WorldWideScience

Sample records for ct dose index

  1. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  2. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  3. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  4. Measurement of MV CT dose index for Hi-ART helical tomotherapy unit

    International Nuclear Information System (INIS)

    Wang Yunlai; Liao Xiongfei

    2010-01-01

    Objective: To evaluate the patient dose from Hi-ART MV helical CT imaging in image-guided radiotherapy. Methods: Weighted CT dose index (CTDI W ) was measured with PTW TM30009 CT ion chamber in head and body phantoms, respectively,for slice thicknesses of 2, 4, 6 mm with scanned range of 5 cm and 15 cm. Dose length products (DLP) were subsequently calculated. The CTDI W and DLP were compared with XVI kV CBCT and ACQSim simulator CT for routine clinical protocols. Results: An inverse relationship between CTDI and the slice thickness was found. The dose distribution was inhomogeneous owing to the attenuation of the couch. CTDI and DLP had close relationship with the slice thickness and the scanned range. Patient dose from MVCT was lower than XVI CBCT for head, but larger for body scan. Conclusions: CTDI W can be used to assess the patient dose in MV helical CT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA and QC program. Appropriate slice thickness and scan range should be chosen to reduce the patient dose. (authors)

  5. COMPUTED TOMOGRAPHY DOSE INDEX MEASUREMENT FOR Hi-ART MEGAVOLTAGE HELICAL CT.

    Science.gov (United States)

    Liu, Minglu; Wang, Yunlai; Liao, Xiongfei

    2016-11-01

    On-line megavoltage computed tomography (MVCT) images are used to verify patient daily set-up in Hi-ART helical TomoTherapy unit. To evaluate the patient dose from MVCT scanning in image guidance, weighted computed tomography (CT) dose index (CTDI w ) was measured with PTW TM30009 CT pencil chamber in head and body phantoms for slice thicknesses of 2, 4 and 6 mm with different scan lengths. Dose length products (DLPs) were subsequently calculated. The CTDI w and DLP were compared with XVI kV CBCT and Brilliance simulator CT for routine clinical protocols. It was shown that CTDI and DLP had close relationship with the slice thickness and the scan length. The dose distribution in the transversal plane was very inhomogeneous due to the attenuation of the couch. Patient dose from MVCT was lower than XVI CBCT for the head scan, while larger for body scan. CTDI w , which is measured easily and reproducibly, can be used to assess the patient dose in MVCT. Regular measurement should be performed in QA & QC programmes. Appropriate slice thickness and scan range should be chosen to reduce the patient dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Measurements of computed tomography dose index for axial and spiral CT scanners

    International Nuclear Information System (INIS)

    Breiki, G; Abbas, Y.; Diab, H.M.; Gomaa, M

    2007-01-01

    The energy deposited in the patient by the rotating x-ray beam in computed tomography produces more uniform absorbed dose values within the section of imaged tissue than those produced in conventional radiological procedures. The dose values within a specific section are determined by factors such as voltage, current, scan field, rotation angle, filtration, collimation, and section thickness and spacing. This study is a part of extensive project, aiming to investigate practice of computed tomography at various hospitals and to implement a Reference Dose Levels (RDLs) to routine CT examinations in Egypt. The dosimetric quantities proposed in the European Guidelines (EG) for CT are weighted computed tomography dose index (CTDI w ) for a single slice and dose-length product (DLP) for a complete examination. Patient-related data as well as technical parameters for head, chest, abdomen and pelvis examinations were collected for seven CT scanners in public and private hospitals.Dose measurements were performed for both axial and spiral models for a range of CT examinations using CT dosimetry head and body phantoms, and ion chamber designed for CT dosimetry. The determined CTDI w and DLP values were compared with the European Commission reference dose levels (ECRDLs) and also with some international survey results. Mean values of CTDI w had a range of 36-69 m Gy with average 55 m Gy for head, and 11-35 mGy with average 23 mGy for chest, abdomen and pelvis examinations. The current reference CTDI w values are 60 m Gy for adult head and 25 m Gy for adult Abdomen

  7. Radiation exposure during paediatric CT in Sudan: CT dose, organ and effective doses

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khamis, H.M.; Ombada, T.H.; Alzimami, K.; Alkhorayef, M.; Sulieman, A.

    2015-01-01

    The purpose of this study was to assess the magnitude of radiation exposure during paediatric CT in Sudanese hospitals. Doses were determined from CT acquisition parameters using CT-Expo 2.1 dosimetry software. Doses were evaluated for three patient ages (0-1, 1-5 and 5-10 y) and two common procedures (head and abdomen). For children aged 0-1 y, volume CT air kerma index (C vol ), air Kerma-length product and effective dose (E) values were 19.1 mGy, 265 mGy.cm and 3.1 mSv, respectively, at head CT and those at abdominal CT were 8.8 mGy, 242 mGy.cm and 7.7 mSv, respectively. Those for children aged 1-5 y were 22.5 mGy, 305 mGy.cm and 1.1 mSv, respectively, at head CT and 12.6 mGy, 317 mGy.cm, and 5.1 mSv, respectively, at abdominal CT. Dose values and variations were comparable with those reported in the literature. Organ equivalent doses vary from 7.5 to 11.6 mSv for testes, from 9.0 to 10.0 mSv for ovaries and from 11.1 to 14.3 mSv for uterus in abdominal CT. The results are useful for dose optimisation and derivation of national diagnostic reference levels. (authors)

  8. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  9. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    International Nuclear Information System (INIS)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-01-01

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED adj ). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED adj between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED adj that differed by up to 44% from effective dose estimates that were not

  10. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose

  11. The in vivo relationship between cross-sectional area and CT dose index in abdominal multidetector CT with automatic exposure control

    Energy Technology Data Exchange (ETDEWEB)

    Meeson, S; Alvey, C M; Golding, S J, E-mail: stuart.meeson@nds.ox.ac.u [Radiology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU (United Kingdom)

    2010-06-15

    The relationship between patient cross-sectional area and both volume CT dose index (CTDI) and dose length product was explored for abdominal CT in vivo, using a 16 multidetector row CT (MDCT) scanner with automatic exposure control. During a year-long retrospective survey of patients with MDCT for symptoms of abdominal sepsis, cross-sectional areas were estimated using customised ellipses at the level of the middle of vertebra L3. The relationship between cross-sectional area and the exposure parameters was explored. Scans were performed using a LightSpeed 16 (GE Healthcare Medical Systems, Milwaukee, WI) operated with tube current modulation. From a survey of 94 patients it was found that the CTDI increased with the increase in patient cross-sectional area. The relationship was logarithmic rather than linear, with a least-squares fit to the data (R{sup 2} = 0.80). For abdominal CT the cross-sectional area gave a measure of patient size based on the region of the body to be exposed. Exposure parameters increased with increasing cross-sectional area and the greater radiation exposure of larger patients was partly a consequence of their size. Given increasing obesity levels we believe that cross-sectional area and scan length should be added to future dose surveys, allowing patient size to be considered as a factor of relevance when examining population doses.

  12. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  13. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh. [Tehran University of Medical Scienced(TUMS), School of Medicine, Department of Nedical Physics and Biomedical Engineering, Tehran (Iran, Islamic Republic of); Paydar, R. [Iran University of Medical Sciences(IUMS), Allied Medicine Faculty, Department of radiation Sciences, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  14. CT dose reduction in children

    International Nuclear Information System (INIS)

    Vock, Peter

    2005-01-01

    World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure. (orig.)

  15. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Vajtai, Petra L.; Hopkins, Katharine L.

    2015-01-01

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI vol ). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI vol . Reduced CTDI vol was achieved primarily by reductions in effective tube current-time product (mAs eff ) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI vol , size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI vol was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI vol and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  16. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  17. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  18. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.

  19. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?

    Science.gov (United States)

    2018-01-01

    Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.

  20. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses.

    Science.gov (United States)

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Theysohn, Jens; Wetter, Axel

    2018-03-28

    To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute. 1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013-2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103. Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose index vol (CTDI vol ); dose-length product (DLP body ); size-specific dose estimate (SSDE)] were also compared. Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices. • Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations. • These data allow identifying organs at risk of higher radiation dose. • Detailed knowledge of radiation dose may contribute to a better individual risk-stratification. • New CT-scanner generations involve markedly lower radiation doses compared to older devices.

  1. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  2. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  3. Accuracy of low dose CT in the diagnosis of appendicitis in childhood and comparison with USG and standard dose CT.

    Science.gov (United States)

    Yi, Dae Yong; Lee, Kyung Hoon; Park, Sung Bin; Kim, Jee Taek; Lee, Na Mi; Kim, Hyery; Yun, Sin Weon; Chae, Soo Ahn; Lim, In Seok

    Computed tomography should be performed after careful consideration due to radiation hazard, which is why interest in low dose CT has increased recently in acute appendicitis. Previous studies have been performed in adult and adolescents populations, but no studies have reported on the efficacy of using low-dose CT in children younger than 10 years. Patients (n=475) younger than 10 years who were examined for acute appendicitis were recruited. Subjects were divided into three groups according to the examinations performed: low-dose CT, ultrasonography, and standard-dose CT. Subjects were categorized according to age and body mass index (BMI). Low-dose CT was a contributive tool in diagnosing appendicitis, and it was an adequate method, when compared with ultrasonography and standard-dose CT in terms of sensitivity (95.5% vs. 95.0% and 94.5%, p=0.794), specificity (94.9% vs. 80.0% and 98.8%, p=0.024), positive-predictive value (96.4% vs. 92.7% and 97.2%, p=0.019), and negative-predictive value (93.7% vs. 85.7% and 91.3%, p=0.890). Low-dose CT accurately diagnosed patients with a perforated appendix. Acute appendicitis was effectively diagnosed using low-dose CT in both early and middle childhood. BMI did not influence the accuracy of detecting acute appendicitis on low-dose CT. Low-dose CT is effective and accurate for diagnosing acute appendicitis in childhood, as well as in adolescents and young adults. Additionally, low-dose CT was relatively accurate, irrespective of age or BMI, for detecting acute appendicitis. Therefore, low-dose CT is recommended for assessing children with suspected acute appendicitis. Copyright © 2017. Published by Elsevier Editora Ltda.

  4. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  5. Radiation risk index for pediatric CT. A patient-derived metric

    International Nuclear Information System (INIS)

    Samei, Ehsan; Tian, Xiaoyu; Paul Segars, W.; Frush, Donald P.

    2017-01-01

    There is a benefit in characterizing radiation-induced cancer risk in pediatric chest and abdominopelvic CT: a singular metric that represents the whole-body radiation burden while also accounting for age, gender and organ sensitivity. To compute an index of radiation risk for pediatric chest and abdominopelvic CT. Using a protocol approved by our institutional review board, 42 pediatric patients (age: 0-16 years, weight: 2-80 kg) were modeled into virtual whole-body anatomical models. Organ doses were estimated for clinical chest and abdominopelvic CT examinations of the patients using validated Monte Carlo simulations of two major scanner models. Using age-, size- and gender-specific organ risk coefficients, the values were converted to normalized effective dose (by dose length product) (denoted as the k factor) and a normalized risk index (denoted as the q factor). An analysis was performed to determine how these factors are correlated with patient age and size for both males and females to provide a strategy to better characterize individualized risk. The k factor was found to be exponentially correlated with the average patient diameter. For both genders, the q factor also exhibited an exponential relationship with both the average patient diameter and with patient age. For both factors, the differences between the scanner models were less than 8%. The study defines a whole-body radiation risk index for chest and abdominopelvic CT imaging, that incorporates individual estimated organ dose values, organ radiation sensitivity, patient size, exposure age and patient gender. This indexing metrology enables the assessment and potential improvement of chest and abdominopelvic CT performance through surveillance of practice dose profiles across patients and may afford improved informed communication. (orig.)

