WorldWideScience

Sample records for ct-based in-room image

  1. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    Science.gov (United States)

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  2. SU-F-J-57: Effectiveness of Daily CT-Based Three-Dimensional Image Guided and Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, S [University of Tsukuba, Tsukuba, Ibaraki (Japan); National Cancer Center, Kashiwa, Chiba (Japan); Tachibana, H; Hotta, K; Baba, H; Kohno, R; Akimoto, T [National Cancer Center, Kashiwa, Chiba (Japan); Nakamura, N [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Miyakawa, S; Kurosawa, T [Komazawa University, Setagaya, Tokyo (Japan)

    2016-06-15

    Purpose: Daily CT-based three-dimensional image-guided and adaptive (CTIGRT-ART) proton therapy system was designed and developed. We also evaluated the effectiveness of the CTIGRT-ART. Methods: Retrospective analysis was performed in three lung cancer patients: Proton treatment planning was performed using CT image datasets acquired by Toshiba Aquilion ONE. Planning target volume and surrounding organs were contoured by a well-trained radiation oncologist. Dose distribution was optimized using 180-deg. and 270-deg. two fields in passive scattering proton therapy. Well commissioned Simplified Monte Carlo algorithm was used as dose calculation engine. Daily consecutive CT image datasets was acquired by an in-room CT (Toshiba Aquilion LB). In our in-house program, two image registrations for bone and tumor were performed to shift the isocenter using treatment CT image dataset. Subsequently, dose recalculation was performed after the shift of the isocenter. When the dose distribution after the tumor registration exhibits change of dosimetric parameter of CTV D90% compared to the initial plan, an additional process of was performed that the range shifter thickness was optimized. Dose distribution with CTV D90% for the bone registration, the tumor registration only and adaptive plan with the tumor registration was compared to the initial plan. Results: In the bone registration, tumor dose coverage was decreased by 16% on average (Maximum: 56%). The tumor registration shows better coverage than the bone registration, however the coverage was also decreased by 9% (Maximum: 22%) The adaptive plan shows similar dose coverage of the tumor (Average: 2%, Maximum: 7%). Conclusion: There is a high possibility that only image registration for bone and tumor may reduce tumor coverage. Thus, our proposed methodology of image guidance and adaptive planning using the range adaptation after tumor registration would be effective for proton therapy. This research is partially supported

  3. Monitoring proton radiation therapy with in-room PET imaging

    International Nuclear Information System (INIS)

    Zhu Xuping; Ouyang Jinsong; El Fakhri, Georges; Espana, Samuel; Daartz, Juliane; Liebsch, Norbert; Paganetti, Harald; Bortfeld, Thomas R

    2011-01-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to 15 O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  4. Quantitative image quality evaluation for kV cone-beam CT-based IGRT

    International Nuclear Information System (INIS)

    Lim, S Y; Zin, Hafiz M

    2017-01-01

    The objective of this study is to quantitatively evaluate the image quality of a kV cone-beam CT-based IGRT system (Elekta, XVI) using two commercial CT image quality phantoms, Catphan-600 and CIRS-062QA. Both phantoms consist of similar image quality test modules (uniformity, CT linearity and spatial resolution) but each phantom has different diameter and test pattern design. Each test module was imaged separately using an optimised cone-beam CT imaging parameter. The quality metrics of the reconstructed images were analysed using algorithms developed with MatLab. The image uniformity and the spatial resolution measured with Catphan were of 4% and 40% greater respectively, compared to those measured with CIRS phantom. The differences were due to the beam scattering and hardening originated from the CIRS phantom holder. The contrast-to-noise ratio (CNR) values measured with CIRS phantom were at least 2% higher than that of Catphan. The diameter of CIRS phantom is smaller and resulted in lower beam attenuation. The quantitative image quality assessment algorithms developed for both phantoms provided a phantom-specific set of reference values for a cone-beam CT imaging system as recommended by AAPM TG-142. Further investigation will be performed to resolve beam hardening issue arising from the CIRS phantom holder. (paper)

  5. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    Science.gov (United States)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  6. Beam-hardening correction in CT based on basis image and TV model

    International Nuclear Information System (INIS)

    Li Qingliang; Yan Bin; Li Lei; Sun Hongsheng; Zhang Feng

    2012-01-01

    In X-ray computed tomography, the beam hardening leads to artifacts and reduces the image quality. It analyzes how beam hardening influences on original projection. According, it puts forward a kind of new beam-hardening correction method based on the basis images and TV model. Firstly, according to physical characteristics of the beam hardening an preliminary correction model with adjustable parameters is set up. Secondly, using different parameters, original projections are operated by the correction model. Thirdly, the projections are reconstructed to obtain a series of basis images. Finally, the linear combination of basis images is the final reconstruction image. Here, with total variation for the final reconstruction image as the cost function, the linear combination coefficients for the basis images are determined according to iterative method. To verify the effectiveness of the proposed method, the experiments are carried out on real phantom and industrial part. The results show that the algorithm significantly inhibits cup and strip artifacts in CT image. (authors)

  7. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  8. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  9. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Ryan M., E-mail: rmjones@sri.utoronto.ca [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); O’Reilly, Meaghan A. [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Hynynen, Kullervo [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada)

    2015-07-15

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  10. Direct Reconstruction of CT-based Attenuation Correction Images for PET with Cluster-Based Penalties

    Science.gov (United States)

    Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Asma, Evren; Kinahan, Paul E.

    2015-01-01

    Extremely low-dose CT acquisitions for the purpose of PET attenuation correction will have a high level of noise and biasing artifacts due to factors such as photon starvation. This work explores a priori knowledge appropriate for CT iterative image reconstruction for PET attenuation correction. We investigate the maximum a posteriori (MAP) framework with cluster-based, multinomial priors for the direct reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction was modeled as a Poisson log-likelihood with prior terms consisting of quadratic (Q) and mixture (M) distributions. The attenuation map is assumed to have values in 4 clusters: air+background, lung, soft tissue, and bone. Under this assumption, the MP was a mixture probability density function consisting of one exponential and three Gaussian distributions. The relative proportion of each cluster was jointly estimated during each voxel update of direct iterative coordinate decent (dICD) method. Noise-free data were generated from NCAT phantom and Poisson noise was added. Reconstruction with FBP (ramp filter) was performed on the noise-free (ground truth) and noisy data. For the noisy data, dICD reconstruction was performed with the combination of different prior strength parameters (β and γ) of Q- and M-penalties. The combined quadratic and mixture penalties reduces the RMSE by 18.7% compared to post-smoothed iterative reconstruction and only 0.7% compared to quadratic alone. For direct PET attenuation map reconstruction from ultra-low dose CT acquisitions, the combination of quadratic and mixture priors offers regularization of both variance and bias and is a potential method to derive attenuation maps with negligible patient dose. However, the small improvement in quantitative accuracy relative to the substantial increase in algorithm complexity does not currently justify the use of mixture-based PET attenuation priors for reconstruction of CT

  11. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    Science.gov (United States)

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  12. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants. A phantom study

    International Nuclear Information System (INIS)

    Harnish, R.; Lang, T.F.; Prevrhal, S.; Alavi, A.; Zaidi, H.

    2014-01-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of 18 F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml 18 F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external 137 Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with 137 Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40% overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the 18 F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. (author)

  13. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study.

    Science.gov (United States)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F

    2014-07-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined

  14. Whole-body CT-based imaging algorithm for multiple trauma patients: radiation dose and time to diagnosis.

    Science.gov (United States)

    Gordic, S; Alkadhi, H; Hodel, S; Simmen, H-P; Brueesch, M; Frauenfelder, T; Wanner, G; Sprengel, K

    2015-03-01

    To determine the number of imaging examinations, radiation dose and the time to complete trauma-related imaging in multiple trauma patients before and after introduction of whole-body CT (WBCT) into early trauma care. 120 consecutive patients before and 120 patients after introduction of WBCT into the trauma algorithm of the University Hospital Zurich were compared regarding the number and type of CT, radiography, focused assessment with sonography for trauma (FAST), additional CT examinations (defined as CT of the same body regions after radiography and/or FAST) and the time to complete trauma-related imaging. In the WBCT cohort, significantly more patients underwent CT of the head, neck, chest and abdomen (p examinations of the cervical spine, chest and pelvis and of FAST examinations were significantly lower (p examinations of the upper (p = 0.56) and lower extremities (p = 0.30). We found significantly higher effective doses in the WBCT (29.5 mSv) than in the non-WBCT cohort (15.9 mSv; p CT examinations for completing the work-up were needed in the WBCT cohort (p doses, but fewer additional CT examinations are needed, and the time for completing trauma-related imaging is shorter. WBCT in trauma patients is associated with a high radiation dose of 29.5 mSv.

  15. Impact of X-ray tube settings and metallic leads on neurological PET imaging when using CT-based attenuation correction

    Science.gov (United States)

    Reza Ay, Mohammad; Zaidi, Habib

    2007-02-01

    The use of X-ray CT images for CT-based attenuation correction (CTAC) of PET data results in the decrease of overall scanning time and creates a noise-free attenuation map (μmap). Given that different tube voltages and currents are used in clinical PET/CT scanning protocols depending on patient size and the body region under study, this work was designed to evaluate the effect of tube settings and the presence of deep brain stimulation (DBS) metallic leads on the accuracy of CTAC. A commercial anthropomorphic head phantom and an in-house made polyethylene phantom were used in order to quantitatively measure the effect of the nominated parameters, using quantitative analysis of created μmaps, generated attenuation correction factors and reconstructed neurological PET emission data. A maximum absolute relative difference of 0.9% was observed between average CT numbers of images acquired at 300 mA and those acquired with tube currents from 20 to 280 mA in steps of 20 mA. Slopes equal to 5.79×10 -5, 5.34×10 -5 and 3.92×10 -5 for calibration curves corresponding to CT numbers greater than 0 HU were obtained at tube voltages of 140, 120 and 80 kVp, respectively. A relative difference of 36% and 27% for CT numbers of cortical bone measured at 80 kVp were observed in comparison with images acquired at 140 and 120 kVp, respectively. It was concluded that the attenuation map derivation is independent of tube current used for the settings explored in this work. Likewise, the visual qualitative interpretation and quantitative analysis of neurological PET emission images is independent of X-ray tube voltage. The DBS metallic leads do not create any visible or quantifiable artifacts in the reconstructed neurological PET images owing to their small size.

  16. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma.

    Science.gov (United States)

    Nemoto, Miho Watanabe; Iwai, Yuma; Togasaki, Gentaro; Kurokawa, Marie; Harada, Rintarou; Kobayashi, Hiroki; Uno, Takashi

    2017-12-01

    We propose a method of image-guided brachytherapy (IGBT) that combines MRI-based target volume delineation for the first fraction with CT datasets of subsequent fractions, using an automatic, applicator-based co-registration, and report our preliminary experience. The MRI of the first fraction was used for the first brachytherapy planning. For each subsequent brachytherapy fraction, after the same applicator insertion, a new CT scan with the applicator in place was obtained. The MR image set was registered to the subsequent brachytherapy treatment planning CT using the applicator for rigid body registration. To demonstrate the registration quality, we used here the Dice index as a measurement of tandem delineation overlap between CT and MRI. The median Dice index was 0.879 (range 0.610-0.932), which indicated that the contours on CT and MRI fitted well. With this combination method, the median D90 of HR CTV and the calculated D2 cm 3 of the bladder, rectum, and sigmoid in each fraction were 7.2 (4.0-10.4), 5.9 (2.3-7.7), 4.0 (1.9-6.7), and 3.8 (0.6-7.2) Gy, respectively. Our described method of MRI-guided IGBT offers a practical option for the benefits of target delineation.

  17. Implementing MRI-based target delineation for cervical cancer treatment within a rapid workflow environment for image-guided brachytherapy: A practical approach for centers without in-room MRI.

    Science.gov (United States)

    Trifiletti, Daniel M; Libby, Bruce; Feuerlein, Sebastian; Kim, Taeho; Garda, Allison; Watkins, W Tyler; Erickson, Sarah; Ornan, Afshan; Showalter, Timothy N

    2015-01-01

    Magnetic resonance imaging (MRI)-based intracavitary brachytherapy offers several advantages over computed tomography (CT)-based brachytherapy, but many centers are unable to offer it at the time of brachytherapy because of logistic and/or financial considerations. We have implemented a method of integrating MRI into a CT-guided, high-dose-rate intracavitary brachytherapy workflow in clinics that do not have immediately available MRI capability. At our institution, patients receiving high-dose-rate intracavitary brachytherapy as a component of the definitive treatment of cervical cancer have a Smit sleeve placed during the first brachytherapy fraction in a dedicated suite with in-room CT-on-rails. After the first fraction of brachytherapy, an MRI is obtained with the Smit sleeve, but no applicator, in place. For each subsequent fraction, CT scans are coregistered to the MRI scan by the Smit sleeve. The gross target volume is defined by MRI and overlaid on the CT images for each brachytherapy treatment for dose optimization. This MRI-integrated workflow adds workflow is a feasible compromise to preserve an efficient workflow while integrating MRI target delineation, and it provides many of the advantages of both MRI- and CT-based brachytherapy. The future collection and analysis of clinical data will serve to compare the proposed approach to non-MRI containing techniques. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Analyse of setup errors and margin for thoracic carcinoma radiotherapy with cone-beam CT-based image guidance

    International Nuclear Information System (INIS)

    Cao Xiaohui; Liu Ming; Zhai Fushan; Wang Anfeng; Yang Yongfeng; Liu Bing; Bao Chaoen; Bai Yan

    2014-01-01

    Objective: To study the role of KV CBCT on the geometrical accuracy of three dimensional conformal radiotherapy (3DCRT) and to evaluate the margin of targets and peripheral OAR for thoracic carcinoma. Methods: 34 patients with thoracic carcinoma were enrolled.Varian-IX lilac with OBI system was used to acquire CBCT scans before delivery in 3DCRT. The left-right (x), superior-inferior (y), anterior-posterior (z) setup errors of patients can be obtained from the tomography images automatically restructured by the system. Results: According to 279 CBCT scans the systemic ± random error on x, y, z directions were (-0.16 ± 3.25) mm, (-1.36 ± 5.43) mm, (-2.43 ± 2.14) mm and (2.41 ± 2.18) mm, (4.27 ± 3.60) mm, (2.71 ± 1.77) mm respectively if we do not consider the direction of setup errors. The margins of targets were calculated as 2.68 mm, 7.19 mm and 7.57 mm respectively. Conclusions: Setup errors are unavoidable in thoracic carcinoma irradiation. We suggest a PTV margin of 2.68 mm, 7.19 mm and 7.57 mm in the left-right, superior-inferior and anterior-posterior directions respectively in our department. (authors)

  19. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    Energy Technology Data Exchange (ETDEWEB)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  20. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants : a phantom study

    NARCIS (Netherlands)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F.

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of F-18-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom

  1. SU-F-J-188: Clinical Implementation of in Room Mobile CT for Image Guided Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Wu, R; Poenisch, F; Zhang, L; Palmer, M; Gautam, A; Sahoo, N; Zhang, X; Balter, P; Gillin, M; Gunn, B; Frank, S; Zhu, X [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To implement soft-tissue image-guided proton therapy using inroom mobile CT. Methods: Anthropomorphic phantom was first used to determine the setup accuracy using in- room mobile CT. Laser and bbs were used for the initial setup (marked isocenter). CT data was then acquired with in-room mobile CT (daily CT). The shift between the marked isocenter and the planned isocenter (final isocenter) was determined from the daily CT using in-house Computer Assisted Targeting (CAT) software. Orthogonal DRRs of the day was also generated from the daily CT. The phantom was then transferred on the treatment couch top to the treatment machine using a transportation system, and again aligned to the marked isocenter. Couch shifts were made to align the phantom to the final isocenter using the shifts as determined using the CAT software, and verified using orthogonal X-ray images with the daily DRRs. Results: Phantom data suggests that following the setup procedure as described above, targeting accuracy could be within 1 mm. Patient data are being acquired and analyzed. Conclusion: In-room mobile CT is capable of providing soft-tissue image-guided proton therapy.

  2. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  3. Interfraction Prostate Rotation Determined from In-Room Computerized Tomography Images

    International Nuclear Information System (INIS)

    Owen, Rebecca; Kron, Tomas; Foroudi, Farshad; Milner, Alvin; Cox, Jennifer; Duchesne, Gillian

    2011-01-01

    Fiducial markers (FMs) are commonly used as a correction technique for interfraction translations of the prostate. The aim of this investigation was to determine the magnitude of prostate rotations using 2 methods: FM coordinates and the anatomical border of the prostate and rectum. Daily computed tomography (CT) scans (n = 346) of 10 prostate cancer patients with 3 implanted FMs were acquired using the CT on rails. FM coordinates were used to determine rotation in the sagittal, transverse, and coronal planes, and CT contours of the prostate and rectum were used to determine rotation along the sagittal plane. An adaptive technique based on a subset of images (n = 6; planning and first 5 treatment CTs) to reduce systematic rotation errors in the sagittal plane was tested. The standard deviation (SD) of systematic rotation from FM coordinates was 7.6 o , 7.7 o , and 5.0 o in the sagittal, transverse and coronal planes. The corresponding SD of random error was 10.2 o , 15.8 o , and 6.5 o . Errors in the sagittal plane, determined from prostate and rectal contours, were 10.1 o (systematic) and 7.7 o (random). These results did not correlate with rotation computed from FM coordinates (r = -0.017; p = 0.753, n = 337). The systematic error could be reduced by 43% to 5.6 o when the mean prostate position was estimated from 6 CT scans. Prostate rotation is a significant source of error that appears to be more accurately determined using the anatomical border of the prostate and rectum rather than FMs, thus highlighting the utility of CT image guidance.

  4. CT-based thermometry: an overview.

    Science.gov (United States)

    Fani, F; Schena, E; Saccomandi, P; Silvestri, S

    2014-06-01

    The dependence of computed tomography (CT) values on temperature has been pointed out by several authors since the late 1970s. They emphasised the importance of this phenomenon on the calibration process with water equivalent phantoms of the CT scanners. Few years later the potential of CT thermometry for non-invasive temperature mapping during thermal procedures was investigated. The interest on the employment of this technique during thermal treatments has been recently renewed with the improvement of modern CT scanner performances and with the increased popularity of minimally invasive thermal techniques for cancer treatment. A good thermometry allows avoiding unintended damage of the healthy tissues during the procedure by providing a detailed tissue temperature distribution; therefore, it is recommended in order to achieve good effectiveness of the thermal treatment. Researchers have been working on this issue for more than four decades and different non-invasive solutions have been proposed, i.e., microwave thermal imaging, infrared (IR)-, ultrasound-, magnetic-resonance (MR)-, and CT-based thermometry. This review aims to summarise the essential physics and the currently available data on CT-based thermometry and to elucidate the potential use of this technique during thermal procedures. Background information on measuring principle, an investigation of the performances achieved by this technique and the thermal sensitivity of the CT-number of different organs are provided and discussed.

  5. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    NARCIS (Netherlands)

    A. Coenen (Adriaan); M.M. Lubbers (Marisa); A. Kurata (Akira); A.K. Kono (Atsushi K.); A. Dedic (Admir); R.G. Chelu (Raluca Gabriela); M.L. Dijkshoorn (Marcel); A.G. Rossi (Adriano); R.J.M. van Geuns (Robert Jan); K. Nieman (Koen)

    2017-01-01

    textabstractObjectives: To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Methods: Subjects with suspected or known

  6. A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation - Cadaveric validation study Clinical diagnostics and imaging

    NARCIS (Netherlands)

    M.L. Röling (Maarten); M.I. Visser (Monique I); E.H.G. Oei (Edwin); P. Pilot (Peter); G.J. Kleinrensink (Gert Jan); R.M. Bloem (Rolf)

    2015-01-01

    textabstractBackground: Femoroacetabular impingement (FAI) is caused by an anatomic deviation of the acetabular rim or proximal femur, which causes chronic groin pain. Radiological identification of FAI can be challenging. Advances in imaging techniques with the use of computed tomography (CT) scan

  7. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Directory of Open Access Journals (Sweden)

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  8. A PET/CT-based strategy is a stronger predictor of survival than a standard imaging strategy in patients with head and neck squamous cell carcinoma

    DEFF Research Database (Denmark)

    Rohde, Max; Nielsen, Anne L; Pareek, Manan

    2018-01-01

    Purpose: To examine whether tumor staging by upfront (18)F-fluoro-deoxy-glucose-positron emission tomography/computed tomography (PET/CT) leads to improved discrimination of survival, when compared with traditionally used imaging strategies based on chest X-ray + head and neck magnetic resonance...... Hospital from September 2013 to March 2016. All included patients underwent CXR/MRI, CCT/MRI, and PET/CT on the same day. Tumors were categorized as localized (stages I-II), locally advanced (stages III-IVB), or metastatic (stage IVC) disease. Discriminative abilities for each imaging modality with respect...... to HNSCC staging were compared using Kaplan-Meier analysis, Cox proportional-hazards regression with Harrell's C-index, and net reclassification improvement (NRI). Results: A total of 307 patients with histologically verified HNSCC were included. Use of PET/CT resulted in significantly altered...

  9. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, Adriaan; Lubbers, Marisa M.; Dedic, Admir; Chelu, Raluca G.; Geuns, Robert-Jan M. van; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands); Kurata, Akira; Kono, Atsushi; Dijkshoorn, Marcel L. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Rossi, Alexia [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Barts Health NHS Trust, NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Department of Cardiology, London (United Kingdom)

    2017-06-15

    To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. (orig.)

  10. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis.

    Science.gov (United States)

    Coenen, Adriaan; Lubbers, Marisa M; Kurata, Akira; Kono, Atsushi; Dedic, Admir; Chelu, Raluca G; Dijkshoorn, Marcel L; Rossi, Alexia; van Geuns, Robert-Jan M; Nieman, Koen

    2017-06-01

    To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. • The transmural perfusion ratio from dynamic CT-MPI predicts functional obstructive coronary artery disease • Performance of the transmural perfusion ratio is inferior to quantified myocardial blood flow • The incremental value of the transmural perfusion ratio is limited.

  11. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide

    DEFF Research Database (Denmark)

    Korreman, Stine; Rasch, Coen; McNair, Helen

    2010-01-01

    and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources...... demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed...

  12. SU-F-J-203: Retrospective Assessment of Delivered Proton Dose in Prostate Cancer Patients Based On Daily In-Room CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stuetzer, K; Paessler, T [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Valentini, C; Thiele, J; Hoelscher, T [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Techenische Universitaet Dresden (Germany); Exner, F [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); now with: University of Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Krause, M; Richter, C [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Techenische Universitaet Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden (Germany); German Cancer Consortium (DKTK), Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2016-06-15

    Purpose: Retrospective calculation of the delivered proton dose in prostate cancer patients based on a unique dataset of daily CT images. Methods: Inter-fractional motion in prostate cancer patients treated at our proton facility is counteracted by water-filled endorectal ballon and bladder filling protocol. Typical plans (XiO, Elekta Instruments AB, Stockholm) for 74 Gy(RBE) sequential boost treatment in 37 fractions include two series of opposing lateral double-scattered proton beams covering the respective iCTV. Stability of fiducial markers and anatomy were checked in 12 patients by daily scheduled in-room control CT (cCT) after immobilization and positioning according to bony anatomy utilizing orthogonal X-ray. In RayStation 4.6 (RaySearch Laboritories AB, Stockholm), all cCTs are delineated retrospectively and the treatment plans were recalculated on the planning CT and the registered cCTs. All fraction doses were accumulated on the planning CT after deformable registration. Parameters of delivered dose to iCTV (D98%>95%, D2%<107%), bladder (V75Gy<15%, V70Gy<25%, V65Gy<30%), rectum (V70Gy<10%, V50Gy<40%) and femoral heads (V50Gy<5%) are compared to those in the treatment plan. Intra-therapy variation is represented in DVH bands. Results: No alarming differences were observed between planned and retrospectively accumulated dose: iCTV constraints were met, except for one patient (D98%=94.6% in non-boosted iCTV). Considered bladder and femoral head values were below the limits. Rectum V70Gy was slightly exceeded (<11.3%) in two patients. First intra-therapy variability analysis in 4 patients showed no timedependent parameter drift, revealed strongest variability for bladder dose. In some fractions, iCTV coverage (D98%) and rectum V70Gy was missed. Conclusion: Double scattered proton plans are accurately delivered to prostate cancer patients due to fractionation effects and the applied precise positioning and immobilization protocols. As a result of rare

  13. Air Distribution in Rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The research on air distribution in rooms is often done as full-size investigations, scale-model investigations or by Computational Fluid Dynamics (CFD). New activities have taken place within all three areas and this paper draws comparisons between the different methods. The outcome of the l......EA sponsored research "Air Flow Pattern within Buildings" is used for comparisons in some parts of the paper because various types of experiments and many countries are involved....

  14. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions

    International Nuclear Information System (INIS)

    Fin, Loic; Daouk, Joel; Morvan, Julie; Esper, Isabelle El; Saidi, Lazhar; Meyer, Marc-Etienne; Bailly, Pascal

    2008-01-01

    Respiratory motion causes uptake in positron emission tomography (PET) images of chest structures to spread out and misregister with the CT images. This misregistration can alter the attenuation correction and thus the quantisation of PET images. In this paper, we present the first clinical results for a respiratory-gated PET (RG-PET) processing method based on a single breath-hold CT (BH-CT) acquisition, which seeks to improve diagnostic accuracy via better PET-to-CT co-registration. We refer to this method as ''CT-based'' RG-PET processing. Thirteen lesions were studied. Patients underwent a standard clinical PET protocol and then the CT-based protocol, which consists of a 10-min List Mode RG-PET acquisition, followed by a shallow end-expiration BH-CT. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions' centroids on PET and CT images. SUV MAX and volume variations were also investigated. The CT-based method showed significantly lower (p=0.027) centroid distances (mean change relative to the clinical method =-49%; range =-100% to 0%). This led to higher SUV MAX (mean change =+33%; range =-4% to 69%). Lesion volumes were significantly lower (p=0.022) in CT-based PET volumes (mean change =-39%: range =-74% to -1%) compared with clinical ones. A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement. (orig.)

  15. Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments

    International Nuclear Information System (INIS)

    Nyholm, Tufve; Nyberg, Morgan; Karlsson, Magnus G; Karlsson, Mikael

    2009-01-01

    In the present work we compared the spatial uncertainties associated with a MR-based workflow for external radiotherapy of prostate cancer to a standard CT-based workflow. The MR-based workflow relies on target definition and patient positioning based on MR imaging. A solution for patient transport between the MR scanner and the treatment units has been developed. For the CT-based workflow, the target is defined on a MR series but then transferred to a CT study through image registration before treatment planning, and a patient positioning using portal imaging and fiducial markers. An 'open bore' 1.5T MRI scanner, Siemens Espree, has been installed in the radiotherapy department in near proximity to a treatment unit to enable patient transport between the two installations, and hence use the MRI for patient positioning. The spatial uncertainty caused by the transport was added to the uncertainty originating from the target definition process, estimated through a review of the scientific literature. The uncertainty in the CT-based workflow was estimated through a literature review. The systematic uncertainties, affecting all treatment fractions, are reduced from 3-4 mm (1Sd) with a CT based workflow to 2-3 mm with a MR based workflow. The main contributing factor to this improvement is the exclusion of registration between MR and CT in the planning phase of the treatment. Treatment planning directly on MR images reduce the spatial uncertainty for prostate treatments

  16. CT-based Techniques for Brain Perfusion.

    Science.gov (United States)

    Krishnan, Pradeep; Murphy, Amanda; Aviv, Richard I

    2017-06-01

    Recent rapid advances in endovascular treatment for acute ischemic stroke highlight the crucial role of neuroimaging especially multimodal computed tomography (CT) including CT perfusion in stroke triage and management decisions. With an increasing focus on changes in cerebral physiology along with time-based matrices in clinical decisions for acute ischemic stroke, CT perfusion provides a rapid and practical modality for assessment and identification of salvageable tissue at risk and infarct core and provides a better understanding of the changes in cerebral physiology. Although there are challenges with the lack of standardization and accuracy of quantitative assessment, CT perfusion is evolving as a cornerstone for imaging-based strategies in the rapid management of acute ischemic stroke.

  17. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  18. Image Guidance During Head-and-Neck Cancer Radiation Therapy: Analysis of Alignment Trends With In-Room Cone-Beam Computed Tomography Scans

    International Nuclear Information System (INIS)

    Zumsteg, Zachary; DeMarco, John; Lee, Steve P.; Steinberg, Michael L.; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy

    2012-01-01

    Purpose: On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. Methods and Materials: 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial–lateral, superior–inferior, and anterior–posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. Results: The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Conclusions: Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from

  19. A three-dimensional CT-based target definition for elective irradiation of the neck

    International Nuclear Information System (INIS)

    Nowak, Peter J.C.M.; Wijers, Oda B.; Lagerwaard, Frank J.; Levendag, Peter C.

    1999-01-01

    Introduction: Elective treatment of the clinically node-negative neck by radiation results in excellent control rates. However, radiation therapy with its organ-preserving properties is not without morbidity. Side effects of elective neck irradiation are mainly due to damage of the major and minor salivary glands, resulting in the dry mouth syndrome. Given that RT is the preferred treatment modality in case of elective treatment of the neck in many institutions, it is of utmost importance to try and reduce the associated sequelae of RT. Material and Methods: With the introduction of CT-planning systems and the development of 3D conformal radiation therapy (3D CRT) techniques, it has become feasible to deliver adequate doses of radiation to the target (neck) and at the same time saving (parts of) the salivary glands from doses beyond tolerance. A prerequisite for these techniques is that they require a precise knowledge of the target (i.e., of the elective neck) on CT. To be able to correlate borders of the surgical levels in the neck (I-VI) with structures seen on CT, an anatomical study, using two fixed (phenol, formaldehyde) human cadavers, was performed. Subsequently, the 6 potential lymph node regions in the neck on CT were defined. Results and Discussion: The reference for the current 3D CT-based definition of the lymph node regions in the neck is the official report of the American Academy of Otolaryngology, describing, based on surgical anatomy, the lymph node groups in the neck by Levels I-VI. The present investigation depicts reproducible landmarks on transversal CT images, corresponding to anatomical reference structures known from surgical levels (I-VI) and, this way, CT-based lymph node regions (1-6) were constructed

  20. Current concepts in F18 FDG PET/CT-based Radiation Therapy planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Percy eLee

    2012-07-01

    Full Text Available Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.

  1. A CT-based software tool for evaluating compensator quality in passively scattered proton therapy

    Science.gov (United States)

    Li, Heng; Zhang, Lifei; Dong, Lei; Sahoo, Narayan; Gillin, Michael T.; Zhu, X. Ronald

    2010-11-01

    We have developed a quantitative computed tomography (CT)-based quality assurance (QA) tool for evaluating the accuracy of manufactured compensators used in passively scattered proton therapy. The thickness of a manufactured compensator was measured from its CT images and compared with the planned thickness defined by the treatment planning system. The difference between the measured and planned thicknesses was calculated with use of the Euclidean distance transformation and the kd-tree search method. Compensator accuracy was evaluated by examining several parameters including mean distance, maximum distance, global thickness error and central axis shifts. Two rectangular phantoms were used to validate the performance of the QA tool. Nine patients and 20 compensators were included in this study. We found that mean distances, global thickness errors and central axis shifts were all within 1 mm for all compensators studied, with maximum distances ranging from 1.1 to 3.8 mm. Although all compensators passed manual verification at selected points, about 5% of the pixels still had maximum distances of >2 mm, most of which correlated with large depth gradients. The correlation between the mean depth gradient of the compensator and the percentage of pixels with mean distance based compensator QA tool can be used to quantitatively evaluate manufactured compensators.

  2. MO-B-BRC-03: CT-Based Prostate HDR

    International Nuclear Information System (INIS)

    Zoberi, J.

    2016-01-01

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions

  3. MO-B-BRC-03: CT-Based Prostate HDR

    Energy Technology Data Exchange (ETDEWEB)

    Zoberi, J. [Washington University School of Medicine (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  4. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H

    2015-01-01

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology

  5. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.

  6. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  7. Adaptive brachytherapy of cervical cancer, comparison of conventional point A and CT based individual treatment planning

    International Nuclear Information System (INIS)

    Wanderaas, Anne D.; Langdal, Ingrid; Danielsen, Signe; Frykholm, Gunilla; Marthinsen, Anne B. L; Sundset, Marit

    2012-01-01

    Background. Locally advanced cervical cancer is commonly treated with external radiation therapy combined with local brachytherapy. The brachytherapy is traditionally given based on standard dose planning with prescription of dose to point A. Dosimetric aspects when changing from former standard treatment to individualized treatment plans based on computed tomography (CT) images are here investigated. Material and methods. Brachytherapy data from 19 patients with a total of 72 individual treatment fractions were retrospectively reviewed. Standard library plans were analyzed with respect to doses to organs at risk (OARs), and the result was compared to corresponding delivered individualized plans. The theoretical potential of further optimization based on prescription to target volumes was investigated. The treatments were performed with a Fletcher applicator. Results. For standard treatment planning, the tolerance dose limits were exceeded in the bladder, rectum and sigmoid in 26%, 4% and 15% of the plans, respectively. This was observed most often for the smallest target volumes. The individualized planning of the delivered treatment gave the possibility of controlling the dose to critical organs to below certain limits. The dose was still prescribed to point A. An increase in target dose coverage was achieved when additional individual optimization was performed, while still keeping the dose to the OARs below predefined limits. Relatively low average target coverage, especially for the largest volumes was however seen. Conclusion. The individualized delivered treatment plans ensured that doses to OARs were within acceptable limits. This was not the case in 42% of the corresponding standard plans. Further optimized treatment plans were found to give an overall better dose coverage. In lack of MR capacity, it may be favorable to use CT for planning due to possible protection of OARs. The CT based target volumes were, however, not equivalent to the volumes described

  8. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  9. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy.

    Science.gov (United States)

    Schmidt-Hegemann, Nina-Sophie; Fendler, Wolfgang Peter; Ilhan, Harun; Herlemann, Annika; Buchner, Alexander; Stief, Christian; Eze, Chukwuka; Rogowski, Paul; Li, Minglun; Bartenstein, Peter; Ganswindt, Ute; Belka, Claus

    2018-03-02

    PSMA PET/CT visualises prostate cancer residual disease or recurrence at lower PSA levels compared to conventional imaging and results in a change of treatment in a remarkable high number of patients. Radiotherapy with dose escalation to the former prostate bed has been associated with improved biochemical recurrence-free survival. Thus, it can be hypothesised that PSMA PET/CT-based radiotherapy might improve the prognosis of these patients. One hundred twenty-nine patients underwent PSMA PET/CT due to biochemical persistence (52%) or recurrence (48%) after radical prostatectomy without evidence of distant metastases (February 2014-May 2017) and received PSMA PET/CT-based radiotherapy. Biochemical recurrence free survival (PSA ≤ 0.2 ng/ml) was defined as the study endpoint. Patients with biochemical persistence were significantly more often high-risk patients with significantly shorter time interval before PSMA PET/CT than patients with biochemical recurrence. Patients with biochemical recurrence had significantly more often no evidence of disease or local recurrence only in PSMA PET/CT, whereas patients with biochemical persistence had significantly more often lymph node involvement. Seventy-three patients were started on antiandrogen therapy prior to radiotherapy due to macroscopic disease in PSMA PET/CT. Cumulatively, 70 (66-70.6) Gy was delivered to local macroscopic tumor, 66 (63-66) Gy to the prostate fossa, 61.6 (53.2-66) Gy to PET-positive lymph nodes and 50.4 (45-52.3) Gy to lymphatic pathways. Median PSA after radiotherapy was 0.07 ng/ml with 74% of patients having a PSA ≤ 0.1 ng/ml. After a median follow-up of 20 months, median PSA was 0.07 ng/ml with ongoing antiandrogen therapy in 30 patients. PET-positive patients without antiandrogen therapy at last follow-up (45 patients) had a median PSA of 0.05 ng/ml with 89% of all patients, 94% of patients with biochemical recurrence and 82% of patients with biochemical persistence having a

  10. PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma.

    Science.gov (United States)

    Liu, Feng; Xi, Xu-Ping; Wang, Hui; Han, Ya-Qian; Xiao, Feng; Hu, Ying; He, Qian; Zhang, Lin; Xiao, Qin; Liu, Lin; Luo, Le; Li, Yun; Mo, Yi; Ma, Hong-Zhi

    2017-01-13

    The effect of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT)-guided dose-painting intensity-modulated radiation therapy (IMRT) in locoregionally advanced nasopharyngeal carcinoma (NPC) is unclear. This study aimed to assess the efficacy and toxicity of such combination. From 2012 to 2014, 213 patients with stage III-IVB NPC received chemoradiotherapy by PET/CT-guided DP-IMRT (group A, n = 101) or CT-based IMRT (group B, n = 112). In group A, subvolume GTVnx- PET (gross tumor volume of nasopharynx in PET images) was defined within GTVnx (gross tumor volume of nasopharynx) as the SUV50%max isocontour; the dose to GTVnx- PET was escalated to DT 75.2 Gy/32 and 77.55 Gy/33 Fx, respectively, for patients with T1-2 and T3-4 disease, respectively. In group B, PGTVnx was irradiated at DT 70.4-72.6 Gy/32-33 Fx in 2.2 Gy per fraction. Complete response rates were 99.0% (100/101) and 92.9% (104/112) in groups A and B, respectively (P = 0.037). Compared with CT-based IMRT, FDG-PET/CT guided DP-IMRT significantly improved 3-year local failure-free survival (LFFS, 98.8% vs. 91.3%; P = 0.032), locoregional failure-free survival (LRFFS, 97.2 vs. 91.2%; P = 0.049), distant metastasis-free survival (DMFS, 92.9% vs. 87.4%; P = 0.041), disease free survival (DFS, 87.9% vs. 82.4%; P = 0.02), and overall survival (OS, 91.8% vs. 82.6%; P = 0.049). No statistically significant differences in acute and late toxic effects were observed. Multivariate analysis showed that dose painting (PET/CT-guided DP-IMRT vs CT-based IMRT without DP) was a significant independent prognostic factor for LFFS and DFS. FDG-PET/CT guided DP-IMRT plus chemotherapy is associated with a considerable survival benefit, without increasing toxicity in patients with locoregional advanced NPC. Further randomized trials are needed to fully assess the role of PET/CT-guided DP-IMRT.

