GeTe{sub 3} secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    Science.gov (United States)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  9. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  10. Study of the magnetic properties of CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2} by means of neutron scattering; Untersuchung der magnetischen Eigenschaften von CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2} mittels Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Faulhaber, Enrico

    2008-07-01

    In 1979 the first heavy-fermion superconductor CeCu{sub 2}Si{sub 2} was discovered by Steglich et al. The system is near a quantum critical point (QCP), where the magnetic order is just suppressed. The distance to the QCP can be varied with hydrostatic pressure as well as by germanium substitution on the silicon site. Next to the superconductivity in CeCu{sub 2}Si{sub 2} one finds distinct magnetic phases while increasing the germanium content. CeCu{sub 2}Si{sub 2} shows a magnetic order of a spin-density-type below T{sub N}-0.8 K, whereas the heavy fermion system CeCu{sub 2}Ge{sub 2} orders below T{sub N}=4.1 K as an antiferromagnet. The focus of this thesis is on neutron-diffraction in the system CeCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2}. Starting with a sample with a high germanium content of x=0.45, the magnetic structures are investigated in detail. Following a step-by-step approach, samples with reduced x are investigated subsequently to figure out the properties of pure CeCu{sub 2}Si{sub 2}, which were not accessible before. Furthermore, the complex interaction between magnetism and superconductivity is investigated in detail. Using a specially designed setup, the ac-susceptibility could be recorded simultaneously during the neutron diffraction experiments. Due to the direct correlation between antiferromagnetic signals and diamagnetic features, the microscopic coexistence of superconductivity and magnetic order can be ruled out. Instead, a phase separation on the microscopic scale is found. (orig.)

  11. Development and Evaluation of User-Friendly Single Vial DOTA-Peptide Kit Formulations, Specifically Designed for Radiolabelling with 68Ga from a Tin Dioxide 68Ge/68Ga Generator.

    Science.gov (United States)

    Prince, Deidré; Rossouw, Daniel; Davids, Claudia; Rubow, Sietske

    2017-12-01

    This study was aimed to develop single vial 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide kits to be used with fractionated eluates from a SnO 2 -based 68 Ge/ 68 Ga generator. Kits were formulated with 35 μg DOTA-Tyr 3 -Thre 8 -octreotide, DOTA-[Tyr 3 ]-octreotide and DOTA-[NaI 3 ]-octreotide (DOTATATE, DOTATOC and DOTANOC) and sodium acetate powder, vacuum-dried and stored at -20 °C for up to 12 months. Labelling of the kits was carried out with 2 ml 68 Ga eluate. Comparative labelling was carried out using aqueous DOTA-peptide stock solutions kept frozen at -20 °C for up to 12 months. The quality of the kits was found to be suitable over a 1-year storage period (pH, sterility, endotoxin content, radiolabelling efficiency and radiochemical yields of 68 Ga-labelled DOTA-peptides). Radiochemical yields ranged from 73 to 83 %, while those obtained from stock solutions from 64 to 79 %. No significant decline in kit labelling yields was observed over a 12-month storage period. The single vial kit formulations met the quality release specifications for human administration and appear to be highly advantageous over using peptide stock solutions in terms of stability and user-friendliness.

  12. Preparation of CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.5) flowers consisting of nanoflakes via a solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035 (China); Institute of Materials and Technology, Dalian Maritime University, Dalian 116026 (China); Zhong Jiasong; Yang Fan; Hua Wei; Jin Huaidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035 (China); Liu Haitao, E-mail: lht@wzu.edu.cn [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035 (China); Sun Juncai [Institute of Materials and Technology, Dalian Maritime University, Dalian 116026 (China); Xiang Weidong, E-mail: weidongxiang@yahoo.com.cn [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035 (China)

    2011-05-26

    Highlights: > We report for the first time a small biomolecule-assisted route using L-cysteine as sulfur source and complexing agent to synthesis CuIn{sub 0.5}Ga{sub 0.5}S{sub 2} crystals. > The possible mechanisms leading to CuIn{sub 0.5}Ga{sub 0.5}S{sub 2} flowers consisting of nanoflakes were proposed. > In addition, the morphology, structure, and phase composition of the as-prepared CuIn{sub 0.5}Ga{sub 0.5}S{sub 2} products were investigated in detail by XRD, FESEM, EDS, XPS, TEM (HRTEM) and SAED. - Abstract: CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.5) flowers consisting of nanoflakes were successfully prepared by a biomolecule-assisted solvothermal route at 220 deg. C for 10 h, employing copper chloride, gallium chloride, indium chloride and L-cysteine as precursors. The biomolecule L-cysteine acting as sulfur source was found to play a very important role in the formation of the final product. The diameter of the CuIn{sub 0.5}Ga{sub 0.5}S{sub 2} flowers was 1-2 {mu}m, and the thickness of the flakes was about 15 nm. The obtained products were characterized by X-ray diffraction (XRD), energy dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction spectroscopy (SAED), and UV-vis absorption spectroscopy. The influences of the reaction temperature, reaction time, sulfur source and the molar ratio of Cu-to-L-cysteine (reactants) on the formation of the target compound were investigated. The formation mechanism of the CuIn{sub 0.5}Ga{sub 0.5}S{sub 2} flowers consisting of flakes was discussed.