  6. Radiation risk index for pediatric CT. A patient-derived metric

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Duke University Medical Center, Department of Biomedical Engineering, Electrical and Computer Engineering, Durham, NC (United States); Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Tian, Xiaoyu [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Paul Segars, W. [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Frush, Donald P. [Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Duke University Medical Center, Division of Pediatric Radiology, Department of Radiology, Durham, NC (United States)

    2017-12-15

    There is a benefit in characterizing radiation-induced cancer risk in pediatric chest and abdominopelvic CT: a singular metric that represents the whole-body radiation burden while also accounting for age, gender and organ sensitivity. To compute an index of radiation risk for pediatric chest and abdominopelvic CT. Using a protocol approved by our institutional review board, 42 pediatric patients (age: 0-16 years, weight: 2-80 kg) were modeled into virtual whole-body anatomical models. Organ doses were estimated for clinical chest and abdominopelvic CT examinations of the patients using validated Monte Carlo simulations of two major scanner models. Using age-, size- and gender-specific organ risk coefficients, the values were converted to normalized effective dose (by dose length product) (denoted as the k factor) and a normalized risk index (denoted as the q factor). An analysis was performed to determine how these factors are correlated with patient age and size for both males and females to provide a strategy to better characterize individualized risk. The k factor was found to be exponentially correlated with the average patient diameter. For both genders, the q factor also exhibited an exponential relationship with both the average patient diameter and with patient age. For both factors, the differences between the scanner models were less than 8%. The study defines a whole-body radiation risk index for chest and abdominopelvic CT imaging, that incorporates individual estimated organ dose values, organ radiation sensitivity, patient size, exposure age and patient gender. This indexing metrology enables the assessment and potential improvement of chest and abdominopelvic CT performance through surveillance of practice dose profiles across patients and may afford improved informed communication. (orig.)

  7. Analysis of patient CT dose data using virtualdose

    Science.gov (United States)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT

  8. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  9. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  10. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    International Nuclear Information System (INIS)

    Mubarok, S; Lubis, L E; Pawiro, S A

    2016-01-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDI vol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDI vol with maximum difference compared to actual CTDI vol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%. (paper)

  11. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  12. Effects of automatic tube potential selection on radiation dose index, image quality, and lesion detectability in pediatric abdominopelvic CT and CTA: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Brinkley, Michael F.; Choudhury, Kingshuk Roy; Frush, Donald P. [Duke University School of Medicine, Department of Radiology, DUMC Box 3808, Durham, NC (United States); Ramirez-Giraldo, Juan C. [Siemens Healthcare, Malvern (United States); Samei, Ehsan; Wilson, Joshua M.; Christianson, Olav I. [Duke University School of Medicine, Clinical Imaging Physics Group, Department of Radiology, Durham, NC (United States); Frush, Daniel J. [Duke University School of Medicine, Medical Physics, Durham, NC (United States)

    2016-01-15

    To assess the effect of automatic tube potential selection (ATPS) on radiation dose, image quality, and lesion detectability in paediatric abdominopelvic CT and CT angiography (CTA). A paediatric modular phantom with contrast inserts was examined with routine pitch (1.4) and high pitch (3.0) using a standard abdominopelvic protocol with fixed 120 kVp, and ATPS with variable kVp in non-contrast, contrast-enhanced, and CTA mode. The volume CT dose index (CTDI{sub vol}), contrast-to-noise ratio (CNR) and lesion detectability index (d') were compared between the standard protocol and ATPS examinations. CTDI{sub vol} was reduced in all routine pitch ATPS examinations, with dose reductions of 27-52 % in CTA mode (P < 0.0001), 15-33 % in contrast-enhanced mode (P = 0.0003) and 8-14 % in non-contrast mode (P = 0.03). Iodine and soft tissue insert CNR and d' were improved or maintained in all ATPS examinations. kVp and dose were reduced in 25 % of high pitch ATPS examinations and in none of the full phantom examinations obtained after a single full phantom localizer. ATPS reduces radiation dose while maintaining image quality and lesion detectability in routine pitch paediatric abdominopelvic CT and CTA, but technical factors such as pitch and imaging range must be considered to optimize ATPS benefits. (orig.)

  13. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  14. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  15. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  16. Techniques and radiation dose in CT examinations of adult patients

    International Nuclear Information System (INIS)

    Elameen, S. E. A.

    2010-06-01

    The use of CT in medical diagnosis delivers radiation dose to patients that are higher than those from other radiological procedures. Lake of optimized protocols could be an additional source of increased dose. The aim of this study was to measure radiation doses in CT examination of the adults in three Sudanese hospitals. Details were obtained from approximately 160 CT examination carried out in 3 hospitals (3 CT scanners). Effective dose was calculated for each examination using CT dose indices. exposure related parameters and CT D1- to- effective dose conversion factors. CT air kerma index (CT D1) and dose length products (DLP) determined were below the established international reference dose levels. The mean effective doses in this study for the head, chest, and abdomen are 0.82, 3.7 and 5.4 mGy respectively. These values were observed that the effective dose per examination was lower in Sudan than in other countries. The report of a CT survey done in these centers indicates that the mean DLP values for adult patients were ranged from 272-460 mGy cm (head) 195-995 mGy cm (chest), 270-459 mGy cm (abdomen). There are a number of observed parameters that greatly need optimization, such as minimize the scan length, without missing any vital anatomical regions, modulation of exposure parameters (kV, mA, exposure time, and slice thickness) based on patient size and age. Another possible method is through use of contrast media only to optimize diagnostic yield. The last possible method is the use of radio protective materials for protection however, in order to achieve the above optimization strategies: there is great demand to educate CT personnel on the effects of scan parameter settings on radiation dose to patients and image quality required for accurate diagnosis. (Author)

  17. An assessment of the dose received by children from CT examinations along with the quality control parameters from a conventional CT system

    International Nuclear Information System (INIS)

    Sadeghyani, T.; Hashemi Malayeri, B.; Hashemi, H.; Sharafi, A. A.

    2005-01-01

    In 2000, the UNSCEAR reported that CT constitutes 5% of all the medical x-ray examinations and it contributes 34% of the resultant collective dose worldwide. Children are more sensitive to the ionizing radiations than adults. So, routine quality control tests are expected to be carried out periodically on the CT scanners. The aim of this research was to estimate the effective doses received by the children below two years of age from routine CT examinations carried out at an educational imaging center in Tehran. It was also aimed to evaluate the quality control parameters of the mentioned CT scanner at the same time. Materials and Methods: In this study, the Computed Tomography Dose Index were measured at the central axis of the CT gantry in air and in the standard quality control phantoms of the head and body (as recommended by the FDA) using a pencil ionization chamber and LiF TLD pellets for a single scan. By using the measured Computed Tomography Dose Index values and the IrnPACT software, the effective doses were calculated for every routine CT examination protocol. In this study, the quality control parameters such as noise, CT number calibration, high and low contrast resolution and the flatness of the CT image were also evaluated. These parameters were also measured using standard procedures and test objects. Results: The effective dose estimated in this research ranged from 2.05 to 21.45 and 2.05 to 15.7 mSv for the female and male children, respectively. The measured values of the Computed Tomography Dose Index in the standard head and body phantoms were 20.6) 2.01 and 11.13 f 1.04 mGy1100 mAs, respectively. The high and low contrast resolution was estimated to be 0.8 mm and 1.0 rnm, respectively. Conclusion: The estimated values of the effective doses in this research were less than the values reported for the Netherlands, the USA, Germany and were comparable with the values reported in the UK. The measured Computed Tomography Dose Index values were 11

  18. Low-dose Dental-CT

    International Nuclear Information System (INIS)

    Gahleitner, A.; Imhof, H.; Homolka, P.; Fuerhauser, R.; Freudenthaler, J.; Watzek, G.

    2000-01-01

    Dental-CT is a relatively new, increasingly used investigation technique in dental radiology. Several authors have stated that the indication for Dental-CT has to be chosen on a strict basis, due to high dose values. This article describes the technique of performing dental-CT and calculates the effective dose based on published data and own measurements as well as the dose reduction potential to achieve an optimized protocol for Dental-CT investigations. (orig.) [de

  19. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  20. CT dose profiles and MSAD calculation in a chest phantom

    International Nuclear Information System (INIS)

    Oliveira, Bruno Beraldo; Silva, Teogenes Augusto da

    2011-01-01

    For optimizing patient doses in computed tomography (CT), the Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a quality control parameter for CT scanners. Compliance with the DRLs can be verified by measuring the Computed Tomography Air Kerma Index with a calibrated pencil ionization chamber or by obtaining the dose distribution in CT scans. An analysis of the quality of five CT scanners in Belo Horizonte was done in terms of dose profile of chest scans and MSAD determinations. Measurements were done with rod shape lithium fluoride thermoluminescent dosimeters (TLD-100) distributed in cylinders positioned in peripheral and central regions of a polymethylmethacrylate chest phantom. The peripheral regions presented higher dose values. The longitudinal dose variation can be observed and the maximum dose was recorded at the edges of the phantom at the midpoint of the longitudinal axis. The MSAD results were in according to the DRL of 25 mGy established by Brazilian legislation. The results contribute to disseminate to hospitals and radiologists the proper procedure to use the thermoluminescent dosimeters for the calculation of the MSAD from the CT dose profiles and to notice the compliance with the DRLs. (author)

  1. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    Energy Technology Data Exchange (ETDEWEB)

    Park, M; Rosica, D; Agarwal, V; Di Carli, M; Dorbala, S [Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984 pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.

  2. Maltese CT doses for commonly performed examinations demonstrate alignment with published DRLs across europe

    International Nuclear Information System (INIS)

    Zarb, F.; McEntee, M.; Rainford, L.

    2012-01-01

    This work recommends dose reference levels (DRLs) for abdomen, chest and head computerised tomography (CT) examinations in Malta as the first step towards national CT dose optimisation. Third quartiles volume CT dose index values for abdomen: 12.1 mGy, chest: 13.1 mGy and head: 41 mGy and third quartile dose-length product values for abdomen: 539.4, chest: 492 and head: 736 mGy cm -1 are recommended as Maltese DRLs derived from this first Maltese CT dose survey. These values compare well with DRLs of other European countries indicating that CT scanning in Malta is consistent with standards of good practice. Further work to minimise dose without affecting image quality and extending the establishment of DRLs for other CT examinations is recommended. (authors)

  3. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  4. Optimizing CT technique to reduce radiation dose: effect of changes in kVp, iterative reconstruction, and noise index on dose and noise in a human cadaver.

    Science.gov (United States)

    Chang, Kevin J; Collins, Scott; Li, Baojun; Mayo-Smith, William W

    2017-06-01

    For assessment of the effect of varying the peak kilovoltage (kVp), the adaptive statistical iterative reconstruction technique (ASiR), and automatic dose modulation on radiation dose and image noise in a human cadaver, a cadaver torso underwent CT scanning at 80, 100, 120 and 140 kVp, each at ASiR settings of 0, 30 and 50 %, and noise indices (NIs) of 5.5, 11 and 22. The volume CT dose index (CTDI vol ), image noise, and attenuation values of liver and fat were analyzed for 20 data sets. Size-specific dose estimates (SSDEs) and liver-to-fat contrast-to-noise ratios (CNRs) were calculated. Values for different combinations of kVp, ASiR, and NI were compared. The CTDI vol varied by a power of 2 with kVp values between 80 and 140 without ASiR. Increasing ASiR levels allowed a larger decrease in CTDI vol and SSDE at higher kVp than at lower kVp while image noise was held constant. In addition, CTDI vol and SSDE decreased with increasing NI at each kVp, but the decrease was greater at higher kVp than at lower kVp. Image noise increased with decreasing kVp despite a fixed NI; however, this noise could be offset with the use of ASiR. The CT number of the liver remained unchanged whereas that of fat decreased as the kVp decreased. Image noise and dose vary in a complicated manner when the kVp, ASiR, and NI are varied in a human cadaver. Optimization of CT protocols will require balancing of the effects of each of these parameters to maximize image quality while minimizing dose.