  11. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen

    Science.gov (United States)

    Velazquez, Emmanuel Rios; Aerts, Hugo J. W. L.; Gu, Yuhua; Goldgof, Dmitry B.; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J.; Lambin, Philippe

    2013-01-01

    Purpose To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). Materials and Methods For twenty NSCLC patients (stage Ib – IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data is available on www.cancerdata.org. Results High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5 ± 9.0, mean ± SD) and union (94.2 ± 6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4 ± 83.2 cm3, mean ± SD) and manual delineations (81.9 ± 94.1 cm3; p = 0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r = 0.96). Conclusion Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered the “gold standard”. This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. PMID:23157978

  12. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Yang, Ching-Ching; Chan, Kai-Chieh

    2013-06-01

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  13. Development and clinical implementation of a new template for MRI-based intracavitary/interstitial gynecologic brachytherapy for locally advanced cervical cancer: from CT-based MUPIT to the MRI compatible Template Benidorm. Ten years of experience

    Directory of Open Access Journals (Sweden)

    Silvia Rodríguez Villalba

    2016-10-01

    Full Text Available Purpose : To study outcome and toxicity in 59 patients with locally advanced cervix carcinoma treated with computed tomography (CT-based Martinez universal perineal interstitial template (MUPIT and the new magnetic resonance imaging (MRI-compatible template Benidorm (TB. Material and methods: From December 2005 to October 2015, we retrospectively analyzed 34 patients treated with MUPIT and 25 treated with the TB. Six 4 Gy fractions were prescribed to the clinical target volume (CTV combined with external beam radiotherapy (EBRT. The organs at risk (OARs and the CTV were delineated by CT scan in the MUPIT implants and by MRI in the TB implants. Dosimetry was CT-based for MUPIT and exclusively MRI-based for TB. Dose values were biologically normalized to equivalent doses in 2 Gy fractions (EQD2. Results : Median CTV volumes were 163.5 cm3 for CT-based MUPIT (range 81.8-329.4 cm3 and 91.9 cm3 for MRI-based TB (range 26.2-161 cm3. Median D90 CTV (EBRT + BT was 75.8 Gy for CT-based MUPIT (range 69-82 Gy and 78.6 Gy for MRI-based TB (range 62.5-84.2. Median D2cm3 for the rectum was 75.3 Gy for CT-based MUPIT (range 69.8-132.1 Gy and 69.9 Gy for MRI-based TB (range 58.3-83.7 Gy. Median D2cm3 for the bladder was 79.8 Gy for CT-based MUPIT (range 71.2-121.1 Gy and 77.1 Gy for MRI-based TB (range 60.5-90.8 Gy. Local control (LC was 88%. Overall survival (OS, disease free survival (DFS, and LC were not statistically significant in either group. Patients treated with CT-based MUPIT had a significantly higher percentage of rectal bleeding G3 (p = 0.040 than those treated with MRI-based TB, 13% vs. 2%. Conclusions : Template Benidorm treatment using MRI-based dosimetry provides advantages of MRI volume definition, and allows definition of smaller volumes that result in statistically significant decreased rectal toxicity compared to that seen with CT-based MUPIT treatment.

  14. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  15. CT-based needle marking of superficial intracranial lesions for minimal invasive neurosurgery

    International Nuclear Information System (INIS)

    Marquardt, G.; Wolff, R.; Schick, U.; Lorenz, R.

    2000-01-01

    A CT-based method of marking superficial intracranial lesions with a needle is presented. This form of neuronavigation can be applied in every neurosurgical centre. Owing to its rapid application it is also suitable for cases of emergency. The neurosurgical approach can be centred precisely over this lesion providing for a minimally invasive operation. The method has proved its efficacy in numerous cases of haematomas and cystic lesions. (author)

  16. Scattering from objects and surfaces in room acoustical simulations

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    In room acoustical simulations, scattering objects are often modeled as impenetrable boxes with high scattering coefficients assigned to the surfaces. In some cases, a cluster of objects is modeled as a virtual impenetrable box, such that no sound propagation can take place between the objects....... Thus, the scattering only takes place on the boundary surfaces of the box and the acoustic volume of the room is reduced. Another challenge with representing scattering objects by reflecting surfaces is that it increases the number of surfaces, which greatly increases the calculation complexity...... for methods such as the image source method. In this paper a modeling method where the scattering from objects takes place in certain parts of the room volume is proposed. In this method, sound can still travel through scattering objects, but be partly scattered. This volume scattering method has at present...

  17. A simplified CT-based definition of the lymph node levels in the node negative neck

    International Nuclear Information System (INIS)

    Wijers, O.B.; Levendag, P.C.; Tan, T.; Dieren, E.B. van; Sornsen de Koste, J. van; Est, H. van der; Senan, S.; Nowak, P.J.C.M.

    1999-01-01

    Using three dimensional (3D) conformal radiotherapy (CRT) techniques for elective neck irradiation (ENI) may allow for local disease control to be maintained while diminishing xerostomia by eliminating major salivary glands (or parts thereof) from the treatment portals. The standardization of CT based target volumes for the clinically negative (elective) neck is a prerequisite for 3DCRT. The aim of the present study was to substantially modify an existing ('original') CT-based protocol for the delineation of the neck tar-et volume, into a more practical ('simplified') protocol. This will allow for rapid contouring and the implementation of conformal ENI in routine clinical procedures. An earlier ('original') version of the CT-based definition for elective neck node re-ions 2-5 was re-evaluated, using 15 planning CT scans of previously treated patients. The contouring guidelines were simplified by (1) using a smaller number of easily identifiable soft tissue- and bony anatomical landmarks, which in turn had to be identified in only a limited number of CT slices, and (2) by subsequently interpolating the contoured lymph node regions. The adequacy of target coverage and the sparing using both 'original' and 'simplified' delineation protocols was evaluated by DVH analysis after contouring the primary tumor, the neck and the major salivary glands in a patient with supraglottic laryngeal (SGL) carcinoma who was treated using a 3DCRT technique. The BEV projections of the 'original' and the 'simplified' versions of the 3D elective neck target showed good agreement and were found to be reproducible. The DVH's of the target and parotid glands were not significantly different using both contouring protocols. The 'simplified' protocol for the delineation of the 3D elective neck target produced both comparable target coverage and sparing of the major salivary glands. When used together with an interpolation program, this 'simplified' protocol substantial reduced the contouring

  18. Interactive, three dimensional, CT-based treatment planning of stereotaxic I-125 brain implants. 132

    International Nuclear Information System (INIS)

    Lulu, B.; Lewis, J.; Smith, V.; Stuart, A.

    1987-01-01

    Brain implants of I-125 seeds are done with the Brown-Roberts-Wells stereotaxic frame. The patient is CT scanned with the frame bolted to the skull. In the time between the scan and surgery, while the patient is under anesthesia, an interactive three dimensional CT-based treatment plan is performed on a VAX computer. The program is menu driven, easy to use, and easily modifiable. Device dependencies are limited to a small number of subroutines, and an array processor is used to speed dose calculations

  19. Assessing postoperative reduction following acetabular fracture surgery: A standardized digital CT-based method.

    Science.gov (United States)

    Verbeek, Diederik O; van der List, Jelle P; Moloney, Gele B; Wellman, David S; Helfet, David L

    2018-02-23

    Quality of reduction following acetabular fracture surgery is an important predictor for clinical outcome. Computed tomography likely superior to plain pelvic radiography for assessment of postoperative reduction but interobserver reliability may be limited in the absence of a widely adopted technique. We describe a standardized digital CT-based method for measuring residual (gap and step) displacement on CT following acetabular fracture surgery. In a selection of patients, we determined the interobserver reliability for measuring displacement and grading quality of reduction on postoperative pelvic radiography and CT with and without the use of this novel technique.

  20. The Effects of Misalignment between PET and CT Scans on Brain PET Study Using CT-based Attenuation Correction: A Phantom Study.

    Science.gov (United States)

    Shimizu, Akihide; Terakawa, Yusuke; Morita, Naomi; Koshino, Kazuhiro; Iida, Hidehiro

    2016-01-01

    The aim of this study was to evaluate the effects of inaccurate attenuation correction due to the misalignment between the computed tomography (CT)-based μ-map and the positron emission tomography (PET) data on a brain PET. CT and PET scans were performed on a 3-dimension (3D) brain phantom, in which the grey matter region was filled with 18 F-fluorodeoxyglucose ( 18 F-FDG), and the skull region was filled with/without the bone-equivalent solution. The shifted PET images relative to the CT image were generated by the software-based translation of PET data in the cephalad/caudal and right directions, with a magnitude of the shift up to 30 mm and a step size of 5 mm. The regions of interest (ROIs) were drawn on the areas of the temporal lobes, parietal lobes, thalami, and cerebellums in the no-shifted image (reference). For each ROI, the radioactivity concentrations in the shifted images were compared with those of the reference. The errors in the radioactivity concentrations were increased with the increasing magnitude of the shift in all brain regions except for thalamus. For a 5 mm shift in the right direction, ± 10% errors were observed in the left/right temporal lobes. The accuracy of the radioactivity concentration in the temporal lobe was very sensitive to misalignment in the right directions. The misalignment between CT-based μ-map and PET data had larger effects on the surface regions of the brain rather than on deep brain structures.

  1. User requirements on CT-based computed dose planning systems in radiation therapy

    International Nuclear Information System (INIS)

    Dahlin, H.

    1983-01-01

    The expanding use of computers in radiation therapy procedures, especially the rapidly increasing use of digital CT-information, necessitates the coordination of the different systems in order to facilitate their developments. In order to define necessary demands for tomorrow a Nordic cooperation was initiated in 1981 by NORDFORSK (Nordic co-operative organisation for applied research), and a group of physicians and physicists having their daily work in this field of medicine and physics was invited to produce a report on 'User requirements on CT-based computed dose planning systems in radiation therapy'. The work has been done within the frame of NORDFORSK's activities and has been independent of the existing commissions and associations in the radiology field, but it has taken into consideration recommendations that have been given by or are being produced by other organizations. (Auth.)

  2. 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, R.; Mahy, P.; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Saint Luc University Clinics, Brussels (Belgium); Cosnard, G. [Universite Catholique de Louvain, Department of Radiology, Saint Luc University Clinics, Brussels (Belgium); Macq, B. [Universite Catholique de Louvain, Communications and Remote Sensing Laboratory, Faculty of Engineering, Louvain-la-Neuve (Belgium)

    2006-11-15

    We present an original three-dimensional cephalometric analysis based on a transformation of a classical two dimensional topological cephalometry. To validate the three-dimensional cephalometric CT based concept we systematically compared the alignments of anatomic structures. We used digital lateral radiography to perform the classical two-dimensional cephalometry, and a three-dimensional CT surface model for the three-dimensional cephalometry. Diagnoses based on both two-dimensional and three-dimensional analyses were adequate, but the three-dimensional analysis gave more information such as the possibility of comparing the right and left side of the skull. Also the anatomic structures were not superimposed which improved the visibility of the reference landmarks. We demonstrated that three-dimensional analysis gives the same results as two-dimensional analysis using the same skull. We also present possible applications of the method. (orig.)

  3. CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis.

    Science.gov (United States)

    Momose, Takako; Inaba, Yutaka; Choe, Hyonmin; Kobayashi, Naomi; Tezuka, Taro; Saito, Tomoyuki

    2017-11-15

    The gluteus medius (GMED) affects hip function as an abductor. We evaluated muscle volume and degeneration of the GMED by using CT-based analysis and assessed factors that affect hip abductor strength in patients with unilateral hip osteoarthritis (OA). We examined clinical and imaging findings associated with hip abductor strength in consecutive 50 patients with unilateral hip OA. Hip abductor muscle strength and Harris hip score (HHS) were assessed. Leg length discrepancy (LLD) and femoral offset were assessed using X-ray; CT assessment was employed for volumetric and qualitative GMED analysis. Volumetric analysis involved measurement of cross sectional area (CSA) and three-dimensional (3D) muscle volume. CT density was measured for the qualitative assessment of GMED degeneration with or without adjustment using a bone mineral reference phantom. Hip abductor muscle strength on the affected side was significantly lower than that on the contralateral healthy side and positively correlated with overall score and score for limping of gait of HHS, demonstrating the importance of hip abductor strength for normal hip function. A significant correlation was found between CSA and 3D muscle volume, unadjusted CT density and adjusted CT density, and hip abductor strength and these CT measurements. Multiple linear regression analysis demonstrated that 3D muscle volume, adjusted CT density, and LLD are independent factors affecting hip abduction. 3D measurement of muscle volume and adjusted CT density more accurately reflect quantity and the GMED quality than do conventional assessments. Increase in muscle volume, recovery of muscle degeneration, and correction of LLD are important for improving limping in patients with hip OA.

  4. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard

    Energy Technology Data Exchange (ETDEWEB)

    Littooij, Annemieke S. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); KK Women' s and Children' s Hospital, Department of Diagnostic and Interventional Imaging, Singapore (Singapore); Kwee, Thomas C.; Vermoolen, Malou A.; Keizer, Bart de; Beek, Frederik J.A.; Hobbelink, Monique G.; Nievelstein, Rutger A.J. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Barber, Ignasi; Enriquez, Goya [Hospital Materno-Infantil Vall d' Hebron, Department of Paediatric Radiology, Barcelona (Spain); Granata, Claudio [IRCCS Giannina Gaslini Hospital, Department of Radiology, Genoa (Italy); Zsiros, Jozsef [University of Amsterdam, Department of Paediatric Oncology, Emma Children' s Hospital, Academic Medical Centre, Amsterdam (Netherlands); Soh, Shui Yen [KK Women' s and Children' s Hospital, Haematology and Oncology service, Department of Paediatric Subspecialities, Singapore (Singapore); Bierings, Marc B. [University Medical Centre Utrecht/Wilhelmina Children' s Hospital, Department of Paediatric Haematology-Oncology, Utrecht (Netherlands); Stoker, Jaap [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2014-05-15

    To compare whole-body MRI, including diffusion-weighted imaging (whole-body MRI-DWI), with FDG-PET/CT for staging newly diagnosed paediatric lymphoma. A total of 36 children with newly diagnosed lymphoma prospectively underwent both whole-body MRI-DWI and FDG-PET/CT. Whole-body MRI-DWI was successfully performed in 33 patients (mean age 13.9 years). Whole-body MRI-DWI was independently evaluated by two blinded observers. After consensus reading, an unblinded expert panel evaluated the discrepant findings between whole-body MRI-DWI and FDG-PET/CT and used bone marrow biopsy, other imaging data and clinical information to derive an FDG-PET/CT-based reference standard. Interobserver agreement of whole-body MRI-DWI was good [all nodal sites together (κ = 0.79); all extranodal sites together (κ = 0.69)]. There was very good agreement between the consensus whole-body MRI-DWI- and FDG-PET/CT-based reference standard for nodal (κ = 0.91) and extranodal (κ = 0.94) staging. The sensitivity and specificity of consensus whole-body MRI-DWI were 93 % and 98 % for nodal staging and 89 % and 100 % for extranodal staging, respectively. Following removal of MRI reader errors, the disease stage according to whole-body MRI-DWI agreed with the reference standard in 28 of 33 patients. Our results indicate that whole-body MRI-DWI is feasible for staging paediatric lymphoma and could potentially serve as a good radiation-free alternative to FDG-PET/CT. (orig.)

  5. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies.

    Science.gov (United States)

    Dizendorf, Elena; Hany, Thomas F; Buck, Alfred; von Schulthess, Gustav K; Burger, Cyrill

    2003-05-01

    CT images represent essentially noiseless maps of photon attenuation at a range of 40-140 keV. Current dual-modality PET/CT scanners transform them into attenuation coefficients at 511 keV and use these for PET attenuation correction. The proportional scaling algorithms hereby used account for the different properties of soft tissue and bone but are not prepared to handle material with other attenuation characteristics, such as oral CT contrast agents. As a consequence, CT-based attenuation correction in the presence of an oral contrast agent results in erroneous PET standardized uptake values (SUVs). The present study assessed these errors with phantom measurements and patient data. Two oral CT contrast agents were imaged at 3 different concentrations in dual-modality CT and PET transmission studies to investigate their attenuation properties. The SUV error due to the presence of contrast agent in CT-based attenuation correction was estimated in 10 patients with gastrointestinal tumors as follows. The PET data were attenuation corrected on the basis of the original contrast-enhanced CT images, resulting in PET images with distorted SUVs. A second reconstruction used modified CT images wherein the CT numbers representing contrast agent had been replaced by CT values producing approximately the right PET attenuation coefficients. These CT values had been derived from the data of 10 patients imaged without a CT contrast agent. The SUV error, defined as the difference between both sets of SUV images, was evaluated in regions with oral CT contrast agent, in tumor, and in reference tissue. The oral CT contrast agents studied increased the attenuation for 511-keV photons minimally, even at the highest concentrations found in the patients. For a CT value of 500 Hounsfield units, the proportional scaling algorithm therefore overestimated the PET attenuation coefficient by 26.2%. The resulting SUV error in the patient studies was highest in regions containing CT contrast

  6. Effect of adult weight and CT-based selection on carcass traits of growing rabbits

    Directory of Open Access Journals (Sweden)

    Roberto Riovanto

    2010-01-01

    Full Text Available The aim of this study was to compare the carcass traits of different genotypes. Maternal line (M; n=31; adult weight/AW/4.0-4.5kg (selected for number of kits born alive, Pannon White (P; n=32; AW: 4.3-4.8kg, and Large type line (L, n=32; AW: 4.8-5.4kg (P and L were selected for carcass traits based on CT/Computer tomography/data rabbits were analysed. Rabbits were slaughtered at 11 wk of age. P rabbits showed the highest dressing out percentage (M=60.2, P=61.3 and L=61.1%, with a significant difference between groups M and P, P<0.05, the lowest ratio of fore part (M=26.0, P=25.7 and L=26.9%, differences were significant between groups M-P and L, P<0.05, and the largest ratio of the hind part (M=37.3, P=38.2 and L=37.2%, differences were significant between groups M-L and P, P<0.05 to the reference carcass. It can be concluded that carcass traits were influenced by CT-based selection.

  7. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.

    Science.gov (United States)

    Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira

    2015-10-01

    Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1  = 80 GPa, E2  = E3  = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions. © 2015 Wiley Periodicals, Inc.

  8. Measurement of low-frequency noise in rooms

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close to the high...

  9. Comparison of 2D radiography and a semi-automatic CT-based 3D method for measuring change in dorsal angulation over time in distal radius fractures

    International Nuclear Information System (INIS)

    Christersson, Albert; Larsson, Sune; Nysjoe, Johan; Malmberg, Filip; Sintorn, Ida-Maria; Nystroem, Ingela; Berglund, Lars

    2016-01-01

    The aim of the present study was to compare the reliability and agreement between a computer tomography-based method (CT) and digitalised 2D radiographs (XR) when measuring change in dorsal angulation over time in distal radius fractures. Radiographs from 33 distal radius fractures treated with external fixation were retrospectively analysed. All fractures had been examined using both XR and CT at six times over 6 months postoperatively. The changes in dorsal angulation between the first reference images and the following examinations in every patient were calculated from 133 follow-up measurements by two assessors and repeated at two different time points. The measurements were analysed using Bland-Altman plots, comparing intra- and inter-observer agreement within and between XR and CT. The mean differences in intra- and inter-observer measurements for XR, CT, and between XR and CT were close to zero, implying equal validity. The average intra- and inter-observer limits of agreement for XR, CT, and between XR and CT were ± 4.4 , ± 1.9 and ± 6.8 respectively. For scientific purpose, the reliability of XR seems unacceptably low when measuring changes in dorsal angulation in distal radius fractures, whereas the reliability for the semi-automatic CT-based method was higher and is therefore preferable when a more precise method is requested. (orig.)

  10. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, S., E-mail: Simon.Vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300B, B-3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300C, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Kerckhofs, G., E-mail: Greet.Kerckhofs@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Moesen, M., E-mail: Maarten.Moesen@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Pyka, G., E-mail: Gregory.Pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Schrooten, J., E-mail: Jan.Schrooten@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); and others

    2011-09-15

    Highlights: {yields} Selective laser melting as a production tool for porous Ti6Al4V structures. {yields} Significant mismatch between designed and as-produced properties. {yields} Decreasing mismatch using a micro-CT-based protocol. {yields} Mismatch of pore size decreased from 45% to 5%. {yields} Increased morphological controllability increases mechanical controllability. - Abstract: Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.

  11. Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study

    NARCIS (Netherlands)

    Gurney-Champion, O.J.; Versteijne, E.; Horst, A. van der; Lens, E.; Rutten, H.; Heerkens, H.D.; Paardekooper, G.; Berbee, M.; Rasch, C.R.; Stoker, J.; Engelbrecht, M.R.; Herk, M. van; Nederveen, A.J.; Klaassen, R.; Laarhoven, H.W. van; Tienhoven, G. van; Bel, A.

    2017-01-01

    PURPOSE: To assess the effect of additional magnetic resonance imaging (MRI) alongside the planning computed tomography (CT) scan on target volume delineation in pancreatic cancer patients. MATERIAL AND METHODS: Eight observers (radiation oncologists) from six institutions delineated the gross tumor

  12. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    International Nuclear Information System (INIS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H; Williams, Christopher L; Berbeco, Ross I; Seco, Joao; Lewis, John H

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data. (paper)

  13. Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study

    NARCIS (Netherlands)

    Gurney-Champion, Oliver J.; Versteijne, Eva; van der Horst, Astrid; Lens, Eelco; Rütten, Heidi; Heerkens, Hanne D.; Paardekooper, Gabriel M. R. M.; Berbee, Maaike; Rasch, Coen R. N.; Stoker, Jaap; Engelbrecht, Marc R. W.; van Herk, Marcel; Nederveen, Aart J.; Klaassen, Remy; van Laarhoven, Hanneke W. M.; van Tienhoven, Geertjan; Bel, Arjan

    2017-01-01

    To assess the effect of additional magnetic resonance imaging (MRI) alongside the planning computed tomography (CT) scan on target volume delineation in pancreatic cancer patients. Eight observers (radiation oncologists) from six institutions delineated the gross tumor volume (GTV) on 3DCT, and

  14. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    Science.gov (United States)

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts.

  15. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    , there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions.......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms...

  16. On the sound absorption by openings in rooms (L).

    Science.gov (United States)

    Martellotta, Francesco

    2012-11-01

    Sound absorption by openings has been rarely considered in room acoustics. In fact, information about small openings (such as ventilation grids) may sometimes be found, but nothing is said about larger openings, possibly as a consequence of the less likely occurrence in a design. In order to fill this gap, measurements were carried out in scale models, measuring the equivalent absorption due to different openings and comparing it with theoretical results. A "practical" model, showing a simple dependence on the opening dimension, was finally obtained and subsequently validated by measurements in a real room.

  17. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  18. Morphology of the atlas pedicle revisited: a morphometric CT-based study on 120 patients.

    Science.gov (United States)

    Qian, Li-Xiong; Hao, Ding-Jun; He, Bao-Rong; Jiang, Yong-Hong

    2013-05-01

    To quantify the dimensions of the atlas pedicles and to analyze the relationship between extra medullary height (EMH) with intra medullary height (IMH) of the atlas pedicle. The images of the patients who had CT scanning and three-dimensional (3D) reconstruction involving atlantoaxial complex between June 2011 and April 2012 and meet our inclusion criteria were studied retrospectively. After reformatting the original images, the EMH and IMH of the atlas pedicles were measured. Extra medullary height and IMH were, respectively, 4.83 ± 1.13 and 1.29 ± 1.10 mm for males and 3.75 ± 0.93 and 0.60 ± 0.83 mm for females, with statistical difference (P atlas pedicles were measured by using CT images of the atlas, providing anatomic parameters for surgery. They showed a certain correlation but with a high variability. C1 pedicle screw fixation was well performed when the medullary canal was ≥1 mm, but the surgical procedure should be careful when it was between 0 and 1 mm, and avoided when there was no medullary canal in the atlas pedicle! So 3D CT reconstruction should be conducted to obtain data and establish individualized fixation strategy preoperatively.

  19. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Mohammad R. [Geneva University Hospital, Division of Nuclear Medicine, Geneva (Switzerland); Zaidi, Habib

    2006-11-15

    Quantitative image reconstruction in positron emission tomography (PET) requires an accurate attenuation map of the object under study for the purpose of attenuation correction. Current dual-modality PET/CT systems offer significant advantages over stand-alone PET, including decreased overall scanning time and increased accuracy in lesion localisation and detectability. However, the contamination of CT data with scattered radiation and misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) are known to generate artefacts in the attenuation map and thus the resulting PET images. The purpose of this work was to quantitatively measure the impact of scattered radiation and contrast medium on the accuracy of CTAC. Our recently developed MCNP4C-based Monte Carlo X-ray CT simulator for modelling both fan- and cone-beam CT scanners and the Eidolon dedicated 3D PET Monte Carlo simulator were used to generate realigned PET/CT data sets. The impact of X-ray scattered radiation on the accuracy of CTAC was investigated through simulation of a uniform cylindrical water phantom for both a commercial fan-beam multi-slice and a prototype cone-beam flat panel detector-based CT scanner. The influence of contrast medium was studied by simulation of a cylindrical phantom containing different concentrations of contrast medium. Moreover, an experimental study using an anthropomorphic striatal phantom was conducted for quantitative evaluation of errors arising from the presence of contrast medium by calculating the apparent recovery coefficient (ARC) in the presence of different concentrations of contrast medium. The analysis of attenuation correction factors (ACFs) for the simulated cylindrical water phantom in both fan- and cone-beam CT scanners showed that the contamination of CT data with scattered radiation in the absence of scatter removal causes underestimation of the true ACFs, namely by 7.3% and 28.2% in the centre for the two

  20. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    Science.gov (United States)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  1. Automated CT-based segmentation and quantification of total intracranial volume

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Carlos; Wahlund, Lars-Olof; Westman, Eric [Karolinska Institute, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Stockholm (Sweden); Edholm, Kaijsa; Cavallin, Lena; Muller, Susanne; Axelsson, Rimma [Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital in Huddinge, Department of Radiology, Stockholm (Sweden); Simmons, Andrew [King' s College London, Institute of Psychiatry, London (United Kingdom); NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, London (United Kingdom); Skoog, Ingmar [Gothenburg University, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Gothenburg (Sweden); Larsson, Elna-Marie [Uppsala University, Department of Surgical Sciences, Radiology, Akademiska Sjukhuset, Uppsala (Sweden)

    2015-11-15

    To develop an algorithm to segment and obtain an estimate of total intracranial volume (tICV) from computed tomography (CT) images. Thirty-six CT examinations from 18 patients were included. Ten patients were examined twice the same day and eight patients twice six months apart (these patients also underwent MRI). The algorithm combines morphological operations, intensity thresholding and mixture modelling. The method was validated against manual delineation and its robustness assessed from repeated imaging examinations. Using automated MRI software, the comparability with MRI was investigated. Volumes were compared based on average relative volume differences and their magnitudes; agreement was shown by a Bland-Altman analysis graph. We observed good agreement between our algorithm and manual delineation of a trained radiologist: the Pearson's correlation coefficient was r = 0.94, tICVml[manual] = 1.05 x tICVml[automated] - 33.78 (R{sup 2} = 0.88). Bland-Altman analysis showed a bias of 31 mL and a standard deviation of 30 mL over a range of 1265 to 1526 mL. tICV measurements derived from CT using our proposed algorithm have shown to be reliable and consistent compared to manual delineation. However, it appears difficult to directly compare tICV measures between CT and MRI. (orig.)

  2. The surgical rate and recurrence rate in right colonic diverticulitis using the CT-based modified hinchey classification

    International Nuclear Information System (INIS)

    Kim, Dong Hwan; Kim, Hyuk Jung; Jang, Suk Ki; Yeon, Jae Woo; Ko, You Sun; Lee, Kyoung Ho

    2015-01-01

    The purpose of this report is to retrospectively analyze the need for surgery, and the recurrence rate, using a CT-based method in patients with right colonic diverticulitis. For the purposes of our study, we included 416 patients with a mean age of 41.9 (238 of which were men), with a diagnosis of colonic diverticulitis that was based on CT findings. These findings were reviewed by two independent radiologists, who localized diverticulitis and determined it using a modified Hinchey classification. We were able to follow-up with 384 patients over a period of 30 months. Out of the 416 patients, 396 of them had right colonic diverticulitis. In right colonic diverticulitis, the κ value in determining the modified Hinchey classification was 0.80. 98.2% (389/396) of the patients with right colonic diverticulitis had stages Ia-II. The surgery rate was 4.6% (17/366) and 28% (5/18) for right and left colonic diverticulitis, respectively (p < 0.001). In the instances of right colonic diverticulitis, the surgery rate was 2.8% (10/359) for stages Ia-II, while all seven patients with stage III or IV underwent surgery. The recurrence rate was 6.5% (23/356) and 15% (2/13) for right and left colonic diverticulitis, respectively (p = 0.224). The CT-based modified Hinchey classification of right colonic diverticulitis showed good interobserver agreement. Most patients with right colonic diverticulitis had lower stages (Ia-II) at the point of CT, rarely needed surgery, and had a low recurrence rate

  3. The surgical rate and recurrence rate in right colonic diverticulitis using the CT-based modified hinchey classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hwan; Kim, Hyuk Jung; Jang, Suk Ki; Yeon, Jae Woo [Dept. of Radiology, Daejin Medical Center Bundang Jesaeng General Hospital, Seongnam (Korea, Republic of); Ko, You Sun; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-08-15

    The purpose of this report is to retrospectively analyze the need for surgery, and the recurrence rate, using a CT-based method in patients with right colonic diverticulitis. For the purposes of our study, we included 416 patients with a mean age of 41.9 (238 of which were men), with a diagnosis of colonic diverticulitis that was based on CT findings. These findings were reviewed by two independent radiologists, who localized diverticulitis and determined it using a modified Hinchey classification. We were able to follow-up with 384 patients over a period of 30 months. Out of the 416 patients, 396 of them had right colonic diverticulitis. In right colonic diverticulitis, the κ value in determining the modified Hinchey classification was 0.80. 98.2% (389/396) of the patients with right colonic diverticulitis had stages Ia-II. The surgery rate was 4.6% (17/366) and 28% (5/18) for right and left colonic diverticulitis, respectively (p < 0.001). In the instances of right colonic diverticulitis, the surgery rate was 2.8% (10/359) for stages Ia-II, while all seven patients with stage III or IV underwent surgery. The recurrence rate was 6.5% (23/356) and 15% (2/13) for right and left colonic diverticulitis, respectively (p = 0.224). The CT-based modified Hinchey classification of right colonic diverticulitis showed good interobserver agreement. Most patients with right colonic diverticulitis had lower stages (Ia-II) at the point of CT, rarely needed surgery, and had a low recurrence rate.

  4. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice.

    Directory of Open Access Journals (Sweden)

    Pie Huda

    Full Text Available 64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model was used for the investigations, and it was found that the approximately 13 nm nanodiscs, due to their size, permeate deeply into cancer tissue. This makes them promising candidates for both drug delivery purposes and as advanced imaging agents. For the radiolabelling, a simple approach for 64Cu radiolabelling of proteins via a chelating agent, DOTA, was developed. The reaction was performed at sufficiently mild conditions to be compatible with labelling of the protein part of a lipid-protein particle while fully conserving the particle structure including the amphipathic protein fold.

  5. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    International Nuclear Information System (INIS)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C

    2016-01-01

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  6. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2016-06-15

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  7. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates.

    Directory of Open Access Journals (Sweden)

    Yubing Tong

    Full Text Available Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh versus a volumetric CT, which have not been addressed in the literature.Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2, 16 with chronic obstructive pulmonary disease (COPD, 16 with idiopathic pulmonary fibrosis (IPF, and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU distributions were determined from each chest slice and from the

  8. Time Delay Estimation in Room Acoustic Environments: An Overview

    Science.gov (United States)

    Chen, Jingdong; Benesty, Jacob; Huang, Yiteng(Arden)

    2006-12-01

    Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.). It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  9. Time Delay Estimation in Room Acoustic Environments: An Overview

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2006-01-01

    Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  10. Experimental Validation of the Reverberation Effect in Room Electromagnetics

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2015-01-01

    The delay power spectrum is widely used in both communication and localization communities for characterizing the temporal dispersion of the radio channel. Experimental investigations of in-room radio environments indicate that the delay power spectrum exhibits an exponentially decaying tail....... This tail can be characterized with Sabine's or Eyring's reverberation models, which were initially developed in acoustics. So far, these models were only fitted to data collected from radio measurements, but no thorough validation of their prediction ability in electromagnetics has been performed yet...... accurate prediction of the parameters characterizing the decaying tail, like the reverberation time, than Sabine's model. We further use the reverberation models to predict the parameters of a recently proposed model of a distance-dependent delay power spectrum. This model enables us to predict the path...

  11. Objective CT-based quantification of lung sequelae in treated patients with paracoccidioidomycosis.

    Science.gov (United States)

    Alvarez, Matheus; Pina, Diana R; de Oliveira, Marcela; Ribeiro, Sérgio M; Mendes, Rinaldo P; Duarte, Sérgio B; Miranda, José R A

    2014-11-01

    This study presents methodology for objectively quantifying the pulmonary region affected by emphysemic and fibrotic sequelae in treated patients with paracoccidioidomycosis. This methodology may also be applied to any other disease that results in these sequelae in the lungs.Pulmonary high-resolution computed tomography examinations of 30 treated paracoccidioidomycosis patients were used in the study. The distribution of voxel attenuation coefficients was analyzed to determine the percentage of lung volume that consisted of emphysemic, fibrotic, and normal tissue. Algorithm outputs were compared with subjective evaluations by radiologists using a scale that is currently used for clinical diagnosis.Affected regions in the patient images were determined by computational analysis and compared with estimates by radiologists, revealing mean (± standard deviation) differences in the scores for fibrotic and emphysemic regions of 0.1% ± 1.2% and -0.2% ± 1.0%, respectively.The computational results showed a strong correlation with the radiologist estimates, but the computation results were more reproducible, objective, and reliable.

  12. Automatic lesion tracking for a PET/CT based computer aided cancer therapy monitoring system

    Science.gov (United States)

    Opfer, Roland; Brenner, Winfried; Carlsen, Ingwer; Renisch, Steffen; Sabczynski, Jörg; Wiemker, Rafael

    2008-03-01

    Response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. However, dealing simultaneously with several PET/CT scans poses a serious workflow problem. It can be a difficult and tedious task to extract response criteria based upon an integrated analysis of PET and CT images and to track these criteria over time. In order to improve the workflow for serial analysis of PET/CT scans we introduce in this paper a fast lesion tracking algorithm. We combine a global multi-resolution rigid registration algorithm with a local block matching and a local region growing algorithm. Whenever the user clicks on a lesion in the base-line PET scan the course of standardized uptake values (SUV) is automatically identified and shown to the user as a graph plot. We have validated our method by a data collection from 7 patients. Each patient underwent two or three PET/CT scans during the course of a cancer therapy. An experienced nuclear medicine physician manually measured the courses of the maximum SUVs for altogether 18 lesions. As a result we obtained that the automatic detection of the corresponding lesions resulted in SUV measurements which are nearly identical to the manually measured SUVs. Between 38 measured maximum SUVs derived from manual and automatic detected lesions we observed a correlation of 0.9994 and a average error of 0.4 SUV units.

  13. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT.

    Science.gov (United States)

    De Backer, Jan W; Vos, Wim G; Vinchurkar, Samir C; Claes, Rita; Drollmann, Anton; Wulfrank, Denis; Parizel, Paul M; Germonpré, Paul; De Backer, Wilfried

    2010-12-01

    To compare the results obtained by using numerical flow simulations with the results of combined single photon emission computed tomography (SPECT) and computed tomography (CT) and to demonstrate the importance of correct boundary conditions for the numerical methods to account for the large amount of interpatient variability in airway geometry. This study was approved by all relevant institutional review boards. All patients gave their signed informed consent. In this study, six patients with mild asthma (three men; three women; overall mean age, 46 years ± 17 [standard deviation]) underwent CT at functional residual capacity and total lung capacity, as well as SPECT/CT. CT data were used for segmentation and computational fluid dynamics (CFD) simulations. A comparison was made between airflow distribution, as derived with (a) SPECT/CT through tracer concentration analysis, (b) CT through lobar expansion measurement, and (c) CFD through flow computer simulation. Also, the heterogeneity of the ventilation was examined. Good agreement was found between SPECT/CT, CT, and CFD in terms of airflow distribution and hot spot detection. The average difference for the internal airflow distribution was less than 3% for CFD and CT versus SPECT/CT. Heterogeneity in ventilation patterns could be detected with SPECT/CT and CFD. This results of this study show that patient-specific computer simulations with appropriate boundary conditions yield information that is similar to that obtained with functional imaging tools, such as SPECT/CT. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100322/-/DC1. © RSNA, 2010

  14. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  15. Comparison of CT-based 3D treatment planning with simulator planning of pelvic irradiation of primary cervical carcinoma

    International Nuclear Information System (INIS)

    Knocke, T.H.; Pokrajac, B.; Fellner, C.; Poetter, R.

    1999-01-01

    In a prospective study on 20 subsequent patients with primary cervical carcinoma in Stages I to III simulator planning of a 4-field box-technique was performed. After defining the planning target volume (PTV) in the 3D planning system the field configuration of the simulator planning was transmitted. The resulting plan was compared to a second one based on the defined PTV and evaluated regarding a possible geographical miss and encompassment of the PTV by the treated volume (ICRU). Volumes of open and shaped portals were calculated for both techniques. Planning by simulation resulted in 1 geographical miss and in 10 more cases the encompassment of the PTV by the treated volume was inadequate. For a PTV of mean 1 729 cm 3 the mean volume defined by simulation was 3 120 cm 3 for the open portals and 2 702 cm 3 for the shaped portals. The volume reduction by blocks was 13,4% (mean). With CT-based 3D treatment planning the volume of the open portals was 3,3% (mean) enlarged to 3 224 cm 3 . The resulting mean volume of the shaped portals was 2 458 ccm. The reduction compared to the open portals was 23,8% (mean). The treated volumes were 244 cm 3 or 9% (mean) smaller compared to simulator planning. The 'treated volume/planning target volume ratio' was decreased from 1.59 to 1.42. (orig.) [de

  16. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  17. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  18. A Curve Fitting Approach Using ANN for Converting CT Number to Linear Attenuation Coefficient for CT-based PET Attenuation Correction

    Science.gov (United States)

    Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng

    2015-02-01

    Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation

  19. Validation of the femoral component placement during hip resurfacing: a comparison between the conventional jig, patient-specific template, and CT-based navigation.

    Science.gov (United States)

    Kitada, Makoto; Sakai, Takashi; Murase, Tsuyoshi; Hanada, Toshihisa; Nakamura, Nobuo; Sugano, Nobuhiko

    2013-06-01

    Appropriate insertion of a femoral guidewire is essential for hip resurfacing. A simulation study was planned using synthetic femoral bone models and the accuracy and precision of femoral guidewire alignment and insertion point were compared between conventional jigs, patient-specific templates, and computed tomography (CT) based navigation techniques. Anteversion, stem-shaft angle, and the three-dimensional insertion point were measured postoperative with CT. Errors between planned and postoperative measurement and precision were evaluated. There were no statistically significant differences in error for anteversion or insertion point, although the mechanical jig showed greater error in the stem-shaft angle than the others. Patient-specific template and CT-based navigation showed good precision with high intraclass correlation (ICC) (template, 0.908 to 1.000; navigation, 0.929 to 0.995) and small root mean square error (RMSE) (0.954 to 2.969; 1.468 to 3.213). The mechanical jig group performance was inferior to the others. Patient-specific templates and CT-based navigation had good accuracy and precision. The mechanical jig technique was inferior to the others. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu [Ajou University School of Medicine, Seoul (Korea, Republic of); Kang, Seung Hee [Inje University, Ilsan Paik Hospital, Ilsan (Korea, Republic of)

    2010-11-15

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  1. Intraoperative validation of CT-based lymph nodal levels, sublevels IIa and IIb: Is it of clinical relevance in selective radiation therapy?