  13. The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation

    International Nuclear Information System (INIS)

    Pluengphon, P; Bovornratanaraks, T; Pinsook, U; Vannarat, S

    2012-01-01

    The effects of Na atoms on high pressure structural phase transitions of CuIn 0.5 Ga 0.5 Se 2 (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I 4-bar 2 d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe 2 phase transitions which are I 4-bar 2 d→F m 3-bar m→C m c m structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na InGa ) is higher than that of Na at Cu sites (Na Cu ). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na Cu -Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa -1 under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that F m 3-bar m and Cmcm can coexist in some pressure range. (paper)

  14. Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d +Au , Cu + Cu, and Au + Au collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Abelev, B.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barnby, L. S.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bombara, M.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Gaillard, L.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nattrass, C.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, H.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, J.; Xu, H.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, S.; Zhang, J. B.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-07-01

    We present measurements of the near side of triggered di-hadron correlations using neutral strange baryons (Λ ,Λ ¯) and mesons (KS0) at intermediate transverse momentum (3 < pT <6 GeV /c ) to look for possible flavor and baryon-meson dependence. This study is performed in d +Au , Cu+Cu, and Au+Au collisions at √{sN N}=200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations from jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

  15. Characterization of vacancy defects in Cu(In,GaSe2 by positron annihilation spectroscopy

    Directory of Open Access Journals (Sweden)

    M. R. M. Elsharkawy

    2016-12-01

    Full Text Available The photovoltaic performance of Cu(In1-x,GaxSe2 (CIGS materials is commonly assumed to be degraded by the presence of vacancy-related defects. However, experimental identification of specific vacancy defects remains challenging. In this work we report positron lifetime measurements on CIGS crystals with x = 0, and x = 0.05, saturation trapping to two dominant vacancy defect types, in both types of crystal, is observed and found to be independent of temperature between 15–300 K. Atomic superposition method calculations of the positron lifetimes for a range of vacancy defects in CIS and CGS are reported. The calculated lifetimes support the assignment of the first experimental lifetime component to monovacancy or divacancy defects, and the second to trivacancies, or possibly the large In-Se divacancy. Further, the calculated positron parameters obtained here provide evidence that positron annihilation spectroscopy has the capability to identify specific vacancy-related defects in the Cu(In1-x,GaxSe2 chalcogenides.

  16. Effect of high-temperature annealing on the microstructure and thermoelectric properties of GaP doped SiGe. M.S. Thesis

    Science.gov (United States)

    Draper, Susan L.

    1987-01-01

    Annealing of GaP doped SiGe will significantly alter the thermoelectric properties of the material resulting in increased performance as measured by the figure of merit Z and the power factor P. The microstructures and corresponding thermoelectric properties after annealing in the 1100 to 1300 C temperature range have been examined to correlate performance improvement with annealing history. The figure of merit and power factor were both improved by homogenizing the material and limiting the amount of cross-doping. Annealing at 1215 C for 100 hr resulted in the best combination of thermoelectric properties with a resultant figure of merit exceeding 1x10 to the -3 deg C to the -1 and a power factor of 44 microW/cm/deg C sq for the temperature range of interest for space power: 400 to 1000 C.

  17. Photoluminescence measurements of the 1,55 eV band of Ge doped Al sub(x)Ga sub(1-x)As

    International Nuclear Information System (INIS)

    Furtado, M.T.; Weid, J.P. von der.

    1984-01-01

    The photoluminescence of the 1,55 eV band of Ge doped Al sub(x)Ga sub(1-x)As, with x=0.30-0.33, grown by liquid phase epitaxy is presented. The broad shape was found to be due to a lattice relaxation upon optical transitions. Resonant modes with (h/2π)ω sub(q) approx. 35 + - 2 meV and (h/2π) ω sub(q) approx. 45 + - 2 meV are found for the optical band, yielding a zero phonon transition energy - 1.73 + - 0.02 eV and a Franck-Condon shift approx. 0.17-0.20 eV for the optical center. The activation energy of thermal quenching yields an associated donnor binding energy of 0.17 + - 0.04 eV. Possible mechanisms for the radiative transitions are discussed. (Author) [pt

  18. Procedure to derive analytical models for microwave noise performances of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Enciso-Aguilar, M A; Aniel, F P; Zerounian, N

    2013-01-01

    We present a useful procedure to derive simplified expressions to model the minimum noise factor and the equivalent noise resistance of Si/SiGe:C and InP/InGaAs heterojunction bipolar transistors (HBTs). An acceptable agreement between models and measurements at operation frequencies up to 18 GHz and at several bias points is demonstrated. The development procedure includes all the significant microwave noise sources of the HBTs. These relations should be useful to model F min and R n for state-of-the-art IV-IV and III–V HBTs. The method is the first step to derive noise analyses formulas valid for operation frequencies near the unitary current gain frequency (f T ); however, to achieve this goal a necessary condition is to have access to HFN measurements up to this frequency regime. (paper)

  19. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  20. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.