  5. Patient dose simulation in X-ray CT using a radiation treatment-planning system

    International Nuclear Information System (INIS)

    Nakae, Yasuo; Oda, Masahiko; Minamoto, Takahiro

    2003-01-01

    Medical irradiation dosage has been increasing with the development of new radiological equipment and new techniques like interventional radiology. It is fair to say that patient dose has been increased as a result of the development of multi-slice CT. A number of studies on the irradiation dose of CT have been reported, and the computed tomography dose index (CTDI) is now used as a general means of determining CT dose. However, patient dose distribution in the body varies with the patient's constitution, bowel gas in the body, and conditions of exposure. In this study, patient dose was analyzed from the viewpoint of dose distribution, using a radiation treatment-planning computer. Percent depth dose (PDD) and the off-center ratio (OCR) of the CT beam are needed to calculate dose distribution by the planning computer. Therefore, X-ray CT data were measured with various apparatuses, and beam data were sent to the planning computer. Measurement and simulation doses in the elliptical phantom (Mix-Dp: water equivalent material) were collated, and the CT irradiation dose was determined for patient dose simulation. The rotational radiation treatment technique was used to obtain the patient dose distribution of CT, and patient dose was evaluated through simulation of the dose distribution. CT images of the thorax were sent to the planning computer and simulated. The result was that the patient dose distribution of the thorax was obtained for CT examination. (author)

  6. The measurement of organic radiation dose of multi-slice CT scanning by using the Chinese anthropomorphic chest phantom

    International Nuclear Information System (INIS)

    Peng Gang; Zeng Yongming; Luo Tianyou; Zhao Feng; Zhang Zhiwei; Yu Renqiang; Peng Shengkun

    2011-01-01

    Objective: Using the Chinese anthropomorphic chest phantom to measure the absorbed dose of various tissues and organs under different noise index, and to assess the radiation dose of MSCT chest scanning with the effective dose (ED). Methods: The equivalence of the Chinese anthropomorphic chest phantom (CDP-1 C) and the adult chest on CT sectional anatomy and X-ray attenuation was demonstrated. The absorbed doses of various tissues and organs under different noise index were measured by laying thermoluminescent dosimeters (TLD) inside the phantom, and the corresponding dose-length products (DLP) were recorded. Both of them were later converted into ED and comparison was conducted to analyze the dose levels of chest CT scanning with automatic tube current modulation (ATCM) under different noise index. Student t-test was applied using SPSS 12.0 statistical software. Results: The Phantom was similar to the human body on CT sectional anatomy. The average CT value of phantom are - 788.04 HU in lung, 45.64 HU in heart, 65.84 HU in liver, 254.32 HU in spine and the deviations are 0.10%, 3.04%, 4.49% and 4.36% respectively compared to humans. The difference of average CT value of liver was statistically significant (t=-8.705, P 0.05). As the noise index increased from 8.5 to 22.5, the DLP decreased from 393.57 mGy · cm to 78.75 mGy · cm and the organs dose declined. For example, the average absorbed dose decreased from 22.38 mGy to 3.66 mGy in lung. Compared to ED calculating by absorbed dose, the ED calculating by DLP was lower. The ED values of the two methods were 6.69 mSv and 8.77 mSv when the noise index was set at 8.5. Conclusions: Application of the Chinese anthropomorphic chest phantom to carry out CT dose assessment is more accurate. The noise index should be set more than 8.5 during the chest CT scanning based on ATCM technique. (authors)

  7. Optimised low-dose multidetector CT protocol for children with cranial deformity

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Jose Luis [Complejo Hospitalario Universitario de Vigo, Department of Radiology, Vigo, Pontevedra (Spain); Pombar, Miguel Angel [Complejo Hospitalario Universitario de Santiago, Department of Radiophysics, Santiago de Compostela, La Coruna (Spain); Pumar, Jose Manuel [Complejo Hospitalario Universitario de Santiago, Department of Radiology, Santiago de Compostela, La Coruna (Spain); Campo, Victor Miguel del [Complejo Hospitalario Universitario de Vigo, Department of Public Health, Vigo, Pontevedra (Spain)

    2013-08-15

    To present an optimised low-dose multidetector computed tomography (MDCT) protocol for the study of children with cranial deformity. Ninety-one consecutive MDCT studies were performed in 80 children. Studies were performed with either our standard head CT protocol (group 1, n = 20) or a low-dose cranial deformity protocol (groups 2 and 3). Group 2 (n = 38), initial, and group 3 (n = 33), final and more optimised. All studies were performed in the same 64-MDCT equipment. Cranial deformity protocol was gradationally optimised decreasing kVp, limiting mA range, using automatic exposure control (AEC) and increasing the noise index (NI). Image quality was assessed. Dose indicators such us CT dose index volume (CTDIvol), dose-length product (DLP) and effective dose (E) were used. The optimised low-dose protocol reached the following values: 80 kVp, mA range: 50-150 and NI = 23. We achieved a maximum dose reduction of 10-22 times in the 1- to 12-month-old cranium in regard to the 2004 European guidelines for MDCT. A low-dose MDCT protocol that may be used as the first diagnostic imaging option in clinically selected patients with skull abnormalities. (orig.)

  8. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    sizes and positions within patients, and advances in CT scanner design that have not been taken into account by the effective dose estimation methods. The analysis excludes uncertainties due to variation in patient head size and the size of the model heads. For each of the four dose estimation methods analysed, the smallest and largest uncertainties (stated at the 95% confidence interval) were; 20-31% (Nagel), 14-28% (ImpaCT), 20-36% (Wellhoefer) and 21-32% (DLP). In each case, the smallest dose estimate uncertainties apply when the CT Dose Index for the scanner has been measured. In general, each of the four methods provide reasonable estimates of effective dose from head CT scans, with the ImpaCT method having the marginally smaller uncertainties. This uncertainty analysis method may be applied to other types of CT scans, such as chest, abdomen and pelvis studies, and may reveal where improvements can be made to reduce the uncertainty of those effective dose estimates. As identified in the BEIR VII report (2006), improvement in the uncertainty of effective dose estimates for individuals is expected to lead to a greater understanding of the hazards posed by diagnostic radiation exposures. (author)

  9. On the uncertainties in effective dose estimates of adult CT head scans

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Estimates of the effective dose to adult patients from computed tomography (CT) head scanning can be calculated using a number of different methods. These estimates can be used for a variety of purposes, such as improving scanning protocols, comparing different CT imaging centers, and weighing the benefits of the scan against the risk of radiation-induced cancer. The question arises: What is the uncertainty in these effective dose estimates? This study calculates the uncertainty of effective dose estimates produced by three computer programs (CT-EXPO, CTDosimetry, and ImpactDose) and one method that makes use of dose-length product (DLP) values. Uncertainties were calculated in accordance with an internationally recognized uncertainty analysis guide. For each of the four methods, the smallest and largest overall uncertainties (stated at the 95% confidence interval) were: 20%-31% (CT-EXPO), 15%-28% (CTDosimetry), 20%-36% (ImpactDose), and 22%-32% (DLP), respectively. The overall uncertainties for each method vary due to differences in the uncertainties of factors used in each method. The smallest uncertainties apply when the CT dose index for the scanner has been measured using a calibrated pencil ionization chamber

  10. Evaluation of radiation dose in pediatric head CT examination: a phantom study

    Science.gov (United States)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, Ahmad Taufek Abdul

    2018-01-01

    The aim of this study was to evaluate the radiation dose in pediatric head Computed Tomography examination. It was reported that decreasing tube voltage in CT examination can reduce the dose to patients significantly. A head phantom was scanned with dual-energy CT at 80 kV and 120 kV. The tube current was set using automatic exposure control mode and manual setting. The pitch was adjusted to 1.4, 1.45 and 1.5 while the slice thickness was set at 5 mm. The dose was measured based on CT Dose Index (CTDI). Results from this study have shown that the image noise increases substantially with low tube voltage. The average dose was 2.60 mGy at CT imaging parameters of 80 kV and 10 - 30 mAs. The dose increases up to 17.19 mGy when the CT tube voltage increases to 120 kV. With the reduction of tube voltage from 120 kV to 80 kV, the radiation dose can be reduced by 12.1% to 15.1% without degradation of contrast-to-noise ratio.

  11. Radiation dose reduction in parasinus CT by spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Sedlmair, Martin; Allmendinger, Thomas [Siemens Healthcare GmbH, Forchheim (Germany)

    2017-02-15

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR{sub eye} {sub globe/air} did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  12. Radiation dose reduction in parasinus CT by spectral shaping

    International Nuclear Information System (INIS)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang; Sedlmair, Martin; Allmendinger, Thomas

    2017-01-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR_e_y_e _g_l_o_b_e_/_a_i_r did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  13. Patient- and cohort-specific dose and risk estimation for abdominopelvic CT: a study based on 100 patients

    Science.gov (United States)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2012-03-01

    The purpose of this work was twofold: (a) to estimate patient- and cohort-specific radiation dose and cancer risk index for abdominopelvic computer tomography (CT) scans; (b) to evaluate the effects of patient anatomical characteristics (size, age, and gender) and CT scanner model on dose and risk conversion coefficients. The study included 100 patient models (42 pediatric models, 58 adult models) and multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which DLP-normalized-effective dose (k factor) and DLP-normalized-risk index values (q factor) were derived. The k factor showed exponential decrease with increasing patient size. For a given gender, q factor showed exponential decrease with both increasing patient size and patient age. The discrepancies in k and q factors across scanners were on average 8% and 15%, respectively. This study demonstrates the feasibility of estimating patient-specific organ dose and cohort-specific effective dose and risk index in abdominopelvic CT requiring only the knowledge of patient size, gender, and age.

  14. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  15. Estimation of breast dose and cancer risk in chest and abdomen CT procedures

    International Nuclear Information System (INIS)

    Eltahir, Suha Abubaker Ali

    2013-05-01

    The use of CT in medical diagnosis delivers radiation doses to patents that are higher than those from other radiological procedures. Lack of optimized protocols be an additional source of increased dose in developing countries. The aims of this study are first, to measure patient doses during CT chest and abdomen procedures, second, to estimate the radiation dose to the breast, and third to quantify the radiation risks during the procedures. Patient doses from two common CT examinations were obtained from four hospitals in Khartoum.The patient doses were estimated using measurement of CT dose indexes (CTDI), exposure-related parameters, and the IMPACT spreadsheet based on NRPB conversion factors. A large variation of mean organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scanner type. The largest range was found for CT of the chest, for which the dose varied from 2.3 to 47 (average 24.7) mSv and for abdomen CT, it was 1.6 to 18.8 (average 10.2) mSv. Radiation dose to the breast ranged from 1.6 to 32.9 mSv for the chest and 1.1 to 13.2 mSv for the abdomen. The radiation risk per procedure was high. The obtained values were mostly higher than the values of organ doses reported from the other studies. It was concluded that current clinical chest and abdomen protocols result in variable radiation doses to the breast. The magnitude of exposure may have implications for imaging strategies.(Author)

  16. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  17. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies

    Energy Technology Data Exchange (ETDEWEB)

    Komlosi, Peter; Zhang, Yanrong; Leiva-Salinas, Carlos; Ornan, David; Grady, Deborah [University of Virginia, Department of Radiology and Medical Imaging, Division of Neuroradiology, PO Box 800170, Charlottesville, VA (United States); Patrie, James T.; Xin, Wenjun [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [University of Virginia, Department of Radiology and Medical Imaging, Division of Neuroradiology, PO Box 800170, Charlottesville, VA (United States); Centre Hospitalier Universitaire Vaudois, Department of Radiology, Lausanne (Switzerland)

    2014-03-15

    Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDI{sub vol}), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDI{sub vol} and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality. (orig.)

  18. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies

    International Nuclear Information System (INIS)

    Komlosi, Peter; Zhang, Yanrong; Leiva-Salinas, Carlos; Ornan, David; Grady, Deborah; Patrie, James T.; Xin, Wenjun; Wintermark, Max

    2014-01-01

    Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDI vol ), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDI vol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality. (orig.)

  19. Low-dose dental CT

    International Nuclear Information System (INIS)

    Rustemeyer, P.; Eich, H.T.; John-Mikolajewski, V.; Mueller, R.D.