    International Nuclear Information System (INIS)

    Levendag, Peter; Gregoire, Vincent; Hamoir, Marc; Voet, Peter; Est, Henrie van der; Heijmen, Ben; Kerrebijn, Jeroen

    2005-01-01

    Purpose: The objectives of this study are to discuss the intraoperative validation of CT-based boundaries of lymph nodal levels in the neck, and in particular the clinical relevance of the delineation of sublevels IIa and IIb in case of selective radiation therapy (RT). Methods and Materials: To validate the radiologically defined level contours, clips were positioned intraoperatively at the level boundaries defined by surgical anatomy. In 10 consecutive patients, clips were placed, at the time of a neck dissection being performed, at the most cranial border of the neck. Anterior-posterior and lateral X-ray films were obtained intraoperatively. Next, in 3 patients, neck levels were contoured on preoperative contrast-enhanced CT scans according to the international consensus guidelines. From each of these 3 patients, an intraoperative CT scan was also obtained, with clips placed at the surgical-anatomy-based level boundaries. The preoperative (CT-based) and intraoperative (surgery-defined) CT scans were matched. Results: Clips placed at the most cranial part of the neck lined up at the caudal part of the transverse process of the cervical vertebra C-I. The posterior border of surgical level IIa (spinal accessory nerve [SAN]) did not match with the posterior border of CT-based level IIa (internal jugular vein [IJV]). Other surgical boundaries and CT-based contours were in good agreement. Conclusions: The cranial border of the neck, i.e., the cranial border of level IIa/IIb, corresponds to the caudal edge of the lateral process of C-I. Except for the posterior border between level IIa and level IIb, a perfect match was observed between the other surgical-clip-identified levels II-V boundaries (surgical-anatomy) and the CT-based delineation contours. It is argued that (1) because of the parotid gland overlapping part of level II, and (2) the frequent infestation of occult metastatic cells in the lymph channels around the IJV, the division of level II into radiologic

  2. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    International Nuclear Information System (INIS)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu; Kang, Seung Hee

    2010-01-01

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  3. MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study.

    Science.gov (United States)

    Köhrmann, Martin; Jüttler, Eric; Fiebach, Jochen B; Huttner, Hagen B; Siebert, Stefan; Schwark, Christian; Ringleb, Peter A; Schellinger, Peter D; Hacke, Werner

    2006-08-01

    Thrombolytic treatment with recombinant tissue plasminogen activator (rtPA) is approved for use within 3 h after stroke onset. Thus only a small percentage of patients can benefit. Meta-analyses and more recent studies suggest a benefit for a subset of patients beyond 3 h. We assessed the safety and efficacy of an MRI-based selection protocol for stroke treatment within and beyond 3 h compared with standard CT-based treatment. We assessed clinical outcome and incidence of symptomatic intracerebral haemorrhage (ICH) in 400 consecutive patients treated with intravenous rtPA. Patients eligible for thrombolysis within 3 h were selected by CT or MRI and beyond 3 h only by MRI. 18 patients were excluded from analysis because of violation of that algorithm. The remaining 382 patients were divided into three groups: CT-based treatment within 3 h (n=209); MRI-based treatment within 3 h (n=103); and MRI-based treatment beyond 3 h (n=70). Patients in group 3 (MRI > 3 h) had a similar 90 day outcome to those in the other two groups (48% were independent in the CT < or = 3 h group, 51% in the MRI < or = 3 h group, and 56% in group 3), but without an increased risk for symptomatic ICH (9%, 1%, 6%) or mortality (21%, 13%, 11%). MRI-selected patients overall had a significantly lower risk than CT-selected patients for symptomatic ICH (3% vs 9%; p=0.013) and mortality (12% vs 21%; p=0.021). Time to treatment did not affect outcomes in univariate and multivariate analyses. Our data suggest that beyond 3 h and maybe even within 3 h, patient selection is more important than time to treatment for a good outcome. Furthermore, MRI-based thrombolysis, irrespective of the time window, shows an improved safety profile while being at least as effective as standard CT-based treatment within 3 h.

  4. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    Science.gov (United States)

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Study on pedicle screw fixation of cervical spine assisted CT-based navigation system compared with the individual cervical peddle screws placement technique

    International Nuclear Information System (INIS)

    He Xishun; Yang Huilin; Zhu Ruofu; Tan Xiangqi; Wang Genlin; Tang Tiansi

    2008-01-01

    Objective: To explore a safe and effective method for placing the cervical pedicle screws. Methods: There were ten adult cadaver specimens of cervica spine (C 1 -C 7 ) with intact structures including ligament and perivertebral muscles. The spiral computed tomography scan (Elscint CT Twin flash) at the section of 1 mm and three-dimensional reconstruction of all 10 cervical specimens were taken. By CT scan, the parameters of the cervical pedicles were measure,Then taking randomly 5 cervical specimens, according to the CT measurements, an appropriate screw was inserted into pedicle individually. In the other 5 human cadaver cervical vertebraes, Φ3.5 mm screws were inserted into the C 2 -C 7 pedicles by assisted by CT-based navigation system. Cortical integrity of every sample was examined by anatomic dissection, the spiral computed tomography scan and arrows,and coronal reconstruction. Results: Sixty screws was inserted into pedicle individually, and the achievement ratio was 90%, the perfectness ratio was 75%, 60 screws was placed into pedicle assisted by CT-based navigation system, and the achievement ratio was 96.6%, the perfectness ratio was 90%. By chi-square test for statistical analysis, there were no statistical significance between the accuracy rate of two methods(P>0.05). However there was statistical significance between the perfectness ratio between two methods(P<0.05). Conclusion: Compared with the individual cervical peddle screws placement technique, the perfectness ratio of pedicle screw fixation of cervical spine assisted by CT-based navigation system is higher, but there are no significant difference in accuracy. (authors)

  6. In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI

    Directory of Open Access Journals (Sweden)

    Friebe M

    2018-03-01

    Full Text Available Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient

  7. Dosimetric comparison of different dose prescription systems with CT based intracavitary brachytherapy and manual back projection technique to reconstruct the applicator

    International Nuclear Information System (INIS)

    Oinam, A.S.; Dubey, S.; Kehwar, T.S.; Rout, Sanjaya K.; Patel, F.D.; Sharma, S.C.; Goyal, D.R.; Narayan, P.

    2002-01-01

    Intracavitary brachytherapy is one of the well-established techniques for the treatment of carcinoma of cervix. The prediction of late effect of normal tissue like rectum and bladder needs the defining of the volume of the bladder and rectum in situ. In the normal planning of intracavitary and interstitial implants, simulated radiograph films are used to reconstruct the applicator geometry and dose points to represent the dose to critical organs. CT based brachytherapy can define such volume instead of defining dose points, which represent the dose to these critical organs

  8. A Cone Beam CT-Based Study for Clinical Target Definition Using Pelvic Anatomy During Postprostatectomy Radiotherapy

    International Nuclear Information System (INIS)

    Showalter, Timothy N.; Nawaz, A. Omer; Xiao Ying; Galvin, James M.; Valicenti, Richard K.

    2008-01-01

    Purpose: There are no accepted guidelines for target volume definition for online image-guided radiation therapy (IGRT) after radical prostatectomy (RP). This study used cone beam CT (CBCT) imaging to generate information for use in post-RP IGRT. Methods and Materials: The pelvic anatomy of 10 prostate cancer patients undergoing post-RP radiation therapy (RT) to 68.4 Gy was studied using CBCT images obtained immediately before treatment. Contoured bladder and rectal volumes on CBCT images were compared with planning CT (CT ref ) volumes from seminal vesicle stump (SVS) to bladder-urethral junction. This region was chosen to approximate the prostatic fossa (PF) during a course of post-RP RT. Anterior and posterior planning target volume margins were calculated using ICRU report 71 guidelines, accounting for systematic and random error based on bladder and rectal motion, respectively. Results: A total of 176 CBCT study sets obtained 2 to 5 times weekly were analyzed. The rectal and bladder borders were reliably identified in 166 of 176 (94%) of CBCT images. Relative to CT ref , mean posterior bladder wall position was anterior by 0.1 to 1.5 mm, and mean anterior rectum wall position was posterior by 1.6 to 2.7 mm. Calculated anterior margin as derived from bladder motion ranged from 5.9 to 7.1 mm. Calculated posterior margin as derived from rectal motion ranged from 8.6 to 10.2 mm. Conclusions: Normal tissue anatomy was definable by CBCT imaging throughout the course of post-RP RT, and the interfraction anteroposterior motion of the bladder and rectum was studied. This information should be considered in devising post-RP RT techniques using image guidance

  9. Diagnostic performance of a CT-based scoring system for diagnosis of anastomotic leakage after esophagectomy: comparison with subjective CT assessment

    Energy Technology Data Exchange (ETDEWEB)

    Goense, Lucas; Rossum, Peter S.N. van [University Medical Center Utrecht, Department of Surgery, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiation Oncology, Utrecht (Netherlands); Stassen, Pauline M.C.; Ruurda, Jelle P.; Hillegersberg, Richard van [University Medical Center Utrecht, Department of Surgery, Utrecht (Netherlands); Wessels, Frank J.; Leeuwen, Maarten S. van [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2017-10-15

    To develop a CT-based prediction score for anastomotic leakage after esophagectomy and compare it to subjective CT interpretation. Consecutive patients who underwent a CT scan for a clinical suspicion of anastomotic leakage after esophagectomy with cervical anastomosis between 2003 and 2014 were analyzed. The CT scans were systematically re-evaluated by two radiologists for the presence of specific CT findings and presence of an anastomotic leak. Also, the original CT interpretations were acquired. These results were compared to patients with and without a clinical confirmed leak. Out of 122 patients that underwent CT for a clinical suspicion of anastomotic leakage; 54 had a confirmed leak. In multivariable analysis, anastomotic leakage was associated with mediastinal fluid (OR = 3.4), esophagogastric wall discontinuity (OR = 4.9), mediastinal air (OR = 6.6), and a fistula (OR = 7.2). Based on these criteria, a prediction score was developed resulting in an area-under-the-curve (AUC) of 0.86, sensitivity of 80%, and specificity of 84%. The original interpretation and the systematic subjective CT assessment by two radiologists resulted in AUCs of 0.68 and 0.75 with sensitivities of 52% and 69%, and specificities of 84% and 82%, respectively. This CT-based score may provide improved diagnostic performance for diagnosis of anastomotic leakage after esophagectomy. (orig.)

  10. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data

    Directory of Open Access Journals (Sweden)

    Andrzej Kotela

    2015-01-01

    Full Text Available Total knee arthroplasty (TKA is a frequently performed procedure in orthopaedic surgery. Recently, patient-specific instrumentation was introduced to facilitate correct positioning of implants. The aim of this study was to compare the early clinical results of TKA performed with patient-specific CT-based instrumentation and conventional technique. A prospective, randomized controlled trial on 112 patients was performed between January 2011 and December 2011. A group of 112 patients who met the inclusion and exclusion criteria were enrolled in this study and randomly assigned to an experimental or control group. The experimental group comprised 52 patients who received the Signature CT-based implant positioning system, and the control group consisted of 60 patients with conventional instrumentation. Clinical outcomes were evaluated with the KSS scale, WOMAC scale, and VAS scales to assess knee pain severity and patient satisfaction with the surgery. Specified in-hospital data were recorded. Patients were followed up for 12 months. At one year after surgery, there were no statistically significant differences between groups with respect to clinical outcomes and in-hospital data, including operative time, blood loss, hospital length of stay, intraoperative observations, and postoperative complications. Further high-quality investigations of various patient-specific systems and longer follow-up may be helpful in assessing their utility for TKA.

  11. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  12. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    Science.gov (United States)

    2013-08-01

    Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions...matching. IEEE Transactions on Medical Imaging. 1997;16(3):317-28. 5. Wörz S, Rohr K. Physics-based elastic registration using non-radial basis

  13. Bayesian calibration of microCT-based DEM simulations for predicting the effective elastic response of granular materials

    NARCIS (Netherlands)

    Cheng, Hongyang; Pellegrino, Antonio; Magnanimo, Vanessa

    2017-01-01

    A novel approach is presented for calibrating discrete element method (DEM) simulations of granular materials based on the sequential Bayesian parameter estimation over the experimental stress–strain responses. The initial DEM packing is bridged with microscopic computed tomography (microCT) images

  14. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a

  15. WE-DE-207B-12: Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Vedantham, S; Karellas, A [University of Massachusetts Medical School, Worcester, MA (United States)

    2016-06-15

    Purpose: The image quality of dedicated cone-beam breast CT (CBBCT) is fundamentally limited by substantial x-ray scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose to suppress x-ray scatter in CBBCT images using a deterministic forward projection model. Method: We first use the 1st-pass FDK-reconstructed CBBCT images to segment fibroglandular and adipose tissue. Attenuation coefficients are assigned to the two tissues based on the x-ray spectrum used for imaging acquisition, and is forward projected to simulate scatter-free primary projections. We estimate the scatter by subtracting the simulated primary projection from the measured projection, and then the resultant scatter map is further refined by a Fourier-domain fitting algorithm after discarding untrusted scatter information. The final scatter estimate is subtracted from the measured projection for effective scatter correction. In our implementation, the proposed scatter correction takes 0.5 seconds for each projection. The method was evaluated using the overall image spatial non-uniformity (SNU) metric and the contrast-to-noise ratio (CNR) with 5 clinical datasets of BI-RADS 4/5 subjects. Results: For the 5 clinical datasets, our method reduced the SNU from 7.79% to 1.68% in coronal view and from 6.71% to 3.20% in sagittal view. The average CNR is improved by a factor of 1.38 in coronal view and 1.26 in sagittal view. Conclusion: The proposed scatter correction approach requires no additional scans or prior images and uses a deterministic model for efficient calculation. Evaluation with clinical datasets demonstrates the feasibility and stability of the method. These features are attractive for clinical CBBCT and make our method distinct from other approaches. Supported partly by NIH R21EB019597, R21CA134128

  16. Images.

    Science.gov (United States)

    Barr, Catherine, Ed.

    1997-01-01

    The theme of this month's issue is "Images"--from early paintings and statuary to computer-generated design. Resources on the theme include Web sites, CD-ROMs and software, videos, books, and others. A page of reproducible activities is also provided. Features include photojournalism, inspirational Web sites, art history, pop art, and myths. (AEF)

  17. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    Science.gov (United States)

    2015-10-01

    A549 and SK-MES-1 cells from American Tissue Culture Collection (ATCC), carbon nanotubes (catalogue number 900–1501, lot GS1801), SES research...protocol and optimize software 3a. Inoculate 10 rats with orthotopic human lung cancer cells ( A549 , left lung) and carbon nanotubes (right lung...benign lesions and follow with serial MicroCT imaging, analyze data 4a. Inoculate remaining 40 rats ( A549 cells, left lung in Rowett nude rats) and

  18. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    International Nuclear Information System (INIS)

    Risenmay, H.R.

    1997-01-01

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillextrademark HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage

  19. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  20. 99mTc MDP SPECT-CT-Based Modified Mirels Classification for Evaluation of Risk of Fracture in Skeletal Metastasis: A Pilot Study.

    Science.gov (United States)

    Riaz, Saima; Bashir, Humayun; Niazi, Imran Khalid; Butt, Sumera; Qamar, Faisal

    2018-03-20

    Mirels' scoring system quantifies the risk of sustaining a pathologic fracture in osseous metastases of weight bearing long bones. Conventional Mirels' scoring is based on radiographs. Our pilot study proposes Tc MDP bone SPECT-CT based modified Mirels' scoring system and its comparison with conventional Mirels' scoring. Cortical lysis was noted in 8(24%) by SPECT-CT versus 2 (6.3%) on X-rays. Additional SPECT-CT parameters were; circumferential involvement [1/4 (31%), 1/2 (3%), 3/4 (37.5%), 4/4 (28%)] and extra-osseous soft tissue [3%]. Our pilot study suggests the potential role of SPECT-CT in predicting risk of fracture in osseous metastases.

  1. Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis.

    Science.gov (United States)

    Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Erdmann, Bodo; Weiser, Martin; Zachow, Stefan; Heinrich, Andreas; Güttler, Felix Victor; Teichgräber, Ulf; Mall, Gita

    2017-05-01

    Temperature-based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex but allow a higher accuracy of death time estimation, as in principle, all relevant cooling mechanisms can be taken into account.Here, a complete workflow for finite element-based cooling simulation is presented. The following steps are demonstrated on a CT phantom: Computer tomography (CT) scan Segmentation of the CT images for thermodynamically relevant features of individual geometries and compilation in a geometric computer-aided design (CAD) model Conversion of the segmentation result into a finite element (FE) simulation model Computation of the model cooling curve (MOD) Calculation of the cooling time (CTE) For the first time in FE-based cooling time estimation, the steps from the CT image over segmentation to FE model generation are performed semi-automatically. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using a CT phantom. Some of the phantoms' thermodynamic material parameters had to be determined via independent experiments.Moreover, the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.

  2. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  3. CT-based patient modeling for head and neck hyperthermia treatment planning: Manual versus automatic normal-tissue-segmentation

    International Nuclear Information System (INIS)

    Verhaart, René F.; Fortunati, Valerio; Verduijn, Gerda M.; Walsum, Theo van; Veenland, Jifke F.; Paulides, Margarethus M.

    2014-01-01

    Background and purpose: Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H and N) carcinoma. Hyperthermia treatment planning (HTP) guided H and N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. Material and methods: CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Results: Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Conclusions: Automatically generated 3D patient models can be introduced in the clinic for H and N HTP

  4. Factors related to disagreement in implant size between preoperative CT-based planning and the actual implants used intraoperatively for total hip arthroplasty.

    Science.gov (United States)

    Ogawa, Takeshi; Takao, Masaki; Sakai, Takashi; Sugano, Nobuhiko

    2017-12-13

    In total hip arthroplasty, prediction of the optimal implant size is important in order to prevent perioperative complications. However, it is not easy to achieve complete agreement between the planned size and the actual size required appropriate implant fit. No previous report has adequately discussed the factors related to mismatch between predicted and actual implant sizes. The purpose was to report the results of a single surgeon case series of patients undergoing THA using computed tomography (CT)-based templating and the possible factors related to implant size mismatch. The study included 141 hips of 126 patients who underwent primary total hip arthroplasty with CT-based navigation. We retrospectively reviewed the planned and actual implant sizes used in these patients. Cup position, cup orientation and stem alignment were evaluated as surgical factors that could possibly be related to mismatch in implant size. Cortical index and canal flare index were also evaluated as morphological factors. The final inclusions in this study were 124 hips of 111 patients including 82% of those were developmental dysplasia of the hip. Agreement in implant size was seen for 94.4% of cups and 85.5% of stems, respectively. No related factors were found for cup size mismatch. Stem alignment in the sagittal and coronal planes showed significant differences between the size-matched stem group and the smaller stem group ([Formula: see text]). Implant size agreement rates between the three-dimensional plan and the actual implants used intraoperatively were high. However, broach alignment should be checked in the coronal and sagittal planes if the intraoperative broach is smaller than the planned size.

  5. On the effects of nonlinearities in room impulse response measurements with exponential sweeps

    DEFF Research Database (Denmark)

    Ciric, Dejan; Markovic, Milos; Mijic, Miomir

    2013-01-01

    In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from diff...

  6. POLITENESS STRATEGIES EMPLOYED BY THE TRAINERS IN ROOM DIVISION DEPARTMENT BAPEPAR NUSA DUA

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Vina Widiadnya Putri

    2017-05-01

    Full Text Available This article tries to analyze and discuss the politeness strategies employed by the trainers in room division department when they practice on the job training in the hotel. Politeness strategy was needed when the trainers serve the guest. This research was done by observation and interview with the trainer and the guest about their conversation. The analysis of politeness strategies that employed by the trainer focused on two discussions; (1 the kinds of politeness strategies used by trainer in room division department, and (2 the implications of politeness strategies used by trainer in room division department. This research used the theory from Brown & Levinson (1987 in his book entitled Politeness: Some Universals in Language Usages. The theory is supported by other theories that are considered relevant to the topic of discussion in this research. Based on the analysis, it was found that there were two kinds of politeness stratgies that employed by the trainer in room division department Bapepar Nusa Dua, they were positive face and negative face. Beside that, there are three implications by using politness strategies such as: respect behaviour, togheterness, and cooperative interaction.

  7. Improved overall survival after early recurrence of lung cancer following the introduction of CT-based follow-up for patients initially treated with curative intent by (chemo)radiotherapy (CRT)

    DEFF Research Database (Denmark)

    Hansen, Niels-Chr. G.; Laursen, Christian B.; Jeppesen, Stefan S.

    2017-01-01

    years after the introduction of CT-based follow-up. The difference between the periods is statistically significant (p = 0.009, log rank test).View this table:Conclusion: The CT-based follow-up program has most likely contributed to the improved survival as the survival difference between the periods...... in this population based quality assurance analysis. Survival time (from the beginning of the primary diagnostics) was updated from the Danish Lung Cancer Registry in January 2017.Results: The table shows the estimated survival (95%CI) for the patients with early recurrence in the 5½ years prior to and in the 4...

  8. SU-F-T-687: Comparison of SPECT/CT-Based Methodologies for Estimating Lung Dose from Y-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Kost, S; Yu, N [Cleveland Clinic, Cleveland, OH (United States); Lin, S [Cleveland State University, Cleveland, OH (United States)

    2016-06-15

    Purpose: To compare mean lung dose (MLD) estimates from 99mTc macroaggregated albumin (MAA) SPECT/CT using two published methodologies for patients treated with {sup 90}Y radioembolization for liver cancer. Methods: MLD was estimated retrospectively using two methodologies for 40 patients from SPECT/CT images of 99mTc-MAA administered prior to radioembolization. In these two methods, lung shunt fractions (LSFs) were calculated as the ratio of scanned lung activity to the activity in the entire scan volume or to the sum of activity in the lung and liver respectively. Misregistration of liver activity into the lungs during SPECT acquisition was overcome by excluding lung counts within either 2 or 1.5 cm of the diaphragm apex respectively. Patient lung density was assumed to be 0.3 g/cm{sup 3} or derived from CT densitovolumetry respectively. Results from both approaches were compared to MLD determined by planar scintigraphy (PS). The effect of patient size on the difference between MLD from PS and SPECT/CT was also investigated. Results: Lung density from CT densitovolumetry is not different from the reference density (p = 0.68). The second method resulted in lung dose of an average 1.5 times larger lung dose compared to the first method; however the difference between the means of the two estimates was not significant (p = 0.07). Lung dose from both methods were statistically different from those estimated from 2D PS (p < 0.001). There was no correlation between patient size and the difference between MLD from PS and both SPECT/CT methods (r < 0.22, p > 0.17). Conclusion: There is no statistically significant difference between MLD estimated from the two techniques. Both methods are statistically different from conventional PS, with PS overestimating dose by a factor of three or larger. The difference between lung doses estimated from 2D planar or 3D SPECT/CT is not dependent on patient size.

  9. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution

    Science.gov (United States)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68  ±  0.12, 0.88  ±  0.05, 0.73  ±  0.14, 0.91  ±  0.04 and 0.64  ±  0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p  <  0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the

  10. Less increase of CT-based calcium scores of the coronary arteries. Effect three years after breast-conserving radiotherapy using breath-hold

    International Nuclear Information System (INIS)

    Mast, M.E.; Kempen-Harteveld, M.L. van; Petoukhova, A.L.; Heijenbrok, M.W.; Scholten, A.N.; Wolterbeek, R.; Schreur, J.H.M.; Struikmans, H.

    2016-01-01

    The aim of this prospective longitudinal study was to compare coronary artery calcium (CAC) scores determined before the start of whole breast irradiation with those determined 3 years afterwards. Changes in CAC scores were analysed in 99 breast cancer patients. Three groups were compared: patients receiving left- and right-sided radiotherapy, and those receiving left-sided radiotherapy with breath-hold. We analysed overall CAC scores and left anterior descending (LAD) and right coronary artery (RCA) CAC scores. Between the three groups, changes of the value of the LAD minus the RCA CAC scores of each individual patient were also compared. Three years after breath-hold-based whole breast irradiation, a less pronounced increase of CAC scores was noted. Furthermore, LAD minus RCA scores in patients treated for left-sided breast cancer without breath-hold were higher when compared to LAD minus RCA scores of patients with right-sided breast cancers and those with left-sided breast cancer treated with breath-hold. Breath-hold in breast-conserving radiotherapy leads to a less pronounced increase of CT-based CAC scores. Therefore, breath-hold probably prevents the development of radiation-induced coronary artery disease. However, the sample size of this study is limited and the follow-up period relatively short. (orig.) [de

  11. Quality assurance of conventional non-CT-based internal mammary lymph node irradiation in a prospective Danish Breast Cancer Cooperative Group trial: the DBCG-IMN study.

    Science.gov (United States)

    Thorsen, Lise B J; Thomsen, Mette S; Overgaard, Marie; Overgaard, Jens; Offersen, Birgitte V

    2013-10-01

    In 2003, the Danish Breast Cancer Cooperative Group (DBCG) initiated DBCG-IMN, a prospective study on the effect of adjuvant internal mammary lymph node radiotherapy (IMN-RT) in patients with early lymph node positive breast cancer (BC). In the study, standard DBCG IMN-RT was provided only to patients with right-sided BC. We provide estimates of doses to IMNs and organs at risk (OARs) in patients treated with the non-CT-based RT techniques used during the DBCG-IMN study. Five DBCG RT regimens were simulated on planning CT scans from 50 consecutively scanned BC patients, 10 in each group. Intended target volumes were chest wall or breast and regional lymph nodes ± IMNs. Field planning was conducted in the Eclipse(TM) RT treatment planning system. Subsequently, IMN clinical target volumes (CTVs) and OARs were delineated. Estimates on doses to the IMN-CTV and OARs were made. IMN dose coverage estimates were consistently higher in right-sided techniques where IMN treatment was intended (p < 0.0001). Estimated doses to cardiac structures were low regardless of whether IMNs were treated or not. Post-lumpectomy patients had the highest estimated lung doses. Overall, simulator-based treatment using the DBCG RT techniques resulted in satisfactory coverage of IMNs and acceptable levels of OAR irradiation.

  12. Live-Wire-Based Segmentation of 3D Anatomical Structures for Image-Guided Lung Interventions

    NARCIS (Netherlands)

    Lu, K.; Xu, S.; Xue, Z.; Wong, S.T.

    2011-01-01

    Computed Tomography (CT) has been widely used for assisting lung cancer detection/diagnosis and treatment. In lung cancer diagnosis, suspect lesions or regions of interest (ROIs) are usually analyzed in screening CT scans, and CT-based image-guided minimally invasive procedures are performed for

  13. 3D Prior Image Constrained Projection Completion for X-ray CT Metal Artifact Reduction

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Ay, Mohammad Reza; Rahmim, Arman; Zaidi, Habib

    2013-01-01

    The presence of metallic implants in the body of patients undergoing X-ray computed tomography (CT) examinations often results insevere streaking artifacts that degrade image quality. In this work, we propose a new metal artifact reduction (MAR) algorithm for 2D fan-beam and 3D cone-beam CT based on

  14. Limitations caused by distortion in room impulse response measurements by swept sine technique

    DEFF Research Database (Denmark)

    Stojic, Branko; Ciric, Dejan; Markovic, Milos

    2011-01-01

    The significance of a room impulse response implies the requirement that its measurement should have a high level of accuracy in certain applications. One of the common problems in a measurement process is nonlinearity leading to the distortion of a room impulse response. Limitations caused...... by the distortion in room impulse response measurements by swept sine technique are analyzed here by the simulations and measurements. For the investigation, both linear and exponential swept sines are used as an excitation signal. In the simulations, this signal is modified by the nonlinearity model in the time...

  15. Model for the Path Loss of In-room Reverberant Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2011-01-01

    A general path loss model for in-room radio channels is proposed. The model is based on experimental observations of the behavior of the delay power spectrum in closed rooms. In a given closed room, the early part of the spectrum observed at different positions typically consists of a dominant...... allows for the prediction of path loss, mean delay, and RMS delay spread versus distance. We use measurements to validate the proposed model and we observe good agreement of the model prediction for mean delay and RMS delay spread....

  16. Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions.

    Science.gov (United States)

    Bruno, Alexander G; Mokhtarzadeh, Hossein; Allaire, Brett T; Velie, Kelsey R; De Paolis Kaluza, M Clara; Anderson, Dennis E; Bouxsein, Mary L

    2017-10-01

    We created subject-specific musculoskeletal models of the thoracolumbar spine by incorporating spine curvature and muscle morphology measurements from computed tomography (CT) scans to determine the degree to which vertebral compressive and shear loading estimates are sensitive to variations in trunk anatomy. We measured spine curvature and trunk muscle morphology using spine CT scans of 125 men, and then created four different thoracolumbar spine models for each person: (i) height and weight adjusted (Ht/Wt models); (ii) height, weight, and spine curvature adjusted (+C models); (iii) height, weight, and muscle morphology adjusted (+M models); and (iv) height, weight, spine curvature, and muscle morphology adjusted (+CM models). We determined vertebral compressive and shear loading at three regions of the spine (T8, T12, and L3) for four different activities. Vertebral compressive loads predicted by the subject-specific CT-based musculoskeletal models were between 54% lower to 45% higher from those estimated using musculoskeletal models adjusted only for subject height and weight. The impact of subject-specific information on vertebral loading estimates varied with the activity and spinal region. Vertebral loading estimates were more sensitive to incorporation of subject-specific spinal curvature than subject-specific muscle morphology. Our results indicate that individual variations in spine curvature and trunk muscle morphology can have a major impact on estimated vertebral compressive and shear loads, and thus should be accounted for when estimating subject-specific vertebral loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2164-2173, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Comparison of CT versus MRI measurements of transverse atlantal ligament integrity in craniovertebral junction injuries. Part 2: A new CT-based alternative for assessing transverse ligament integrity.

    Science.gov (United States)

    Perez-Orribo, Luis; Kalb, Samuel; Snyder, Laura A; Hsu, Forrest; Malhotra, Devika; Lefevre, Richard D; Elhadi, Ali M; Newcomb, Anna G U S; Theodore, Nicholas; Crawford, Neil R

    2016-06-01

    OBJECTIVE The rule of Spence is inaccurate for assessing integrity of the transverse atlantal ligament (TAL). Because CT is quick and easy to perform at most trauma centers, the authors propose a novel sequence of obtaining 2 CT scans to improve the diagnosis of TAL impairment. The sensitivity of a new CT-based method for diagnosing a TAL injury in a cadaveric model was assessed. METHODS Ten human cadaveric occipitocervical specimens were mounted horizontally in a supine posture with wooden inserts attached to the back of the skull to maintain a neutral or flexed (10°) posture. Specimens were scanned in neutral and flexed postures in a total of 4 conditions (3 conditions in each specimen): 1) intact (n = 10); either 2A) after a simulated Jefferson fracture with an intact TAL (n = 5) or 2B) after a TAL disruption with no Jefferson fracture (n = 5); and 3) after TAL disruption and a simulated Jefferson fracture (n = 10). The atlantodental interval (ADI) and cross-sectional canal area were measured. RESULTS From the neutral to the flexed posture, ADI increased an average of 2.5% in intact spines, 6.25% after a Jefferson fracture without TAL disruption, 34% after a TAL disruption without fracture, and 25% after TAL disruption with fracture. The increase in ADI was significant with both TAL disruption and TAL disruption and fracture (p 0.6). Changes in spinal canal area were not significant (p > 0.70). CONCLUSIONS This novel method was more sensitive than the rule of Spence for evaluating the integrity of the TAL on CT and does not increase the risk of further neurological damage.

  18. Preserving spatial perception in rooms using direct-sound driven dynamic range compression

    DEFF Research Database (Denmark)

    Hassager, Henrik Gert; May, Tobias; Wiinberg, Alan

    2017-01-01

    Fast-acting hearing-aid compression systems typically distort the auditory cues involved in the spatial perception of sounds in rooms by enhancing low-level reverberant energy portions of the sound relative to the direct sound. The present study investigated the benefit of a direct-sound driven c....... The independent direct-sound driven compressor created a sense of movement of the sound between the two ears, suggesting that preserving the interaural level differences via linked compression is advantageous with the proposed direct-sound driven compression scheme.......Fast-acting hearing-aid compression systems typically distort the auditory cues involved in the spatial perception of sounds in rooms by enhancing low-level reverberant energy portions of the sound relative to the direct sound. The present study investigated the benefit of a direct-sound driven...... compression system that adaptively selects appropriate time constants to preserve the listener’s spatial impression. Specifically, fast-acting compression was maintained for timefrequency units dominated by the direct sound while the processing of the compressor was linearized for time-frequency units...

  19. Validated image fusion of dedicated PET and CT for external beam radiation and therapy in the head and neck area.

    NARCIS (Netherlands)

    Vogel, W.V.; Schinagl, D.A.X.; Dalen, J.A. van; Kaanders, J.H.A.M.; Oyen, W.J.G.

    2008-01-01

    AIM: Integration of positron emission tomography (PET) information into computer tomography (CT)- based intensity modulated external beam radiation therapy (IMRT) allows adaptation of the target volume to functional parameters, but only when the image registration procedure is reliable. The aim of

  20. CT-Based Anatomical Evaluation of Pre-Vertebral Structures With Respect to Vertebral Body Using a Clock-Face Analogy.

    Science.gov (United States)

    Sarwahi, Vishal; Gecelter, Rachel C; Wendolowski, Stephen F; Kulkarni, Preethi M; Wang, Dan; Amaral, Terry D; Thornhill, Beverly

    2015-12-01

    Retrospective Chart and CT Scan Review. To define the relationship of the pre-vertebral structures for each level to assist in easier intraoperative visualization. Vascular and visceral injuries from pedicle screws are well-known. This study will define the relationship of the pre-vertebral structures for each level to assist in avoiding potential complications. Pre- and post-operative CT scans were reviewed to define the pre-vertebral structures in relation to a clock-face. On reformatted axial slices, a clock-face was superimposed so that the left transverse process (TP) represented 8 o'clock and the right TP represented 4 o'clock. The positions of the TP on the clock-face did not change with rotation of the vertebra. 108 patients had pre-operative CT scans. 78 had post-operative CT scans. Median age was 15 years, median Cobb angle was 50°, fused were 12, with 21 fixation points. 6324 axial CT slices were reformatted and analyzed. The trachea was located at 12 o'clock at T1, 1 o'clock at T2-T4, and between 12 and 1 o'clock at T5. The esophagus starts as a midline structure at 12 o'clock from T1-T2, moves to 11 o'clock from T3-T6, and further to 10 o'clock from T7-T9. The aorta starts at 10 o'clock at T5-T6, moves left at T7-T8 to 9 o'clock, and returns to 10 o'clock from T9-T11. It appears at 11'clock at T12, and at 12 o'clock from L1-L4. In about a third of cases, it is at 1 o'clock from L1 to L4, where it bifurcates. This CT-based anatomical study provides a simple reference frame to help surgeons visualize the vital structures at each level. This three-dimensional visualization is facilitated by fixing the position of TP on the clock-face. Knowledge of this anatomical relationship can help avoid direct injury, and is easier to recall intra-operatively. 3.

  1. Less increase of CT-based calcium scores of the coronary arteries. Effect three years after breast-conserving radiotherapy using breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Mast, M.E.; Kempen-Harteveld, M.L. van; Petoukhova, A.L. [Centre West, Radiotherapy, The Hague (Netherlands); Heijenbrok, M.W. [Medical Center Haaglanden, Department of Radiology, The Hague (Netherlands); Scholten, A.N. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Radiation Oncology, Amsterdam (Netherlands); Wolterbeek, R. [Leiden University Medical Centre, Department of Medical Statistics and Bioinformatics, Leiden (Netherlands); Schreur, J.H.M. [Medical Center Haaglanden, Department of Cardiology, The Hague (Netherlands); Struikmans, H. [Centre West, Radiotherapy, The Hague (Netherlands); Leiden University Medical Centre, Department of Clinical Oncology, Leiden (Netherlands)

    2016-10-15

    The aim of this prospective longitudinal study was to compare coronary artery calcium (CAC) scores determined before the start of whole breast irradiation with those determined 3 years afterwards. Changes in CAC scores were analysed in 99 breast cancer patients. Three groups were compared: patients receiving left- and right-sided radiotherapy, and those receiving left-sided radiotherapy with breath-hold. We analysed overall CAC scores and left anterior descending (LAD) and right coronary artery (RCA) CAC scores. Between the three groups, changes of the value of the LAD minus the RCA CAC scores of each individual patient were also compared. Three years after breath-hold-based whole breast irradiation, a less pronounced increase of CAC scores was noted. Furthermore, LAD minus RCA scores in patients treated for left-sided breast cancer without breath-hold were higher when compared to LAD minus RCA scores of patients with right-sided breast cancers and those with left-sided breast cancer treated with breath-hold. Breath-hold in breast-conserving radiotherapy leads to a less pronounced increase of CT-based CAC scores. Therefore, breath-hold probably prevents the development of radiation-induced coronary artery disease. However, the sample size of this study is limited and the follow-up period relatively short. (orig.) [German] Das Ziel dieser prospektiven Langzeitstudie war der Vergleich der Coronary-Artery-Calcium-(CAC-)Werte vor Beginn der Brustbestrahlung mit den Werten nach 3 Jahren. Aenderungen der CAC-Werte wurden bei 99 Brustkrebspatienten analysiert. Drei Gruppen wurden untersucht: Patienten nach links- und rechtsseitiger Strahlentherapie sowie mit Bestrahlung unter Atemanhalt. Wir analysierten die Gesamt-CAC-Werte sowie die CAC-Werte der vorderen linken absteigenden (''left anterior descending'', LAD) und der rechten Koronararterie (''right coronary artery'', RCA). Zwischen den drei Gruppen wurden auch die Veraenderungen

  2. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Science.gov (United States)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  3. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    -sized thermal manikin is locked and stratified at certain heights at stable condition while it mixes well with the ambient air and is diluted quickly through upper openings when the air is relatively unstable. The concentration of contaminant simulated by tracer gas (N2O) is measured both around and 0.35m from...... the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing...... the respiration some distance away may suffer higher contaminant exposure if the air in room is quite stable and contaminant from the mouth can penetrate a longer horizontal distance. In addition, the air stability slightly changes the velocity profiles, giving higher velocity decay and more turbulent mixing...

  4. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters

    Directory of Open Access Journals (Sweden)

    Kao Chia-Hung

    2010-09-01

    Full Text Available Abstract Background To define a suitable threshold setting for gross tumor volume (GTV when using 18Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT for radiotherapy planning in head and neck cancer (HNC. Methods Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax, excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV was calculated as the sTL multiplied by the SUVmax. Results Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%, whereas the sSUV was 1.64 to 3.98 (mean, 2.46. The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax + 0.4464; R2 = 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R2 = 0.89. The sTL was not associated with the value of C-pGTVs. Conclusion In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold.

  5. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  6. A waterjet mining machine for use in room and pillar mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D.A.