    1999-01-01

    Purpose: The intention of this study was to reduce patient dose during dental CT in the planning for osseointegrated implants. Methods and Materials: Dental CTs were performed with a spiral CT (Somatom Plus 4, Siemens) and a dental software package. Use of the usual dental CT technique (120 kVp; 165 mA, 1 s rotation time, 165 mAs; pitch factor 1) was compared with a new protocol (120 kVp; 50 mA; 0.7 s rotation time; 35 mAs; pitch factor 2) which delivered the best image quality at the lowest possible radiation dose, as tested in a preceding study. Image quality was analysed using a human anatomic head preparation. Four radiologists analysed the images independently. A Wilcoxon rank pair-test was used for statistic evaluation. The doses to the thyroid gland, the active bone marrow, the salivary glands, and the eye lens were determined in a tissue-equivalent phantom (Alderson-Rando Phantom) with lithium fluoride thermoluminescent dosimeters at the appropriate locations. Results: By mAs reduction from 165 to 35 and using a pitch factor of 2, the radiation dose could be reduced by a factor of nine (max.) (e.g., the bone marrow dose could be reduced from 23.6 mSv to 2.9 mSv, eye lens from 0.5 mSv to 0.3 mSv, thyroid gland from 2.5 mSv to 0.5 mSv, parotid glands from 2.3 mSv to 0.4 mSv). The dose reduction did not lead to an actual loss of image quality or diagnostic information. Conclusion: A considerable dose reduction without loss of diagnostic information is achievable in dental CT. Dosereducing examination protocols like the one presented may further expand the use of preoperative dental CT. (orig.) [de

  20. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  1. Clinical application of low-dose spiral CT for orthodontics

    International Nuclear Information System (INIS)

    Xie Na; Gan Yungen; Shu Huang; Lin FeiFei; Li Zhiyong; Sun Jie

    2009-01-01

    Objective: To determine the effect of reducing the value of mA or kV on the image quality and the radiation dose of the patients undergoing low-dose spiral CT for orthodontics. Methods: Thirty patients were divided into three groups, each group has 10 patients. They were group 1 (80 kV and 200 mA), group 2 (120 kV and 80 mA), group 3 (120 kV and 200 mA) The volume CT dose index (CTDI) was recorded and the average dose-length produce (DLP) was calculated in three groups,respectively. Image quality of three groups were compared and scored by two radiologists, and the results were statistically analysed. Results: The CTDI and DLP of 80 kV group (group 2) were 8.7 mGy and (36.80 ± 3.60) mGy · cm, respectively, those of 80 mA group (group 3) were 19.6 mGy and (82.14 ± 7.18) mGy · cm, respectively, and those of conventional-dose group (group 1) were 19.6 mGy and (82.14 ± 7.18) mGy · cm, respectively. There was no significant difference among three groups in diagnostic image quality. Conclusions: Low-dose spiral CT for orthodontics, especially the low-kV scan, may decrease the radiation exposure and guarantee the image quality. (authors)

  2. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    International Nuclear Information System (INIS)

    Ang, W C; Hashim, S; Karim, M K A; Bahruddin, N A; Salehhon, N; Musa, Y

    2017-01-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients ( n =20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients ( n =20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDI vol ) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDI vol significantly decreased by 38% in LD CT compared to STD CT ( p <0.05). Objective and subjective image quality were statistically improved with AIDR 3D ( p <0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis. (paper)

  3. Usefulness of low-dose CT in the detection of pulmonary metastasis of gestational trophoblastic tumours

    International Nuclear Information System (INIS)

    Xu, X.J.; Lou, F.L.; Zhang, M.M.; Pan, Z.M.; Zhang, L.

    2007-01-01

    Aim: To determine whether a low-dose spiral chest computed tomography (CT) examination could replace standard-dose chest CT in detecting pulmonary metastases in patients with gestational trophoblastic tumour (GTT). Materials and methods: In a prospective investigation, 67 chest CT examinations of 39 GTT patients were undertaken. All the patients underwent CT examinations using standard-dose (150 mAs, pitch 1, standard reconstruction algorithm) and low-dose (40 mAs, pitch 2, bone reconstruction algorithm) protocols. Two radiologists interpreted images independently. A metastasis was defined as a nodule within lung parenchyma that could not be attributed to a pulmonary vessel. The number of metastases detected with each protocol was recorded. The size of each lesion was measured and categorized as <5, 5-9.9, and ≥10 mm. Wilcoxon's signed rank test was used to assess the difference between the numbers of lesion detected by the two protocols. Results: The CT dose index (CTDI) for the standard-dose and low-dose CT protocols was 10.4 mGy and 1.4 mGy, respectively. One thousand, six hundred, and eighty-two metastases were detected by standard-dose CT, and 1460 lesions by the low-dose protocol. The numbers detected by low-dose CT were significantly less than those detected by standard-dose CT (Z = -3.776, p < 0.001), especially for nodules smaller than 5 mm (Z = -4.167, p < 0.001). However, the disease staging and risk score of the patients were not affected by use of the low-dose protocol. Conclusion: Low-dose chest CT can be used as a staging and follow-up procedure for patients with GTT

  4. Patient doses in CT examinations in Switzerland: Implementation of national diagnostic reference levels

    International Nuclear Information System (INIS)

    Treier, R.; Aroua, A.; Verdun, F. R.; Samara, E.; Stuessi, A.; Trueb, P. R.

    2010-01-01

    Diagnostic reference levels (DRLs) were established for 21 indication-based CT examinations for adults in Switzerland. One hundred and seventy-nine of 225 computed tomography (CT) scanners operated in hospitals and private radiology institutes were audited on-site and patient doses were collected. For each CT scanner, a correction factor was calculated expressing the deviation of the measured weighted computed tomography dose index (CTDI) to the nominal weighted CTDI as displayed on the workstation. Patient doses were corrected by this factor providing a realistic basis for establishing national DRLs. Results showed large variations in doses between different radiology departments in Switzerland, especially for examinations of the petrous bone, pelvis, lower limbs and heart. This indicates that the concept of DRLs has not yet been correctly applied for CT examinations in clinical routine. A close collaboration of all stakeholders is mandatory to assure an effective radiation protection of patients. On-site audits will be intensified to further establish the concept of DRLs in Switzerland. (authors)

  5. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-01-01

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV bw ) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV bw , background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake

  6. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org [Division of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States); Shulkin, Barry L. [Nuclear Medicine and Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  7. Radiation dose reduction in pediatric CT

    International Nuclear Information System (INIS)

    Robinson, A.E.; Hill, E.P.; Harpen, M.D.

    1986-01-01

    The relationship between image noise and radiation dose was investigated in computed tomography (CT) images of a pediatric abdomen phantom. A protocol which provided a minimum absorbed dose consistent with acceptable image noise criteria was determined for a fourth generation CT scanner. It was found that pediatric abdominal CT scans could maintain diagnostic quality with at least a 50% reduction in dose from the manufacturers' suggested protocol. (orig.)

  8. CT dose management

    International Nuclear Information System (INIS)

    Zasheva, Ts.; Georgiev, E.; Kirova, G.

    2013-01-01

    Full text: Introduction: In recent decades Computed Tomography established itself as one of the most common study with a very wide range of applications and techniques of scanning. Best diagnostic value of the method resist to the risks of ionizing radiation, as statistics show that CT is one of the main sources of continuously increasing dose to the population. What you will learn: The physical parameters of the X-ray tube and the principles of image reconstruction; The relationship between variables parameters and the received dose; The ratio between the force and voltage of the current to the image quality, Influence of the used contrast medium to the physical properties of the image, The ratio of patient BMI to image processing, Effective use of knowledge for the optimal CT protocol. Discussions: The goal to reduce the dose received by the patient during a CT scan while keeping the diagnostic quality of the image puts to the test as handset X-ray producers and technicians who need to master the technique of study protocol forming as well as to balance the harm - benefit ratio. Among the most popular techniques are these of dose modulation, low-dose computed tomography at the expense of a reduction of the current or voltage intensity, and control of the number of post-processing algorithms for the image reconstruction. Conclusion: The training of radiologists and X-ray technicians plays a major role in optimizing of technical parameters in view of the reduction of the dose for the patient, while maintaining the diagnostic quality of the image

  9. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  10. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States) and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States) and Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2012-06-15

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  11. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    International Nuclear Information System (INIS)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  12. Use of model-based iterative reconstruction (MBIR) in reduced-dose CT for routine follow-up of patients with malignant lymphoma: dose savings, image quality and phantom study

    International Nuclear Information System (INIS)

    Herin, Edouard; Chiaradia, Melanie; Cavet, Madeleine; Deux, Jean-Francois; Rahmouni, Alain; Gardavaud, Francois; Beaussart, Pauline; Richard, Philippe; Haioun, Corinne; Itti, Emmanuel; Luciani, Alain

    2015-01-01

    To evaluate both in vivo and in phantom studies, dose reduction, and image quality of body CT reconstructed with model-based iterative reconstruction (MBIR), performed during patient follow-ups for lymphoma. This study included 40 patients (mean age 49 years) with lymphoma. All underwent reduced-dose CT during follow-up, reconstructed using MBIR or 50 % advanced statistical iterative reconstruction (ASIR). All had previously undergone a standard dose CT with filtered back projection (FBP) reconstruction. The volume CT dose index (CTDIvol), the density measures in liver, spleen, fat, air, and muscle, and the image quality (noise and signal to noise ratio, SNR) (ANOVA) observed using standard or reduced-dose CT were compared both in patients and a phantom study (Catphan 600) (Kruskal Wallis). The CTDIvol was decreased on reduced-dose body CT (4.06 mGy vs. 15.64 mGy p < 0.0001). SNR was higher in reduced-dose CT reconstructed with MBIR than in 50 % ASIR or than standard dose CT with FBP (patients, p ≤ 0.01; phantoms, p = 0.003). Low contrast detectability and spatial resolution in phantoms were not altered on MBIR-reconstructed CT (p ≥ 0.11). Reduced-dose CT with MBIR reconstruction can decrease radiation dose delivered to patients with lymphoma, while keeping an image quality similar to that obtained on standard-dose CT. (orig.)

  13. Use of model-based iterative reconstruction (MBIR) in reduced-dose CT for routine follow-up of patients with malignant lymphoma: dose savings, image quality and phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Herin, Edouard; Chiaradia, Melanie; Cavet, Madeleine; Deux, Jean-Francois; Rahmouni, Alain [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); Gardavaud, Francois; Beaussart, Pauline [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Richard, Philippe [GE Healthcare France, Buc (France); Haioun, Corinne [Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); AP-HP, Hopitaux Universitaires Henri Mondor, Hemopathies Lymphoides, Creteil (France); Itti, Emmanuel [Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); AP-HP, Hopitaux Universitaires Henri Mondor, Medecine Nucleaire, Creteil (France); Luciani, Alain [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); INSERM Unite U 955, Creteil (France); AP-HP, Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, CHU Henri Mondor, Creteil Cedex (France)

    2015-08-15

    To evaluate both in vivo and in phantom studies, dose reduction, and image quality of body CT reconstructed with model-based iterative reconstruction (MBIR), performed during patient follow-ups for lymphoma. This study included 40 patients (mean age 49 years) with lymphoma. All underwent reduced-dose CT during follow-up, reconstructed using MBIR or 50 % advanced statistical iterative reconstruction (ASIR). All had previously undergone a standard dose CT with filtered back projection (FBP) reconstruction. The volume CT dose index (CTDIvol), the density measures in liver, spleen, fat, air, and muscle, and the image quality (noise and signal to noise ratio, SNR) (ANOVA) observed using standard or reduced-dose CT were compared both in patients and a phantom study (Catphan 600) (Kruskal Wallis). The CTDIvol was decreased on reduced-dose body CT (4.06 mGy vs. 15.64 mGy p < 0.0001). SNR was higher in reduced-dose CT reconstructed with MBIR than in 50 % ASIR or than standard dose CT with FBP (patients, p ≤ 0.01; phantoms, p = 0.003). Low contrast detectability and spatial resolution in phantoms were not altered on MBIR-reconstructed CT (p ≥ 0.11). Reduced-dose CT with MBIR reconstruction can decrease radiation dose delivered to patients with lymphoma, while keeping an image quality similar to that obtained on standard-dose CT. (orig.)

  14. Influence of Ultra-Low-Dose and Iterative Reconstructions on the Visualization of Orbital Soft Tissues on Maxillofacial CT.

    Science.gov (United States)

    Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W

    2017-08-01

    Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.

  15. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    Science.gov (United States)

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  16. Breast dose reduction for chest CT by modifying the scanning parameters based on the pre-scan size-specific dose estimate (SSDE)

    Energy Technology Data Exchange (ETDEWEB)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Oda, Seitaro; Nakaura, Takeshi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Sakabe, Daisuke; Hatemura, Masahiro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Honjo, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Honjo, Kumamoto (Japan)

    2017-06-15

    To investigate the usefulness of modifying scanning parameters based on the size-specific dose estimate (SSDE) for a breast-dose reduction for chest CT. We scanned 26 women with a fixed volume CT dose index (CTDI{sub vol}) (15 mGy) and another 26 with a fixed SSDE (15 mGy) protocol (protocol 1 and 2, respectively). In protocol 2, tube current was calculated based on the patient habitus obtained on scout images. We compared the mean breast dose and the inter-patient breast dose variability and performed linear regression analysis of the breast dose and the body mass index (BMI) of the two protocols. The mean breast dose was about 35 % lower under protocol 2 than protocol 1 (10.9 mGy vs. 16.8 mGy, p < 0.01). The inter-patient breast dose variability was significantly lower under protocol 2 than 1 (1.2 mGy vs. 2.5 mGy, p < 0.01). We observed a moderate negative correlation between the breast dose and the BMI under protocol 1 (r = 0.43, p < 0.01); there was no significant correlation (r = 0.06, p = 0.35) under protocol 2. The SSDE-based protocol achieved a reduction in breast dose and in inter-patient breast dose variability. (orig.)

  17. Verification of CTDI and Dlp values for a head tomography reported by the manufacturers of the CT scanners, using a CT dose profiler probe, a head phantom and a piranha electrometer

    International Nuclear Information System (INIS)

    Castillo C, E.; Garcia F, I. B.; Garcia H, J.; Roman L, S.; Salmeron C, O.

    2015-10-01

    The extensive use of Computed Tomography (CT) and the associated increase in patient dose calls for an accurate dose evaluation technique. The CT contributes up to 70% of the total dose given to patients during X-ray examinations. The rapid advancements in CT technology are placing new demands on the methods and equipment that are used for quality assurance. The wide beam widths found in CT scanners with multiple beam apertures make it impossible to use existing CT ionization chambers to measure the total dose given to the patient. Using a standard 10 cm CT ionization chamber may result in inaccurate measurements due to underestimation of the dose profile for wide beams. The use a CT dose profiler based on solid-state technology and the Piranha electrometer from RTI electronics provides a potential solution to the arising concerns over patient dose. This study intend to evaluate the feasibility and accuracy of CT Dose Index (CTDI) and Dose Length Product (Dlp) values for a head tomography reported by the manufacturers of the CT scanners at each study. (Author)

  18. Verification of CTDI and Dlp values for a head tomography reported by the manufacturers of the CT scanners, using a CT dose profiler probe, a head phantom and a piranha electrometer

    Energy Technology Data Exchange (ETDEWEB)

    Castillo C, E.; Garcia F, I. B.; Garcia H, J.; Roman L, S. [Servicios de Salud de Michoacan, Centro Estatal de Atencion Oncologica, Gertrudis Bocanegra No. 300, Col. Cuauhtemoc, 58020 Morelia, Michoacan (Mexico); Salmeron C, O., E-mail: edithcastillocorona@gmail.com [Servicios de Salud de Michoacan, Hospital General Dr. Miguel Silva, Isidro Huarte s/n, Centro Historico, 58000 Morelia, Michoacan (Mexico)

    2015-10-15

    The extensive use of Computed Tomography (CT) and the associated increase in patient dose calls for an accurate dose evaluation technique. The CT contributes up to 70% of the total dose given to patients during X-ray examinations. The rapid advancements in CT technology are placing new demands on the methods and equipment that are used for quality assurance. The wide beam widths found in CT scanners with multiple beam apertures make it impossible to use existing CT ionization chambers to measure the total dose given to the patient. Using a standard 10 cm CT ionization chamber may result in inaccurate measurements due to underestimation of the dose profile for wide beams. The use a CT dose profiler based on solid-state technology and the Piranha electrometer from RTI electronics provides a potential solution to the arising concerns over patient dose. This study intend to evaluate the feasibility and accuracy of CT Dose Index (CTDI) and Dose Length Product (Dlp) values for a head tomography reported by the manufacturers of the CT scanners at each study. (Author)

  19. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    Science.gov (United States)

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of

  20. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    Science.gov (United States)

    Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.

    2017-05-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.

  1. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    International Nuclear Information System (INIS)

    Osman, N D; Shamsuri, S B M; Razali, M A S M; Isa, S M; Tan, Y W

    2017-01-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDI vol and CTDI w ) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDI w ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients. (paper)

  2. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    Science.gov (United States)

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  3. Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination.

    Science.gov (United States)

    Tsujiguchi, Takakiyo; Obara, Hideki; Ono, Shuichi; Saito, Yoko; Kashiwakura, Ikuo

    2018-04-05

    Computed tomography (CT) has recently been utilized in various medical settings, and technological advances have resulted in its widespread use. However, medical radiation exposure associated with CT scans accounts for the largest share of examinations using radiation; thus, it is important to understand the organ dose and effective dose in detail. The CT dose index and dose-length product are used to evaluate the organ dose. However, evaluations using these indicators fail to consider the age and body type of patients. In this study, we evaluated the effective dose based on the CT examination data of 753 patients examined at our hospital using the size-specific dose estimate (SSDE) method, which can calculate the exposure dose with consideration of the physique of a patient. The results showed a large correlation between the SSDE conversion factor and physique, with a larger exposure dose in patients with a small physique when a single scan is considered. Especially for children, the SSDE conversion factor was found to be 2 or more. In addition, the patient exposed to the largest dose in this study was a 10-year-old, who received 40.4 mSv (five series/examination). In the future, for estimating exposure using the SSDE method and in cohort studies, the diagnostic reference level of SSDE should be determined and a low-exposure imaging protocol should be developed to predict the risk of CT exposure and to maintain the quality of diagnosis with better radiation protection of patients.

  4. Dose assessment according to changes in algorithm in cardiac CT

    Science.gov (United States)

    Jang, H. C.; Cho, J. H.; Lee, H. K.; Hong, I. S.; Cho, M. S.; Park, C. S.; Lee, S. Y.; Dong, K. R.; Goo, E. H.; Chung, W. K.; Ryu, Y. H.; Lim, C. S.

    2012-06-01

    The principal objective of this study was to determine the effects of the application of the adaptive statistical iterative reconstruction (ASIR) technique in combination with another two factors (body mass index (BMI) and tube potential) on radiation dose in cardiac computed tomography (CT). For quantitative analysis, regions of interest were positioned on the central region of the great coronary artery, the right coronary artery, and the left anterior descending artery, after which the means and standard deviations of measured CT numbers were obtained. For qualitative analysis, images taken from the major coronary arteries (right coronary, left anterior descending, and left circumflex) were graded on a scale of 1-5, with 5 indicating the best image quality. Effective dose, which was calculated by multiplying the value of the dose length product by a standard conversion factor of 0.017 for the chest, was employed as a measure of radiation exposure dose. In cardiac CT in patients with BMI of less than 25 kg/m2, the use of 40% ASIR in combination with a low tube potential of 100 kVp resulted in a significant reduction in the radiation dose without compromising diagnostic quality. Additionally, the combination of the 120 kVp protocol and the application of 40% ASIR application for patients with BMI higher than 25 kg/m2 yielded similar results.

  5. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  6. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuru, E-mail: m2rbimn@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Hara, Masaki; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan)

    2012-11-15

    Purpose: To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Patients and methods: Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. Results: The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14 {+-} 15 [SD] and -16 {+-} 29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. Conclusion: DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required.

  7. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  8. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: Accuracy, complications and radiation dose

    International Nuclear Information System (INIS)

    Prosch, Helmut; Stadler, Alfred; Schilling, Matthias; Bürklin, Sandra; Eisenhuber, Edith; Schober, Ewald; Mostbeck, Gerhard

    2012-01-01

    Background: The aim of this retrospective study was to compare the diagnostic accuracy, the frequency of complications, the duration of the interventions and the radiation doses of CT fluoroscopy (CTF) guided biopsies of lung lesions with those of multislice CT (MS-CT) biopsy mode-guided biopsies. Methods: Data and images from 124 consecutive patients undergoing CTF-guided lung biopsy (group A) and 132 MS-CT-biopsy mode-guided lung biopsy (group B) were reviewed. CTF-guided biopsies were performed on a Siemens Emotion 6 CT scanner with intermittent or continuous CT-fluoroscopy, MS-CT biopsy mode-guided biopsies were performed on a Siemens Emotion 16 CT scanner. All biopsies were performed with a coaxial needle technique. Results: The two groups (A vs. B) did not differ significantly regarding sensitivity (95.5% vs. 95.9%), specificity (96.7% vs. 95.5%), negative predictive value (87.9% vs. 84%) or positive predictive value (98.8% vs. 98.9%). Pneumothorax was observed in 30.0% and 32.5% of the patients, respectively. Chest tube placement was necessary in 4% (group A) and 13% (group B) of the patients. The duration of the intervention was significantly longer in group A (median 37 min vs. 32 min, p = 0.04). The mean CT dose index (CTDI) was 422 in group A and 36.3 in group B (p < 0.001). Conclusion: Compared to CTF-guided biopsies, chest biopsies using the MS-CT biopsy mode show dramatically lower CTDI levels. Although the diagnostic yield of the procedures do not differ significantly, biopsies using the MS-CT-biopsy mode have a three-fold higher rate of chest tube placement.

  9. Dose profile study in head CT scans using radiochromic films

    International Nuclear Information System (INIS)

    Ladino G, A. M.; Prata M, A.

    2016-10-01

    Diagnostic images of computed tomography generate higher doses than other methods of diagnostic radiology using X-ray beam attenuation. Clinical applications of CT have been increased by technological advances, what leads to a wide variety of scanner in the Brazilian technological pool. It has been difficult to implement dose reduction strategies because of the lack of proper guidance on computed tomography examinations. However, CT scanners allow adjusting acquisition parameter according to the patients physical profile and diagnostic application for which the scan is intended. The knowledge of the dose distribution is important because changes in image acquisition parameters may provide dose reduction. In this study, it was used a cylindrical head phantom in PMMA with 5 openings, what allows dose measurement in 5 regions. In a GE CT scanner, Discovery model of 64 channels, the central slice of the head phantom was irradiated and the absorbed doses were measured using a pencil ionization chamber. Radiochromic film strips were placed in the peripheral and in the central region of the head phantom and was performed a scan of 10 cm in the phantom central region. The scan was performed using the head scanning protocol of the radiobiology service, with a voltage of 120 kV. After scanning, the radiochromic film strips were digitalized and their digital images were used to have the dose longitudinal profiles. The dose values recorded have variation in a range of 18.66 to 23.57 mGy. In the results it was compared the dose index values obtained by the pencil chamber measurement to the dose longitudinal profiles recorded by the film strips. (Author)

  10. Dose profile study in head CT scans using radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Ladino G, A. M.; Prata M, A., E-mail: amlgphys@gmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Diagnostic images of computed tomography generate higher doses than other methods of diagnostic radiology using X-ray beam attenuation. Clinical applications of CT have been increased by technological advances, what leads to a wide variety of scanner in the Brazilian technological pool. It has been difficult to implement dose reduction strategies because of the lack of proper guidance on computed tomography examinations. However, CT scanners allow adjusting acquisition parameter according to the patients physical profile and diagnostic application for which the scan is intended. The knowledge of the dose distribution is important because changes in image acquisition parameters may provide dose reduction. In this study, it was used a cylindrical head phantom in PMMA with 5 openings, what allows dose measurement in 5 regions. In a GE CT scanner, Discovery model of 64 channels, the central slice of the head phantom was irradiated and the absorbed doses were measured using a pencil ionization chamber. Radiochromic film strips were placed in the peripheral and in the central region of the head phantom and was performed a scan of 10 cm in the phantom central region. The scan was performed using the head scanning protocol of the radiobiology service, with a voltage of 120 kV. After scanning, the radiochromic film strips were digitalized and their digital images were used to have the dose longitudinal profiles. The dose values recorded have variation in a range of 18.66 to 23.57 mGy. In the results it was compared the dose index values obtained by the pencil chamber measurement to the dose longitudinal profiles recorded by the film strips. (Author)

  11. Dual energy CT of the chest: how about the dose?

    Science.gov (United States)

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 m

  12. Quality assurance in CT: implementation of the updated national diagnostic reference levels using an automated CT dose monitoring system.