    1990-06-01

    A new mining machine is constructed for use in room and pillar mining operations. This machine uses the action of computer controlled, centrally located high pressure cutting lances to cut deep slots in a coal face. These slots stress relieve the coal ahead of the machine and outline blocks of coal. The movement forward of the machine then wedges up the lower block of coal. This wedging action is assisted by the gathering arms of the loader section of the machine, and by underlying oscillating waterjets which create a slot ahead of the loading wedge as it advances. Finally the top section of coal is brought down by the sequential advance of wedge faced roof support members, again assisted by the waterjet action from the central cutting arms. The machine is designed to overcome major disadvantages of existing room and pillar mining machines in regard to a reduction in respirable dust, the creation of an immediate roof support, and an increase in product size, with concomitant reduction in cleaning costs.

  7. A waterjet mining machine for use in room and pillar mining operations. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D.A.

    1990-06-01

    A new mining machine is constructed for use in room and pillar mining operations. This machine uses the action of computer controlled, centrally located high pressure cutting lances to cut deep slots in a coal face. These slots stress relieve the coal ahead of the machine and outline blocks of coal. The movement forward of the machine then wedges up the lower block of coal. This wedging action is assisted by the gathering arms of the loader section of the machine, and by underlying oscillating waterjets which create a slot ahead of the loading wedge as it advances. Finally the top section of coal is brought down by the sequential advance of wedge faced roof support members, again assisted by the waterjet action from the central cutting arms. The machine is designed to overcome major disadvantages of existing room and pillar mining machines in regard to a reduction in respirable dust, the creation of an immediate roof support, and an increase in product size, with concomitant reduction in cleaning costs.

  8. Full-term newborns’ readiness during the first breastfeeding in rooming-in

    Directory of Open Access Journals (Sweden)

    Fernanda Luciana Calegari

    2016-01-01

    Full Text Available Objective:to analyze the full-term newborn’s readiness to suck the mother’s breast in the first breastfeeding in rooming-in. Methods: analytical, quantitative study with 43 full-term newborns. Results: the states of sleep and wakefulness prevailing before breastfeeding were 41.9% alert and quiet during breastfeeding, 48.8% active sleep. In all domains assessed in the conduction of breastfeeding, the favorable signs had the highest percentage: Body posture (85.6%; Newborn responses (82.3%; Emotional bond (73.8%; Breast anatomy (100.0%; Suction by the newborn (86.1%; Time spent in the suction (78.4%. The average of the breastfeeding time was 12.08 minutes. Conclusion: full-term newborns showed good readiness to suck maternal breast in the first breastfeeding, since they prevailed in active state, showed good frequency of suction and in the conduction of breastfeeding, most of the signs were favorable to it.

  9. Importance of Including the Acoustic Medium in Rooms on the Transmission Path between Source and Receiver Rooms within a Building

    DEFF Research Database (Denmark)

    Andersen, Lars; Kirkegaard, Poul Henning; Dickow, Kristoffer Ahrens

    2011-01-01

    Low-frequency noise is a potential nuisance to inhabitants in lightweight building structures. Hence, development of efficient and accurat methods for prediction of noice in such buildings is important. The aim of this paper is to assess the necessity of including the acoustic medium in rooms along...

  10. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    Science.gov (United States)

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared

  11. Image, Image, Image

    Science.gov (United States)

    Howell, Robert T.

    2004-01-01

    With all the talk today about accountability, budget cuts, and the closing of programs in public education, teachers cannot overlook the importance of image in the field of industrial technology. It is very easy for administrators to cut ITE (industrial technology education) programs to save school money--money they might shift to teaching the…

  12. The advantage of deep-inspiration breath-hold and cone-beam CT based soft-tissue registration for locally advanced lung cancer radiotherapy

    DEFF Research Database (Denmark)

    Ottosson, Wiviann; Rahma, Fatma; Sjöström, David

    2016-01-01

    Background and purpose: Three cone-beam computed tomography (CBCT) registration strategies combined with deep-inspiration breath-hold (DIBH) and free-breathing (FB) were explored, in terms of obtaining the smallest planning target volume (PTV). Material and methods: CBCT images were acquired pre...

  13. IMAGES, IMAGES, IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, A.

    1980-07-01

    The role of images of information (charts, diagrams, maps, and symbols) for effective presentation of facts and concepts is expanding dramatically because of advances in computer graphics technology, increasingly hetero-lingual, hetero-cultural world target populations of information providers, the urgent need to convey more efficiently vast amounts of information, the broadening population of (non-expert) computer users, the decrease of available time for reading texts and for decision making, and the general level of literacy. A coalition of visual performance experts, human engineering specialists, computer scientists, and graphic designers/artists is required to resolve human factors aspects of images of information. The need for, nature of, and benefits of interdisciplinary effort are discussed. The results of an interdisciplinary collaboration are demonstrated in a product for visualizing complex information about global energy interdependence. An invited panel will respond to the presentation.

  14. Improving PET Quantification of Small Animal [68Ga]DOTA-Labeled PET/CT Studies by Using a CT-Based Positron Range Correction.

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Vaquero, Juan José; Herraiz, Joaquín L; Pérez-Liva, Mailyn; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Udías, José Manuel

    2018-01-19

    Image quality of positron emission tomography (PET) tracers that emits high-energy positrons, such as Ga-68, Rb-82, or I-124, is significantly affected by positron range (PR) effects. PR effects are especially important in small animal PET studies, since they can limit spatial resolution and quantitative accuracy of the images. Since generators accessibility has made Ga-68 tracers wide available, the aim of this study is to show how the quantitative results of [ 68 Ga]DOTA-labeled PET/X-ray computed tomography (CT) imaging of neuroendocrine tumors in mice can be improved using positron range correction (PRC). Eighteen scans in 12 mice were evaluated, with three different models of tumors: PC12, AR42J, and meningiomas. In addition, three different [ 68 Ga]DOTA-labeled radiotracers were used to evaluate the PRC with different tracer distributions: [ 68 Ga]DOTANOC, [ 68 Ga]DOTATOC, and [ 68 Ga]DOTATATE. Two PRC methods were evaluated: a tissue-dependent (TD-PRC) and a tissue-dependent spatially-variant correction (TDSV-PRC). Taking a region in the liver as reference, the tissue-to-liver ratio values for tumor tissue (TLR tumor ), lung (TLR lung ), and necrotic areas within the tumors (TLR necrotic ) and their respective relative variations (ΔTLR) were evaluated. All TLR values in the PRC images were significantly different (p effect more remarkable for the TDSV-PRC method, with relative differences respect to no PRC: ΔTLR lung  = - 45 ± 24 (TD-PRC), - 55 ± 18 (TDSV-PRC). TLR necrotic values also decreased when using PRC, with more noticeable differences for TD-PRC: ΔTLR necrotic  = - 52 ± 6 (TD-PRC), - 48 ± 8 (TDSV-PRC). The PRC methods proposed provide a significant quantitative improvement in [ 68 Ga]DOTA-labeled PET/CT imaging of mice with neuroendocrine tumors, hence demonstrating that these techniques could also ameliorate the deleterious effect of the positron range in clinical PET imaging.

  15. SU-F-R-53: CT-Based Radiomics Analysis of Non-Small Cell Lung Cancer Patients Treated with Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, E; Coroller, T; Narayan, V; Agrawal, V; Hou, Y; Romano, J; Franco, I; Mak, R; Aerts, H [Brigham Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) is the standard of care for medically inoperable non-small cell lung cancer (NSCLC) patients and has demonstrated excellent local control and survival. However, some patients still develop distant metastases and local recurrence, and therefore, there is a clinical need to identify patients at high-risk of disease recurrence. The aim of the current study is to use a radiomics approach to identify imaging biomarkers, based on tumor phenotype, for clinical outcomes in SBRT patients. Methods: Radiomic features were extracted from free breathing computed tomography (CT) images of 113 Stage I-II NSCLC patients treated with SBRT. Their association to and prognostic performance for distant metastasis (DM), locoregional recurrence (LRR) and survival was assessed and compared with conventional features (tumor volume and diameter) and clinical parameters (e.g. performance status, overall stage). The prognostic performance was evaluated using the concordance index (CI). Multivariate model performance was evaluated using cross validation. All p-values were corrected for multiple testing using the false discovery rate. Results: Radiomic features were associated with DM (one feature), LRR (one feature) and survival (four features). Conventional features were only associated with survival and one clinical parameter was associated with LRR and survival. One radiomic feature was significantly prognostic for DM (CI=0.670, p<0.1 from random), while none of the conventional and clinical parameters were significant for DM. The multivariate radiomic model had a higher median CI (0.671) for DM than the conventional (0.618) and clinical models (0.617). Conclusion: Radiomic features have potential to be imaging biomarkers for clinical outcomes that conventional imaging metrics and clinical parameters cannot predict in SBRT patients, such as distant metastasis. Development of a radiomics biomarker that can identify patients at high-risk of

  16. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.

  17. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Tokumaru, Sunao [Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Ohnishi, Yoshitaka [Department of Ophthalmology, Wakayama Medical University, Wakayama (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG.

  18. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  19. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Jørgensen, Jesper T.; Simón, Marina

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes...... in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice...

  20. CT-Based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mehrdad Koloushani

    2018-03-01

    Full Text Available In this study, a new numerical approach based on CT-scan images and finite element (FE method has been used to predict the mechanical behavior of closed-cell foams under impact loading. Micro-structural FE models based on CT-scan images of foam specimens (elastic-plastic material model with material constants of bulk aluminum and macro-mechanical FE models (with crushable foam material model with material constants of foams were constructed. Several experimental tests were also conducted to see which of the two noted (micro- or macro- mechanical FE models can better predict the deformation and force-displacement curves of foams. Compared to the macro-structural models, the results of the micro-structural models were much closer to the corresponding experimental results. This can be explained by the fact that the micro-structural models are able to take into account the interaction of stress waves with cell walls and the complex pathways the stress waves have to go through, while the macro-structural models do not have such capabilities. Despite their high demand for computational resources, using micro-scale FE models is very beneficial when one needs to understand the failure mechanisms acting in the micro-structure of a foam in order to modify or diminish them.

  1. Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects

    Energy Technology Data Exchange (ETDEWEB)

    Mannil, Manoj; Eberhard, Matthias; Becker, Anton S.; Alkadhi, Hatem; Guggenberger, Roman [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Schoenenberg, Denise; Osterhoff, Georg [University Hospital Zurich, Division of Trauma Surgery, Zurich (Switzerland); Frey, Diana P. [University Hospital Zurich, Department of Rheumatology, Zurich (Switzerland); Konukoglu, Ender [Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, Zurich (Switzerland)

    2017-11-15

    To develop age-, gender-, and regional-specific normative values for texture analysis (TA) of spinal computed tomography (CT) in subjects with normal bone mineral density (BMD), as defined by dual X-ray absorptiometry (DXA), and to determine age-, gender-, and regional-specific differences. In this retrospective, IRB-approved study, TA was performed on sagittal CT bone images of the thoracic and lumbar spine using dedicated software (MaZda) in 141 individuals with normal DXA BMD findings. Numbers of female and male subjects were balanced in each of six age decades. Three hundred and five TA features were analyzed in thoracic and lumbar vertebrae using free-hand regions-of-interest. Intraclass correlation (ICC) coefficients were calculated for determining intra- and inter-observer agreement of each feature. Further dimension reduction was performed with correlation analyses. The TA features with an ICC < 0.81 indicating compromised intra- and inter-observer agreement and with Pearson correlation scores r > 0.8 with other features were excluded from further analysis for dimension reduction. From the remaining 31 texture features, a significant correlation with age was found for the features mean (r = -0.489, p < 0.001), variance (r = -0.681, p < 0.001), kurtosis (r = 0.273, p < 0.001), and WavEnLL{sub s}4 (r = 0.273, p < 0.001). Significant differences were found between genders for various higher-level texture features (p < 0.001). Regional differences among the thoracic spine, thoracic-lumbar junction, and lumbar spine were found for most TA features (p < 0.021). This study established normative values of TA features on CT images of the spine and showed age-, gender-, and regional-specific differences in individuals with normal BMD as defined by DXA. (orig.)

  2. Diagnostic Performance of F-18 FDG PET/CT in Patients with Cancer of Unknown Primary: Additional Benefit over CT-Based Conventional Work up

    Directory of Open Access Journals (Sweden)

    Mehrdad Bakhshayeshkaram

    2016-01-01

    Full Text Available Background: In the era of well-developed site-specific treatment strategies in cancer, identification of occult primary is of paramount importance in CUP patients. Furthermore, exact determination of the extent of the disease may help in optimizing treatment planning. The aim of the present study was to investigate additional value of F-18 FDG PET/CT in patients with cancer of unknown primary (CUP as an appropriate imaging tool in early phase of initial standard work up.Materials and Methods: Sixty-two newly diagnosed CUP patients with inconclusive diagnostic CT scan of chest, abdomen and pelvis referring for F-18 FDG PET/CT were enrolled in this study. Standard of reference was defined as histopathology, other diagnostic procedures and a 3-month formal clinical follow up. The results of PET/CT were categorized as suggestion for primary site and additional metastasis and classified as true positive, false positive, false negative and true negative. The impact of additional metastasis revealed by F-18 FDG PET/CT on treatment planning and the time contribution of F-18 FDG PET/CT in diagnostic pathway was investigated.Results: Sixty-two patients with mean age of 62 (30 men, 32 women, PET/CT correctly identified primary origin in 32% with false positive rate of 14.8%. No primary lesion was detected after negative PET/CT according to standard of reference. Sensitivity, Specificity and accuracy were 100%, 78% and 85%, respectively. Additional metastatic site was found in 56% with 22% impact on treatment planning. Time contribution for PET/CT was 10% of total diagnostic pathway.Conclusion: Providing higher detection rate of primary origin with excellent diagnostic performance, shortening the diagnostic pathway and improving treatment planning, F-18 FDG PET/CT may play a major role in diagnostic work up of CUP patients and may be recommended as an alternative imaging tool in early phase of investigation.

  3. Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects

    International Nuclear Information System (INIS)

    Mannil, Manoj; Eberhard, Matthias; Becker, Anton S.; Alkadhi, Hatem; Guggenberger, Roman; Schoenenberg, Denise; Osterhoff, Georg; Frey, Diana P.; Konukoglu, Ender

    2017-01-01

    To develop age-, gender-, and regional-specific normative values for texture analysis (TA) of spinal computed tomography (CT) in subjects with normal bone mineral density (BMD), as defined by dual X-ray absorptiometry (DXA), and to determine age-, gender-, and regional-specific differences. In this retrospective, IRB-approved study, TA was performed on sagittal CT bone images of the thoracic and lumbar spine using dedicated software (MaZda) in 141 individuals with normal DXA BMD findings. Numbers of female and male subjects were balanced in each of six age decades. Three hundred and five TA features were analyzed in thoracic and lumbar vertebrae using free-hand regions-of-interest. Intraclass correlation (ICC) coefficients were calculated for determining intra- and inter-observer agreement of each feature. Further dimension reduction was performed with correlation analyses. The TA features with an ICC < 0.81 indicating compromised intra- and inter-observer agreement and with Pearson correlation scores r > 0.8 with other features were excluded from further analysis for dimension reduction. From the remaining 31 texture features, a significant correlation with age was found for the features mean (r = -0.489, p < 0.001), variance (r = -0.681, p < 0.001), kurtosis (r = 0.273, p < 0.001), and WavEnLL s 4 (r = 0.273, p < 0.001). Significant differences were found between genders for various higher-level texture features (p < 0.001). Regional differences among the thoracic spine, thoracic-lumbar junction, and lumbar spine were found for most TA features (p < 0.021). This study established normative values of TA features on CT images of the spine and showed age-, gender-, and regional-specific differences in individuals with normal BMD as defined by DXA. (orig.)

  4. Evaluation of interobserver differences in postimplant dosimetry following prostate brachytherapy and the efficacy of CT/MRI fusion imaging

    International Nuclear Information System (INIS)

    Aoki, Manabu; Yorozu, Atsunori; Dokiya, Takushi

    2009-01-01

    Interobserver differences in postimplant dosimetry based on computed tomography (CT) and CT/magnetic resonance imaging (MRI) fusion images were assessed to evaluate the efficacy of the fusion image. In addition, the part of the prostate contour responsible for the interobserver differences in CT was identified. In June 2008, 1-month postimplant CT data from two patients who underwent 125 I prostate brachytherapy were sent to 90 institutions for postimplant dosimetry. Subsequently, MRI data from the same patients were sent for fusion-based postimplant dosimetry. The variance of the difference between MRI-based D90 and CT-based or fusion-based D90 was compared. Prostate volume on CT was plotted on the y-axis against the position of the most cranial and caudal slices in the prostate contour delineated at each institution to analyze interobserver differences. The prostate volume from CT was significantly greater than from the CT/MRI fusion image (P=0.0014). Fusion-based variance was significantly greater than CT-based variance (P<0.01). CT-based postimplant dosimetry showed that 88%-96% of the institutions had an apical and basal position within a range of 5 mm. There were marked interobserver differences in CT/MRI fusion-based postimplant dosimetry. (author)

  5. Cerenkov Luminescence Tomography for In Vivo Radiopharmaceutical Imaging

    Directory of Open Access Journals (Sweden)

    Jianghong Zhong

    2011-01-01

    Full Text Available Cerenkov luminescence imaging (CLI is a cost-effective molecular imaging tool for biomedical applications of radiotracers. The introduction of Cerenkov luminescence tomography (CLT relative to planar CLI can be compared to the development of X-ray CT based on radiography. With CLT, quantitative and localized analysis of a radiopharmaceutical distribution becomes feasible. In this contribution, a feasibility study of in vivo radiopharmaceutical imaging in heterogeneous medium is presented. Coupled with a multimodal in vivo imaging system, this CLT reconstruction method allows precise anatomical registration of the positron probe in heterogeneous tissues and facilitates the more widespread application of radiotracers. Source distribution inside the small animal is obtained from CLT reconstruction. The experimental results demonstrated that CLT can be employed as an available in vivo tomographic imaging of charged particle emitters in a heterogeneous medium.

  6. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: An experimental study in canines

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Han, Zong Hong; Zhou, Chang Sheng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Krazinski, Aleksander W.; Silverman, Justin R. [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China)

    2013-12-01

    Purpose: To evaluate the performance of dual-energy CT (DECT) based vascular iodine analysis for the detection of acute peripheral pulmonary thrombus (PE) in a canine model with histopathological findings as the reference standard. Materials and methods: The study protocol was approved by our institutional animal committee. Thrombi (n = 12) or saline (n = 4) were intravenously injected via right femoral vein in sixteen dogs, respectively. CT pulmonary angiography (CTPA) in DECT mode was performed and conventional CTPA images and DECT based vascular iodine studies using Lung Vessels application were reconstructed. Two radiologists visually evaluated the number and location of PEs using conventional CTPA and DECT series on a per-animal and a per-clot basis. Detailed histopathological examination of lung specimens and catheter angiography served as reference standard. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of DECT and CTPA were calculated on a segmental and subsegmental or more distal pulmonary artery basis. Weighted κ values were computed to evaluate inter-modality and inter-reader agreement. Results: Thirteen dogs were enrolled for final image analysis (experimental group = 9, control group = 4). Histopathological results revealed 237 emboli in 45 lung lobes in 9 experimental dogs, 11 emboli in segmental pulmonary arteries, 49 in subsegmental pulmonary arteries, 177 in fifth-order or more distal pulmonary arteries. Overall sensitivity, specificity, accuracy, PPV, and NPV for CTPA plus DECT were 93.1%, 76.9%, 87.8%, 89.4%, and 84.2% for the detection of pulmonary emboli. With CTPA versus DECT, sensitivities, specificities, accuracies, PPVs, and NPVs are all 100% for the detection of pulmonary emboli on a segmental pulmonary artery basis, 88.9%, 100%, 96.0%, 100%, and 94.1% for CTPA and 90.4%, 93.0%, 92.0%, 88.7%, and 94.1% for DECT on a subsegmental pulmonary artery basis; 23.8%, 96.4%, 50.4%, 93

  7. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Kai; Kopp, Felix K.; Schwaiger, Benedikt J.; Gersing, Alexandra S.; Sauter, Andreas; Muenzel, Daniela; Rummeny, Ernst J. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Bippus, Rolf [Research Laboratories, Philips GmbH Innovative Technologies, Hamburg (Germany); Koehler, Thomas [Research Laboratories, Philips GmbH Innovative Technologies, Hamburg (Germany); Technische Universitaet Muenchen, TUM Institute for Advanced Studies, Garching (Germany); Fehringer, Andreas [Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Pfeiffer, Franz [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Technische Universitaet Muenchen, TUM Institute for Advanced Studies, Garching (Germany); Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Kirschke, Jan S. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Section of Diagnostic and Interventional Neuroradiology, Munich (Germany); Noel, Peter B. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Baum, Thomas [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Section of Diagnostic and Interventional Neuroradiology, Munich (Germany)

    2017-12-15

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. (orig.)

  8. The diagnostic accuracy of F-18 FDG-PET/CT and contrast enhanced CT based on serial patterns of carcinoembryonic antigen (CEA) in patients with recurred gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ha, J. M.; Kwon, S. Y.; Seo, Y. S.; Chong, A. R.; Jeong, S. Y.; Jeong, Y. Y.; Min, J. J.; Song, H. C.; Bom, H. S. [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2007-07-01

    We aimed to assess the validity of F-18 FDG-PET/CT (PET/CT) and contrast-enhanced MDCT (CECT) for detecting recurred gastric cancer according to serial CEA patterns. Eighty-nine patients (63 M, 26 F, mean age; 59.2 y), who had undergone surgery for gastric cancer and performed CEA, PET/CT and CECT for restaging, were included. According to serial CEA patterns before imaging studies, patients were divided in four groups; upward within normal range (UN), upward within abnormal range (UA), downward within normal range (DN) and downward within abnormal range (DA). Tumor recurrence was confirmed by pathology or by clinical follow-up. Total of 39 were found to have tumor recurrence. In each group, tumor recurrence was finally diagnosed in 32.0% (DN: No. recurred patients/all patients 8/25), 41.0% (UN: 12/29), 33.3% (DA: 3/9), 61.5% (UA: 16/26), Tumor recurrence was found more commonly in group UN and UA. In UN group, the sensitivity, specificity and diagnostic accuracy of PET/CT and CECT were 75.0%, 94.0%, 86.2% and 58.3%, 70.5%, 65.5%, respectively. In UA group, 93.8%, 100%, 96.2% and 92.8%, 90%, 92.3%, respectively. Gastric cancer was more commonly recurred in patients showing upward patterns of serial CEA measurement (UN and UA). 18F-FDG PET/CT revealed high diagnostic accuracy in these patients, particularly in UN group.

  9. Modeling correlation indices between bladder and Foley′s catheter balloon dose with CT-based planning using limited CT slices in intracavitary brachytherapy for carcinoma of cervix

    Directory of Open Access Journals (Sweden)

    Oinam Arun

    2008-01-01

    Full Text Available Purpose: To derive and validate an index to correlate the bladder dose with the catheter balloon dose using limited computed tomography (CT slices. Materials and Methods: Applicator geometry reconstructed from orthogonal radiographs were back-projected on CT images of the same patients for anatomy-based dosimetric evaluation. The correlation indices derived using power function of the catheter balloon dose and the bladder volume dose were validated in 31 patients with cervical cancer. Results: There was significant correlation between International Commission on Radiation Units (ICRU-38 balloon reference dose (Dr and the dose received by 25% bladder volume (D 25 (P < 0.0001. Significant correlation was also found between the reference dose of mid-balloon point (D rm and the dose to D 25 (P < 0.0001. Average percentage difference [100 x (observed index - expected index / expected index] of observed value of I′ 25 (index for the dose to D25 bladder with respect to mid-balloon reference point from that of expected value was 0.52%, when the index was modeled with reference dose alone. Similarly the average percentage difference for I′10cc (index for the dose to 10 cc volume of bladder with respect to mid balloon point was 0.84%. When this index was modeled with absolute bladder volume and reference dose, standard deviation of the percentage difference between observed and expected index for D rm reduced by approximately 2% when compared to D r . Conclusion: For clinical applications, correlation index modeled with reference dose and volume predicts dose to absolute volume of bladder. Correlation index modeled with reference dose gives a good estimate of dose to relative bladder volume. From our study, we found D rm to be a better indicator of bladder dose than D r .

  10. Respiratory-gated 18F-FDG PET imaging in lung cancer: effects on sensitivity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Daouk, Joel (Nuclear Medicine Dept. Amiens Univ. Hospital, Amiens (France); Medical School, Univ. of Picardy Jules Verne, Amiens (France)), email: bailly.pascal@chu-amiens.fr; Leloire, Marie (Medical School, Univ. of Picardy Jules Verne, Amiens (France)); Fin, Loic (Clinical Trial and Innovation Dept., Amiens Univ. Hospital, Amiens (France)) (and others)

    2011-07-15

    Background: Respiratory motion is known to deteriorate positron emission tomography (PET) images and may lead to potential diagnostic errors when a standardized uptake value (SUV) cut-off threshold is used to discriminate between benign and malignant lesions. Purpose: To evaluate and compare ungated and respiratory-gated 18F-fluorodeoxyglucose PET/computed tomography (CT) methods for the characterization of pulmonary nodules. Material and Methods: The list-mode acquisition during respiratory-gated PET was combined with a short breath-hold CT scan to form the CT-based images. We studied 48 lesions in 43 patients. PET images were analyzed in terms of the maximum SUV (SUV{sub max}) and the lesion location. Results: Using receiver-operating characteristic (ROC) curves, the optimal SUV cut-off thresholds for the ungated and CT-based methods were calculated to be 2.0 and 2.2, respectively. The corresponding sensitivity values were 83% and 92%, respectively, with a specificity of 67% for both methods. The two methods gave equivalent performance levels for the upper and middle lobes (sensitivity 93%, specificity 62%). They differed for the lower lobes, where the CT-based method outperformed the ungated method (sensitivity values of 90% and 70%, respectively, and a specificity of 73% with both methods) - especially for lesions smaller than 15 mm. Conclusion: The CT-based method increased sensitivity and did not diminish specificity, compared with the ungated method. It was more efficient than the ungated method for imaging the lower lobes and smallest lesions, which are most affected by respiratory motion

  11. What is the Difference in Morphologic Features of the Thoracic Pedicle Between Patients With Adolescent Idiopathic Scoliosis and Healthy Subjects? A CT-based Case-control Study.

    Science.gov (United States)

    Gao, Bo; Gao, Wenjie; Chen, Chong; Wang, Qinghua; Lin, Shaochun; Xu, Caixia; Huang, Dongsheng; Su, Peiqiang

    2017-11-01

    Describing the morphologic features of the thoracic pedicle in patients with adolescent idiopathic scoliosis is necessary for placement of pedicle screws. Previous studies showed inadequate reliability owing to small sample size and heterogeneity of the patients surveyed. To use CT scans (1) to describe the morphologic features of 2718 thoracic pedicles from 60 female patients with Lenke Type 1 adolescent idiopathic scoliosis and 60 age-, sex-, and height-matched controls; and (2) to classify the pedicles in three types based on pedicle width and analyze the distribution of each type. A total of 2718 pedicles from 60 female patients with Lenke Type 1 adolescent idiopathic scoliosis and 60 matched female controls were analyzed via CT. All patients surveyed were diagnosed with adolescent idiopathic scoliosis, Lenke Type 1, at the First Affiliated Hospital of Sun Yat-sen University, and all underwent pedicle screw fixation between January 2008 and December 2013 with preoperative radiographs and CT images on file. We routinely obtained CT scans before these procedures; all patients who underwent surgery during that period had CT scans, and all were available for analysis here. Control subjects had CT scans for other clinical indications and had no abnormal findings of the spine. The control subjects were chosen to match patients in terms of age (15 ± 2.6 years versus 15 ± 2.6 years) and sex. Height of the two groups also was matched (154 ± 9 cm versus 155 ± 10 cm; mean difference, -1.06 cm; 95% CI, -1.24 to -0.81 cm; p adolescent idiopathic scoliosis (22%; 293 of 1322) compared with controls (13%; 178 of 1396) (odds ratio [OR] = 0.51; 95% CI, 0.42-0.63; p adolescent idiopathic scoliosis, they commonly occurred on the concave side 34% (228 of 661) and on the AV-SC region (32%; 43 of 136). Pedicle width on the concave side was narrower than pedicle width on the convex side and pedicle width in healthy control subjects. The apical vertebra in the structural curve was

  12. Development of a self-assessment tool for measuring competences of obstetric nurses in rooming-in wards in China

    Science.gov (United States)

    Zhang, Ju; Ye, Wenqin; Fan, Fan

    2015-01-01

    Introduction: To provide high-quality nursing care, a reliable and feasible competency assessment tool is critical. Although several questionnaire-based competency assessment tools have been reported, a tool specific for obstetric nurses in rooming-in wards is lacking. Therefore, the purpose of this research is to develop a competency assessment tool for obstetric rooming-in ward nurses. Methods: A literature review was conducted to create an individual intensive interview with 14 nurse managers, educators, and primary nurses in rooming-in wards. Expert reviews (n = 15) were conducted to identify emergent themes in a Delphi fashion. A competency assessment questionnaire was then developed and tested with 246 rooming-in ward nurses in local hospitals. Results: We constructed a three-factor linear model for obstetric rooming-in nurse competency assessment. Further refinement resulted in a self-assessment questionnaire containing three first-tier, 12 second-tier, and 43 third-tier items for easy implementation. The questionnaire was reliable, contained satisfactory content, and had construct validity. Discussion: Our competency assessment tool provides a systematic, easy, and operational subjective evaluation model for nursing managers and administrators to evaluate obstetric rooming-in ward primary nurses. The application of this tool will facilitate various human resources functions, such as nurse training/education effect evaluation, and will eventually promote high-quality nursing care delivery. PMID:26770468

  13. Development of a self-assessment tool for measuring competences of obstetric nurses in rooming-in wards in China.

    Science.gov (United States)

    Zhang, Ju; Ye, Wenqin; Fan, Fan

    2015-01-01

    To provide high-quality nursing care, a reliable and feasible competency assessment tool is critical. Although several questionnaire-based competency assessment tools have been reported, a tool specific for obstetric nurses in rooming-in wards is lacking. Therefore, the purpose of this research is to develop a competency assessment tool for obstetric rooming-in ward nurses. A literature review was conducted to create an individual intensive interview with 14 nurse managers, educators, and primary nurses in rooming-in wards. Expert reviews (n = 15) were conducted to identify emergent themes in a Delphi fashion. A competency assessment questionnaire was then developed and tested with 246 rooming-in ward nurses in local hospitals. We constructed a three-factor linear model for obstetric rooming-in nurse competency assessment. Further refinement resulted in a self-assessment questionnaire containing three first-tier, 12 second-tier, and 43 third-tier items for easy implementation. The questionnaire was reliable, contained satisfactory content, and had construct validity. Our competency assessment tool provides a systematic, easy, and operational subjective evaluation model for nursing managers and administrators to evaluate obstetric rooming-in ward primary nurses. The application of this tool will facilitate various human resources functions, such as nurse training/education effect evaluation, and will eventually promote high-quality nursing care delivery.

  14. [18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Evelyn E.C. de; Elmpt, Wouter van; Leijenaar, Ralph T.H.; Lambin, Philippe [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht (Netherlands); Hoekstra, Otto S. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Groen, Harry J.M. [University of Groningen and University Medical Center Groningen, Department of Pulmonary Diseases, Groningen (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonary Diseases, Amsterdam (Netherlands); The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Thoracic Oncology, Amsterdam (Netherlands); Boellaard, Ronald [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Noort, Vincent van der [The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Biometrics, Amsterdam (Netherlands); Troost, Esther G.C. [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht (Netherlands); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden (Germany); Medical Faculty and University Hospital Carl Gustav Carus of Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, Dresden (Germany); Dingemans, Anne-Marie C. [Maastricht University Medical Centre, Department of Pulmonology, GROW-School for Oncology and Developmental Biology, Maastricht (Netherlands)

    2017-01-15

    Nitroglycerin (NTG) is a vasodilating drug, which increases tumor blood flow and consequently decreases hypoxia. Therefore, changes in [18F] fluorodeoxyglucose positron emission tomography ([18F]FDG PET) uptake pattern may occur. In this analysis, we investigated the feasibility of [18F]FDG PET for response assessment to paclitaxel-carboplatin-bevacizumab (PCB) treatment with and without NTG patches. And we compared the [18F]FDG PET response assessment to RECIST response assessment and survival. A total of 223 stage IV non-small cell lung cancer (NSCLC) patients were included in a phase II study (NCT01171170) randomizing between PCB treatment with or without NTG patches. For 60 participating patients, a baseline and a second [18F]FDG PET/computed tomography (CT) scan, performed between day 22 and 24 after the start of treatment, were available. Tumor response was defined as a 30 % decrease in CT and PET parameters, and was compared to RECIST response at week 6. The predictive value of these assessments for progression free survival (PFS) and overall survival (OS) was assessed with and without NTG. A 30 % decrease in SUVpeak assessment identified more patients as responders compared to a 30 % decrease in CT diameter assessment (73 % vs. 18 %), however, this was not correlated to OS (SUVpeak30 p = 0.833; CTdiameter30 p = 0.557). Changes in PET parameters between the baseline and the second scan were not significantly different for the NTG group compared to the control group (p value range 0.159-0.634). The CT-based (part of the [18F]FDG PET/CT) parameters showed a significant difference between the baseline and the second scan for the NTG group compared to the control group (CT diameter decrease of 7 ± 23 % vs. 19 ± 14 %, p = 0.016, respectively). The decrease in tumoral FDG uptake in advanced NSCLC patients treated with chemotherapy with and without NTG did not differ between both treatment arms. Early PET-based response assessment showed more tumor responders

  15. Spontaneous polyiodide formation by unbalancing of charge in room-temperature ionic liquid-lithium salt solutions

    Science.gov (United States)

    Kishimura, Hiroaki; Aono, Masami; Kyuko, Yoshiki; Nagaya, Shoki; Koyama, Shu; Abe, Hiroshi

    2018-03-01

    Spontaneous formations of polyiodides, Im-, were observed in room-temperature ionic liquid (RTIL)-lithium salt solutions. The RTILs consisted of 1-alkyl-3-methylimidazolium iodide, [Cnmim][I] (n = 3, 4, and 6). The lithium salt used was lithium bis(fluorosulfonyl)imide, Li[FSI]. By Raman spectroscopy, the gradual increase in the peak intensities of the polyiodides at a fixed temperature in the [Cnmim][I]-Li[FSI]-ethanol mixtures was observed along with color changes of the mixtures. Because no polyiodides were observed in the [C4mim][I] - [C4mim][FSI] mixture, it was determined that the spontaneous formation of Im- without external addition of iodine was induced by the Li ion.

  16. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    subjects were collected. The experiments were performed at various combinations of room air and PV air temperatures. The results reveal improved overall thermal sensation and decrease of cold feet complaints, as well as improved inhaled air quality (including perceived air quality) with PV....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores......-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with a ceiling supply diffuser. Increase of predicted draft rating with the decrease of the local thermal sensation at the feet was identified. The manikin-based equivalent temperature determined for the face was positively correlated...

  17. Charge effect on the diffusion coefficient and the bimolecular reaction rate of diiodide anion radical in room temperature ionic liquids.

    Science.gov (United States)

    Nishiyama, Yoshio; Terazima, Masahide; Kimura, Yoshifumi

    2009-04-16

    The diffusion coefficients of diiodide anion radical, I(2)(-), in room temperature ionic liquids (RTILs) were determined by the transient grating (TG) method using the photochemical reaction of iodide. The diffusion coefficients we obtained were larger in RTILs than the theoretical predictions by the Stokes-Einstein relation, whereas both values are similar in conventional solvents. By comparison with the diffusion coefficients of neutral molecules, it was suggested that the Coulomb interaction between I(2)(-) and constituent ions of RTILs strongly affects the diffusion coefficients. The bimolecular reaction rates between I(2)(-) were calculated by the Debye-Smoluchowski equation using the experimentally determined diffusion coefficients. These calculated reaction rate were much smaller than the experimentally determined rates (Takahashi, K.; et al. J. Phys. Chem. B 2007, 111, 4807), indicating the charge screening effect of RTILs.

  18. Comparison of stroke infarction between CT perfusion and diffusion weighted imaging: preliminary results

    Science.gov (United States)

    Abd. Rahni, Ashrani Aizzuddin; Arka, Israna Hossain; Chellappan, Kalaivani; Mukari, Shahizon Azura; Law, Zhe Kang; Sahathevan, Ramesh

    2016-03-01

    In this paper we present preliminary results of comparison of automatic segmentations of the infarct core, between that obtained from CT perfusion (based on time to peak parameter) and diffusion weighted imaging (DWI). For each patient, the two imaging volumes were automatically co-registered to a common frame of reference based on an acquired CT angiography image. The accuracy of image registration is measured by the overlap of the segmented brain from both images (CT perfusion and DWI), measured within their common field of view. Due to the limitations of the study, DWI was acquired as a follow up scan up to a week after initial CT based imaging. However, we found significant overlap of the segmented brain (Jaccard indices of approximately 0.8) and the percentage of infarcted brain tissue from the two modalities were still fairly highly correlated (correlation coefficient of approximately 0.9). The results are promising with more data needed in future for clinical inference.

  19. A quantitative reconstruction software suite for SPECT imaging

    Science.gov (United States)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  20. Prevalence and distribution of ossification of the supra/interspinous ligaments in symptomatic patients with cervical ossification of the posterior longitudinal ligament of the spine: a CT-based multicenter cross-sectional study.

    Science.gov (United States)

    Mori, Kanji; Yoshii, Toshitaka; Hirai, Takashi; Iwanami, Akio; Takeuchi, Kazuhiro; Yamada, Tsuyoshi; Seki, Shoji; Tsuji, Takashi; Fujiyoshi, Kanehiro; Furukawa, Mitsuru; Nishimura, Soraya; Wada, Kanichiro; Koda, Masao; Furuya, Takeo; Matsuyama, Yukihiro; Hasegawa, Tomohiko; Takeshita, Katsushi; Kimura, Atsushi; Abematsu, Masahiko; Haro, Hirotaka; Ohba, Tetsuro; Watanabe, Masahiko; Katoh, Hiroyuki; Watanabe, Kei; Ozawa, Hiroshi; Kanno, Haruo; Imagama, Shiro; Ito, Zenya; Fujibayashi, Shunsuke; Yamazaki, Masashi; Matsumoto, Morio; Nakamura, Masaya; Okawa, Atsushi; Kawaguchi, Yoshiharu

    2016-12-01

    Supra/interspinous ligaments connect adjacent spinous processes and act as a stabilizer of the spine. As with other spinal ligaments, it can become ossified. However, few report have discussed ossification supra/interspinous ligaments (OSIL), so its epidemiology remains unknown. We therefore aimed to investigate the prevalence and distribution of OSIL in symptomatic patients with cervical ossification of the posterior longitudinal ligament (OPLL). The participants of our study were symptomatic patients with cervical OPLL who were diagnosed by standard radiographs of the cervical spine. The whole spine CT data as well as clinical parameters such as age and sex were obtained from 20 institutions belong to the Japanese Multicenter Research Organization for Ossification of the Spinal Ligament (JOSL). The prevalence and distribution of OSIL and the association between OSIL and clinical parameters were reviewed. The sum of the levels involved by OPLL (OP-index) and OSIL (OSI-index) as well as the prevalence of ossification of the nuchal ligament (ONL) were also investigated. A total of 234 patients with a mean age of 65 years was recruited. The CT-based evidence of OSIL was noted in 68 (54 males and 14 females) patients (29%). The distribution of OSIL showed a significant thoracic preponderance. In OSIL-positive patients, single-level involvement was noted in 19 cases (28%), whereas 49 cases (72%) presented multi-level involvement. We found a significant positive correlation between the OP-index grade and OSI-index. ONL was noted at a significantly higher rate in OSIL-positive patients compared to negative patients. The prevalence of OSIL in symptomatic patients with cervical OPLL was 29%. The distribution of OSIL showed a significant thoracic preponderance.

  1. PET-CT-Based Auto-Contouring in Non-Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes

    International Nuclear Information System (INIS)

    Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth; Buijsen, Jeroen; Wanders, Stofferinus; Hochstenbag, Monique; Suylen, Robert-Jan van; Dekker, Andre; Dehing-Oberije, Cary; Houben, Ruud; Bentzen, Soren M.; Kroonenburgh, Marinus van; Lambin, Philippe; Ruysscher, Dirk de

    2007-01-01

    Purpose: To compare source-to-background ratio (SBR)-based PET-CT auto-delineation with pathology in non-small-cell lung cancer (NSCLC) and to investigate whether auto-delineation reduces the interobserver variability compared with manual PET-CT-based gross tumor volume (GTV) delineation. Methods and Materials: Source-to-background ratio-based auto-delineation was compared with macroscopic tumor dimensions to assess its validity in 23 tumors. Thereafter, GTVs were delineated manually on 33 PET-CT scans by five observers for the primary tumor (GTV-1) and the involved lymph nodes (GTV-2). The delineation was repeated after 6 months with the auto-contour provided. This contour was edited by the observers. For comparison, the concordance index (CI) was calculated, defined as the ratio of intersection and the union of two volumes (A intersection B)/(A union B). Results: The maximal tumor diameter of the SBR-based auto-contour correlated strongly with the macroscopic diameter of primary tumors (correlation coefficient = 0.90) and was shown to be accurate for involved lymph nodes (sensitivity 67%, specificity 95%). The median auto-contour-based target volumes were smaller than those defined by manual delineation for GTV-1 (31.8 and 34.6 cm 3 , respectively; p = 0.001) and GTV-2 (16.3 and 21.8 cm 3 , respectively; p 0.02). The auto-contour-based method showed higher CIs than the manual method for GTV-1 (0.74 and 0.70 cm 3 , respectively; p 3 , respectively; p = 0.11). Conclusion: Source-to-background ratio-based auto-delineation showed a good correlation with pathology, decreased the delineated volumes of the GTVs, and reduced the interobserver variability. Auto-contouring may further improve the quality of target delineation in NSCLC patients

  2. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment. (topical review)

  3. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2017-11-01

    Full Text Available Screen-printed graphite electrodes (SPGEs have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs. Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O2 in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs. Six common RTILs are initially employed for O2 detection using cyclic voltammetry (CV, and two RTILs ([C2mim][NTf2] and [C4mim][PF6] chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs—for CV in the 10–100% vol. range, and for LTCA in the 0.1–20% vol. range—on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O2, particularly in [C4mim][PF6].

  4. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids.

    Science.gov (United States)

    Lee, Junqiao; Hussain, Ghulam; Banks, Craig E; Silvester, Debbie S

    2017-11-26

    Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O₂) in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs). Six common RTILs are initially employed for O₂ detection using cyclic voltammetry (CV), and two RTILs ([C₂mim][NTf₂] and [C₄mim][PF₆]) chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA) was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs-for CV in the 10-100% vol. range, and for LTCA in the 0.1-20% vol. range-on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O₂, particularly in [C₄mim][PF₆].

  5. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    Science.gov (United States)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  6. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties

    International Nuclear Information System (INIS)

    Yang, Yingchang; Lu, Fang; Zhou, Zhou; Song, Weixin; Chen, Qiyuan; Ji, Xiaobo

    2013-01-01

    Graphical abstract: Electrochemically cathodic exfoliation of graphite into few-layer graphene sheets in room temperature ionic liquids (RTILs) N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N). -- Highlights: • Few-layer graphene sheets were prepared through electrochemically cathodic exfoliation in room temperature ionic liquids. • The mechanism of cathodic exfoliation in ionic liquids was proposed. • The derived activated graphene sheets show enhanced electrochemical properties. -- Abstract: Electrochemically cathodic exfoliation in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N) has been developed for few-layer graphene sheets, demonstrating low levels of oxygen (2.7 at% of O) with a nearly perfect structure (I D /I G 2 N involves the intercalation of ionic liquids cation [BMP] + under highly negatively charge followed by graphite expansion. Porous activated graphene sheets were also obtained by activation of graphene sheets in KOH. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these graphene materials. The electrochemical performances of the graphene sheets and porous activated graphene sheets for lithium-ion battery anode materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy

  7. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; Cauteren, Marc van; Sugimura, Kazuro

    2013-01-01

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL CO , serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD

  8. Spatial correlations of trabecular bone microdamage with local stresses and strains using rigid image registration.

    Science.gov (United States)

    Nagaraja, Srinidhi; Skrinjar, Oskar; Guldberg, Robert E

    2011-06-01

    Although microdamage is known to accumulate in trabecular bone with overloading and aging, the tissue-level stresses and strains associated with local bone failure are not well known. Local correlation of microdamage with microstructural stresses and strains requires methods to accurately register histological sections with micro-computed tomography (micro-CT) based finite element models. In addition, the resolution of correlation (i.e., grid size) selected for analysis may affect the observed results. Therefore, an automated, repeatable, and accurate image registration algorithm was developed to determine the range of local stresses and strains associated with microdamage initiation. Using a two-dimensional rigid registration algorithm, bone structures from histology and micro-CT imaging were aligned. Once aligned, microdamaged regions were spatially correlated with local stresses and strains obtained from micro-CT based finite element analysis. Using this more sophisticated registration technique, we were able to analyze the effects of varying spatial grid resolution on local stresses and strains initiating microdamage. The results indicated that grid refinement to the individual pixel level (pixel-by-pixel method) more precisely defined the range of microdamage initiation compared to manually selected individual damaged and undamaged trabeculae. Using the pixel-by-pixel method, we confirmed that trabecular bone from younger cows sustained higher local strains prior to microdamage initiation compared to older bone.

  9. Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including phase change materials

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Olesen, Bjarne W.; Grossule, Fabio

    constructed at the Technical University of Denmark, where the outside PVT panels are connected through a storage tank to in-room radiant ceiling panels. The radiant ceiling panels include phase change material (PCM) and embedded pipes for circulating water. Due to the phase change material it is possible...... depending on the sky clearness. This cooling power was enough to remove the stored heat and regenerate the ceiling panels. The validation simulation model results related to PCM were close to the corresponding results extracted from the experiment, while the results related to the production of cold water...

  10. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  11. Data imaging

    International Nuclear Information System (INIS)

    Pepy, G.

    1999-01-01

    After an introduction about data imaging in general, the principles of imaging data collected via neutron scattering experiments are presented. Some computer programs designed for data imaging purposes are reviewed. (K.A.)

  12. Tomographic imaging

    International Nuclear Information System (INIS)

    Newman, M.A.

    1989-01-01

    Tomographic images of an object or scene are produced by an analysis of two or more stereographic images of the scene including shifting one image laterally with respect to another and logically summing the image data sets. Several image processing, edge enhancement and edge extraction algorithms may be applied to the images in digitised video data form to provide wire-frame or skeleton type representations of each of the original images. Tomographic images of planes not parallel with the image plane (or normal to the camera axes) may be produced by changing the magnification of one image prior to logical summing. The images may be generated by three video cameras arranged on two orthogonal axes for elimination of spurious coincidences. The images are preferably produced using X-rays. (author)

  13. Image Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-08

    In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.

  14. Quantum Imaging

    CERN Document Server

    Kolobov, Mikhail I

    2007-01-01

    Quantum Imaging is a newly born branch of quantum optics that investigates the ultimate performance limits of optical imaging allowed by the laws of quantum mechanics. Using the methods and techniques from quantum optics, quantum imaging addresses the questions of image formation, processing and detection with sensitivity and resolution exceeding the limits of classical imaging. This book contains the most important theoretical and experimental results achieved by the researchers of the Quantum Imaging network, a research programme of the European Community.

  15. CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin's and aggressive non-hodgkin's lymphomas

    International Nuclear Information System (INIS)

    Ganeshan, B.; Miles, K.A.; Shortman, R.; Afaq, A.; Ardeshna, K.M.; Groves, A.M.; Kayani, I.; Babikir, S.

    2017-01-01

    The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. (orig.)

  16. CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin's and aggressive non-hodgkin's lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, B.; Miles, K.A.; Shortman, R.; Afaq, A.; Ardeshna, K.M.; Groves, A.M.; Kayani, I. [University College London, Institute of Nuclear Medicine, London (United Kingdom); Babikir, S. [International Atomic Energy Agency (IAEA), Human Health Division, Nuclear Medicine and Diagnostic Imaging Section, Vienna (Austria)

    2017-03-15

    The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. (orig.)

  17. Image processing

    NARCIS (Netherlands)

    van der Heijden, Ferdinand; Spreeuwers, Lieuwe Jan; Blanken, Henk; Vries de, A.P.; Blok, H.E.; Feng, L; Feng, L.

    2007-01-01

    The field of image processing addresses handling and analysis of images for many purposes using a large number of techniques and methods. The applications of image processing range from enhancement of the visibility of cer- tain organs in medical images to object recognition for handling by

  18. Image city

    DEFF Research Database (Denmark)

    2003-01-01

    Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities.......Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities....

  19. MR imaging of laser-induced meniscal lesions

    International Nuclear Information System (INIS)

    Naegele, M.; Leunig, M.; Goetz, A.E.; Lumper, W.; Gamarra, F.; Brendel, W.; Lissner, J.

    1990-01-01

    This paper determines whether MR imaging is able to demonstrate smaller laser-induced meniscal lesions and how the surrounding medium affects their detectability. Nine bovine menisci were studied, with eight to 10 laser-induced lesions per meniscus. Three different lasers were used (ER-YAG, HO-YAG, and Excimer-XeCl); three hertz values were used for each laser system. MR imaging was performed at 1.0 T on a Siemens Magnetom imager and with an experimental Helmholtz surface coil; three-dimensional fast low-angle shot images were obtained (50 degrees flip angle, 1-mm sections, two data acquisitions). Each meniscus was examined in room air, in 0.9% NaCl, and in Gd-DTPA, without a change in position. All laser-induced lesions were histologically prepared, and all lesion sizes measured with a digital imaging system. MR examinations were evaluated blindly

  20. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  1. An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging

    DEFF Research Database (Denmark)

    Izquierdo-Garcia, David; Hansen, Adam E; Förster, Stefan

    2014-01-01

    /MR scanners. METHODS: Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly...... coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data....... The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available...

  2. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  3. Image denoising using cloud images

    Science.gov (United States)

    Yue, Huanjing; Sun, Xiaoyan; Yang, Jingyu; Wu, Feng

    2013-09-01

    Image denoising manages to recover a digital image from its noisy version by exploring the statistical features inside a given noisy image. Most denoising methods perform well at low noise levels but lose efficiency at higher ones. In this paper, we propose a novel image denoising method, which restores an image by exploiting the correlations between the noisy image and the images retrieved from the cloud. Given a noisy image, we first retrieve relevant images based on feature-level similarity. These images are then geometrically aligned to the noisy image to increase global statistical correlation. Using the aligned images as references, we propose recovering the image with patch-level noise removal. For each noisy patch, we first retrieve similar patches from the references and stack these patches (including the noisy one) into a three dimensional (3D) group. We then obtain the noise free (NF) patches by collaborative filtering over the 3D groups. These recovered NF patches are aggregated together, producing the desired NF image. Experimental results demonstrate that our scheme achieves significantly better results compared to state-of-the-art methods in terms of both objective and subjective qualities.

  4. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  5. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  6. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis.

    Science.gov (United States)

    Dea, Nicolas; Fisher, Charles G; Batke, Juliet; Strelzow, Jason; Mendelsohn, Daniel; Paquette, Scott J; Kwon, Brian K; Boyd, Michael D; Dvorak, Marcel F S; Street, John T

    2016-01-01

    Pedicle screws are routinely used in contemporary spinal surgery. Screw misplacement may be asymptomatic but is also correlated with potential adverse events. Computer-assisted surgery (CAS) has been associated with improved screw placement accuracy rates. However, this technology has substantial acquisition and maintenance costs. Despite its increasing usage, no rigorous full economic evaluation comparing this technology to current standard of care has been reported. Medical costs are exploding in an unsustainable way. Health economic theory requires that medical equipment costs be compared with expected benefits. To answer this question for computer-assisted spinal surgery, we present an economic evaluation looking specifically at symptomatic misplaced screws leading to reoperation secondary to neurologic deficits or biomechanical concerns. The study design was an observational case-control study from prospectively collected data of consecutive patients treated with the aid of CAS (treatment group) compared with a matched historical cohort of patients treated with conventional fluoroscopy (control group). The patient sample consisted of consecutive patients treated surgically at a quaternary academic center. The primary effectiveness measure studied was the number of reoperations for misplaced screws within 1 year of the index surgery. Secondary outcome measures included were total adverse event rate and postoperative computed tomography usage for pedicle screw examination. A patient-level data cost-effectiveness analysis from the hospital perspective was conducted to determine the value of a navigation system coupled with intraoperative 3-D imaging (O-arm Imaging and the StealthStation S7 Navigation Systems, Medtronic, Louisville, CO, USA) in adult spinal surgery. The capital costs for both alternatives were reported as equivalent annual costs based on the annuitization of capital expenditures method using a 3% discount rate and a 7-year amortization period

  7. Image alignment

    Science.gov (United States)

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  8. Validation of a raw data-based synchronization signal (kymogram) for phase-correlated cardiac image reconstruction

    International Nuclear Information System (INIS)

    Ertel, Dirk; Kachelriess, Marc; Kalender, Willi A.; Pflederer, Tobias; Achenbach, Stephan; Steffen, Peter

    2008-01-01

    Phase-correlated reconstruction is commonly used in computed tomography (CT)-based cardiac imaging. Alternatively to the commonly used ECG, the raw data-based kymogram function can be used as a synchronization signal. We used raw data of 100 consecutive patient exams to compare the performance of kymogram function to the ECG signal. For objective validation the correlation of the ECG and the kymogram was assessed. Additionally, we performed a double-blinded comparison of ECG-based and kymogram-based phase-correlated images. The two synchronization signals showed good correlation indicated by a mean difference in the detected heart rate of negligible 0.2 bpm. The mean image quality score was 2.0 points for kymogram-correlated images and 2.3 points for ECG-correlated images, respectively (3: best; 0: worst). The kymogram and the ECG provided images adequate for diagnosis for 93 and 97 patients, respectively. For 50% of the datasets the kymogram provided an equivalent or even higher image quality compared with the ECG signal. We conclude that an acceptable image quality can be assured in most cases by the kymogram. Improvements of image quality by the kymogram function were observed in a noticeable number of cases. The kymogram can serve as a backup solution when an ECG is not available or lacking in quality. (orig.)

  9. Mediastinal Hodgkin lymphomas in computertomography: exact CT-based volume assessment and approximations with simple geometric models; Mediastinale Hodgkin-Lymphone in der Computertomographie. Vergleich von exakter CT-gestuetzter Volumetrie und Volumenabschaetzung mit Hilfe einfacher geometrischer Modelle

    Energy Technology Data Exchange (ETDEWEB)

    Battmann, A. [Marburg Univ. (Germany). Abt. fuer Strahlendiagnostik; Dieckmann, K.; Resch, A.; Poetter, R. [Allgemeines Krankenhaus, Wien (Austria). Universitaetsklinik Strahlentherapie und Strahlenbiologie; Battmann, A. [Giessen Univ. (Germany). Zentrum fuer Pathologie

    2001-03-01

    Background: The importance of the size of the primary tumor in lymphomas and its size after treatment is still uncertain. Assuming a prognostic relevance, an assessment of tumor volume before and after induction of chemotherapy has been performed in the pediatric Hodgkin's disease study (HD-90). Since an exact CT-scan-based volumetric tumor assessment is time-consuming and in some centers not possible, the tumor volume is often estimated based on simple geometric approximations. Aim of this study was the development of an easy to apply and nearly exact model of volume estimation compared to CT-scan-based tumor volume measurements. Material and Methods: thirty computed tomographies (CT) of mediastinal Hodgkin lymphomas of children aged 5 to 16 years have been examined. The CT scans were digitalized using a CCD camera combined with a frame grabber. Applying the Global Lab image software, the true tumor volume was determined excluding local organs, which did not belong to the lymphoma. Subsequently, volumes were assessed using simple geometric models (block, ellipsoid, octaeder) by using the maximum diameters of the tumor. The differences between the volume of the geometric models and the true volume, based on the CT scan evaluation, were compared. Results: the maximum diameters of a tumor can be used to calculate its volume based on simple geometric models. The model 'block' overestimates the volume by 89 to 268%. The model 'ellipsoid' overestimates the volume on average by 29%. The model 'octaeder' underestimates the volume on average by 18%. A division of the block volume by 2.3 approximated the geometric closest to the true volume: the average volume was overestimated by 2% in tumors with a volume larger than 20 ml. No model was sufficient to approximate tumors with a volume of less than 20 ml. Conclusions: for the estimation of tumor volumes in mediastinal Hodgkin lumphomas exceeding 20 ml, the formula 'block /2.3&apos

  10. A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air: (I) Development of a Test Rig and Characteristic Analysis

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2007-01-01

    A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the Flow-Induced Vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail

  11. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  12. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    International Nuclear Information System (INIS)

    Liu, Y; Campbell, J

    2015-01-01

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  13. Image Processing

    Science.gov (United States)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  14. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  15. Cerenkov Imaging

    OpenAIRE

    Das, Sudeep; Thorek, Daniel L.J.; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial...

  16. Cerenkov imaging.

    Science.gov (United States)

    Das, Sudeep; Thorek, Daniel L J; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope ((18)F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology. © 2014 Elsevier Inc. All rights reserved.

  17. Nuclear imaging

    International Nuclear Information System (INIS)

    Miller, J.H.; Reid, B.S.

    1985-01-01

    Nuclear imaging, utilizing relatively low photon energy emitting isotopes, allows an assessment of anatomic configuration and organ function. This method of imaging is predicted on the utilization of physiologically active radioisotope-labeled compounds or biologically active radioisotopes. Localization of such isotopes in normal or abnormal concentrations may be due to varying physiological or pathological mechanisms

  18. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  19. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  20. Incompatible Images

    DEFF Research Database (Denmark)

    Sassene, Michel J.; Hertzum, Morten

    2008-01-01

    is, however, based on a taken-for-granted image of asthmatics as, per se, striving to be symptom-free. This image is incompatible with interviewed asthmatics' day-to-day performances of their asthma, and renders invisible (a) that their asthma performances emphasize an economy of good passages...

  1. Medical imaging

    CERN Document Server

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  2. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  3. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    Science.gov (United States)

    Evans, Philip M.

    2008-06-01

    scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment.

  4. High dose-rate (HDR) conformal interstitial brachytherapy for locally recurrent rectal cancer. Real-time computed tomography (CT) fluoroscopy guidance and image-based treatment planning

    International Nuclear Information System (INIS)

    Sakurai, Hideyuki; Mitsuhashi, Norio; Muramatsu, Hiroyuki

    2000-01-01

    The aim of the study is to develop high dose-rate (HDR) conformal interstitial brachytherapy by means of combined real-time computed tomography (CT) fluoroscopy guidance with CT-based treatment planning for locally recurrent rectal carcinoma. The procedures of brachytherapy needle insertion were guided with a helical CT scanner providing real-time fluoroscopy reconstruction. A video monitor placed adjacent to the CT gantry simultaneously allowed the operator to see the process of needle insertion. CT images were transferred by an on-line system to the treatment-planning computer which reconstructed the implant needles and organ contours. The doses in planning target volume were normalized and geometrically optimized. The patients received a dose of 5 Gy per fraction on a daily hyperfractionation schedule at a total dose of 30-50 Gy with or without external radiation therapy. Nine patients were treated for this procedure. Thirteen to 36 needles (average 19.1) were successfully placed at the planning target volume in each patient. The average time for CT fluoroscopy was 370.1 seconds in each procedure. No accident was occurred during needle insertion, but one patient developed fibular nerve palsy after needle removal but gradually recovered. The CT-based treatment planning was faster and more accurate than projection reconstruction with conventional radiograms. Analysis of a dose volume histogram demonstrated conformal dose distribution of the target, while avoiding dose to normal structures with this method. Real-time CT fluoroscopy ensures safety and increases the accuracy of needle placement. Conformal high dose-rate (HDR) interstitial brachytherapy with CT-based treatment planning is an attractive method for locally recurrent rectal cancer. (author)

  5. High dose-rate (HDR) conformal interstitial brachytherapy for locally recurrent rectal cancer. Real-time computed tomography (CT) fluoroscopy guidance and image-based treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Hideyuki; Mitsuhashi, Norio; Muramatsu, Hiroyuki [Gunma Univ., Maebashi (Japan). School of Medicine] [and others

    2000-12-01

    The aim of the study is to develop high dose-rate (HDR) conformal interstitial brachytherapy by means of combined real-time computed tomography (CT) fluoroscopy guidance with CT-based treatment planning for locally recurrent rectal carcinoma. The procedures of brachytherapy needle insertion were guided with a helical CT scanner providing real-time fluoroscopy reconstruction. A video monitor placed adjacent to the CT gantry simultaneously allowed the operator to see the process of needle insertion. CT images were transferred by an on-line system to the treatment-planning computer which reconstructed the implant needles and organ contours. The doses in planning target volume were normalized and geometrically optimized. The patients received a dose of 5 Gy per fraction on a daily hyperfractionation schedule at a total dose of 30-50 Gy with or without external radiation therapy. Nine patients were treated for this procedure. Thirteen to 36 needles (average 19.1) were successfully placed at the planning target volume in each patient. The average time for CT fluoroscopy was 370.1 seconds in each procedure. No accident was occurred during needle insertion, but one patient developed fibular nerve palsy after needle removal but gradually recovered. The CT-based treatment planning was faster and more accurate than projection reconstruction with conventional radiograms. Analysis of a dose volume histogram demonstrated conformal dose distribution of the target, while avoiding dose to normal structures with this method. Real-time CT fluoroscopy ensures safety and increases the accuracy of needle placement. Conformal high dose-rate (HDR) interstitial brachytherapy with CT-based treatment planning is an attractive method for locally recurrent rectal cancer. (author)

  6. On-Board Imager-based MammoSite treatment verification.

    Science.gov (United States)

    Wojcicka, Jadwiga; Yankelevich, Rafael; Iorio, Stephen; Tinger, Alfred

    2007-11-01

    Contemporary radiation oncology departments are often lacking a conventional simulator due to common use of virtual simulation and recent implementation of image guided radiation therapy. A protocol based on MammoSite method was developed using CT based planning, a Source Position Simulator (SPS) with a Simulator Wire and a linear accelerator based On-Board Imager (OBI) for daily verification. After MammoSite balloon implantation, the patient undergoes a CT study. The images are evaluated for tissue conformance, balloon symmetry, and balloon surface to skin distance according to the departmental procedure. Prior to the CT study the SPS is attached to the transfer tube that in turn is attached to the balloon catheter. The length from the indexer to the first dwell position is measured using the simulator wire with X-ray markers. After the CT study is performed, the data set is sent to the Varian Eclipse treatment planning system (TPS) and to the Nucletron PLATO brachytherapy planning system. The reference digitally reconstructed radiographs (DRRs) of anterior and lateral setup fields are created using Eclipse TPS and are immediately available on the OBI console via the Varian Vision integrated system. The source dwell position coinciding with the balloon center is identified in the CT dataset, followed by the offset calculation, catheter reconstruction, dose points placement and dwell time calculation. OBI fluoroscopy images are acquired and marked as initial. Prior to each treatment fraction balloon diameter and symmetry are evaluated using OBI fluoroscopy and tools available on the OBI console. Acquired images are compared with reference DRRs and/or initial OBI images. The whole process from initial evaluation to daily verification is filmless and does not undermine the precision of the procedure. This verification time does not exceed 10 min. The balloon diameter correlates well (within 1 mm) between initial CT and OBI verification images. The balloon symmetry is

  7. Image perception and image processing

    International Nuclear Information System (INIS)

    Wackenheim, A.

    1987-01-01

    The author develops theoretical and practical models of image perception and image processing, based on phenomenology and structuralism and leading to original perception: fundamental for a positivistic approach of research work for the development of artificial intelligence that will be able in an automated system fo 'reading' X-ray pictures. (orig.) [de

  8. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  9. Imaging in Pleural Mesothelioma: A Review of the 13th International Conference of the International Mesothelioma Interest Group

    Science.gov (United States)

    Armato, Samuel G.; Blyth, Kevin G.; Keating, Jane J.; Katz, Sharyn; Tsim, Selina; Coolen, Johan; Gudmundsson, Eyjolfur; Opitz, Isabelle; Nowak, Anna K.

    2016-01-01

    Imaging plays an important role in the detection, diagnosis, staging, response assessment, and surveillance of malignant pleural mesothelioma. The etiology, biology, and growth pattern of mesothelioma present unique challenges for each modality used to capture various aspects of this disease. Clinical implementation of imaging techniques and information derived from images continue to evolve based on active research in this field worldwide. This paper summarizes the imaging-based research presented orally at the 2016 International Conference of the International Mesothelioma Interest Group (iMig) in Birmingham, United Kingdom, held May 1–4, 2016. Presented topics included intraoperative near-infrared imaging of mesothelioma to aid the assessment of resection completeness, an evaluation of tumor enhancement improvement with increased time delay between contrast injection and image acquisition in standard clinical magnetic resonance imaging (MRI) scans, the potential of early contrast enhancement analysis to provide MRI with a role in mesothelioma detection, the differentiation of short- and long-term survivors based on MRI tumor volume and histogram analysis, the response-assessment potential of hemodynamic parameters derived from dynamic contrast-enhanced computed tomography (DCE-CT) scans, the correlation of CT-based tumor volume with the post-surgical tumor specimen weight, and consideration of the need to update the mesothelioma tumor response assessment paradigm. PMID:27794408

  10. CT-based bone density assessment for iliosacral screw trajectories

    Directory of Open Access Journals (Sweden)

    Andreas Schicho

    2016-01-01

    Full Text Available Introduction: Sacroiliac screw placement is one standard treatment option for stabilization of posterior pelvic ring injuries encountering high intra- and inter-individual variations of bone stock quality as well as a vast variety and prevalence of sacral dysmorphism. An individual, easy-to-use preoperative bone stock quality estimation would be of high value for the surgeon. Materials and Methods: We analyzed 36 standard computed tomography datasets with the uninjured pelvic ring. Using a two-plane cross-referencing technique, we assessed the Hounsfield unit (HU mean values as well as standard deviation and minimum/maximum values within selected region of interests (ROIs at five key areas: os ilium left and right, massa lateralis of os sacrum left and right, and central vertebral body on levels S1 and S2. Results: Results showed no difference in mean HU at any ROI when comparing male and female data. For all ROIs set on S1 and S2, there was an age-related decline of HU with a calculated slope significantly different from zero. There was no statistical difference of slopes when comparing S1- and S2-level with respect to any distinct ROI. Comparison of levels S1 and S2 revealed differences at the vertebral body and at the right os ilium. The right and left massa lateralis of os sacrum had lower bone density than the center of the vertebral body, the right, or left os ilium on S1; right and left massa lateralis density did not differ significantly. On level S2, results were comparable with no difference of massa lateralis density. Conclusion: With our easy-to-use preoperative assessment of bone density of five key areas of sacroiliac screw anchoring we were able to find the lowest bone density in both the left and right massa lateralis on levels S1 and S2 with high inter- and intra-individual variations. Significantly lower bone density was found in the center of the vertebral bodies S2 in comparison to S1, which both are crucial for iliosacral screw placement. We thus recommend priority use of level S1 in screw placement and careful consideration of sole massa lateralis short-screw anchoring.

  11. A CT-based Simulator for Hardwood Log Veneering

    Science.gov (United States)

    Daniel L. Schmoldt; Pei Li; Philip A. Araman

    1995-01-01

    Profits for hardwood veneer manufacturers are dependent on proper initial log breakdown (flitching) decisions. While human skill is often adequate to ãreadä bark indicators of internal defects, it is much more difficult to envision potential veneer patterns that result from different flitching options. Different veneer patterns greatly affect potential markets and...

  12. FDG-PET/CT based response-adapted treatment

    DEFF Research Database (Denmark)

    de Geus-Oei, Lioe-Fee; Vriens, Dennis; Arens, Anne I J

    2012-01-01

    identification of metabolic non-responders in order to intensify treatment to improve survival. Other studies aim at reducing toxicity without adversely affecting cure rates by safely de-escalating therapy in metabolic responders. In solid tumors the first PET response-adjusted treatment trials have been...

  13. Thumbnail Images

    DEFF Research Database (Denmark)

    Thylstrup, Nanna; Teilmann, Stina

    2017-01-01

    and strategic terms; and a cultural question of how human-computer interaction design works with navigational uncertainty, both as an experience to be managed and a resource to be exploited. This paper considers two copyright infringement cases that involved search engines as defendants, Kelly v. Arriba Soft......This article argues that thumbnail images are infrastructural images that raise issues of uncertainty in two distinct, but interrelated, areas: a legal question of how to define, understand and govern visual information infrastructures, in particular image search systems in epistemological...

  14. Image retrieval

    DEFF Research Database (Denmark)

    Ørnager, Susanne

    1997-01-01

    The paper touches upon indexing and retrieval for effective searches of digitized images. Different conceptions of what subject indexing means are described as a basis for defining an operational subject indexing strategy for images. The methodology is based on the art historian Erwin Panofsky......), special knowledge about image codes, and special knowledge about history of ideas. The semiologist Roland Barthes has established a semiology for pictorial expressions based on advertising photos. Barthes uses the concepts denotation/connotation where denotations can be explained as the sober expression...

  15. Image Gallery

    Science.gov (United States)

    ... Glance Mission and Vision Organizational Structure Director's Message Strategic Plans & Reports Budget & Legislation ... The Image Gallery contains high-quality digital photographs available from the National Center for Complementary ...

  16. Body Imaging

    Science.gov (United States)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  17. Image processing

    International Nuclear Information System (INIS)

    Kindler, M.; Radtke, F.; Demel, G.

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing. (orig.) [de

  18. Body Image

    Science.gov (United States)

    ... affect body image Pre-baby body Pregnancy and eating disorders Looking for information on mental health conditions? Visit ... Mental health section. Fact sheets Anorexia nervosa Binge eating disorder Bulimia nervosa Cosmetics and your health Depression during ...

  19. Geriatric imaging

    International Nuclear Information System (INIS)

    Guglielmi, Giuseppe; Peh, Wilfred C.G.; Guermazi, Ali

    2013-01-01

    Considers all aspect of geriatric imaging. Explains clearly how to distinguish the healthy elderly from those in need of treatment. Superbly illustrated. Written by recognized experts in field. In the elderly, the coexistence of various diseases, the presence of involutional and degenerative changes, and the occurrence of both physical and cognitive problems represent ''the norm.'' It is therefore important to know how to distinguish the healthy elderly from those in need of treatment as a sound basis for avoiding overdiagnosis and overtreatment. This aspect is a central theme in Geriatric Imaging, which covers a wide range of applications of different imaging techniques and clearly explains both the potential and the limitations of diagnostic imaging in geriatric patients. Individual sections are devoted to each major region or system of the body, and a concluding section focuses specifically on interventional procedures. The book, written by recognized experts in the field, is superbly illustrated and will be an ideal resource for geriatricians, radiologists, and trainees.

  20. Image processing

    OpenAIRE

    Rino, Franco

    2014-01-01

    An image segmentation method has a training phase, and a segmentation phase. In the training phase a frame of pixel lated data from a camera is processed using information on camera characteristics to render it camera-independent. The camera independent data are processed using a chosen value of illuminant spectral characteristics to derive reflectivity data of the items in the image. Pixels of high reflectivity are established. Then, using data from the high reflectivity pixels, the actual i...

  1. A comparative study between the imaging system and the optical tracking system in proton therapy at CNAO

    CERN Document Server

    Desplanques, Maxime; Fontana, Giulia; Pella, Andrea; Riboldi, Marco; Fattori, Giovanni; Donno, Andrea; Baroni, Guido; Orecchia, Roberto

    2013-01-01

    The synergy between in-room imaging and optical tracking, in co-operation with highly accurate robotic patient handling represents a concept for patient-set-up which has been implemented at CNAO (Centro Nazionale di Adroterapia Oncologica). In-room imaging is based on a double oblique X-ray projection system; optical tracking consists of the detection of the position of spherical markers placed directly on the patient’s skin or on the immobilization devices. These markers are used as external fiducials during patient positioning and dose delivery. This study reports the results of a comparative analysis between in-room imaging and optical tracking data for patient positioning within the framework of high-precision particle therapy. Differences between the optical tracking system (OTS) and the imaging system (IS) were on average within the expected localization accuracy. On the first 633 fractions for head and neck (H&N) set-up procedures, the corrections applied by the IS, after patient positioning usin...

  2. Emerging images

    KAUST Repository

    Mitra, Niloy J.

    2009-01-01

    Emergence refers to the unique human ability to aggregate information from seemingly meaningless pieces, and to perceive a whole that is meaningful. This special skill of humans can constitute an effective scheme to tell humans and machines apart. This paper presents a synthesis technique to generate images of 3D objects that are detectable by humans, but difficult for an automatic algorithm to recognize. The technique allows generating an infinite number of images with emerging figures. Our algorithm is designed so that locally the synthesized images divulge little useful information or cues to assist any segmentation or recognition procedure. Therefore, as we demonstrate, computer vision algorithms are incapable of effectively processing such images. However, when a human observer is presented with an emergence image, synthesized using an object she is familiar with, the figure emerges when observed as a whole. We can control the difficulty level of perceiving the emergence effect through a limited set of parameters. A procedure that synthesizes emergence images can be an effective tool for exploring and understanding the factors affecting computer vision techniques. © 2009 ACM.

  3. SU-E-T-431: Feasiblity of Using CT Scout Images for 2D LDR Brachytherpay Planning

    Energy Technology Data Exchange (ETDEWEB)

    Ha, J; Weaver, R [LAC+USC Medical Center, Los Angeles, CA, M. Mariscal (United States)

    2015-06-15

    Purpose: i) To show the feasibility of using CT scout images for 2D low-dose rate brachytherapy planning with BrachyVision (version 10.4); ii) to show their advantages and disadvantages over DRRs. Methods: A phantom was constructed to house a Fletcher-Suite applicator. The phantom is made of Styrofoam with metal BBs positioned at well-defined separations. These markers are used to assess the image distortion in the scout images. Unlike DRRs, scout images are distorted only in the direction normal to the couch direction; therefore, they needed to be scaled unidirectionally prior to importing into BrachyVision. In addition to confirming the scaling is performed correctly by measuring distances between well-positioned BB, we also compare a LDR plan using scout images to a 3D CT-based plan. Results: There is no distortion of the image along the couch direction due to the collimation of the CT scanner. The distortion in the transverse plane can be corrected by multiplying by the ratio of distances between source-to-isocenter and source-to-detector. The results show the distance separations between BBs as measured in scout images and by a caliber are within a few millimeters. Dosimetrically, the difference between the dose rates to points A and B based on scout images and on 3D CT are less than a few percents. The accuracy can be improved by correcting for the distortion on the transverse plane. Conclusion: It is possible to use CT scout images for 2D planning in BrachyVision. This is an advantage because scout images have no metal artifacts often present in CT images or DRRs. Another advantage is the lack of distortion in the couch direction. One major disadvantage is that the image distortion due to beam divergence can be large. This is due to the inherent short distance between source-to-isocenter and source-to-detector on a CT scanner.

  4. PC image processing

    International Nuclear Information System (INIS)

    Hwa, Mok Jin Il; Am, Ha Jeng Ung

    1995-04-01

    This book starts summary of digital image processing and personal computer, and classification of personal computer image processing system, digital image processing, development of personal computer and image processing, image processing system, basic method of image processing such as color image processing and video processing, software and interface, computer graphics, video image and video processing application cases on image processing like satellite image processing, color transformation of image processing in high speed and portrait work system.

  5. Vision 20/20: Perspectives on automated image segmentation for radiotherapy

    Science.gov (United States)

    Sharp, Gregory; Fritscher, Karl D.; Pekar, Vladimir; Peroni, Marta; Shusharina, Nadya; Veeraraghavan, Harini; Yang, Jinzhong

    2014-01-01

    Due to rapid advances in radiation therapy (RT), especially image guidance and treatment adaptation, a fast and accurate segmentation of medical images is a very important part of the treatment. Manual delineation of target volumes and organs at risk is still the standard routine for most clinics, even though it is time consuming and prone to intra- and interobserver variations. Automated segmentation methods seek to reduce delineation workload and unify the organ boundary definition. In this paper, the authors review the current autosegmentation methods particularly relevant for applications in RT. The authors outline the methods’ strengths and limitations and propose strategies that could lead to wider acceptance of autosegmentation in routine clinical practice. The authors conclude that currently, autosegmentation technology in RT planning is an efficient tool for the clinicians to provide them with a good starting point for review and adjustment. Modern hardware platforms including GPUs allow most of the autosegmentation tasks to be done in a range of a few minutes. In the nearest future, improvements in CT-based autosegmentation tools will be achieved through standardization of imaging and contouring protocols. In the longer term, the authors expect a wider use of multimodality approaches and better understanding of correlation of imaging with biology and pathology. PMID:24784366

  6. Vision 20/20: Perspectives on automated image segmentation for radiotherapy

    International Nuclear Information System (INIS)

    Sharp, Gregory; Fritscher, Karl D.; Shusharina, Nadya; Pekar, Vladimir; Peroni, Marta; Veeraraghavan, Harini; Yang, Jinzhong

    2014-01-01

    Due to rapid advances in radiation therapy (RT), especially image guidance and treatment adaptation, a fast and accurate segmentation of medical images is a very important part of the treatment. Manual delineation of target volumes and organs at risk is still the standard routine for most clinics, even though it is time consuming and prone to intra- and interobserver variations. Automated segmentation methods seek to reduce delineation workload and unify the organ boundary definition. In this paper, the authors review the current autosegmentation methods particularly relevant for applications in RT. The authors outline the methods’ strengths and limitations and propose strategies that could lead to wider acceptance of autosegmentation in routine clinical practice. The authors conclude that currently, autosegmentation technology in RT planning is an efficient tool for the clinicians to provide them with a good starting point for review and adjustment. Modern hardware platforms including GPUs allow most of the autosegmentation tasks to be done in a range of a few minutes. In the nearest future, improvements in CT-based autosegmentation tools will be achieved through standardization of imaging and contouring protocols. In the longer term, the authors expect a wider use of multimodality approaches and better understanding of correlation of imaging with biology and pathology

  7. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  8. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  9. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  10. Ultrasound imaging

    International Nuclear Information System (INIS)

    Grant, E.G.; Doherty, F.J.