    Science.gov (United States)

    Appel, E; Kröpil, P; Bethge, O T; Aissa, J; Thomas, C; Antoch, G; Boos, J

    2018-03-20

    To evaluate the implementation of the updated computed tomography (CT) diagnostic reference levels (DRLs) from the German Federal Office for Radiation Protection into clinical routine using an automatic CT dose monitoring system. CT radiation exposure was analysed before and after implementing the updated national DRLs into routine clinical work in 2016. After the implementation process, institutional CT protocols were mapped to the anatomical regions for which DRLs were provided. Systematically, protocols that exceeded the thresholds were optimised and analysed in detail. The CT radiation output parameters analysed were volumetric CT dose index (CTDIvol) and dose-length product (DLP). Three radiologists evaluated subjective image quality using a three-point Likert scale. The study included 94,258 CT series (from 27,103 CT examinations) in adult patients performed in 2016. When averaged over all body regions with available DRL, institutional CTDIvol/DLP values were always below the DRLs (65.2±32.9%/67.3±41.5% initially; 59.4±32%/60.5±39.9% after optimisation). Values exceeding the national DRLs were found for pelvis (n=268; CTDIvol 107.7±65.7%/DLP 106.3±79.3%), lumbar spine (n=91; 160.8±74.7%/175.2±104.1%), and facial bones (n=527; 108±39%/152.7±75.7%). After optimisation, CTDIvol and DLP were 87.9±73%/87.8±80.8% for the pelvis, 67.8±33.2%/74.5±50.6% for the lumbar spine and 95.1±45.8%/133.3±74.6% for the viscerocranium. An automatic CT dose monitoring system enabled not only comprehensive monitoring of a DRL implementation process but can also help to optimise radiation exposure. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2014-01-01

    The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDI vol ) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans. (orig.)

  14. Monte Carlo dose calibration in CT scanner

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.; Subbaiah, K.V.; Thayalan, K.

    2008-01-01

    Computed Tomography (CT) scanner is a high radiation imaging modality compared to radiography. The dose from a CT examination can vary greatly depending on the particular CT scanner used, the area of the body examined, and the operating parameters of the scan. CT is a major contributor to collective effective dose in diagnostic radiology. Apart from the clinical benefits, the widespread use of multislice scanner is increasing radiation level to patient in comparison with conventional CT scanner. So, it becomes necessary to increase awareness about the CT scanner. (author)

  15. An investigation into CT radiation dose variations for head examinations on matched equipment

    International Nuclear Information System (INIS)

    Zarb, Francis; Foley, Shane; Toomey, Rachel; Rainford, Louise; Holm, Susanne; Evanoff, Michael G.

    2016-01-01

    This study investigated radiation dose and image quality differences for computed tomography (CT) head examinations across centres with matched CT equipment. Radiation dose records and imaging protocols currently employed across three European university teaching hospitals were collated, compared and coded as Centres A, B and C from specification matched CT equipment models. Patient scans (n = 40) obtained from Centres A and C were evaluated for image quality, based on the visualisation of Commission of European Community (CEC) image quality criteria using visual grading characteristic (VGC) analysis, where American Board of Radiology examiners (n = 11) stated their confidence in identifying anatomical criteria. Mean doses in terms of CT dose index (CTDI vol -mGy) and dose length product (DLP-mGy cm) were as follows: Centre A-33.12 mGy and 461.45 mGy cm; Centre B -101 mGy (base)/32 mGy (cerebrum) and 762 mGy cm and Centre C-71.98 mGy and 1047.26 mGy cm, showing a significant difference (p ≤ 0.05) in DLP across centres. VGC analysis indicated better visualisation of CEC criteria on Centre C images (VGC AUC 0.225). All three imaging protocols are routinely used clinically, and image quality is acceptable in each centre. Clinical centres with identical model CT scanners have variously customised their protocols achieving a range of dose savings and still resulting in clinically acceptable image quality. (authors)

  16. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  17. Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study

    International Nuclear Information System (INIS)

    Li Fengtan; Li Dong; Zhang Yunting

    2013-01-01

    Objective: To assess the influence of tube current and tube voltage on the CT attenuation, radiation dose, and image quality. Methods: A total of 113 saline solutions with decreasing dilution of contrast medium (370 mg I/ml) was produced. MDCT scan was performed with 15 series of different settings of tube current and tube voltage. CT attenuations with 15 series of different settings were all measured, and influence of tube current and tube voltage on CT attenuations was analyzed. CT dose index (CTDIvol) was recorded. The CT attenuations with different tube voltage and current were compared with one-way ANOVA and Kruskal-Wallis rank sum test. The correlation of CT attenuation with different tube voltage and the influence of tube voltage and current on radiation dose and image quality were tested by correlation analysis. Results: Tube current (250, 200, 150, 100, and 50 mA) had no significant effect on CT attenuation (F = 0.001, 0.008, 0.075, P > 0.05), while tube voltage (120, 100, and 80 kV) had significant effect (H = 17.906, 17.906, 13.527, 20.124, 23.563, P < 0.05). The correlation between CT attenuation and tube voltage was determined with equation: CT attenuatio N_1_0_0 _k_V = 1.561 × CT attenuatio N_1_2_0 _k_v + 4.0818, CT attenuatio N_8_0 _k_v = 1.2131 × CT attenuatio N_1_2_0 _k_v + 0.9283. The influence of tube voltage on radiation dose and image quality was also analyzed, and equations were also obtained: N_1_2_0 -k_v = -5.9771 Ln (D_1_2_0 kv) + 25.412, N_1_0_0 _k_v = -10.544 Ln (D_1_0_0 _k_v) + 36.262, N_8_0 _k_v = -25.326 Ln (D_8_0 _k_v) + 62.816. According to the results of relationship among CT attenuation, radiation dose, and image quality, lower tube voltage with higher tube current can reduce the radiation dose. Conclusions: Lower tube voltage can reduce the radiation dose. However, CT attenuation was influenced, and correction should be done with the equations. (authors)

  18. [The best noise index combined with ASIR weighting selection in low-dose chest scanning].

    Science.gov (United States)

    Xiao, Huijuan; Hou, Ping; Liu, Jie; Gao, Jianbo; Tan, Hongna; Liang, Pan; Pu, Shi

    2015-10-06

    To discuss the best noise index combined with ASIR weighting selection in low-dose chest scanning based on BMI. 200 patients collected from May to December 2014 underwent non-contrast chest CT examinations, they were randomly assigned into standard dose group (Group A, NI15 combined with 30% ASIR) and low-dose groups (Group B, NI25 combined with 40% ASIR, Group C, NI30 combined with 50% ASIR, Group D, NI35 combined with 60% ASIR), 50 cases in each group; the patients were assigned into three groups based on BMI (kg/m2): BMI25. Signal-to-nosie ratio (SNR), contrast-to noise ratio (CNR), CT dose index volume (CTDIvol), dose-length product (DLP), effective dose (ED) and subjective scoring between the standard and low-dose groups were compared and analyzed statistically. Differences of SNR, CNR, CTDIvol, DLP and ED among groups were determined with ANOVA analysis and the consistency of diagnosis with Kappa test. SNR, CTDIvol, DLP and ED reduced with the increase of nosie index, the differences among the groups were statistically significant (P25 kg/m2 group. NI35 combined with 60% ASIR in BMIASIR in 18.5 kg/m2≤BMI≤25 kg/m2 group; NI25 combined with 40% ASIR in 18.5 kg/m2≤BMI≤25 kg/m2 group were the best parameters combination which both can significantly reduce the radiation dose and ensure the image quality.

  19. Patient doses in CT with special emphasis on pediatric patients in Algeria

    International Nuclear Information System (INIS)

    Khelassi-Toutaoui, Nadia; Merad, Ahmed; Toutaoui, Aek; Bairi, Souad; Tsapaki, Virginia; Mansouri, Boudjema

    2008-01-01

    Full text: Purpose: To estimate the frequency of CT examinations in children 0-15 years of age, to investigate whether exposure factors for children are different than for adults and to evaluate patient dose, as part of an International Atomic Energy Agency (IAEA) project on Radiation Protection of patients and Medical Exposure Control (RAF 9033). Material and Methods: Two CT machines were included in the study. Weighted computed tomography dose index (CTDI w ). Results: Pediatric CT examinations accoutered for 12-20% of the total exams performed in the CT facilities. For head, chest and abdomen examinations, mAs were reduced for pediatric patients, mainly on an arbitrary manner. One of the CT machines allowed change of kV and in that case kV was reduced for pediatric patients. Chest, Chest-High Resolution, Abdomen, Lumbar spine and Pelvis CTDI w and DLP were lower and IAEA guidance levels in almost all types of exams. It was observed, however, that DLP in one hospital was almost double than the other hospital that was mostly attributed to larger extent of scan length. ) for a single slice and dose length product (DLP) for a complete examination were used to evaluate patient dose. Kilovoltage (kV) and mAs were the exposure factors investigated. Conclusion: The study showed that pediatric examinations reach up to 1/5 of the total exams performed. It is encouraging that exposure factors are reduced, but a more standard method of reduction should be applied. Patient doses were lower that IAEA standards. Further optimization could be done by reducing scan length. (author)

  20. Low-dose CT pulmonary angiography on a 15-year-old CT scanner: a feasibility study

    Directory of Open Access Journals (Sweden)

    Moritz Kaup

    2016-12-01

    Full Text Available Background Computed tomography (CT low-dose (LD imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems. Purpose To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA. Material and Methods CTPA scans from 60 prospectively randomized patients (28 men, 32 women were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR and signal-to-noise ratios (SNR were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale. Results CT dose index (CTDI in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy. Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768. Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4. Conclusion The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.

  1. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    Science.gov (United States)

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental material is available for this article. PMID:24091359

  2. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    Science.gov (United States)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Paulson, Erik K.; Samei, Ehsan

    2013-12-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDIvol-normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2-180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2-80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57-180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDIvol-normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDIvol/DLP values may

  3. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    International Nuclear Information System (INIS)

    Tian, Xiaoyu; Samei, Ehsan; Li, Xiang; Segars, W Paul; Frush, Donald P; Paulson, Erik K

    2013-01-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDI vol -normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2–180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2–80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57–180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDI vol -normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDI vol

  4. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    Science.gov (United States)

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  5. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Dose reduction strategies for cardiac CT

    International Nuclear Information System (INIS)

    Midgley, S.M.; Einsiedel, P.; Langenberg, F.; Lui, E.

    2010-01-01

    Full text: Recent advances in CT technology have produced brighter X-ray sources. gantries capable of increased rotation speeds, faster scintil lation materials arranged into multiple rows of detectors, and associated advances in 3D reconstruction methods. These innovations have allowed multi-detector CT to be turned to the diagnosis of cardiac abnormalities and compliment traditional imaging techniques such as coronary angiography. This study examines the cardiac imaging solution offered by the Siemens Somatom Definition Dual Source 64 slice CT scanner. Our dose reduction strategies involve optimising the data acquisition protocols according to diagnostic task, patient size and heart rate. The relationship between scan parameters, image quality and patient dose is examined and verified against measurements with phantoms representing the standard size patient. The dose reduction strategies are reviewed with reference to survey results of patient dose. Some cases allow the insertion of shielding to protect radiosensitive organs, and results are presented to quantify the dose saving.

  7. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N.; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; McKinstry, Robert C. [Barnes Jewish Hospital, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Washington University School of Medicine, St. Louis, MO (United States); Vyhmeister, Ross [Washington University School of Medicine, St. Louis, MO (United States); Ramirez-Giraldo, Juan Carlos [Siemens Healthcare, Malvern, PA (United States)

    2015-03-17

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality. (orig.)