    1986-01-01

    Diagnostic ultrasound was used as early as 1950 in attempts to detect malignant tumors within the human breast and brain. In the years following, however, little attention was paid to this method of imaging by the radiologic community. Extensive work with this technique was not begun until the 1960s, when bistable ultrasound enabled sonographers to display organ outlines for the first time. Prior to the development of bistable ultrasound, sonographic images were limited to A-mode displays, which were merely a series of amplitude spikes on a graph. Over the past 20 or so years, major advances in ultrasound technology have gradually taken us from the simple graphic A-mode display, through bistable organ outlines, to gray-scale images with excellent parenchymal detail, and finally to real-time ultrasound

  11. Fast imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.; Altas, S.W.

    1991-01-01

    This paper reports on MRI which has evolved rapidly and promises to continue to do so. The diagnostic armamentarium, as a result, has increased dramatically over recent years, which has necessitated constant interactions between clinicians, physicists, and biochemists. Pulse sequence design, coupled with advances in other software and hardware technology, offers practical improvements in scanning and image quality. Perhaps more importantly, these same advances hold promise for MRI to become, in addition to its traditional role as a morphological imaging technique, a functional imaging modality. The attractiveness of this prospect is that for the first time, a high-resolution technique has been shown to have the potential to provide both types of information from a single integrated examination, which promises to generate important insights into normal physiology as well as the natural history of pathophysiologic states

  12. Image Analysis

    DEFF Research Database (Denmark)

    . The topics of the accepted papers range from novel applications of vision systems, pattern recognition, machine learning, feature extraction, segmentation, 3D vision, to medical and biomedical image analysis. The papers originate from all the Scandinavian countries and several other European countries......The 19th Scandinavian Conference on Image Analysis was held at the IT University of Copenhagen in Denmark during June 15-17, 2015. The SCIA conference series has been an ongoing biannual event for more than 30 years and over the years it has nurtured a world-class regional research and development...

  13. Effect of oral contrast agents on computed tomography-based positron emission tomography attenuation correction in dual-modality positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Antoch, Gerald; Jentzen, Walter; Freudenberg, Lutz S; Stattaus, Jorg; Mueller, Stefan P; Debatin, Jorg F; Bockisch, Andreas

    2003-12-01

    To evaluate the effect of iodine- and barium-based contrast agents on the computed tomography (CT)-based positron emission tomography (PET) attenuation correction in dual-modality PET/CT. Experiments were conducted on a Society of Nuclear Medicine/National Electrical Manufacturers Association-PET phantom equipped with cylinders containing [18F]-2-fluoro-2-desoxy-D-glucose. The main compartment was filled with iodine (0.5-10%), barium (0.5-50%), or water (negative control). The error in attenuation correction was determined by comparison of measured tracer quantities in the presence of contrast agents with expected quantities. Contrast agent attenuation was demonstrated to be comparable to in vivo conditions. The presence of contrast agents resulted in an overestimation of the intracylindrical activity concentration on PET images and overestimation directly related to contrast concentrations (iodine 5-38%; barium 15-580%). Iodine and barium concentrations in clinical use resulted in an activity overestimation of 20 +/- 1.8% for iodine and 21 +/- 2.9% for barium. An overestimation of the tracer activity concentration is to be expected in the presence of oral contrast agents, if PET attenuation correction is attained CT-based.

  14. Myocardial CT perfusion imaging in a large animal model: comparison of dynamic versus single-phase acquisitions.

    Science.gov (United States)

    Schwarz, Florian; Hinkel, Rabea; Baloch, Elisabeth; Marcus, Roy P; Hildebrandt, Kristof; Sandner, Torleif A; Kupatt, Christian; Hoffmann, Verena; Wintersperger, Bernd J; Reiser, Maximilian F; Theisen, Daniel; Nikolaou, Konstantin; Bamberg, Fabian

    2013-12-01

    This study sought to compare dynamic versus single-phase high-pitch computed tomography (CT) acquisitions for the assessment of myocardial perfusion in a porcine model with adjustable degrees of coronary stenosis. The incremental value of the 2 different approaches to CT-based myocardial perfusion imaging remains unclear. Country pigs received stent implantation in the left anterior descending coronary artery, in which an adjustable narrowing (50% and 75% stenoses) was created using a balloon catheter. All animals underwent CT-based rest and adenosine-stress myocardial perfusion imaging using dynamic and single-phase high-pitch acquisitions at both degrees of stenosis. Fluorescent microspheres served as a reference standard for myocardial blood flow. Segmental CT-based myocardial blood flow (MBFCT) was derived from dynamic acquisitions. Segmental single-phase enhancement (SPE) was recorded from high-pitch, single-phase examinations. MBFCT and SPE were compared between post-stenotic and reference segments, and receiver-operating characteristic curve analysis was performed. Among 6 animals (28 ± 2 kg), there were significant differences of MBFCT and SPE between post-stenotic and reference segments for all acquisitions at 75% stenosis. By contrast, although for 50% stenosis at rest, MBFCT was lower in post-stenotic than in reference segments (0.65 ± 0.10 ml/g/min vs. 0.75 ± 0.16 ml/g/min, p < 0.05), there was no difference for SPE (128 ± 27 Hounsfield units vs. 137 ± 35 Hounsfield units, p = 0.17), which also did not significantly change under adenosine stress. In receiver-operating characteristic curve analyses, segmental MBFCT showed significantly better performance for ischemia prediction at 75% stenosis and stress (area under the curve: 0.99 vs. 0.89, p < 0.05) as well as for 50% stenosis, regardless of adenosine administration (area under the curve: 0.74 vs. 0.57 and 0.88 vs. 0.61, respectively, both p < 0.05). At higher degrees of coronary stenosis, both

  15. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  16. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Electronic Imaging

    Science.gov (United States)

    1997-10-01

    image blur, as in Fig. 5, is well suited to efficient and private data transmission and we describe the use of DPCM and DCT-based algorithms. For... DPCM compression, we find that the bit rates required in a Huffman code can be reduced up to 50% by using a multiple-point blur prefilter

  18. Inner Image

    Science.gov (United States)

    Mollhagen, Nancy

    2004-01-01

    In this article, the author states that she has always loved self portraits but most teenagers do not enjoy looking too closely at their own faces in an effort to replicate them. Thanks to a new digital camera, she was able to use this new technology to inspire students to take a closer look at their inner image. Prior to the self-portrait…

  19. Forest Imaging

    Science.gov (United States)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  20. Geriatric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmi, Giuseppe [Scientific Institute Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Italy). Dept. of Radiology; Peh, Wilfred C.G. [Khoo Teck Puat Hospital, Singapore (Singapore). Dept. of Diagnostic Radiology; Guermazi, Ali (eds.) [Boston Univ. School of Medicine, Boston, MA (United States). Dept. of Radiology

    2013-08-01

    Considers all aspect of geriatric imaging. Explains clearly how to distinguish the healthy elderly from those in need of treatment. Superbly illustrated. Written by recognized experts in field. In the elderly, the coexistence of various diseases, the presence of involutional and degenerative changes, and the occurrence of both physical and cognitive problems represent ''the norm.'' It is therefore important to know how to distinguish the healthy elderly from those in need of treatment as a sound basis for avoiding overdiagnosis and overtreatment. This aspect is a central theme in Geriatric Imaging, which covers a wide range of applications of different imaging techniques and clearly explains both the potential and the limitations of diagnostic imaging in geriatric patients. Individual sections are devoted to each major region or system of the body, and a concluding section focuses specifically on interventional procedures. The book, written by recognized experts in the field, is superbly illustrated and will be an ideal resource for geriatricians, radiologists, and trainees.

  1. Workflow Dynamics and the Imaging Value Chain: Quantifying the Effect of Designating a Nonimage-Interpretive Task Workflow.

    Science.gov (United States)

    Lee, Matthew H; Schemmel, Andrew J; Pooler, B Dustin; Hanley, Taylor; Kennedy, Tabassum A; Field, Aaron S; Wiegmann, Douglas; Yu, John-Paul J

    To assess the impact of separate non-image interpretive task and image-interpretive task workflows in an academic neuroradiology practice. A prospective, randomized, observational investigation of a centralized academic neuroradiology reading room was performed. The primary reading room fellow was observed over a one-month period using a time-and-motion methodology, recording frequency and duration of tasks performed. Tasks were categorized into separate image interpretive and non-image interpretive workflows. Post-intervention observation of the primary fellow was repeated following the implementation of a consult assistant responsible for non-image interpretive tasks. Pre- and post-intervention data were compared. Following separation of image-interpretive and non-image interpretive workflows, time spent on image-interpretive tasks by the primary fellow increased from 53.8% to 73.2% while non-image interpretive tasks decreased from 20.4% to 4.4%. Mean time duration of image interpretation nearly doubled, from 05:44 to 11:01 (p = 0.002). Decreases in specific non-image interpretive tasks, including phone calls/paging (2.86/hr versus 0.80/hr), in-room consultations (1.36/hr versus 0.80/hr), and protocoling (0.99/hr versus 0.10/hr), were observed. The consult assistant experienced 29.4 task switching events per hour. Rates of specific non-image interpretive tasks for the CA were 6.41/hr for phone calls/paging, 3.60/hr for in-room consultations, and 3.83/hr for protocoling. Separating responsibilities into NIT and IIT workflows substantially increased image interpretation time and decreased TSEs for the primary fellow. Consolidation of NITs into a separate workflow may allow for more efficient task completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. European Space Imaging & Skybox Imaging

    International Nuclear Information System (INIS)

    Clark, J.; Schichor, P.

    2015-01-01

    Skybox and European Space Imaging have partnered to bring timely, Very High-Resolution imagery to customers in Europe and North Africa. Leveraging Silicon Valley ingenuity and world-class aerospace expertise, Skybox designs, builds, and operates a fleet of imaging satellites. With two satellites currently on-orbit, Skybox is quickly advancing towards a planned constellation of 24+ satellites with the potential for daily or sub-daily imaging at 70-90 cm resolution. With consistent, high-resolution imagery and video, European customers can monitor the dynamic units of human activity - cars, trucks, shipping containers, ships, aircraft, etc. - and derive valuable insights about the global economy. With multiple imaging opportunities per day, the Skybox constellation provides unprecedented access to imagery and information about critical targets that require rapid analysis. Skybox's unique capability to deliver high-definition video from space enables European customers to monitor a network of globally distributed assets with full-motion snapshots, without the need to deploy an aircraft or field team. The movement captured in these 30-90 second video windows yield unique insights that improve operational decisions. Skybox and EUSI are excited to offer a unique data source that can drive a better understanding of our world through supply chain monitoring, natural resource management, infrastructure monitoring, and crisis response. (author)

  3. A case series on the technical use of three-dimensional image guidance in subaxial anterior cervical surgery.

    Science.gov (United States)

    Pirris, Stephen M; Nottmeier, Eric W

    2015-03-01

    Three dimensional (3D) image guidance has been used to improve the safety of complex spine surgeries, but its use has been limited in anterior cervical spine approaches. Twenty-two patients underwent complex anterior cervical spine surgeries in which 3D image guidance provided intraoperative assistance with the dissection, decompression and implant placement. One of two paired systems, the BrainLAB (BrainLAB, Westchester, Illinois) system, or Stealth (Medtronic Inc., Littleton, Massachusetts) system was used for 3D image guidance in this study. Image guidance was able to reliably locate pertinent anatomical structures in complex anterior cervical spine surgery involving re-exploration, dissection around vertebral arteries or deformity correction. No complications occurred, and no patients required a revision anterior surgery. This technical note describes the setup and technique for the use of cone beam computed tomography (cbCT)-based, 3D image guidance in subaxial anterior cervical surgery. The authors have found this technique to be a useful adjunct in revision anterior cervical procedures, as well as anterior cervical procedures involving corpectomy or tumor removal. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Advanced biomedical image analysis

    CERN Document Server

    Haidekker, Mark A

    2010-01-01

    "This book covers the four major areas of image processing: Image enhancement and restoration, image segmentation, image quantification and classification, and image visualization. Image registration, storage, and compression are also covered. The text focuses on recently developed image processing and analysis operators and covers topical research"--Provided by publisher.

  5. Imaging dementias

    International Nuclear Information System (INIS)

    Savoiardo, M.; Grisoli, M.

    2001-01-01

    Dementia is the progressive loss of intellectual functions due to involvement of cortical or subcortical areas. Specific involvement of certain brain areas in the different diseases leads to impairment of different functions, e. g., memory, language, visuospatial abilities, and behavior. Magnetic resonance imaging and other neuroradiological studies may indicate which structures are mainly or selectively involved in a demented patient, thus allowing clinical-radiological correlations. Clinical presentation and evolution of the disease, supported by imaging studies, may lead to a highly probable diagnosis. The most common disorders, or the most relevant from the neuroradiological point of view, such as Alzheimer's disease, frontotemporal dementia, vascular dementias, dementia associated with parkinsonism, Huntington's disease, Creutzfeldt-Jakob disease, and normal-pressure hydrocephalus, are briefly discussed. (orig.)

  6. Imaging dementias

    Energy Technology Data Exchange (ETDEWEB)

    Savoiardo, M.; Grisoli, M. [Dept. of Neuroradiology, Istituto Nazionale Neurologico, Milan (Italy)

    2001-03-01

    Dementia is the progressive loss of intellectual functions due to involvement of cortical or subcortical areas. Specific involvement of certain brain areas in the different diseases leads to impairment of different functions, e. g., memory, language, visuospatial abilities, and behavior. Magnetic resonance imaging and other neuroradiological studies may indicate which structures are mainly or selectively involved in a demented patient, thus allowing clinical-radiological correlations. Clinical presentation and evolution of the disease, supported by imaging studies, may lead to a highly probable diagnosis. The most common disorders, or the most relevant from the neuroradiological point of view, such as Alzheimer's disease, frontotemporal dementia, vascular dementias, dementia associated with parkinsonism, Huntington's disease, Creutzfeldt-Jakob disease, and normal-pressure hydrocephalus, are briefly discussed. (orig.)

  7. MR imaging

    International Nuclear Information System (INIS)

    Barbaric, Z.L.; Sukov, R.M.; Boechat, I.M.

    1988-01-01

    MR images were obtained from six patients with surgically proved hemorrhagic renal cysts and three with adult polycystic renal disease that contained many hemorrhagic cysts. Their appearance was compared with that of 30 simple renal cysts. Simple cysts were hypointense on T1-weighted spin-echo sequences and hyperintense to the kidney on T2-weighted sequences. On the same sequences, hemorrhagic cysts showed three patterns: (1) hyperintense-hyperintense, (2) isointense-hyperintense, and (3) hypointense-hypointense. The fluid-fluid interphase was identified in a number of hemorrhagic cysts on T2-weighted images. Three hemorrhagic cysts contained renal carcinoma. Hemorrhagic cysts may be impossible to differentiate from solid renal tumors except for layering

  8. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    International Nuclear Information System (INIS)

    Rota Kops, Elena; Herzog, Hans

    2013-01-01

    Aim: Attenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methods: An anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). Results: Error A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled

  9. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    Science.gov (United States)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal

  10. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Rota Kops, Elena, E-mail: e.rota.kops@fz-juelich.de [Forschungszentrum Juelich, INM4, Juelich (Germany); Herzog, Hans [Forschungszentrum Juelich, INM4, Juelich (Germany)

    2013-02-21

    Aim: Attenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methods: An anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). Results: Error A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3

  11. Image construction

    International Nuclear Information System (INIS)

    1976-01-01

    An image processing system fitting in an X-ray television circuit for tomography is described. The profiles registered by the X-ray television circuit are projected on the screen of an afterglow cathode ray tube which registration is convoluted in an analogue system with the help of either a one-dimensional or a two-dimensional convolution function after which it is stored or processed further such that a clear tomogram is obtained

  12. Intravital Imaging

    OpenAIRE

    Pittet, Mikael J.; Weissleder, Ralph

    2011-01-01

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible, and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biolo...

  13. Neuroperformance Imaging

    Science.gov (United States)

    2014-10-01

    9 4 Introduction Sleep restriction and deprivation have profound negative effects on cognitive ability and task performance...e.g., vigilance). At the same time, physical and psychological stressors often lead to sleep disruptions, which compromise the body’s ability to reap...imaging-based studies to advance our fundamental knowledge of the effects of sleep and sleep -related stressors on neuroperformance. In order to

  14. Cardiovascular imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nuclear cardiology has grown exponentially over the past decade. The introduction of the gamma camera, the development of new radionuclides, and the implementation of computers have transformed the field of nuclear cardiology from largely research in the 1970s to routine clinical applications in the 1980s. At first, noninvasive nuclear imaging techniques were used predominantly to aid disease detection. In the ensuing years, emphasis has shifted to the functional assessment of patients with known disease. Widely available noninvasive techniques now allow the quantitative assessment of left and right ventricular function, one of the most important predictors of survival in patients with cardiac disease. Exercise radionuclide ventriculography provides valuable information on the myocardial reserve in patients with normal resting function. The serial measurement of the ventricular ejection fraction assists in the timing of valvular replacement therapy. In patients receiving doxorubicin, serial ejection fraction follow-up helps prevent the development of irreversible, drug-induced cardiomyopathy. It is now generally acknowledged that the detection of latent coronary disease is improved by the addition of 201 T1 imaging to the standard exercise electrocardiogram. Thallium imaging and infarct avid imaging with /sup 99m/Tc-pyrophosphate have proven useful in quantifying myocardial infarction size, and in assessing the value of therapy aimed at limiting infarction extent. In the evaluation of coronary artery disease, scintigraphy provides physiologic data that complements angiography, which is more anatomic. An angiographic lesion, read as a 70 percent narrowing, may not necessarily be flow-limiting, whereas one read as 40 percent, may, in fact, have physiologic consequences, if it is of sufficient length or eccentricity, or is in series with another insignificant stenosis

  15. Brain imaging

    International Nuclear Information System (INIS)

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions

  16. Neuroperformance Imaging

    Science.gov (United States)

    2013-10-01

    understood and may result in unanticipated long-term effects in those serving under combat conditions. Advances in imaging technology have enabled human...capabilities, the scope of this research is to 1) use PET/MRI studies to understand glucose metabolism and dopamine binding in the brain, particularly in the...A prospective pilot study using fMRI effective connectivity mapping, Addictive Behaviors, Volume 38, Issue 4, April 2013, Pages 2052-2059 • Iyer, S

  17. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  18. HeNe laser (633 nm)-coupled confocal microscope allows simulating magnetic resonance imaging/computed tomography scan of the brain and eye: a noninvasive optical approach applicable to small laboratory animals.

    Science.gov (United States)

    Zheng, Ping-Pin; Romme, Edwin; van der Spek, Peter J; Dirven, Clemens M F; Willemsen, Rob; Kros, Johan M

    2011-06-01

    Magnetic resonance imaging (MRI) and computed tomography (CT) are noninvasive medical imaging techniques used for the detailed visualization of internal organs of the human body. Because CT uses X-rays for imaging, there is a risk of radiation exposure. In contrast, MRI uses radiowaves and magnetic fields for imaging; thus, there are no reported biological hazards. However, neither MRI nor CT is suitable as a noninvasive imaging tool applicable in small laboratory animals such as zebrafish embryos or larvae. The recently established micro-CT scanner is only suitable for scanning adult fish and a staining procedure is required for imaging. In addition, CT-based scanning is generally more suitable for skeletal imaging but not for visualization of soft tissues because of its lower contrast. In this study, we evaluated whether 633 nm HeNe laser-coupled confocal microscope allows simulating MRI/CT scan and imaging soft tissues such as brain and eye in zebrafish embryos/larvae. We show that the 633 nm HeNe laser can penetrate well into intact brain and eye of zebrafish. It represents a noninvasive imaging method with high resolution while not requiring contrast agents, enabling the detection of differential signals from normal and pathological organs such as brain and eye.

  19. Is Image Registration of Fluorodeoxyglucose–Positron Emission Tomography/Computed Tomography for Head-and-Neck Cancer Treatment Planning Necessary?

    International Nuclear Information System (INIS)

    Fried, David; Lawrence, Michael; Khandani, Amir H.; Rosenman, Julian; Cullip, Tim; Chera, Bhishamjit S.

    2012-01-01

    Purpose: To evaluate dosimetry and patterns of failure related to fluorodeoxyglucose–positron emission tomography (FDG-PET)–defined biological tumor volumes (BTVs) for head-and-neck squamous cell carcinoma (HNSCC) treated with definitive radiotherapy (RT). Methods and Materials: We conducted a retrospective study of 91 HNSCC patients who received pretreatment PET/CT scans that were not formally used for target delineation. The median follow-up was 34.5 months. Image registration was performed for PET, planning CT, and post-RT failure CT scans. Previously defined primary (CT PRIMARY ) and nodal (CT NODE ) gross tumor volumes (GTV) were used. The primary BTV (BTV PRIMARY ) and nodal BTV (BTV NODE ) were defined visually (PET vis ). The BTV PRIMARY was also contoured using 40% and 50% peak PET activity (PET 40, PET 50 ). The recurrent GTVs were contoured on post-RT CT scans. Dosimetry was evaluated on the planning-CT and pretreatment PET scan. PET and CT dosimetric/volumetric data was compared for those with and without local-regional failure (LRF). Results: In all, 29 of 91 (32%) patients experienced LRF: 10 local alone, 7 regional alone, and 12 local and regional. BTVs and CT volumes had less than complete overlap. BTVs were smaller than CT-defined targets. Dosimetric coverage was similar between failed and controlled groups as well as between BTVs and CT-defined volumes. Conclusions: PET and CT-defined tumor volumes received similar RT doses despite having less than complete overlap and the inaccuracies of image registration. LRF correlated with both CT and PET-defined volumes. The dosimetry for PET- and/or CT-based tumor volumes was not significantly inferior in patients with LRF. CT-based delineation alone may be sufficient for treatment planning in patients with HNSCC. Image registration of FDG-PET may not be necessary.

  20. Image processing with ImageJ

    OpenAIRE

    Abramoff, M.D.; Magalhães, Paulo J.; Ram, Sunanda J.

    2004-01-01

    Wayne Rasband of NIH has created ImageJ, an open source Java-written program that is now at version 1.31 and is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience. ImageJ is in the public domain and runs on any operating system (OS). ImageJ is easy to use and can do many imaging manipulations. A very large and knowledgeable group makes up the user community for ImageJ. Topics covered are imaging abilities; cross platform; image form...

  1. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  2. Intravital imaging.

    Science.gov (United States)

    Pittet, Mikael J; Weissleder, Ralph

    2011-11-23

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biology, and neurobiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Biomagnetic imaging.

    Science.gov (United States)

    Schittenhelm, R

    1990-01-01

    Generation, transfer and reception of sensory information in the human body is established by electric events, a multitude of current pulses propagating electric events, a multitude of current pulses propagating through the nervous system and muscles. Today, medical diagnosis is based on recording the electric potentials created by these pulses--ECG or EEG--with electrodes on the skin or invasively with catheters. In addition, the magnetic field generated simultaneously allows a sufficiently precise localisation of single events as well as current trains. By fusion with three dimensional anatomic images, sources and propagation of electrical activity can be visualised in biomagnetic images with resolution in space as well as in time. These prospects resulted in a continuing interest in biomagnetism (BM) even though specific equipment for the detection of magnetic field patterns was not available. Technological progresses recently allowed systems containing many, integrated, highly sensitive sensors to be developed. These are quite large enough to cover the area over the human skull and heart. The registration of magnetic field patterns in one shot allows localisation of sporadic events and reduces the time for data acquisition to a few minutes. In addition to explaining the characteristics of BM fields and modern techniques for their registration this paper focuses on the results of pilot studies, performed during the last 2 years with multichannel systems. It was shown that sufficient correlation exists to normal physiology. Pathology was studied mainly in heart diseases and in epilepsy.

  4. Imaging Case

    Directory of Open Access Journals (Sweden)

    Maria Adriana Rangel

    2018-04-01

    Full Text Available Introduction: Cephalohematoma is a collection of serosanguineous fluid below the periosteum and is the most frequent cranial injury in the newborn, occurring in 0.2-2.5% live births. The majority of cephalohematomas spontaneously resolve within three to four weeks, however, some persist beyond four weeks and begin to calcify. Case report: A seven-week-old boy, was referred to the emergency department because of a head lump on the right parietal region, with no other symptoms. He was born after a vacuum-assisted delivery, and presented a cephalohematoma in the first days of life, that progressively decreased and became more rigid. Physical examination, revealed a cranial asymmetry, and a head lump on the right parietal region, that was hard and fixed to the bone. Head X-ray revealed a radiopaque lump on the right parietal bone and a poorly defined arched line, as well as visible microcalcifications on the core of the cephalohematoma, typical findings of a calcified cephalohematoma. Discussion: Even though cephalohematoma is frequently encountered, calcified cephalohematoma is seen only sporadically, and is a rare clinical entity. History and clinical examination are important in the differential diagnosis and imaging strategy. Radiography and ultrasonography are often the initial screening diagnostic tests, followed by magnetic resonance imaging or computed tomography. Head x-ray features, in this case report, where particularly evocative of the diagnosis.

  5. The effect of patient positioning aids on PET quantification in PET/MR imaging.

    Science.gov (United States)

    Mantlik, Frederic; Hofmann, Matthias; Werner, Matthias K; Sauter, Alexander; Kupferschläger, Jürgen; Schölkopf, Bernhard; Pichler, Bernd J; Beyer, Thomas

    2011-05-01

    Clinical PET/MR requires the use of patient positioning aids to immobilize and support patients for the duration of the combined examination. Ancillary immobilization devices contribute to overall attenuation of the PET signal, but are not detected with conventional MR sequences and, hence, are ignored in standard MR-based attenuation correction (MR-AC). We report on the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. We used phantom and patient data acquired with positioning aids on a PET/CT scanner (Biograph 16, HI-REZ) to mimic PET/MR imaging conditions. Reference CT-based attenuation maps were generated from measured (original) CT transmission images (origCT-AC). We also created MR-like attenuation maps by following the same conversion procedure of the attenuation values except for the prior delineation and subtraction of the positioning aids from the CT images (modCT-AC). First, a uniform (68)Ge cylinder was positioned centrally in the PET/CT scanner and fixed with a vacuum mattress (10 cm thick) and, in a repeat examination, with MR positioning foam pads. Second, 16 patient datasets were selected for subsequent processing. All patients were regionally immobilized with positioning aids: a vacuum mattress for head/neck imaging (nine patients) and a foam mattress for imaging of the lower extremities (seven patients). PET images were reconstructed following CT-based attenuation and scatter correction using the original and modified (MR-like) CT images: PET(origCT-AC) and PET(modCT-AC), respectively. PET images following origCT-AC and modCT-AC were compared visually and in terms of mean differences of voxels with a standardized uptake value of at least 1.0. In addition, we report maximum activity concentration in lesions for selected patients. In the phantom study employing the vacuum mattress the average voxel activity in PET(modCT-AC) was underestimated by 6.4% compared to PET(origCT-AC), with 3

  6. Speckle imaging algorithms for planetary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  7. Image catalogs.

    Science.gov (United States)

    Gomoll, Andreas H; Thornhill, Thomas S

    2004-04-01

    The advent of digital photography and radiography allows documentation of interesting clinical findings with unprecedented ease, and many orthopaedic surgeons have taken extensive advantage of this opportunity to create large digital libraries of clinical results. However, this leaves surgeons with a rapidly increasing volume of data to store and organize; therefore, a system for archiving, locating, and managing images, radiographs, and digital slide presentations has become a crucial need in most orthopaedic groups and practices. However, many surgical groups and practices are not familiar with the computer technology available to initiate such systems. In this review, we discuss several software solutions currently on the market to address the specific needs of orthopaedic surgeons, and as a practical example, discuss a system that is in place in the Department of Orthopaedic Surgery at our institution. Overall, depending on the individual circumstances of each institution, there are various options that meet different technologic and financial requirements.

  8. Quality Assurance of Onboard Megavoltage Computed Tomography Imaging and Target Localization Systems for On- and Off-Line Image-Guided Radiotherapy

    International Nuclear Information System (INIS)

    Langen, Katja M.; Meeks, Sanford L.; Pouliot, Jean

    2008-01-01

    We reviewed the quality assurance procedures that have been used to test fan- and cone-beam megavoltage-based in-room imaging systems. Phantom-based tests have been used to establish the geometric accuracy and precision of megavoltage-based systems. However, the clinical implementation of any system is accompanied by challenges that are best tested in a clinical setting using clinical images. To objectively judge and monitor image quality, a set of standard tests and phantoms can be used. The image noise and spatial and contrast resolution have been assessed using standard computed tomography phantoms. The dose to the patient resulting from the imaging procedure can be determined using calculations or measurements. The off-line use of patient images is of interest for the evaluation of dosimetric changes throughout the treatment course. The accuracy of the dosimetric calculations based on the megavoltage images has been tested for the fan- and cone-beam systems. Some of the described tests are typically performed before the clinical implementation of the imaging system; others are suited to monitor the system's performances

  9. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  10. Medical imaging technology

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  11. Assessment of voluntary deep inspiration breath-hold with CINE imaging for breast radiotherapy.

    Science.gov (United States)

    Estoesta, Reuben Patrick; Attwood, Lani; Naehrig, Diana; Claridge-Mackonis, Elizabeth; Odgers, David; Martin, Darren; Pham, Melissa; Toohey, Joanne; Carroll, Susan

    2017-10-01

    Deep Inspiration Breath-Hold (DIBH) techniques for breast cancer radiation therapy (RT) have reduced cardiac dose compared to Free Breathing (FB). Recently, a voluntary deep inspiration breath-hold (vDIBH) technique was established using in-room lasers and skin tattoos to monitor breath-hold. An in-house quality assessment of positional reproducibility during RT delivery with vDIBH in patients with left-sided breast cancer was evaluated. The electronic portal imaging device (EPID) was used in cinematographic (CINE) mode to capture a sequence of images during beam delivery. Weekly CINE images were retrospectively assessed for 20 left-sided breast cancer patients receiving RT in vDIBH, and compared with CINE images of 20 patients treated in FB. The intra-beam motion was assessed and the distance from the beam central axis (CA) to the internal chest wall (ICW) was measured on each CINE image. These were then compared to the planned distance on digitally reconstructed radiograph (DRR). The maximum intra-beam motion for any one patient measurement was 0.30 cm for vDIBH and 0.20 cm for FB. The mean difference between the distance from the CA to ICW on DRR and the equivalent distance on CINE imaging (as treated) was 0.28 cm (SD 0.17) for vDIBH patients and 0.25 cm (SD 0.14) for FB patients (P = 0.458). The measured values were comparable for patients undergoing RT in vDIBH, and for those in FB. This quality assessment showed that using in-room lasers and skin tattoos to independently monitor breath-hold in vDIBH as detected by 'on-treatment' CINE imaging is safe and effective. © 2017 The Royal Australian and New Zealand College of Radiologists.

  12. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  13. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  14. Cardiovascular molecular MR imaging

    OpenAIRE

    Lamb, H. J.; van der Meer, R. W.; de Roos, A.; Bax, J. J.

    2007-01-01

    Introduction Cardiovascular molecular imaging is a rapidly evolving field of research, aiming to image and quantify molecular and cellular targets in vivo. MR imaging has some inherent properties that make it very suitable for cardiovascular molecular imaging. Until now, only a limited number of studies have been published on cardiovascular molecular imaging using MR imaging. Review In the current review, MR techniques that have already shown potential are discussed. Metabolic MR imaging can ...

  15. MR vs CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy.

    LENUS (Irish Health Repository)

    O'Neill, B D P

    2009-06-01

    Modern three-dimentional radiotherapy is based upon CT. For rectal cancer, this relies upon target definition on CT, which is not the optimal imaging modality. The major limitation of CT is its low inherent contrast resolution. Targets defined by MRI could facilitate smaller, more accurate, tumour volumes than CT. Our study reviewed imaging and planning data for 10 patients with locally advanced low rectal cancer (defined as < 6 cm from the anal verge on digital examination). Tumour volume and location were compared for sagittal pre-treatment MRI and planning CT. CT consistently overestimated all tumour radiological parameters. Estimates of tumour volume, tumour length and height of proximal tumour from the anal verge were larger on planning CT than on MRI (p < 0.05). Tumour volumes defined on MRI are smaller, shorter and more distal from the anal sphincter than CT-based volumes. For radiotherapy planning, this may result in smaller treatment volumes, which could lead to a reduction in dose to organs at risk and facilitate dose escalation.

  16. scikit-image: image processing in Python

    Directory of Open Access Journals (Sweden)

    Stéfan van der Walt

    2014-06-01

    Full Text Available scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  17. scikit-image: image processing in Python.

    Science.gov (United States)

    van der Walt, Stéfan; Schönberger, Johannes L; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony

    2014-01-01

    scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  18. Joint imaging

    International Nuclear Information System (INIS)

    Hengst, W.

    1984-01-01

    Joint imaging is a proven diagnostic procedure which has become indispensable to the detection and treatment of different joint diseases in almost all disciplines. The method is suited for early diagnosis of joint affections both in soft tissue and bone which cannot be detected by X-ray or other procedures. The local activity accumulation depends on the rate of metabolism and is visualized in the scan, which in turn enables the extension and floridity of focal lesions to be evaluated and followed-up. Although joint scans may often give hints to probabilities relevant to differential diagnosis, the method is non-specific and only useful if based on the underlying clinical picture and X-ray finding, if possible. The radiation exposure is very low and does not represent a hazard in cases of adequate assessment of indication. In pregnant women and children the assessment of indication has to be based on very strict principles. The method is suited for out-patient diagnosis and can be applied in all installations equipped with a gamma camera and a technetium generator. (orig.) [de

  19. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Aasheim, Lars Birger [Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Trondheim (Norway); St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); Karlberg, Anna [St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); Goa, Paal Erik [St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); NTNU, Department of Physics, Trondheim (Norway); Haaberg, Asta [NTNU, Department of Neuroscience, Trondheim (Norway); St. Olavs University Hospital, Department of Medical Imaging, Trondheim (Norway); Soerhaug, Sveinung [St. Olavs University Hospital, Department of Thoracic Medicine, Trondheim (Norway); Fagerli, Unn-Merete [St. Olavs University Hospital, Department of Oncology, Trondheim (Norway); NTNU, Department of Cancer Research and Molecular Medicine, Trondheim (Norway); Eikenes, Live [Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Trondheim (Norway)

    2015-08-15

    One of the greatest challenges in PET/MR imaging is that of accurate MR-based attenuation correction (AC) of the acquired PET data, which must be solved if the PET/MR modality is to reach its full potential. The aim of this study was to investigate the performance of Siemens' most recent version (VB20P) of MR-based AC of head PET data, by comparing it to CT-based AC. Methods:{sup 18}F-FDG PET data from seven lymphoma and twelve lung cancer patients examined with a Biograph mMR PET/MR system were reconstructed with both CT-based and MR-based AC, avoiding sources of error arising when comparing PET data from different systems. The resulting images were compared quantitatively by measuring changes in mean SUV in ten different brain regions in both hemispheres, as well as the brainstem. In addition, the attenuation maps (μ maps) were compared regarding volume and localization of cranial bone. The UTE μ maps clearly overestimate the amount of bone in the neck, while slightly underestimating the amount of bone in the cranium, and the localization of bone in the cranial region also differ from the CT μ maps. In air/tissue interfaces in the sinuses and ears, the MRAC method struggles to correctly classify the different tissues. The misclassification of tissue is most likely caused by a combination of artefacts and the insufficiency of the UTE method to accurately separate bone. Quantitatively, this results in a combination of overestimation (0.5-3.6 %) and underestimation (2.7-5.2 %) of PET activity throughout the brain, depending on the proximity to the inaccurate regions. Our results indicate that the performance of the UTE method as implemented in VB20P is close to the theoretical maximum of such an MRAC method in the brain, while it does not perform satisfactorily in the neck or face/nasal area. Further improvement of the UTE MRAC or other available methods for more accurate segmentation of bone should be incorporated. (orig.)

  20. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  1. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Directory of Open Access Journals (Sweden)

    Martin L. Lassen

    2017-07-01

    Full Text Available The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R-[11C]verapamil imaging on the same day using a GE-Advance (PET-only and a Siemens Biograph mMR system (PET/MR. PET-emission data were reconstructed using a transmission-based attenuation correction (AC map (PET-only, whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2 and distribution volume (VT. Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA. Comparison of DIXON-based AC (PET/MR with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05 for the K1 parameter and −19 ± 9% (p < 0.05 for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05 for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods.Clinical Trial Registration:www.clinicaltrialsregister.eu, identifier 2013-001724-19

  2. Identifying Image Manipulation Software from Image Features

    Science.gov (United States)

    2015-03-26

    scales”. Educational and Psychological Measurement, 20(1):37, 1960. 7. Committee, Technical Standardization. Exchangeable image file format for digital...Digital Forensics. Springer, 2005. 23. Photography, Technical Committee. Photography and graphic technology - Ex- tended colour encodings for digital image

  3. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 2: vault model

    International Nuclear Information System (INIS)

    Johnson, L.H.; LeNeveu, D.M.; King, F.; Shoesmith, D.W.; Kolar, M.; Oscarson, D.W.; Sunder, S.; Onofrei, C.; Crosthwaite, J.L.

    1996-06-01

    A study has been undertaken to evaluate the design and long-term performance of a nuclear fuel waste disposal vault based on a concept of in-room emplacement of copper containers at a depth of 500 m in plutonic rock in the Canadian Shield. The containers, each with 72 used CANDU fuel bundles, would be surrounded by clay-based buffer and backfill materials in an array of parallel rooms, with the excavation boundary assumed to have an excavation-disturbed zone (EDZ) with a higher permeability than the surrounding rock. In the anoxic conditions of deep rock of the Canadian Shield, the copper containers are expected to survive for >10 6 a. Thus container manufacturing defects, which are assumed to affect approximately 1 in 5000 containers, would be the only potential source of radionuclide release in the vault. The vault model is a computer code that simulates the release of radionuclides that would occur upon contact of the used fuel with groundwater, the diffusive transport of these radionuclides through the defect in the container shell and the surrounding buffer, and their dispersive and convective transport through the backfill and EDZ into the surrounding rock. The vault model uses a computationally efficient boundary integral model (BIM) that simulates radionuclide mass transport in the engineered barrier system as a point source (representing the defective container) that releases radionuclides into concentric cylinders, that represent the buffer, backfill and EDZ. A 3-dimensional finite-element model is used to verify the accuracy of the BIM. The results obtained in the present study indicates the effectiveness of a design using in-room emplacement of long-lived containers in providing a safe disposal system even under permeable geosphere conditions. (author). refs., tabs., figs

  4. Image processing with ImageJ

    CERN Document Server

    Pascau, Javier

    2013-01-01

    The book will help readers discover the various facilities of ImageJ through a tutorial-based approach.This book is targeted at scientists, engineers, technicians, and managers, and anyone who wishes to master ImageJ for image viewing, processing, and analysis. If you are a developer, you will be able to code your own routines after you have finished reading this book. No prior knowledge of ImageJ is expected.

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  6. Outpatient Imaging Efficiency - State

    Data.gov (United States)

    U.S. Department of Health & Human Services — Use of medical imaging - state data. These measures give you information about hospitals' use of medical imaging tests for outpatients. Examples of medical imaging...

  7. Medical imaging 4

    International Nuclear Information System (INIS)

    Loew, M.H.