  8. Report of questionnaire concerning the conditions and exposure doses at thoracoabdominal radiography and CT

    International Nuclear Information System (INIS)

    2009-01-01

    Japan Association of Radiological Technologists, at 2 years after its presentation of the Guideline for Medical Radiation Exposure (2006), made a questionnaire in the title on its homepage on Nov. 6-Dec. 5, 2008, and this paper is its report. The questionnaire asked the conditions and exposure doses at thoracoabdominal radiography and CT: in the former, asked were conditions like the machine/detector, tube voltage, filter, incident angle, entrance plane dose (EPD) (mGy) etc., and 237 facilities including 56 public hospitals and 15 universities answered. EPD calculated by numerical dose determination was found to be 0.22 and 0.76 mGy at the frontal and lateral thoracic projection, respectively, which were less than the upper limit defined in International Atomic Energy Agency (IAEA) guidance (0.4 and 1.5 mGy). However, doses in 6 and 2.6% of facilities at the respective projection exceeded the IAEA levels. EPD at the frontal abdominal projection calculated was 2.22 mGy, and all facilities met with the IAEA demand level (<10 mGy). In the CT questionnaire, conditions asked were the machine manufacturer/brand, scanning mode and range, tube voltage, rotation time, beam width and pitch, slice width, CTDIvol (CT Dose Index weighted/pitch) (mGy) and so on, which 212 facilities involving 58 public hospitals and 14 universities answered. CTDIvol was found to be 91.7 mGy at head CT which greatly exceeded the maximal levels of International Commission of Radiological Protection (ICRP), IAEA and the Association (60, 50 and 65 mGy, respectively). CTDIvol at thoracic CT was 15.2 mGy (no standard upper limit at present), and at abdominal CT, 20.0 mGy (the same as the Association level). The latter suggested the suitable dose setting at this CT. Thus the problem at head CT was much highlighted here. (K.T.)

  9. Dose profile study in head CT scans using a male anthropomorphic phantom

    International Nuclear Information System (INIS)

    Gomez, Alvaro M.L.; Santana, Priscila do C.; Mourao, Arnaldo P.

    2017-01-01

    Computed tomography (CT) test is an efficient and non-invasive method to obtain data about internal structures of the human body. CT scans contribute with the highest absorbed doses in population due X-ray beam attenuation and it has raised concern in radiosensitive tissues. Techniques for the optimization of CT scanning protocols in diagnostic services have been developing with the objective of decreasing the absorbed dose in the patient, aiming image quality within acceptable parameters for diagnosis by noise control. Routine head scans were performed using GE CT scan of 64 channels programmed with automatic exposure control and voltages of 80, 100 and 120 kV attaching the noise index in approximately 0.5%, using the tool of smart mA. An anthropomorphic adult male phantom was used and radiochromic film strips were placed to measure the absorbed dose deposited in areas such as the lens, thyroid and pituitary for study of dose deposited in these important areas containing high radiosensitive tissues. Different head scans were performed using optimized values of mA.s for the different voltages. The absorbed dose measured by the film strips were in the range of the 0.58 and 44.36 mGy. The analysis of noise in the images is within the acceptable levels for diagnosis, and the optimized protocol happens with the voltage of 100 kV. The use of other voltage values can allow obtain better protocols for head scans. (author)

  10. Dose profile study in head CT scans using a male anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Alvaro M.L.; Santana, Priscila do C.; Mourao, Arnaldo P., E-mail: amlgphys@gmail.com, E-mail: pridili@gmail.com, E-mail: apratabhz@gmail.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Computed tomography (CT) test is an efficient and non-invasive method to obtain data about internal structures of the human body. CT scans contribute with the highest absorbed doses in population due X-ray beam attenuation and it has raised concern in radiosensitive tissues. Techniques for the optimization of CT scanning protocols in diagnostic services have been developing with the objective of decreasing the absorbed dose in the patient, aiming image quality within acceptable parameters for diagnosis by noise control. Routine head scans were performed using GE CT scan of 64 channels programmed with automatic exposure control and voltages of 80, 100 and 120 kV attaching the noise index in approximately 0.5%, using the tool of smart mA. An anthropomorphic adult male phantom was used and radiochromic film strips were placed to measure the absorbed dose deposited in areas such as the lens, thyroid and pituitary for study of dose deposited in these important areas containing high radiosensitive tissues. Different head scans were performed using optimized values of mA.s for the different voltages. The absorbed dose measured by the film strips were in the range of the 0.58 and 44.36 mGy. The analysis of noise in the images is within the acceptable levels for diagnosis, and the optimized protocol happens with the voltage of 100 kV. The use of other voltage values can allow obtain better protocols for head scans. (author)

  11. On the use of Monte Carlo-derived dosimetric data in the estimation of patient dose from CT examinations

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Tzedakis, Antonis; Damilakis, John

    2008-01-01

    used. When the body-mass index was increased from 23.0 to 32.7 kg/m 2 discrepancies in patient effective dose were up to 34%. The error in estimating effective dose from a CT exposure performed on a specific CT scanner using Monte Carlo data derived for a different CT scanner was estimated to be up to 25%. A simple method was proposed and validated for the determination of scanner-specific normalized dosimetric data from data derived from Monte Carlo simulation of a specific scanner. In conclusion, computed tomography dose index (CTDI) to effective dose conversion coefficients derived by Monte Carlo simulation of axial CT scans may provide a good approximation of corresponding coefficients applicable in helical scans. However, the use of Monte Carlo conversion coefficients for the estimation of patient dose from a CT examination involves a remarkable inaccuracy when the body size of the mathematical anthropomorphic phantom used in Monte Carlo simulation differs from the body of the patient. Therefore, separate sets of Monte Carlo dosimetric CT data shall be generated for different patient body sizes. Besides calculation of different sets of Monte Carlo data for each commercially available scanner is not necessary, since scanner specific data may be derived with acceptable accuracy from the Monte Carlo data calculated for a specific scanner appropriately modified for the different CTDI w /CTDI air ratio

  12. Automatic radiation dose monitoring for CT of trauma patients with different protocols: feasibility and accuracy

    International Nuclear Information System (INIS)

    Higashigaito, K.; Becker, A.S.; Sprengel, K.; Simmen, H.-P.; Wanner, G.; Alkadhi, H.

    2016-01-01

    Aim: To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). Materials and methods: In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current–time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current–time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Results: Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDI_v_o_l; p=0.62), dose–length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both −38%, p<0.017). Compared to cohort 1, CTDI_v_o_l, DLP, and ED in cohort 3 were significantly lower (all −25%, p<0.017), similar to the noise in the chest (–32%) and abdomen (–27%, both p<0.017). Compared to cohort 2, CTDI_v_o_l (–28%), DLP, and ED (both –26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Conclusion: Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. - Highlights: • Automatic dose monitoring software can be

  13. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K [Department of Radiation Oncology, NYU Langone Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  14. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    International Nuclear Information System (INIS)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K

    2016-01-01

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  15. Impact of new technologies on dose reduction in CT

    International Nuclear Information System (INIS)

    Lee, Ting-Yim; Chhem, Rethy K.

    2010-01-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold.

  16. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    Science.gov (United States)

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  17. Patient doses in chest CT examinations: Comparison of various CT scanners

    Directory of Open Access Journals (Sweden)

    Božović Predrag

    2013-01-01

    Full Text Available This paper presents results from study on patient exposure level in chest CT examinations. CT scanners used in this study were various Siemens and General Electric (GE models. Data on patient doses were collected for adult and pediatric patients. Doses measured for adult patients were lower then those determined as Diagnostic Reference Levels (DRL for Europe, while doses for pediatric patients were similar to those found in published data. As for the manufactures, slightly higher doses were measured on GE devices, both for adult and pediatric patients.

  18. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  19. Influence of bismuth shielding use in the dose CT and the imaging quality in standard brain protocol

    International Nuclear Information System (INIS)

    Sanchez Carnoma, G.; Urena Llinares, A.; Santos Rubio, A.; Haro Madero, G.; Herrador Cordoba, M.

    2006-01-01

    The purpose of this work is to evaluate the reduction of lens doses, CT dose index (CTDI) and image quality when bismuth shielding is used. Dose indexes nCDTIs,p, w were measured for a head phantom (d=16 cm) in three situations: first, without shielding, second, shielded with bismuth over the phantom surface and, last, with 2 cm between both. Four regions of interest were selected, two including the theoretical eyes position and the others 4-6 cm below them. Noise and grey level in Housfield units were also measured in all geometries. A bismuth shielding in contact or 2 cm above surface provides a dose reduction of 36% y 29% respectively. In the first case an importation of image quality appears, increasing a 55% the Housfield units in the superficial regions of interest and a growth of noise 6 times greater. Bismuth protection provides an important reduction in lens dose., in the case of dire ct incidence radiation beam. (Author)

  20. Seventy kilovolt ultra-low dose CT of the paranasal sinus: first clinical results

    International Nuclear Information System (INIS)

    Bodelle, B.; Wichmann, J.L.; Klotz, N.; Lehnert, T.; Vogl, T.J.; Luboldt, W.; Schulz, B.

    2015-01-01

    Aim: To evaluate the diagnostic image quality and radiation dose of low-dose 70 kV computed tomography (CT) of the paranasal sinus in comparison to 100 and 120 kV CT. Materials and methods: CT of the paranasal sinus was performed in 127 patients divided into three groups using different tube voltages and currents (70 kV/75 mAs, ultra-low dose protocol, n = 44; 100 kV/40 mAs, standard low-dose protocol, n = 42; 120 kV/40 mAs, standard protocol, n = 41). CT dose index (CTDIvol), dose–length product (DLP), attenuation, image noise and signal-to-noise ratio (SNR) were compared between the groups using Wilcoxon–Mann–Whitney U-test. Subjective diagnostic image quality was compared by using a five-point scale (1 = non-diagnostic, 5 = excellent, read by two readers in consensus) and Cohen's weighted kappa analysis for interobserver agreement. Results: Radiation dose was significantly lower with 70 kV acquisition than 100 and 120 kV (DLP: 31 versus 52 versus 82 mGy·cm; CTDI 2.33 versus 3.95 versus 6.31 mGy, all p < 0.05). Mean SNR (70 kV: 0.37; 100 kV: 0.21; 120 kV: 0.13; p < 0.05) and organ attenuation increased significantly with lower voltages. All examinations showed diagnostic image quality. Subjective diagnostic image quality was higher with standard protocols than the 70 kV protocol (120 kV: 5.0; 100 kV: 4.5; 70 kV: 3.5, p < 0.05) without significant differences with substantial interobserver agreement (κ > 0.59). Conclusion: The ultra-low dose (70 kV) CT imaging of the paranasal sinus allowed for significant dose reduction by 61% and an increased attenuation of organ structures in comparison to standard acquisition while maintaining diagnostic image quality with a slight reduction in subjective image quality. -- Highlights: •Image quality and radiation dose of 70 kV ultra-low dose CT of the paranasal sinus. •70 kV ultra-low dose CT of the paranasal sinus allows for dose reduction by 61%. •70 kV CT of the

  1. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2009-01-01

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  2. Uncertainties in effective dose estimates of adult CT head scans: The effect of head size

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2009-09-15

    Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.

  3. Extraction of CT dose information from DICOM metadata: automated Matlab-based approach.

    Science.gov (United States)

    Dave, Jaydev K; Gingold, Eric L

    2013-01-01

    The purpose of this study was to extract exposure parameters and dose-relevant indexes of CT examinations from information embedded in DICOM metadata. DICOM dose report files were identified and retrieved from a PACS. An automated software program was used to extract from these files information from the structured elements in the DICOM metadata relevant to exposure. Extracting information from DICOM metadata eliminated potential errors inherent in techniques based on optical character recognition, yielding 100% accuracy.