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session

  8. Medical imaging 4

    Energy Technology Data Exchange (ETDEWEB)

    Loew, M.H. (George Washington Univ., Washington, DC (United States))

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session.

  9. Imaging rings in ring imaging Cherenkov counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2002-11-25

    The general concepts used to form images in Ring Imaging Cherenkov (RICH) counters are described and their performance properties compared. Particular attention is paid to issues associated with imaging in the time dimension, especially in Detectors of Internally Reflected Cherenkov light (DIRCs).

  10. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    Griffiths, J.A.; Metaxas, M.G.; Pani, S.; Schulerud, H.; Esbrand, C.; Royle, G.J.; Price, B.; Rokvic, T.; Longo, R.; Asimidis, A.; Bletsas, E.; Cavouras, D.; Fant, A.; Gasiorek, P.; Georgiou, H.; Hall, G.; Jones, J.; Leaver, J.; Li, G.; Machin, D.; Manthos, N.; Matheson, J.; Noy, M.; Østby, J.M.; Psomadellis, F.; van der Stelt, P.F.; Theodoridis, S.; Triantis, F.; Turchetta, R.; Venanzi, C.; Speller, R.D.

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and

  11. Annotating images by mining image search results

    NARCIS (Netherlands)

    Wang, X.J.; Zhang, L.; Li, X.; Ma, W.Y.

    2008-01-01

    Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  13. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    International Nuclear Information System (INIS)

    Park, J; Lee, J; Kim, H; Kim, I; Ye, S

    2015-01-01

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm 2 applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield

  14. Image reconstruction technique for neutron penumbra imaging

    International Nuclear Information System (INIS)

    Liu Dongjian

    2006-01-01

    The principle of the neutron penumbra imaging was introduced, and the effect factors of the resolution of the imaging system were analyzed. The neutron penumbra imaging process was simulated with MCNP software. The coded image of one point source on the imaging principal axis and that of two point sources off the principal axis with and without noise and back-ground were reconstructed by the improved inverse filter and Wiener filter method respectively. The simulation results indicated that the Wiener filter method could restrain noise better. (authors)

  15. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Imaging Sciences Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1996-11-21

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  17. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Felix P.; Crook, David W.; Mader, Caecilia E.; Appenzeller, Philippe; Schulthess, G.K. von; Schmid, Daniel T. [University Hospital Zurich, Department of Medical Radiology, Zurich (Switzerland)

    2013-01-15

    PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. A total of 100 oncological patients underwent sequential whole-body {sup 18}F-FDG PET with CT-based attenuation correction (AC), 40 mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40 % of lesions, equal to CT in 49 %, and inferior to CT in 11 %. Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust. (orig.)

  18. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    Science.gov (United States)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  19. Adolescence and Body Image.

    Science.gov (United States)

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  20. Towards exaggerated image stereotypes

    DEFF Research Database (Denmark)

    Chen, Chen; Lauze, Francois Bernard; Igel, Christian

    2011-01-01

    Given a training set of images and a binary classifier,we introduce the notion of an exaggerated image stereotype forsome image class of interest, which emphasizes/exaggerates thecharacteristic patterns in an image and visualizes which visualinformation the classification relies on. This is useful...

  1. Mass preserving image registration

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2010-01-01

    The paper presents results the mass preserving image registration method in the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) Challenge. The mass preserving image registration algorithm was applied to the 20 image pairs. Registration was evaluated using four different...

  2. ATV: Image display tool

    Science.gov (United States)

    Barth, Aaron J.; Schlegel, David; Finkbeiner, Doug; Colley, Wesley; Liu, Mike; Brauher, Jim; Cunningham, Nathaniel; Perrin, Marshall; Roe, Henry; Weaver, Hal

    2014-05-01

    ATV displays and analyses astronomical images using the IDL image-processing language. It allows interactive control of the image scaling, color table, color stretch, and zoom, with support for world coordinate systems. It also does point-and-click aperture photometry, simple spectral extractions, and can produce publication-quality postscript output images.

  3. In-Between-Images

    DEFF Research Database (Denmark)

    Fausing, Bent

    2013-01-01

    Article about Fascination, Affect, Interaction and Sensoric Images in Digital Culture and New Technology. I come up with a new term - 'In-Between-Images', which are the images created in between the perceiver and the perceived. We are active and interactive with these images, which are created out...

  4. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform); Applications cliniques de la radiotherapie guidee par l'image (RTGI)

    Energy Technology Data Exchange (ETDEWEB)

    Sorcini, B.; Tilikidis, A. [Karolinska Univ. Hospital, Dept. of Medical Physics, Stockholm (Sweden)

    2006-09-15

    Image-guided radiation therapy (IGRT) can be used to measure and correct positional errors for target and critical structures immediately prior to or during treatment delivery. Some of the most recent available methods applied for target localization are: trans-abdominal ultrasound, implanted markers with in room MV or kV X-rays, optical surface tracking systems, implantable electromagnetic markers, in room CT such as kVCT on rail, kilo-voltage or mega-voltage cone-beam CT (CBCT) and helical megavoltage CT. The verification of the accurate treatment position in conjunction with detailed anatomical information before every fraction can be essential for the outcome of the treatment. In this paper we present the on-board imager (OBI, Varian Medical Systems, Palo Alto, CA) that has been in routine clinical use at the Karolinska University Hospital since June 2004. The OBI has been used for on-line set-up correction of prostate patients using internal gold markers. Displacements of these markers can be monitored radiographically during the treatment course and the registered marker shifts act as a surrogate for prostate motion. For this purpose, on-board kV-kV seems to be an ideal system in terms of image quality. The CBCT function of OBI was installed in March 2005 at our department. It focuses on localizing tumors based on internal anatomy, not just on the conventional external marks or tattoos. The CBCT system provides the capacity for soft tissue imaging in the treatment position and real-time radiographic monitoring during treatment delivery. (authors)

  5. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  6. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  7. Hyperspectral imaging flow cytometer

    Science.gov (United States)

    Sinclair, Michael B.; Jones, Howland D. T.

    2017-10-25

    A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.

  8. A (short) history of image-guided radiotherapy

    International Nuclear Information System (INIS)

    Verellen, Dirk; Ridder, Mark de; Storme, Guy

    2008-01-01

    Progress in radiotherapy is guided by the need to realize improved dose distributions, i.e. the ability to reduce the treatment volume toward the target volume and still ensuring coverage of that target volume in all dimensions. Poor ability to control the tumour's location limits the accuracy with which radiation can be delivered to tumour-bearing tissue. Image-guided radiation therapy (IGRT) aims at in-room imaging guiding the radiation delivery based on instant knowledge of the target location and changes in tumour volume during treatment. Advancements are usually not to be attributed to a single event, but rather a combination of many small improvements that together enable a superior result. Image-guidance is an important link in the treatment chain and as such a major factor in this synergetic process. A historic review shows that many of the so-called new developments are not so new at all, but did not make it into mainstream radiotherapy practice at that time. Recent developments in improved IT infrastructures, novel irradiation techniques, and better knowledge of functional and morphologic information may have created the need and optimal environment to revive the interest in IGRT

  9. Characteristics of image converters and image intensifiers

    International Nuclear Information System (INIS)

    Gurvich, A.M.; Shamanov, A.A.; Rozenberg, A.M.; Fajnberg, V.S.; Kavtorova, V.P.; Salyuk, L.V.; Yakovleva, F.B.

    1978-01-01

    The characteristics of image converters and image intensifiers, which determine the range of the X-radiation dose rates used and the image quality, are considered. The equations for calculating the requirements to be imposed on the separate intensifier elements from known parameters of other elements with an allowance for the nonlinearity of the television system and the role of fluctuation in the space distribution of X-radiation quanta are given

  10. Parallel MR imaging.

    Science.gov (United States)

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2012-07-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  11. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.

    Science.gov (United States)

    Karki, Kishor; Saraiya, Siddharth; Hugo, Geoffrey D; Mukhopadhyay, Nitai; Jan, Nuzhat; Schuster, Jessica; Schutzer, Matthew; Fahrner, Lester; Groves, Robert; Olsen, Kathryn M; Ford, John C; Weiss, Elisabeth

    2017-09-01

    To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations. Seven physicians delineated the tumor volumes of 10 patients for the following scenarios: (1) CT only, (2) PET-CT fusion images registered to CT ("clinical standard"), and (3) postcontrast T1-weighted MRI registered with diffusion-weighted MRI. To compute interobserver variability, the median surface was generated from all observers' contours and used as the reference surface. A physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest wall) on the median surface. Contoured volumes and bidirectional local distances between individual observers' contours and the reference contour were analyzed. Computed tomography- and MRI-based tumor volumes normalized relative to PET-CT-based volumes were 1.62 ± 0.76 (mean ± standard deviation) and 1.38 ± 0.44, respectively. Volume differences between the imaging modalities were not significant. Between observers, the mean normalized volumes per patient averaged over all patients varied significantly by a factor of 1.6 (MRI) and 2.0 (CT and PET-CT) (P=4.10 × 10 -5 to 3.82 × 10 -9 ). The tumor-atelectasis interface had a significantly higher variability than other interfaces for all modalities combined (P=.0006). The interfaces with the smallest uncertainties were tumor-lung (on CT) and tumor-mediastinum (on PET-CT and MRI). Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define

  12. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    the framework of sparse learning as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to non-overlapping patches of the image......We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  13. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning.

    Science.gov (United States)

    Wiesinger, Florian; Bylund, Mikael; Yang, Jaewon; Kaushik, Sandeep; Shanbhag, Dattesh; Ahn, Sangtae; Jonsson, Joakim H; Lundman, Josef A; Hope, Thomas; Nyholm, Tufve; Larson, Peder; Cozzini, Cristina

    2018-02-18

    To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP). Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements. Fixed Hounsfield replacement values were assigned for air (-1000 HU) and soft-tissue (+42 HU), whereas continuous linear mapping was used for bone. The obtained ZTE-derived pseudo-CT images accurately resembled the true CT images (i.e., Dice coefficient for bone overlap of 0.73 ± 0.08 and mean absolute error of 123 ± 25 HU evaluated over the whole head, including errors from residual registration mismatches in the neck and mouth regions). The linear bone mapping accounted for bone density variations. Averaged across five patients, ZTE-based AC demonstrated a PET error of -0.04 ± 1.68% relative to CT-based AC. Similarly, for RTP assessed in eight patients, the absolute dose difference over the target volume was found to be 0.23 ± 0.42%. The described method enables MR to pseudo-CT image conversion for the head in an accurate, robust, and fast manner without relying on anatomical prior knowledge. Potential applications include PET/MR-AC, and MR-guided RTP. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Dosimetric evaluation of rectum and bladder using image-based CT planning and orthogonal radiographs with ICRU 38 recommendations in intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2008-01-01

    Full Text Available The purpose is to compare CT-based dosimetry with International Commission on Radiation Units and Measurements (ICRU 38 bladder and rectum reference points in patients of carcinoma of uterine cervix treated with intracavitary brachytherapy (ICA. Twenty-two consecutive patients were evaluated. Orthogonal radiographs and CT images were acquired and transferred to PLATO planning system. Bladder and rectal reference points were identified according to ICRU 38 recommendations. Dosimetry was carried out based on Manchester system. Patient treatment was done using 192 Iridium high dose rate (HDR remote after-loading machine based on the conventional radiograph-based dosimetry. ICRU rectal and bladder point doses from the radiograph plans were compared with D 2 , dose received by 2 cm 3 of the organ receiving maximum dose from CT plan. V 2 , volume of organ receiving dose more than the ICRU reference point, was evaluated. The mean (±standard deviation volume of rectum and bladder was 60 (±28 cm 3 and 138 (±41 cm 3 respectively. The mean reference volume in radiograph and CT plan was 105 (±7 cm 3 and 107 (±7 cm 3 respectively. It was found that 6 (±4 cm3 of rectum and 16 (±10 cm 3 of bladder received dose more than the prescription dose. V2 of rectum and bladder was 7 (±1.7 cm 3 and 20.8 (±6 cm 3 respectively. Mean D 2 of rectum and bladder was found to be 1.11 (±0.2 and 1.56 (±0.6 times the mean ICRU reference points respectively. This dosimteric study suggests that comparison of orthogonal X-ray-based and CT-based HDR ICA planning is feasible. ICRU rectal point dose correlates well with maximum rectal dose, while ICRU bladder point underestimates the maximum bladder dose.

  15. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous broadening by observing ~ 100 fs time scale oscillations in the shape of the 2D IR spectra.

  16. Cultural differences in room size perception.

    Science.gov (United States)

    Saulton, Aurelie; Bülthoff, Heinrich H; de la Rosa, Stephan; Dodds, Trevor J

    2017-01-01

    Cultural differences in spatial perception have been little investigated, which gives rise to the impression that spatial cognitive processes might be universal. Contrary to this idea, we demonstrate cultural differences in spatial volume perception of computer generated rooms between Germans and South Koreans. We used a psychophysical task in which participants had to judge whether a rectangular room was larger or smaller than a square room of reference. We systematically varied the room rectangularity (depth to width aspect ratio) and the viewpoint (middle of the short wall vs. long wall) from which the room was viewed. South Koreans were significantly less biased by room rectangularity and viewpoint than their German counterparts. These results are in line with previous notions of general cognitive processing strategies being more context dependent in East Asian societies than Western ones. We point to the necessity of considering culturally-specific cognitive processing strategies in visual spatial cognition research.

  17. Cultural differences in room size perception.

    Directory of Open Access Journals (Sweden)

    Aurelie Saulton

    Full Text Available Cultural differences in spatial perception have been little investigated, which gives rise to the impression that spatial cognitive processes might be universal. Contrary to this idea, we demonstrate cultural differences in spatial volume perception of computer generated rooms between Germans and South Koreans. We used a psychophysical task in which participants had to judge whether a rectangular room was larger or smaller than a square room of reference. We systematically varied the room rectangularity (depth to width aspect ratio and the viewpoint (middle of the short wall vs. long wall from which the room was viewed. South Koreans were significantly less biased by room rectangularity and viewpoint than their German counterparts. These results are in line with previous notions of general cognitive processing strategies being more context dependent in East Asian societies than Western ones. We point to the necessity of considering culturally-specific cognitive processing strategies in visual spatial cognition research.

  18. Behavioral effects in room evacuation models

    Science.gov (United States)

    Dossetti, V.; Bouzat, S.; Kuperman, M. N.

    2017-08-01

    In this work we study a model for the evacuation of pedestrians from an enclosure considering a continuous space substrate and discrete time. We analyze the influence of behavioral features that affect the use of the empty space, that can be linked to the attitudes or characters of the pedestrians. We study how the interaction of different behavioral profiles affects the needed time to evacuate completely a room and the occurrence of clogging. We find that neither fully egotistic nor fully cooperative attitudes are optimal from the point of view of the crowd. In contrast, intermediate behaviors provide lower evacuation times. This leads us to identify some phenomena closely analogous to the faster-is-slower effect. The proposed model allows for distinguishing between the role of the attitudes in the search for empty space and the attitudes in the conflicts.

  19. Image registration via optimization over disjoint image regions

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd; Hathaway, Simon; Karelitz, David B.; Sandusky, John; Laine, Mark Richard

    2018-02-06

    Technologies pertaining to registering a target image with a base image are described. In a general embodiment, the base image is selected from a set of images, and the target image is an image in the set of images that is to be registered to the base image. A set of disjoint regions of the target image is selected, and a transform to be applied to the target image is computed based on the optimization of a metric over the selected set of disjoint regions. The transform is applied to the target image so as to register the target image with the base image.

  20. Standardization of SPECT imaging

    International Nuclear Information System (INIS)

    Mishio, Kouji

    1989-01-01

    Though the use of instruments for SPECT imaging is prevailing, the SPECT images from the several instruments appears many differences in quality respectively. For the purpose of studying the cause of different image quality between several instruments, SPECT images of the same phantom were acquired and processed using 6 instruments in 5 institutes to compare. Up to now the quality of SPECT images was foundamentally dependent on the hardware, but factors of software, such as reconstruction algorithms and determinations of severl parameters seemed to have more important effect upon the image quality. The adoption of appropriate processing method after minimizing the imaging deterioration due to the hardware would make the difference of image quality minimum, and could make the standardization of SPECT imaging possible. (author)

  1. Distance between images

    Science.gov (United States)

    Gualtieri, J. A.; Le Moigne, J.; Packer, C. V.

    1992-01-01

    Comparing two binary images and assigning a quantitative measure to this comparison finds its purpose in such tasks as image recognition, image compression, and image browsing. This quantitative measurement may be computed by utilizing the Hausdorff distance of the images represented as two-dimensional point sets. In this paper, we review two algorithms that have been proposed to compute this distance, and we present a parallel implementation of one of them on the MasPar parallel processor. We study their complexity and the results obtained by these algorithms for two different types of images: a set of displaced pairs of images of Gaussian densities, and a comparison of a Canny edge image with several edge images from a hierarchical region growing code.

  2. Multimodality imaging techniques.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  3. DELAYED FDG-PET/CT IMAGES IN PATIENTS WITH BRAIN TUMORS - IMPACT ON VISUAL AND SEMIQUANTITATIVE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Pavel H. Bochev

    2013-01-01

    Full Text Available Background: Despite the extensive use of FDG-PET/CT its role in brain tumor assessment remains controversial mostly because of the physiologically high brain uptake which easily obscures pathological processes. The wide availability of FDG, however, maintains the interest in FDG neuro-oncological applications. Objective: to evaluate the use of a late registration at 180min in patients with brain tumors, studied with FDG-PET/CT based on visual and semiquantitative analysis. Materials and methods: 38 patients with brain neoplasms and non-tumor structural lesions underwent a selective brain 18F-FDG PET/CT at two time points at 60 and 180 minutes after administration. Visual assessment was made by two readers with interobserver agreement calculation. Region ratio comparison with three different reference regions - the contralateral one, the white matter, and the cerebellum was used as a base for semiquantitative analysis. Results: Visual analysis showed better delineation of malignant lesion on late registrations with higher inter/intraobserver agreement as compared to the early images. Semiquantitative analysis demonstrated significant differences in early and late indices of metastases and gliomas, but failed in distinguishing gliomas from metastatic lesions and benign lesions.Conclusion: Delayed brain images with FDG-PET/CT at 180 min after injection provide better tumor delineation, higher accuracy, lower interobserver variations. The use of semiquantitative indices, irrespective of the reference region used, is of limited value

  4. Preliminary study of visualizing membrane structures of spiculated pulmonary nodules in three-dimensional thoracic CT images

    Science.gov (United States)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Aokage, K.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    Research results from the National Lung Screening Trial revealed that screening for lung cancer with low-dose CT (LDCT) reduces lung cancer mortality in heavy smokers by 20% compared to radiography. While this study does show the efficacy of CT-based screening, radiologists often face the problem of estimating the malignant likelihoods of pulmonary nodules detected on LDCT screening for maximizing patient survival and for preserving lung function. Spiculation is considered as one of the indicators of nodule malignancy and an important feature to assess requirements on a patient-tailored follow-up procedure. However, the spiculation is also observed in some benign nodules, particularly in tuberculoma. The elucidation of the spliculation morphology in 3D thoracic CT images is an important preliminary step towards developing the malignant discrimination strategies from benign nodules. In this study, we present a visualization method to reveal a spatial configuration of spiculation of pulmonary nodules in three-dimensional thoracic CT images. Applying the method to an example of malignant nodule with the spiculated margins, the visualizing preliminary result of the spatial configuration reveals the presence of membrane structures of spiculation.

  5. ORIGINAL ARTICLE Image quality dependence on image ...

    African Journals Online (AJOL)

    The software package developed by Agfa and used in Agfa CR readers is called MUSICA; an upgrade was recently released: MUSICA2.3,4. The acronym stands for Multi Scale Image Contrast Amplification, and the algorithm is essentially a multi-scale transform of the image data into a stack of detail layers. This is done in ...

  6. Image noise removal using image inpainting

    Science.gov (United States)

    Bakhtiari, Somayeh; Mohyedinbonab, Elmira; Agaian, Sos; Jamshidi, Mo

    2012-03-01

    In this paper, new methods are addressed for impulse and speckle noise removal in images. The approach is based on the fusion of noise detection and image inpainting techniques. To avoid destroying the real structures of the image, the noise areas are first recognized to be repaired by an inpainting algorithm, subsequently. To distinguish the impulse noise areas in the image, a Neuro-Fuzzy model is employed and, to extract the speckled regions an algorithm is proposed based on Frost filtering and image resizing. The advantage of inpainting technique over the regular filtering methods is that it will be easier to generalize to all types of noise. Once we detect the damaged pixels in the image, the inpainting algorithm will be able to repair them. Various types of images under three levels of noise are tested using PSNR and SSIM measures. The experimental results demonstrate the great ability of the new approaches to suppress the noise properly, while preserving critical details of the image.

  7. Targeted molecular imaging

    International Nuclear Information System (INIS)

    Kim, E. Edmund

    2003-01-01

    Molecular imaging aims to visualize the cellular and molecular processes occurring in living tissues, and for the imaging of specific molecules in vivo, the development of reporter probes and dedicated imaging equipment is most important. Reporter genes can be used to monitor the delivery and magnitude of therapeutic gene transfer, and the time variation involved. Imaging technologies such as micro-PET, SPECT, MRI and CT, as well as optical imaging systems, are able to non-invasively detect, measure, and report the simultaneous expression of multiple meaningful genes. It is believed that recent advances in reporter probes, imaging technologies and gene transfer strategies will enhance the effectiveness of gene therapy trials

  8. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2015-01-01

    conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared......In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency...... image. (C) 2015 Optical Society of America...

  9. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  10. Scanner image quality profiling

    Science.gov (United States)

    Cui, Chengwu

    2009-01-01

    When using a document scanner, scan image quality is often unknown to the end user of the scanned image. Document scanners may employ different imaging technologies that can result in different image characteristics. Variability of scanner parts and the manufacturing process may also create variability of the scanned image quality from machine to machine. Image quality of the same scanner may also change as it ages and becomes contaminated. If the scanned image is used for human viewing, the resulting image quality variability may not be mission critical other than being a visual annoyance because the human visual system has superb adaptation and segmentation capability. However, if the scanned image is used for machine recognition or for printing, the image quality variability may become important and even mission critical. Here we propose a framework to profile the scanner image quality and tag the scanned image with the IQ profile. We review the potential quantified aspects of scan image quality and propose a method of characterization with examples.

  11. Temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmerling, Marc [Algemeen Ziekenhuis Sint-Lucas, Gent (Belgium). Dept. of Radiology; Foer, Bert de (ed.) [Sint-Augustinus Ziekenhuis, Wilrijk (Belgium). Dept. of Radiology

    2015-04-01

    Complete overview of imaging of normal and diseased temporal bone. Straightforward structure to facilitate learning. Detailed consideration of newer imaging techniques, including the hot topic of diffusion-weighted imaging. Includes a chapter on anatomy that will be of great help to the novice interpreter of imaging findings. Excellent illustrations throughout. This book provides a complete overview of imaging of normal and diseased temporal bone. After description of indications for imaging and the cross-sectional imaging anatomy of the area, subsequent chapters address the various diseases and conditions that affect the temporal bone and are likely to be encountered regularly in clinical practice. The classic imaging methods are described and discussed in detail, and individual chapters are included on newer techniques such as functional imaging and diffusion-weighted imaging. There is also a strong focus on postoperative imaging. Throughout, imaging findings are documented with the aid of numerous informative, high-quality illustrations. Temporal Bone Imaging, with its straightforward structure based essentially on topography, will prove of immense value in daily practice.

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ...

  13. Mars Global Surveyor Images

    Science.gov (United States)

    1999-06-01

    High resolution images that help scientists fine tune the landing site for NASA's Mars Surveyor lander mission are shown. These images reveal a smooth surface in the southern cratered highlands near the Nepenthes Mensae.

  14. Metabolic Imaging of Infection

    NARCIS (Netherlands)

    Lawal, Ismaheel; Zeevaart, JanRijn; Ebenhan, Thomas; Ankrah, Alfred; Vorster, Mariza; Kruger, Hendrik G.; Govender, Thavendran; Sathekge, Mike

    2017-01-01

    Metabolic imaging has come to occupy a prominent place in the diagnosis and management of microbial infection. Molecular probes available for infection imaging have undergone a rapid evolution starting with nonspecific agents that accumulate similarly in infection, sterile inflammation, and

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... What are the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and ... be heard with every heartbeat. top of page What are some common uses of the procedure? Ultrasound ...

  16. Electroacoustic Tissue Imaging

    National Research Council Canada - National Science Library

    Diebold, Gerald J

    2005-01-01

    .... Additionally, we have investigated the use of phase contrast x-ray imaging for tumor detection using ultrasonic radiation pressure to modify x-ray phase contrast images. Experiments have been carried out with phantoms to demonstrate the method.

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ...

  18. Electroacoustic Tissue Imaging

    National Research Council Canada - National Science Library

    Diebold, Gerald J

    2006-01-01

    Research has been directed towards developing new methods for imaging tumors. The primary effort has been in developing an imaging modality based on an electrokinetic effect known as the ultrasonic vibration potential...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Survey Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America ( ...

  20. Apollo Image Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Apollo Image Atlas is a comprehensive collection of Apollo-Saturn mission photography. Included are almost 25,000 lunar images, both from orbit and from the...

  1. Radionuclide reporter gene imaging

    International Nuclear Information System (INIS)

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  2. Images in kidney trauma

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Rodriguez, Sonia Pilar; Manzano, Ana Cristina

    2007-01-01

    A case of a 3 years old female patient, who suffered blunt lumbar trauma (horse kick) with secondary kidney trauma, is reported. Imaging findings are described. Renal trauma classification and imaging findings are reviewed

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  4. Birth room images

    DEFF Research Database (Denmark)

    Bowden, Calida; Sheehan, Athena; Foureur, Maralyn Jean

    2016-01-01

    and implications for practice: as images on the Internet inform and persuade society about stereotypical behaviours, the trends of our time and sociocultural norms, it is important to recognise images of the technological birth room on the Internet may be influential in dictating women's attitudes, choices......Objective: this study examined images of birth rooms in developed countries to analyse the messages and visual discourse being communicated through images. Design: a small qualitative study using Kress and van Leeuwen's (2006) social semiotic theoretical framework for image analysis, a form...... of discourse analysis. Setting/participants: forty images of birth rooms were collected in 2013 from Google Images, Flickr, Wikimedia Commons and midwifery colleagues. The images were from obstetric units, alongside and freestanding midwifery units located in developed countries (Australia, Canada, Europe, New...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care physician, or to the ... provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle ...

  6. Hepatitis B virus (image)

    Science.gov (United States)

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is seen ... This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  7. Imaging Food Quality

    DEFF Research Database (Denmark)

    Møller, Flemming

    Imaging and spectroscopy have long been established methods for food quality control both in the laboratories and online. An ever increasing number of analytical techniques are being developed into imaging methods and existing imaging methods to contain spectral information. Images and especially...... spectral images contain large amounts of data which should be analysed appropriately by techniques combining structure and spectral information. This dissertation deals with how different types of food quality can be measured by imaging techniques, analysed with appropriate image analysis techniques...... and finally use the image data to predict or visualise food quality. A range of different food quality parameters was addressed, i.e. water distribution in bread throughout storage, time series analysis of chocolate milk stability, yoghurt glossiness, graininess and dullness and finally structure and meat...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  9. Outpatient Imaging Efficiency - Hospital

    Data.gov (United States)

    U.S. Department of Health & Human Services — Use of medical imaging - provider data. These measures give you information about hospitals' use of medical imaging tests for outpatients. Examples of medical...

  10. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain

    2014-12-04

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green\\'s function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green\\'s function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green\\'s function and renders the higher order internal multiple image for display on a display device.

  11. NAIP Public Image Services

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map provides a preview and information about the National Agriculture Imagery Program (NAIP) image services available on the APFO public image server. Click on...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ... not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic ...

  13. Outpatient Imaging Efficiency - National

    Data.gov (United States)

    U.S. Department of Health & Human Services — Use of medical imaging - national data. These measures give you information about hospitals' use of medical imaging tests for outpatients. Examples of medical...

  14. Light Imaging Section

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Light Imaging Section is to give NIAMS scientists access to state-of-the-art light imaging equipment and to offer training and assistance at all...

  15. Quantum Temporal Imaging

    OpenAIRE

    Tsang, Mankei; Psaltis, Demetri

    2006-01-01

    The concept of quantum temporal imaging is proposed to manipulate the temporal correlation of entangled photons. In particular, we show that time correlation and anticorrelation can be converted to each other using quantum temporal imaging.

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to sample cells from an abnormal area for laboratory testing. image the breasts and guide biopsy of ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ...

  17. Retinal Imaging with Smartphone

    African Journals Online (AJOL)

    2016-08-23

    10) for retinal imaging in a resource-limited economy. Methods: A ... information sharing. Retinal Imaging with Smartphone. Address for correspondence: Dr. Dupe S. Ademola-. Popoola, Department of Ophthalmology, University ...

  18. Mariner 10 Image Archive

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mariner 10 Image Archive includes tools to view shaded relief maps of the surface of Mercury, a 3D globe, and all images acquired by NASA's Mariner 10 mission.

  19. MR imaging of the chest: A practical approach at 1.5 T

    International Nuclear Information System (INIS)

    Puderbach, M.; Hintze, C.; Ley, S.; Eichinger, M.; Kauczor, H.-U.; Biederer, J.

    2007-01-01

    Magnetic resonance imaging (MRI) is capable of imaging infiltrative lung diseases as well as solid lung pathologies with high sensitivity. The broad use of lung MRI was limited by the long study time as well as its sensitivity to motion and susceptibility artifacts. These disadvantages were overcome by the utilisation of new techniques such as parallel imaging. This article aims to propose a standard MR imaging protocol at 1.5 T and presents a spectrum of indications. The standard protocol comprises non-contrast-enhanced sequences. Following a GRE localizer (2D-FLASH), a coronal T2w single-shot half-Fourier TSE (HASTE) sequence with a high sensitivity for infiltrates and a transversal T1w 3D-GRE (VIBE) sequence with a high sensitivity for small lesions are acquired in a single breath hold. Afterwards, a coronal steady-state free precession sequence (TrueFISP) in free breathing is obtained. This sequence has a high sensitivity for central pulmonary embolism. Distinct cardiac dysfunctions as well as an impairment of the breathing mechanism are visible. The last step of the basic protocol is a transversal T2w-STIR (T2-TIRM) in a multi-breath holds technique to visualize enlarged lymph nodes as well as skeletal lesions. The in-room time is approximately 15 min. The extended protocol comprises contrast-enhanced sequences (3D-GRE sequence (VIBE) after contrast media; about five additional minutes). Indications are tumorous lesions, unclear (malignant) pleural effusions and inflammatory diseases (vaskulitis). A perfusion analysis can be achieved using a 3D-GRE in shared echo-technique (TREAT) with a high temporal resolution. This protocol can be completed using a MR-angiography (3D-FLASH) with high spatial resolution. The in-room time for the complete protocol is approximately 30 min

  20. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform)

    International Nuclear Information System (INIS)

    Sorcini, B.; Tilikidis, A.

    2006-01-01

    Image-guided radiation therapy (IGRT) can be used to measure and correct positional errors for target and critical structures immediately prior to or during treatment delivery. Some of the most recent available methods applied for target localization are: trans-abdominal ultrasound, implanted markers with in room MV or kV X-rays, optical surface tracking systems, implantable electromagnetic markers, in room CT such as kVCT on rail, kilo-voltage or mega-voltage cone-beam CT (CBCT) and helical megavoltage CT. The verification of the accurate treatment position in conjunction with detailed anatomical information before every fraction can be essential for the outcome of the treatment. In this paper we present the on-board imager (OBI, Varian Medical Systems, Palo Alto, CA) that has been in routine clinical use at the Karolinska University Hospital since June 2004. The OBI has been used for on-line set-up correction of prostate patients using internal gold markers. Displacements of these markers can be monitored radiographically during the treatment course and the registered marker shifts act as a surrogate for prostate motion. For this purpose, on-board kV-kV seems to be an ideal system in terms of image quality. The CBCT function of OBI was installed in March 2005 at our department. It focuses on localizing tumors based on internal anatomy, not just on the conventional external marks or tattoos. The CBCT system provides the capacity for soft tissue imaging in the treatment position and real-time radiographic monitoring during treatment delivery. (authors)

  1. A technique for adaptive image-guided helical tomotherapy for lung cancer

    International Nuclear Information System (INIS)

    Ramsey, Chester R.; Langen, Katja M.; Kupelian, Patrick A.; Scaperoth, Daniel D.; Meeks, Sanford L.; Mahan, Stephen L.; Seibert, Rebecca M.

    2006-01-01

    Purpose: The gross tumor volume (GTV) for many lung cancer patients can decrease during the course of radiation therapy. As the tumor reduces in size during treatment, the margin added around the GTV effectively becomes larger, which can result in the excessive irradiation of normal lung tissue. The specific goal of this study is to evaluate the feasibility of using image-guided adaptive radiation therapy to adjust the planning target volume weekly based on the previous week's CT image sets that were used for image-guided patient setup. Methods and Materials: Megavoltage computed tomography (MVCT) images of the GTV were acquired daily on a helical tomotherapy system. These images were used to position the patient and to measure reduction in GTV volume. A planning study was conducted to determine the amount of lung-sparing that could have been achieved if adaptive therapy had been used. Treatment plans were created in which the target volumes were reduced after tumor reduction was measured. Results: A total of 158 MVCT imaging sessions were performed on 7 lung patients. The GTV was reduced by 60-80% during the course of treatment. The tumor reduction in the first 60 days of treatment can be modeled using the second-order polynomial R 0.0002t 2 - 0.0219t + 1.0, where R is the percent reduction in GTV, and t is the number of elapsed days. Based on these treatment planning studies, the absolute volume of ipsilateral lung receiving 20 Gy can be reduced between 17% and 23% (21% mean) by adapting the treatment delivery. The benefits of adaptive therapy are the greatest for tumor volumes ≥25 cm 3 and are directly dependent on GTV reduction during treatment. Conclusions: Megavoltage CT-based image guidance can be used to position lung cancer patients daily. This has the potential to decrease margins associated with daily setup error. Furthermore, the adaptive therapy technique described in this article can decrease the volume of healthy lung tissue receiving above 20 Gy

  2. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  3. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  4. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  5. Image Segmentation Algorithms Overview

    OpenAIRE

    Yuheng, Song; Hao, Yan

    2017-01-01

    The technology of image segmentation is widely used in medical image processing, face recognition pedestrian detection, etc. The current image segmentation techniques include region-based segmentation, edge detection segmentation, segmentation based on clustering, segmentation based on weakly-supervised learning in CNN, etc. This paper analyzes and summarizes these algorithms of image segmentation, and compares the advantages and disadvantages of different algorithms. Finally, we make a predi...

  6. Statistical Image Analysis of Longitudinal RAVENS Images

    Directory of Open Access Journals (Sweden)

    Seonjoo eLee

    2015-10-01

    Full Text Available Regional analysis of volumes examined in normalized space (RAVENS are transformation images used in the study of brain morphometry. In this paper, RAVENS images are analyzed using a longitudinal variant of voxel-based morphometry (VBM and longitudinal functional principal component analysis (LFPCA for high-dimensional images. We demonstrate that the latter overcomes the limitations of standard longitudinal VBM analyses, which does not separate registration errors from other longitudinal changes and baseline patterns. This is especially important in contexts where longitudinal changes are only a small fraction of the overall observed variability, which is typical in normal aging and many chronic diseases. Our simulation study shows that LFPCA effectively separates registration error from baseline and longitudinal signals of interest by decomposing RAVENS images measured at multiple visits into three components: a subject-specific imaging random intercept that quantifies the cross-sectional variability, a subject-specific imaging slope that quantifies the irreversible changes over multiple visits, and a subject-visit specific imaging deviation. We describe strategies to identify baseline/longitudinal variation and registration errors combined with covariates of interest. Our analysis suggests that specific regional brain atrophy and ventricular enlargement are associated with multiple sclerosis (MS disease progression.

  7. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  8. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  9. Multispectral infrared imaging interferometer

    Science.gov (United States)

    Potter, A. E., Jr.

    1971-01-01

    Device permitting simultaneous viewing of infrared images at different wavelengths consists of imaging lens, Michelson interferometer, array of infrared detectors, data processing equipment for Fourier transformation of detector signal, and image display unit. Invention is useful in earth resources applications, nondestructive testing, and medical diagnoses.

  10. What is an Image?

    DEFF Research Database (Denmark)

    Fausing, Bent

    Images multiply rapidly in these years as apps, tablets, social media, selfies, GPS, drones, visualizations in science, not least, medicine, etc. An image is very dynamic and very moving at this time. The conference will focus on these changes - and try to see if there is still something that can...... be assembled to a characteristic of What is an Image?...

  11. Imaging in aortic dissection

    International Nuclear Information System (INIS)

    Yu-Qing Liu, M.D.

    1995-01-01

    Aortic dissection (AD) is a catastrophic aortic disease. Imaging techniques play an invaluable role in the diagnostic evaluation and management of patients with AD. Major signs of AD with different imaging modalities are described in this article with a pertinent discussion on guidelines for the optimized approach of imaging study (13 refs.)

  12. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  13. Hyperspectral image processing methods

    Science.gov (United States)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  14. Long range image enhancement

    CSIR Research Space (South Africa)

    Duvenhage, B

    2015-11-01

    Full Text Available the surveillance system performance. This paper discusses an image processing method that tracks the behaviour of the PSF and then de-warps the image to reduce the disruptive effects of turbulence. Optical flow, an average image filter and a simple unsharp mask...

  15. Imaging of hemophilic pseudotumor

    International Nuclear Information System (INIS)

    Ruiz, F.; Reche, A.; Garcia, E.; Chamorro, C.

    2002-01-01

    A case of hemophilic pseudotumor studied with different imaging techniques is reported. Typical and atypical images that may guide the individualized management of each patient are reviewed. In this case, imaging techniques were especially useful in guiding the biopsy. (Author) 14 refs

  16. Mammographic Image Enhancement

    International Nuclear Information System (INIS)

    Md Saion Salikin; Asmaliza Hashim; Wan Hazlinda Ismail; Azuhar Ripin; Norriza Mohd Isa; Mak Chee Hoe

    2005-01-01

    Its main aim is to process an image by utilizing enhancement techniques so that the enhanced image is better and more suitable than the original image for specific application. The objective of the project is to enhance the mammography image by using Interactive Data Language (IDL) software with some of the selected enhancement technique. In order to obtain the best enhanced image, the mammograms with different setting are prepared and the best mammography image is selected by using manual mode with technical factors 28 kV and 56.3 mAs namely 12 mA tube current and 0.45 second time exposure. This paper highlights four enhancement techniques that are chosen and the variables of each algorithm of the techniques are determined. The enhancement techniques used are image clipping technique with image clipped 21% at low ends and 5% at high ends, filtering technique with low pass filter, unsharp masking technique by creating a mask using a low pass filter and global histogram equalization. There are 24 technique permutations produced by the four enhancement techniques chosen, according to order of the enhancement technique applied on a particular mammographic image. These technique permutations are applied to the image using IDL. The enhancement technique permutation of histogram equalization, unsharp masking technique, filtering technique and image clipping technique, that produce the best enhanced image is determined qualitatively. The results of enhancement techniques by using IDL are presented in brief in this presentation. (Author)

  17. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  18. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  19. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  20. IMAGES OF DECOLONIZATION / IMAGES DE LA DECOLONISATION

    OpenAIRE

    Ganapathy-Doré , Geetha; Olinga , Michel; Crowley , Cornelius; Naumann , Michel; Le Boulicaut , Yannick; Coulardeau , Jacques; Taouchichet , Sofiane; Éric Owono Zambo , Claude; Dosoruth , Sonia; Vilar , Fernanda; Griffin , Patrick

    2013-01-01

    Il s'agit d'un document avec références.; International audience; This collected anthology of essays on the Images of Decolonization follows in the footsteps of an earlier SARI publication on Changing Images of India and Africa (Paris: L'Harmattan, 2011). It approaches the idea of decolonization from the point of view of the politics of representation with articles on the gaze of colonial and postcolonial photographers, the fantasized images of indigenous women (Pocahontas in the USA and La M...

  1. [The influence of energy on X-ray voxel Monte Carlo algorithm based on kilovoltage cone beam computed tomography images for dose calculation].

    Science.gov (United States)

    Wu, Kui; Li, Guangjun; Bai, Sen

    2012-06-01

    This paper is to investigate how the different energy impact the accuracy of X-ray Voxel Monte Carlo (XVMC) algorithm when it is applied for dose calculation in Kilovoltage cone beam CT(kv-CBCT) images. The CIRS model 062 was used to calibrate the CT numbers-relative electron density table of CT and CBCT images. CT and CBCT scans were performed when simulation model of human head-and-neck placed in same position to simulate locally advanced nasopharyngeal carcinoma. 6MV and 15MV photon were selected in Monaco TPS to design intensity-modulated radiotherapy (IMRT) plans. XVMC algorithm was selected for dose calculation then the calculation results were compared and the impact of energy on the calculation accuracy was analyzed. The comparison results of dose volume histograms (DVHs), dose received by targets, organs at risk, conform index and uniform index of targets indicate a high agreement between CT based and CBCT based plans. More evaluation indicators show higher accuracy when 15MV photon was selected for dose calculation. gamma index analysis with the criterion of 2mm/2% and threshold of 10% was used for comparison of dose distribution. The average pass rate of each plane was 99.3% +/- 0.47% on the base of 6MV and 99.4% +/- 0.44% on the base of 15MV. CBCT images after calibration has high accuracy of dose calculation and has higher accuracy when 15MV photon was selected.

  2. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.

    2014-08-05

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.

  3. Metabolic Imaging of Infection.

    Science.gov (United States)

    Lawal, Ismaheel; Zeevaart, JanRijn; Ebenhan, Thomas; Ankrah, Alfred; Vorster, Mariza; Kruger, Hendrik G; Govender, Thavendran; Sathekge, Mike

    2017-11-01

    Metabolic imaging has come to occupy a prominent place in the diagnosis and management of microbial infection. Molecular probes available for infection imaging have undergone a rapid evolution starting with nonspecific agents that accumulate similarly in infection, sterile inflammation, and neoplastic tissue and then extending to more targeted probes that seek to identify specific microbial species. This focus review describes the metabolic and molecular imaging techniques currently available for clinical use in infection imaging and those that have demonstrated promising results in preclinical studies with the potential for clinical applications. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Imaging spinal infection

    Directory of Open Access Journals (Sweden)

    Jay Acharya

    2016-06-01

    Full Text Available Infection involving the vertebral column, including the bone, intervertebral disk, and paravertebral soft tissues is critical and early diagnosis and directed treatment is paramount. Different infectious organisms present with variable imaging characteristics, which when examined in conjunction with the clinical history, can facilitate early diagnosis and treatment and ultimately prevent patient morbidity and mortality. This article discusses the pathophysiology of infection of the vertebral column, as well as the imaging findings of bacterial, tuberculous, and fungal spondylitis/spondylodiskitis. We review the imaging findings utilizing plain radiography, computed tomography, and magnetic resonance imaging, as well as a discussion regarding advanced imaging techniques.

  5. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  6. ImagingSIMS

    Energy Technology Data Exchange (ETDEWEB)

    2017-11-06

    ImagingSIMS is an open source application for loading, processing, manipulating and visualizing secondary ion mass spectrometry (SIMS) data. At PNNL, a separate branch has been further developed to incorporate application specific features for dynamic SIMS data sets. These include loading CAMECA IMS-1280, NanoSIMS and modified IMS-4f raw data, creating isotopic ratio images and stitching together images from adjacent interrogation regions. In addition to other modifications of the parent open source version, this version is equipped with a point-by-point image registration tool to assist with streamlining the image fusion process.

  7. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  8. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  9. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  10. Hip Imaging in Athletes: Sports Imaging Series.

    Science.gov (United States)

    Agten, Christoph A; Sutter, Reto; Buck, Florian M; Pfirrmann, Christian W A

    2016-08-01

    Hip or groin pain in athletes is common and clinical presentation is often nonspecific. Imaging is a very important diagnostic step in the work-up of athletes with hip pain. This review article provides an overview on hip biomechanics and discusses strategies for hip imaging modalities such as radiography, ultrasonography, computed tomography, and magnetic resonance (MR) imaging (MR arthrography and traction MR arthrography). The authors explain current concepts of femoroacetabular impingement and the problem of high prevalence of cam- and pincer-type morphology in asymptomatic persons. With the main focus on MR imaging, the authors present abnormalities of the hip joint and the surrounding soft tissues that can occur in athletes: intraarticular and extraarticular hip impingement syndromes, labral and cartilage disease, microinstability of the hip, myotendinous injuries, and athletic pubalgia. (©) RSNA, 2016.

  11. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    International Nuclear Information System (INIS)

    Wikjord, A.G.; Baumgartner, P.; Johnson, L.H.; Stanchell, F.W.; Zach, R.; Goodwin, B.W.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada's nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL's disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs

  12. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  13. Imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Giussani, Augusto; Hoeschen, Christoph

    2013-01-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  14. Lensless Imaging and Sensing.

    Science.gov (United States)

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.

  15. Optimization of CR images

    International Nuclear Information System (INIS)

    Ishida, Masamitsu

    1993-01-01

    The conventional screen/film system combines sensor, display and storage functions all together in one unit, which makes it difficult to optimize these functions separately. With the computed radiography (CR) system, on the other hand, these three functions are separated from each other into units, so that individual functions can be readily optimized by digital image processing techniques. The basic principle of CR system is to produce images optimized for various kinds of diagnosis consistently. The image processing is performed to automatically normalize digital image data so that consistent image total density and contrast is always ensured irrespective of variations in X-ray dose and energy. The image processing optimized for each set of exposure menus is performed, i.e., gradation processing, frequency processing, and dynamic range control processing. Finally, the relationships between patient dose and the image quality of CR system are described. (author)

  16. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  17. Learning chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pedrozo Pupo, John C. (ed.) [Magdalena Univ., Santa Maria (Colombia). Respire - Inst. for Respiratory Care

    2013-03-01

    Useful learning tool for practitioners and students. Overview of the imaging techniques used in chest radiology. Aid to the correct interpretation of chest X-ray images. Radiology of the thorax forms an indispensable element of the basic diagnostic process for many conditions and is of key importance in a variety of medical disciplines. This user-friendly book provides an overview of the imaging techniques used in chest radiology and presents numerous instructive case-based images with accompanying explanatory text. A wide range of clinical conditions and circumstances are covered with the aim of enabling the reader to confidently interpret chest images by correctly identifying structures of interest and the causes of abnormalities. This book, which will be an invaluable learning tool, forms part of the Learning Imaging series for medical students, residents, less experienced radiologists, and other medical staff. Learning Imaging is a unique case-based series for those in professional education in general and for physicians in prarticular.

  18. Digital cine-imaging

    International Nuclear Information System (INIS)

    Masuda, Kazuhiro

    1992-01-01

    Digitization of fluoroscopic images has been developed for the digital cine imaging system as a result of the computer technology, television technology, and popularization of interventional radiology. Present digital cine imaging system is able to offer images similar to cine film because of the higher operatability and better image quality with the development of interventional radiology. As a result, its higher usefulness for catheter diagnosis examination except for interventional radiology was reported, and the possibility of having filmless cine is close to becoming a reality. However several problems have been pointed out, such as spatial resolution, time resolution, storage and exchangeability of data, disconsolidated viewing functions, etc. Anyhow, digital cine imaging system has some unresolved points and lots the needs to be discussed. The tendency of digitization is the passage of the time and we have to promote a study for more useful digital cine imaging system in team medical treatment which centers on the patients. (author)

  19. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  20. Ambient mass spectrometry imaging

    DEFF Research Database (Denmark)

    Janfelt, Christian; Nørgaard, Asger W

    2012-01-01

    Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct...... comparison of the two methods: Images were recorded with the individual rows alternating between EASI and DESI, yielding a separate image for each technique recorded under perfectly similar conditions on the same sample. EASI works reliably for imaging of all samples, but the choice of spray solvent and flow...... rate is more critical in tissue imaging with EASI than with DESI. The overall sensitivity of EASI is, in general, slightly lower than that of DESI, and the representation of the dynamic range is different in images of the two techniques for some samples. However, for abundant compounds, EASI works well...

  1. Image Sampling with Quasicrystals

    Directory of Open Access Journals (Sweden)

    Mark Grundland

    2009-07-01

    Full Text Available We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.

  2. Model based image restoration for underwater images

    Science.gov (United States)

    Stephan, Thomas; Frühberger, Peter; Werling, Stefan; Heizmann, Michael

    2013-04-01

    The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential.

  3. Sonorous images through digital holographic images

    Science.gov (United States)

    Azevedo, Isabel; Sandford-Richardson, Elizabeth

    2017-03-01

    The art of the last fifty years has significantly surrounded the presence of the body, the relationship between human and interactive technologies. Today in interactive art, there are not only representations that speak of the body but actions and behaviours that involve the body. In holography, the image appears and disappears from the observer's vision field; because the holographic image is light, we can see multidimensional spaces, shapes and colours existing on the same time, presence and absence of the image on the holographic plate. And the image can be flowing in front of the plate that sometimes people try touching it with his hands. That means, to the viewer will be interactive events, with no beginning or end that can be perceived in any direction, forward or backward, depending on the relative position and the time the viewer spends in front of the hologram. To explore that feature we are proposing an installation with four holograms, and several sources of different kind of sounds connected with each hologram. When viewers will move in front of each hologram they will activate different sources of sound. The search is not only about the images in the holograms, but also the looking for different types of sounds that this demand will require. The digital holograms were produced using the HoloCam Portable Light System with the 35 mm camera Canon 700D to capture image information, it was then edited on computer using the Motion 5 and Final Cut Pro X programs.

  4. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  5. Upconversion based MIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Midinfrared (MIR) hyperspectral imaging has a great potential to be used as a tool for medical diagnostics featuring a combination of imaging and spectroscopy. In hyperspectral imaging, the images of the (biomedical) samples contains both spectral and spatial information....

  6. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  7. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Gatidis, Sergios; Schmidt, Holger; Gücke, Brigitte; Bezrukov, Ilja; Seitz, Guido; Ebinger, Martin; Reimold, Matthias; Pfannenberg, Christina A; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F

    2016-01-01

    The aim of this study was to evaluate the clinical applicability and technical feasibility of fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) compared with FDG PET/computed tomography (CT) in young children focusing on lesion detection, PET quantification, and potential savings in radiation exposure. Twenty examinations (10 PET/CT and 10 PET/MRI examinations) were performed prospectively in 9 patients with solid tumors (3 female, 6 male; mean age, 4.8 [1-6] years). Fluorodeoxyglucose PET/CT and FDG PET/MRI were performed sequentially after a single tracer injection. Lesion detection and analysis were performed independently in PET/CT and PET/MRI. Potential changes in diagnostic or therapeutic patient management were recorded. Positron emission tomography quantification in PET/MRI was evaluated by comparing standardized uptake values resulting from MRI-based and CT-based attenuation correction. Effective radiation doses of PET and CT were estimated. Twenty-one PET-positive lesions were found congruently in PET/CT and PET/MRI. Magnetic resonance imaging enabled significantly better detection of morphologic PET correlates compared with CT. Eight suspicious PET-negative lesions were identified by MRI, of which one was missed in CT. Sensitivity, specificity, and accuracy for correct lesion classification were not significantly different (90%, 47%, and 62% in PET/CT; 100%, 68%, and 79% in PET/MRI, respectively). In 4 patients, the use of PET/MRI resulted in a potential change in diagnostic management compared with PET/CT, as local and whole-body staging could be performed within 1 single examination. In 1 patient, PET/MRI initiated a change in therapeutic management. Positron emission tomography quantification using MRI-based attenuation correction was accurate compared with CT-based attenuation correction. Higher standardized uptake value deviations of about 18% were observed in the lungs due to misclassification in MRI

  8. Medical Imaging: A Review

    Science.gov (United States)

    Ganguly, Debashis; Chakraborty, Srabonti; Balitanas, Maricel; Kim, Tai-Hoon

    The rapid progress of medical science and the invention of various medicines have benefited mankind and the whole civilization. Modern science also has been doing wonders in the surgical field. But, the proper and correct diagnosis of diseases is the primary necessity before the treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The medical images plays an important role in clinical diagnosis and therapy of doctor and teaching and researching etc. Medical imaging is often thought of as a way to represent anatomical structures of the body with the help of X-ray computed tomography and magnetic resonance imaging. But often it is more useful for physiologic function rather than anatomy. With the growth of computer and image technology medical imaging has greatly influenced medical field. As the quality of medical imaging affects diagnosis the medical image processing has become a hotspot and the clinical applications wanting to store and retrieve images for future purpose needs some convenient process to store those images in details. This paper is a tutorial review of the medical image processing and repository techniques appeared in the literature.

  9. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  10. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  11. Correlation plenoptic imaging

    Science.gov (United States)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  12. Introduction to computer image processing

    Science.gov (United States)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  13. Clinical and imaging features associated with intracranial internal carotid artery calcifications in patients with ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Arda [Mersin University, Department of Neurology, Faculty of Medicine, Mersin (Turkey); Akpinar, Erhan [Hacettepe University, Department of Radiology, Faculty of Medicine, Ankara (Turkey); Topcuoglu, Mehmet Akif; Arsava, Ethem Murat [Hacettepe University, Department of Neurology, Faculty of Medicine, Ankara (Turkey)

    2015-05-01

    Intracranial internal carotid artery calcifications (ICAC), a frequent finding on imaging studies, are predictive of future stroke risk in population-based studies. The clinical significance of this observation among ischemic stroke patients is however less clear. In this study, we analyzed ICAC burden in relation to vascular risk factor profile, stroke etiology, and extent of craniocervical vascular calcifications in a consecutive series of ischemic stroke patients. The burden of ICAC was determined both on non-contrast CT and CT-angiography source images by semiquantitative scoring algorithms. The distribution of vascular risk factors, etiologic stroke subtype, and calcification burden in other craniocervical arteries was assessed among patients with no ICAC, mild-moderate ICAC, and severe ICAC. Of 319 patients included into the study, 28 % had no ICAC, 35 % had mild-moderate ICAC, and 37 % had severe ICAC on CT angiography. Independent factors associated with ICAC burden in multivariate analysis included age (p < 0.001), diabetes mellitus (p = 0.006), and coronary artery disease (p < 0.001). Furthermore, a stroke etiology of large artery atherosclerosis or cardioaortic embolism was significantly related to higher ICAC burden (p = 0.006). Patients with severe ICAC were more likely to harbor calcifications in other vascular beds (p < 0.001). All of these findings persisted when analyses were repeated with CT-based ICAC burden assessments. ICAC burden reflects a continuum of atherosclerotic disease involving carotid arteries together with other craniocervical vascular beds. ICAC is significantly associated with stroke of large vessel or cardioembolic origin. This information might help the clinician in prioritizing etiologic work-up in the acute period. (orig.)

  14. Negotiating the thumbnail image

    DEFF Research Database (Denmark)

    Thylstrup, Nanna Bonde; Teilmann-Lock, Stina

    2017-01-01

    understand the role of the thumbnail as an attention technology in the digital economy? And what kind of aesthetic does it produce? This paper examines the legal negotiations of the thumbnail image and the ensuing decision to conceptualize the thumbnail as a functional image against the cultural history...... of visual attention technologies and the aesthetics of their connective function. Such an endeavour, we propose, allows us to understand and appreciate the significant digital economy and particular aesthetic of the thumbnail image despite its apparent subtlety.......Thumbnail images are discreet, yet central navigational tools in increasingly complex visual information environments. Indeed, without thumbnail images there would be no image search: they are an inherent part of the information architecture of most digital information platforms. Yet, how might we...

  15. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... characteristics of the illumination light source, PALSLM, and phase contrast filter, based on the evaluation result....

  16. Introducing Zoomify Image

    Directory of Open Access Journals (Sweden)

    Adam Smith

    2007-03-01

    Full Text Available Zoomify Image is a mature product for easily publishing large, high-resolution images on the Web. End users view these images with existing Webbrowser software as quickly as they do normal, downsampled images. A Flash-based Zoomifyer client asynchronously streams image data to the Web browser as needed, resulting in response times approaching those of desktop applications using minimal bandwidth. The author, a librarian at Cornell University and the principal architect of a small, open-source company, worked closely with Zoomify to produce a cross-platform, opensource implementation of that company’s image-processing software and discusses how to easily deploy the product into a widely used Webpublishing environment. Limitations are also discussed as are areas of improvement and alternatives.

  17. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  18. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  19. Imaging arrangement and microscope

    Science.gov (United States)

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  20. Images of Usability

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    The term usability is ubiquitous in human-computer interaction, so much so that it is commonly used without definition. Rather than one established meaning of usability, there are, however, multiple images of usability. While each image provides a partial view, the partiality remains implicit...... unless confronted with alternative images. This study delineates six images of usability: universal usability, situational usability, perceived usability, hedonic usability, organizational usability, and cultural usability. The different foci of the images provide opportunities for becoming sensitized...... to manifold aspects of the use of a system and thereby acquiring a genuine understanding of its usability. The six images differ, for example, in the extent to which they include aspects of the outcome of the process of using a system or merely the process of use, whether they involve collaborative use...

  1. ANALYSIS OF FUNDUS IMAGES

    DEFF Research Database (Denmark)

    2000-01-01

    A method classifying objects man image as respective arterial or venous vessels comprising: identifying pixels of the said modified image which are located on a line object, determining which of the said image points is associated with crossing point or a bifurcation of the respective line object......, wherein a crossing point is represented by an image point which is the intersection of four line segments, performing a matching operation on pairs of said line segments for each said crossing point, to determine the path of blood vessels in the image, thereby classifying the line objects in the original...... image into two arbitrary sets, and thereafter designating one of the sets as representing venous structure, the other of the sets as representing arterial structure, depending on one or more of the following criteria: (a) complexity of structure; (b) average density; (c) average width; (d) tortuosity...

  2. Images in Social Media

    DEFF Research Database (Denmark)

    Ørnager, Susanne; Lund, Haakon

    This book focuses on methodologies, organization and communication of digital image collection research that utilize social media content. (“Image” is here understood as cultural, conventional and commercial - stock photos - representations.) The lecture offer expert views that provide different...... image – specifically photographic - research since 2005, when major social media platforms emerged. A citation analysis includes an overview of co-citation maps that demonstrating the nexus of image research literature and the journals in which they appear. Eye-tracking test whether scholarly templates...... focus on the proper features of an image such as persons, object, time etc., and if a prescribed theme affects the eye movements of the observers. The results may point to renewed requirements for building image search engines. As it stands, image management already requires new algorithms and a new...

  3. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...

  4. Advancing biomedical imaging.

    Science.gov (United States)

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-11-24

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel.

  5. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  6. MRI: Imaging of stomach

    International Nuclear Information System (INIS)

    Lam, W. W. M; Lee, J. S. W.; Ho, G.

    2007-01-01

    Full text: The study is to determine the optimal MRI bowel preparation regime for visualization of the stomach anatomy, Eight healthy volunteers were asked to take water, 75% barium and blueberry juice. The image quality and tolerance of different stomach distension regime were evaluated. Blueberry juice gave the best distension, but the signal intensity was not very homogeneous. Taking into account the image quality, tolerability and adverse effects, it is concluded that water is the most desirable oral contrast for MR stomach imaging

  7. Guidelines on oncologic imaging

    International Nuclear Information System (INIS)

    1989-01-01

    The present issue of European Journal of Radiology is devoted to guidelines on oncologic imaging. 9 experts on imaging in suspected or evident oncologic disease have compiled a broad survey on strategies as well as techniques on oncologic imaging. The group gives advice for detecting tumours at specific tumour sites and use modern literature to emphasize their recommendations. All recommendations are short, comprehensive and authoritative. (orig./MG)

  8. Colour image processing

    OpenAIRE

    Batlle i Grabulosa, Joan; Pacheco Valls, Lluís

    2008-01-01

    In the context of the round table the following topics related to image colour processing will be discussed: historical point of view. Studies of Aguilonius, Gerritsen, Newton and Maxwell. CIE standard (Commission International de lpsilaEclaraige). Colour models. RGB, HIS, etc. Colour segmentation based on HSI model. Industrial applications. Summary and discussion. At the end, video images showing the robustness of colour in front of B/W images will be presented

  9. Image Processing Software

    Science.gov (United States)

    1992-01-01

    To convert raw data into environmental products, the National Weather Service and other organizations use the Global 9000 image processing system marketed by Global Imaging, Inc. The company's GAE software package is an enhanced version of the TAE, developed by Goddard Space Flight Center to support remote sensing and image processing applications. The system can be operated in three modes and is combined with HP Apollo workstation hardware.

  10. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  11. Imaging of acute pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Elmar M.; Goerich, Johannes [Department of Radiology, University Hospitals of Ulm, Steinhoevel Strasse 9, 89075 Ulm (Germany)

    2002-08-01

    Acute pancreatitis is defined as an acute inflammatory process of the pancreas with variable involvement of peripancreatic tissues or remote organ systems. This article reports the current classification, definition and terminology, epidemiology and etiology, pathogenesis and pathological findings, clinical and laboratory findings, and finally imaging findings of acute pancreatitis with emphasis on cross-sectional imaging modalities such as ultrasound, computed tomography, and magnetic resonance imaging. (orig.)

  12. Microscopy imaging device with advanced imaging properties

    Science.gov (United States)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  13. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  14. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  15. Microscopy imaging device with advanced imaging properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  16. An Image Registration Method for Colposcopic Images

    Directory of Open Access Journals (Sweden)

    Efrén Mezura-Montes

    2013-01-01

    sequence and a division of such image into small windows. A search process is then carried out to find the window with the highest affinity in each image of the sequence and replace it with the window in the reference image. The affinity value is based on polynomial approximation of the time series computed and the search is bounded by a search radius which defines the neighborhood of each window. The proposed approach is tested in ten 310-frame real cases in two experiments: the first one to determine the best values for the window size and the search radius and the second one to compare the best obtained results with respect to four registration methods found in the specialized literature. The obtained results show a robust and competitive performance of the proposed approach with a significant lower time with respect to the compared methods.

  17. Producing images by ionography

    International Nuclear Information System (INIS)

    Pullan, B.R.; Dovas, T.; Mootes, B.M.

    1983-01-01

    A method and system for producing images by ionography and recording and storing same for display, comprising means for forming and recording a latent ionographic image on an electrically insulating film within a gas ionisation chamber between electrodes, scanning the latent image formed by an X-ray source, by means of an array of scanning electrodes movable on a platform to scan the latent image, the output signals from said scanning electrodes being amplified and digitised and thereafter placed in a digital storage and display device. (author)

  18. The Generalized Image

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    2017-01-01

    it could mean to conceive of images beyond the opposition between the abstract and the figurative: How could we think of images that are neither figurative nor abstract, or perhaps are both at the same time? How could we think of images that are not either signifying and representational or non...... the issue by revisiting a series of iconic images in early 1920s avant-garde film by the artists Man Ray and Fernand Léger. On this background, and in dialogue with film theorists and philosophers such as Malcolm Le Grice and Gilles Deleuze, I outline the basic properties and aesthetic potentials of what I...

  19. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  20. Optimisation of monochrome images

    International Nuclear Information System (INIS)

    Potter, R.

    1983-01-01

    Gamma cameras with modern imaging systems usually digitize the signals to allow storage and processing of the image in a computer. Although such computer systems are widely used for the extraction of quantitative uptake estimates and the analysis of time variant data, the vast majority of nuclear medicine images is still interpreted on the basis of an observer's visual assessment of a photographic hardcopy image. The optimisation of hardcopy devices is therefore vital and factors such as resolution, uniformity, noise grey scales and display matrices are discussed. Once optimum display parameters have been determined, routine procedures for quality control need to be established; suitable procedures are discussed. (U.K.)

  1. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  2. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  3. Pitfalls in neck imaging

    International Nuclear Information System (INIS)

    Gay, S.B.; Phillips, C.D.; Cornett, J.B.

    1991-01-01

    CT and MR imaging have become effective imaging modalities in the evaluation of primary head and neck neoplasms. As radiologists have gained experience in head and neck imaging, certain pitfalls have become evident. Identification of pathologic lymph nodes is the critical element in staging neoplasms of the head and neck. The diagnosis of cervical lymphadenopathy may be complicated by confusion with normal structures, inadequate contrast opacification of vascular structures, and poor scanning technique. This paper illustrates these potential problem areas on both CT and MR images and offers the authors' approach to further evaluation in problem cases

  4. Combinatorial Image Entropy

    DEFF Research Database (Denmark)

    Yuri, Shtarkov; Justesen, Jørn

    1997-01-01

    The concept of entropy for an image on a discrete two dimensional grid is introduced. This concept is used as an information theoretic bound on the coding rate for the image. It is proved that this quantity exists as a limit for arbitrary sets satisfying certain conditions.......The concept of entropy for an image on a discrete two dimensional grid is introduced. This concept is used as an information theoretic bound on the coding rate for the image. It is proved that this quantity exists as a limit for arbitrary sets satisfying certain conditions....

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3- ...

  6. Imaging of conjoined twins

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kieran [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Kiely, Edward M.; Spitz, Lewis [Great Ormond Street Hospital for Children, Department of Surgery, London (United Kingdom)

    2006-09-15

    The incidence of conjoined twins is estimated to be around 1 in 250,000 live births. There is a distinct female predominance. In this paper the imaging of conjoined twins both antenatally and postnatally is reviewed, in particular taking into consideration recent advances with multidetector CT. Accurate counselling of parents regarding the likely outcome of the pregnancy and the likelihood of successful separation is dependent on good prenatal imaging with ultrasound and MRI. Planning of postnatal surgical separation is aided by accurate preoperative imaging which, depending on the conjoined area, will encompass many imaging modalities, but often relies heavily on CT scanning. (orig.)

  7. Parallel magnetic resonance imaging

    International Nuclear Information System (INIS)

    Larkman, David J; Nunes, Rita G

    2007-01-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)

  8. Imaging in Psoriatic Arthritis

    DEFF Research Database (Denmark)

    Poggenborg, René Panduro; Østergaard, Mikkel; Terslev, Lene

    2015-01-01

    Psoriatic arthritis (PsA) is an inflammatory joint disease characterized by arthritis and often enthesitis in patients with psoriasis, presenting a wide range of manifestations in various patterns. Imaging procedures are primarily conventional radiography, ultrasonography (US), and magnetic...... resonance imaging (MRI); other modalities such as computed tomography are not used routinely. Imaging is an integral part of management of PsA. In this article, we provide an overview of the status, virtues, and limitations of imaging modalities in PsA, focusing on radiography, US, and MRI....

  9. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation with a si......The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  11. Diagnostic Imaging for Implants

    Directory of Open Access Journals (Sweden)

    Sanjay M Mallya

    2004-01-01

    Full Text Available Dental implants are a popular modality for permanent tooth replacement. The key to successful implant placement, its subsequent osseointegration and the final prosthetic rehabilitation is proper preoperative assessment. Diagnostic imaging plays an important role in the pre- and post-surgical evaluation process. Imaging is used to evaluate suitability of implant sites, aid in selection of appropriate implants, and finally evaluate implant placement and osseointegration. This article reviews the role of diagnostic imaging in the various phases and the advantages and limitations of the numerous imaging modalities.

  12. Imaging of osteochondritis dissecans.

    Science.gov (United States)

    Zbojniewicz, Andrew M; Laor, Tal

    2014-04-01

    Osteochondritis dissecans (OCD) can affect both adults and children, however the imaging characteristics and significance of imaging findings can differ in the juvenile subset with open physes. Radiography and magnetic resonance imaging (MRI) are the primary modalities used to aid in diagnosis, to define a treatment plan, to monitor progress, to assess surgical intervention, and to identify postoperative complications. Newer imaging techniques under continuous development may improve the accuracy of MRI for diagnosis and staging of OCD, and eventually may help to predict the durability of tissue-engineered constructs and cartilage repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  14. Photoacoustic imaging and spectroscopy

    CERN Document Server

    Wang, Lihong

    2009-01-01

    Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applic

  15. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  16. Image formation and image analysis in electron microscopy

    International Nuclear Information System (INIS)

    Heel, M. van.

    1981-01-01

    This thesis covers various aspects of image formation and image analysis in electron microscopy. The imaging of relatively strong objects in partially coherent illumination, the coherence properties of thermionic emission sources and the detection of objects in quantum noise limited images are considered. IMAGIC, a fast, flexible and friendly image analysis software package is described. Intelligent averaging of molecular images is discussed. (C.F.)

  17. The performance evaluation test for prototype model of Longwave Infrared Imager (LIR) onboard PLANET-C

    Science.gov (United States)

    Fukuhara, Tetsuya; Taguchi, Makoto; Imamura, Takeshi

    The PLANET-C mission, which is one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with four imagers at ultraviolet and infrared wavelengths, and radio occultation experiments will provide vertical profiles of the atmospheric temperature. These systematic, continuous remote observations will provide us with an unprecedented large data set of the Venusian atmospheric dynamics. The Longwave Infrared Imager (LIR), which mounts a commercial uncooled micro-bolometer array (UMBA), is one of four imagers onboard the spacecraft and detects thermal emission from the top of the sulfur dioxide cloud in a rather wide wavelength region of 8-12 µm to map the cloud-top temperature which is typically as low as 230 K. Unlike other imagers, LIR is able to take images of both dayside and nightside with equal quality and accuracy. The cloud-top temperature map will reflect the cloud height distribution in which a few hundred meters of difference in cloud height corresponds to temperature difference of 0.3 K. In order to detect the cloud height difference of a few hundred meters, LIR requires a noise equivalent temperature difference (NETD) of 0.3 K. The commercial UMBA camera is typically used for observing room-temperature targets, and thus the electronics and the driving parameters have been optimized for low temperature-targets. Images of blackbody targets in room temperature (˜300 K) and low temperature (˜230 K) have been acquired in a vacuum environment using a prototype model of LIR, showing that the NETD of 0.2 K and 0.8 K are achieved in room temperature and low temperature, respectively. Although the NETD at the low temperature is 4 times worse than the case for the room temperature, we expect that the requirement of N ET D < 0.3 K for a low-temperature target will be achieved by averaging several tens of images

  18. Destination image, image at destination. Methodological aspects

    Directory of Open Access Journals (Sweden)

    Pablo Díaz-Rodríguez

    2013-01-01

    Full Text Available Today, the part played by the image in the development of tourism, and, specially, as a diffe- rentiation element of a destination area is widely acknowledged. This is reflected to a great extent in the literature that focuses its interest on identifying the variables that motivate the purchase or stimulate the decision process. However, the reference to feedback processes or image control mechanisms as well as their creation, is surprising. An approach model to these processes will be exposed in this article.

  19. BMC Ecology image competition: the winning images

    Science.gov (United States)

    2013-01-01

    BMC Ecology announces the winning entries in its inaugural Ecology Image Competition, open to anyone affiliated with a research institute. The competition, which received more than 200 entries from international researchers at all career levels and a wide variety of scientific disciplines, was looking for striking visual interpretations of ecological processes. In this Editorial, our academic Section Editors and guest judge Dr Yan Wong explain what they found most appealing about their chosen winning entries, and highlight a few of the outstanding images that didn’t quite make it to the top prize. PMID:23517630

  20. Fast processing of foreign fiber images by image blocking

    Directory of Open Access Journals (Sweden)

    Yutao Wu

    2014-08-01

    Full Text Available In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extraction, image enhancement and segmentation, and image connection. At first, the captured color images were transformed into gray-scale images; followed by the inversion of gray-scale of the transformed images ; then the whole image was divided into several blocks. Thereafter, the subsequent step is to judge which image block contains the target foreign fiber image through image pre-decision. Then we segment the image block via OSTU which possibly contains target images after background eradication and image strengthening. Finally, we connect those relevant segmented image blocks to get an intact and clear foreign fiber target image. The experimental result shows that this method of segmentation has the advantage of accuracy and speed over the other segmentation methods. On the other hand, this method also connects the target image that produce fractures therefore getting an intact and clear foreign fiber target image.

  1. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    Science.gov (United States)

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no

  2. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  3. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  4. Single Image Super-Resolution via L0 Image Smoothing

    OpenAIRE

    Liu, Zhang; Huang, Qi; Li, Jian; Wang, Qi

    2014-01-01

    We propose a single image super-resolution method based on a L0 smoothing approach. We consider a low-resolution image as two parts: one is the smooth image generated by the L0 smoothing method and the other is the error image between the low-resolution image and the smoothing image. We get an intermediate high-resolution image via a classical interpolation and then generate a high-resolution smoothing image with sharp edges by the L0 smoothing method. For the error image, a...

  5. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging

    Science.gov (United States)

    Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.

    2017-09-01

    The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.

  6. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  7. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  8. Television Images and Adolescent Girls' Body Image Disturbance.

    Science.gov (United States)

    Botta, Renee A.

    1999-01-01

    Contributes to scholarship on the effects of media images on adolescents, using social-comparison theory and critical-viewing theory. Finds that media do have an impact on body-image disturbance. Suggests that body-image processing is the key to understanding how television images affect adolescent girls' body-image attitudes and behaviors. (SR)

  9. Imaging for cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Benoit Desjardins

    2016-11-01

    Full Text Available Clinical cardiac electrophysiology is the study of the origin and treatment of arrhythmia. There has been considerable recent development in this field, where imaging has had a transformational impact. In this invited review, we offer a global overview of the most important developments in the use of imaging in cardiac electrophysiology. We first describe the radiological imaging modalities involved in cardiac electrophysiology, to assess cardiac anatomy, function and scar. We then introduce an imaging modality with which readers are probably unfamiliar (electroanatomical mapping [EAM], but which is routinely used by electrophysiologists to plan and guide cardiac mapping and cardiac ablation therapy by catheter, a therapy which can reduce or even cure arrhythmia. We identify the limitations of EAM and describe how radiological imaging modalities can complement this technique. We then describe and illustrate how imaging has helped the diagnosis of arrhythmogenic conditions, and how imaging is used to plan and guide clinical cardiac electrophysiologic procedures and assess their results and complications. We focus on the two most common arrhythmias for which imaging has the greatest impact: atrial fibrillation and ventricular tachycardia.

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging ...

  11. Imaging of appendicitis

    Directory of Open Access Journals (Sweden)

    Himal Gajjar

    2008-12-01

    Full Text Available Appendicitis is one of the commonest causes of abdominal pain requiring surgery. Early diagnosis and management are essential to reduce morbidity and mortality. Imaging is valuable in the diagnosis of cases that are clinically atypical. Imaging also allows evaluation of the complications of appendicitis. In certain circumstances, conservative treatment of complicated appendicitis with percutaneous drainage is appropriate.

  12. Marketing mobile imaging services.

    Science.gov (United States)

    McCue, P

    1987-09-01

    Competition in the mobile imaging arena has put radiologists, radiology directors, and other health care professionals in the unfamiliar position of being marketing agents for their services. Mobile imaging is being promoted through consumer advertising as well as through the traditional route of physician referral. This article offers some of the marketing lessons being learned in the mobile arena.

  13. Ultrasonic Superharmonic Imaging

    NARCIS (Netherlands)

    P.L.M.J. van Neer (Paul)

    2010-01-01

    textabstractMedical ultrasound is one of the most prevalent imaging techniques used for diagnosing patients. The technique allows for the visualization of tissues in the human body. Compared to competing imaging techniques such as CT or MRI, medical ultrasound has numerous advantages: it is

  14. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  15. Nanophotonic Image Sensors

    Science.gov (United States)

    Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R. S.

    2016-01-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial‐based THz image sensors, filter‐free nanowire image sensors and nanostructured‐based multispectral image sensors. This novel combination of cutting edge photonics research and well‐developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. PMID:27239941

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... Patients may be turned to either side to improve the quality of the images. After you are ...

  17. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  18. Multicomponent MR Image Denoising

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2009-01-01

    Full Text Available Magnetic Resonance images are normally corrupted by random noise from the measurement process complicating the automatic feature extraction and analysis of clinical data. It is because of this reason that denoising methods have been traditionally applied to improve MR image quality. Many of these methods use the information of a single image without taking into consideration the intrinsic multicomponent nature of MR images. In this paper we propose a new filter to reduce random noise in multicomponent MR images by spatially averaging similar pixels using information from all available image components to perform the denoising process. The proposed algorithm also uses a local Principal Component Analysis decomposition as a postprocessing step to remove more noise by using information not only in the spatial domain but also in the intercomponent domain dealing in a higher noise reduction without significantly affecting the original image resolution. The proposed method has been compared with similar state-of-art methods over synthetic and real clinical multicomponent MR images showing an improved performance in all cases analyzed.

  19. Quantitative image restoration

    Science.gov (United States)

    Gladkova, Irina; Grossberg, Michael; Shahriar, Fazlul

    2010-04-01

    Even with the most extensive precautions and careful planning, space based imagers will inevitably experience problems resulting in partial data corruption and possible loss. Such a loss occurs, for example, when individual image detectors are damaged. For a scanning imager this results in missing lines in the image. Images with missing lines can wreak havoc since algorithms not typically designed to handle missing pixels. Currently the metadata stores the locations of missing data, and naive spatial interpolation is used to fill it in. Naive interpolation methods can create image artifacts and even statistically or physically implausible image values. We present a general method, which uses non-linear statistical regression to estimate the values of the missing data in a principled manner. A statistically based estimate is desirable because it will preserve the statistical structure of the uncorrupted data and avoid the artifacts of naive interpolation. It also means that the restored images are suitable as input for higher-level statistical products. Previous methods replaced the missing values with those of a single closely related band, by applying a function or lookup table. We propose to use the redundant information in multiple bands to restore the lost information. The estimator we present in this paper uses values in a neighborhood of the pixel to be estimated, and propose a value based on training data from the uncorrupted pixels. Since we use the spatial variations in other channels, we avoid the blurring inherent spatial interpolation, which have implicit smoothness priors.

  20. Imaging in hepatobiliary disease

    International Nuclear Information System (INIS)

    Dooley, J.

    1987-01-01

    This book covers the diagnostic and interventional use of imaging techniques in hepatobiliary disease. The first of the book's two sections describes the role of imaging in the diagnostic work up of common clinical syndromes. The second part is concerned with therapy and reviews interventional techniques for hepatobiliary disease