  4. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    International Nuclear Information System (INIS)

    Jeon, P-H; Lee, C-L; Kim, D-H; Lee, Y-J; Kim, H-J; Jeon, S-S

    2014-01-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  5. Single-portal-phase low-tube-voltage dual-energy CT for short-term follow-up of acute pancreatitis: evaluation of CT severity index, interobserver agreement and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Universitaetsklinikum Frankfurt, Institut fuer Diagnostische und Interventionelle Radiologie, Frankfurt am Main (Germany); Majenka, Pawel; Beeres, Martin; Kromen, Wolfgang; Schulz, Boris; Bauer, Ralf W.; Kerl, J.M.; Gruber-Rouh, Tatjana; Hammerstingl, Renate; Vogl, Thomas J.; Lehnert, Thomas [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wesarg, Stefan [Fraunhofer IGD, Cognitive Computing and Medical Imaging, Darmstadt (Germany)

    2014-11-15

    To intra-individually compare single-portal-phase low-tube-voltage (100-kVp) computed tomography (CT) with 120-kVp images for short-term follow-up assessment of CT severity index (CTSI) of acute pancreatitis, interobserver agreement and radiation dose. We retrospectively analysed 66 patients with acute pancreatitis who underwent initial dual-contrast-phase CT (unenhanced, arterial, portal phase) at admission and short-term (mean interval 11.4 days) follow-up dual-contrast-phase dual-energy CT. The 100-kVp and linearly blended images representing 120-kVp acquisition follow-up CT images were independently evaluated by three radiologists using a modified CTSI assessing pancreatic inflammation, necrosis and extrapancreatic complications. Scores were compared with paired t test and interobserver agreement was evaluated using intraclass correlation coefficients (ICC). Mean CTSI scores on unenhanced, portal- and dual-contrast-phase images were 4.9, 6.1 and 6.2 (120 kVp) and 5.0, 6.0 and 6.1 (100 kVp), respectively. Contrast-enhanced series showed a higher CTSI compared to unenhanced images (P < 0.05) but no significant differences between single- and dual-contrast-phase series (P > 0.7). CTSI scores were comparable for 100-kVp and 120-kVp images (P > 0.05). Interobserver agreement was substantial for all evaluated series and subcategories (ICC 0.67-0.93). DLP of single-portal-phase 100-kVp images was reduced by 41 % compared to 120-kVp images (363.8 versus 615.9 mGy cm). Low-tube-voltage single-phase 100-kVp CT provides sufficient information for follow-up evaluation of acute pancreatitis and significantly reduces radiation exposure. (orig.)

  6. Strategies to reduce radiation dose in cardiac PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung Hsin; Wu, Nien-Yun [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Jay [Institute of Radiological science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2011-08-21

    Background: Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications. Materials: Image quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan. Results: Radiation dose in RGH technique was 22.2{+-}4.0 mSv. It was reduced to 10.95{+-}0.82 and 4.13{+-}0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53{+-}0.5 to 0.16{+-}0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols. Conclusion: The proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  7. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.H. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Cho, S.J. [Department of Radiation Oncology, College of Medicine, Eulji University, Seongnam 461-713 (Korea, Republic of); Lee, S. [Department of Radiation Oncology, College of Medicine, Korea University, Seoul 130-701 (Korea, Republic of); Lee, S.H. [Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Seoul 100-380 (Korea, Republic of); Min, C.K.; Kim, Y.H.; Moon, S.K.; Kim, E.S.; Chang, A.R. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Kwon, S.I., E-mail: sikwon@kyonggi.ac.kr [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of)

    2012-05-21

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41{+-}0.04 HGy{sup -1}. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the {gamma}-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  8. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    Science.gov (United States)

    Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I.

    2012-05-01

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  9. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  10. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  11. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  12. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    Science.gov (United States)

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  13. CT patterns of fungal pulmonary infections of the lung: Comparison of standard-dose and simulated low-dose CT

    International Nuclear Information System (INIS)

    Christe, Andreas; Lin, Margaret C.; Yen, Andrew C.; Hallett, Rich L.; Roychoudhury, Kingshuk; Schmitzberger, Florian; Fleischmann, Dominik; Leung, Ann N.; Rubin, Geoffry D.; Vock, Peter; Roos, Justus E.

    2012-01-01

    Purpose: To assess the effect of radiation dose reduction on the appearance and visual quantification of specific CT patterns of fungal infection in immuno-compromised patients. Materials and methods: Raw data of thoracic CT scans (64 × 0.75 mm, 120 kVp, 300 reference mAs) from 41 consecutive patients with clinical suspicion of pulmonary fungal infection were collected. In 32 patients fungal infection could be proven (median age of 55.5 years, range 35–83). A total of 267 cuboids showing CT patterns of fungal infection and 27 cubes having no disease were reconstructed at the original and 6 simulated tube currents of 100, 40, 30, 20, 10, and 5 reference mAs. Eight specific fungal CT patterns were analyzed by three radiologists: 76 ground glass opacities, 42 ground glass nodules, 51 mixed, part solid, part ground glass nodules, 36 solid nodules, 5 lobulated nodules, 6 spiculated nodules, 14 cavitary nodules, and 37 foci of air-space disease. The standard of reference was a consensus subjective interpretation by experts whom were not readers in the study. Results: The mean sensitivity and standard deviation for detecting pathological cuboids/disease using standard dose CT was 0.91 ± 0.07. Decreasing dose did not affect sensitivity significantly until the lowest dose level of 5 mAs (0.87 ± 0.10, p = 0.012). Nodular pattern discrimination was impaired below the dose level of 30 reference mAs: specificity for fungal ‘mixed nodules’ decreased significantly at 20, 10 and 5 reference mAs (p < 0.05). At lower dose levels, classification drifted from ‘solid’ to ‘mixed nodule’, although no lesion was missed. Conclusion: Our simulation data suggest that tube current levels can be reduced from 300 to 30 reference mAs without impairing the diagnostic information of specific CT patterns of pulmonary fungal infections

  14. Concepts for dose determination in flat-detector CT

    Science.gov (United States)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  15. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  16. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  17. Effective radiation dose from semicoronal CT of the sacroiliac joints in comparison with axial CT and conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jurik, Anne Grethe; Boecker Puhakka, Katriina [Department of Radiology R, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark); Hansen, Jolanta [Department of Medical Physics, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark)

    2002-11-01

    The aim of this study was to evaluate the radiation dose given by semicoronal CT of the sacroiliac joints (SIJs) in comparison with axial CT and conventional radiography. The total effective radiation doses given by serial contiguous semicoronal and axial CT, using 5-mm slices, 120 kV and 330 mAs, were determined by measurement of organ doses using an anthropomorphic Rando Alderson phantom paced with thermoluminescence dosimeters. The doses given by conventional antero-posterior (AP) and oblique projections of the SIJs were determined similarly. In a female the total effective dose by semicoronal CT was found to be more than six times lower than by axial CT and 2.5 times lower than the dose use to obtain a conventional AP radiograph, the values being 102, 678, and 255 {mu}Sv, respectively. The effective dose by semicoronal CT was only a little higher than the dose given to obtain two oblique radiographs. In a male with lead protection of the gonads the dose by semicoronal CT was four times lower than by axial CT, but higher than by conventional radiography. In conclusion, the effective dose by semicoronal CT of the SIJs is lower than by axial CT, and in females a semicoronal CT implies a lower effective radiation dose that used to obtain an AP radiograph. (orig.)

  18. Relationship between radiation dose estimation in patients submitted to abdominal tomography examination and the body mass index

    International Nuclear Information System (INIS)

    Capaverde, Alexandre da S.; Pimentel, Juliana; Froner, Ana Paula P.; Silva, Ana Maria Marques da

    2014-01-01

    Because of the radiation dose in computed tomography (CT) is relatively high, it is important to have an estimate of the dose to which the patient is submitted, considering parameters and correction factors, so that the value is closer to the real. The objective of this study is to relate the estimated dose in patients undergoing abdominal CT with BMI (Body Mass Index) groups, considering the specific size of the anatomical region. The work developed in a hospital in Porto Alegre, Brazil, using 16 Siemens Somatom Emotion equipment. We selected 30 adult that underwent to CT of the abdomen in January 2014. Of these, 13 using dose reduction mechanism (Care Dose), (Sample 1) and the rest without this mechanism (Sample 2). Registered weight, height, CTDI vol (Computed Tomography Dose Index) and anteroposterior and lateral diameter at the umbilicus. BMI and the correction factor for the dose estimates were calculated, according to the specific size of the abdomen. It was determined the percentage change between the CTDI vol values provided by CT and the value of CTDI vol after application of the correction factor, plus the average percentage change for each BMI group. The mean percentage change was between 54% and 19% for sample 1 and between 35% and 10% for sample 2, the lowest to highest BMI group. There was a reduction in the medium average percent with the increasing of the BMI groups in both samples. A larger sample of individuals for verification of results is required

  19. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    Science.gov (United States)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  20. An algorithm for intelligent sorting of CT-related dose parameters

    Science.gov (United States)

    Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin

    2011-03-01

    Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  1. An algorithm for intelligent sorting of CT-related dose parameters.

    Science.gov (United States)

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin

    2012-02-01

    Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  2. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  3. Estimation of patient dose in abdominal CT examination in some Sudanese hospitals

    International Nuclear Information System (INIS)

    Adam, Ebthal Adam Shikhalden

    2016-04-01

    The use of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. The aim of this study was to estimate radiation doses in abdomen CT examinations of patients in two Sudanese hospitals. Details were obtained from approximately 80 CT examinations and included all age groups ( adults and pediatric). The results from the two hospitals were compared with each other as well as with the IAEA guidance level for this particular investigation. The estimation of radiation doses were carried out by calculating volume dose index (CTD1vol), dose length product (DLP), doses to some organs of interest and effective dose (E) using the software program "CT EXPO V2.1". The study showed that the mean DLP of the one hospitals ASH is 1736.7 mGy.cm which is by far much higher than that for the other hospital NMDC which stands at 185.3 mGy.cm, as well as higher than the IAEA level which is 696 mGy.cm. The study showed that the mean CTD1vol for patients in ASH is 36.2 mGy which again higher than that for the other hospital which is 3.9 mGy and higher than the IAEA level which is 10.9 mGy calculating the effective dose for patients in the two hospitals reveals that the mean effective dose of patient in one hospital (ASH) is 26.25 mSv, which is quite high compared with other hospital (NMDC), which has the mean value of 2.8 mGv and also higher than the IAEA level from this investigation which is 7.6 mSv. Regarding organ doses, the study showed that organ doses in hospital ASH are always higher than that calculated in hospital NMDC and the highest doses in both hospital were delivered to the kidneys with mean values of 50.24 mGy and 5045 mGy for the two hospitals respectively. The study showed that there is an urgent need for optimizing patient doses in such CT examinations. This can be ensured by providing training and retraining for workers and conducting quality control measurements and preventive maintenance regularly so

  4. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  5. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study

    International Nuclear Information System (INIS)

    Feng Shiting; Law, Martin Wai-Ming; Huang Bingsheng; Ng, Sherry; Li Ziping; Meng Quanfei; Khong, Pek-Lan

    2010-01-01

    Objective: To measure the radiation dose from CT scans in an anthropomorphic phantom using a 64-slice MDCT, and to estimate the associated cancer risk. Materials and methods: Organ doses were measured with a 5-year-old phantom and thermoluminescent dosimeters. Four protocols; head CT, thorax CT, abdomen CT and pelvis CT were studied. Cancer risks, in the form of lifetime attributable risk (LAR) of cancer incidence, were estimated by linear extrapolation using the organ radiation doses and the LAR data. Results: The effective doses for head, thorax, abdomen and pelvis CT, were 0.7 mSv, 3.5 mSv, 3.0 mSv, 1.3 mSv respectively. The organs with the highest dose were; for head CT, salivary gland (22.33 mGy); for thorax CT, breast (7.89 mGy); for abdomen CT, colon (6.62 mGy); for pelvis CT, bladder (4.28 mGy). The corresponding LARs for boys and girls were 0.015-0.053% and 0.034-0.155% respectively. The organs with highest LARs were; for head CT, thyroid gland (0.003% for boys, 0.015% for girls); for thorax CT, lung for boys (0.014%) and breast for girls (0.069%); for abdomen CT, colon for boys (0.017%) and lung for girls (0.016%); for pelvis CT, bladder for both boys and girls (0.008%). Conclusion: The effective doses from these common pediatric CT examinations ranged from 0.7 mSv to 3.5 mSv and the associated lifetime cancer risks were found to be up to 0.16%, with some organs of higher radiosensitivity including breast, thyroid gland, colon and lungs.

  6. Effect of staff training on radiation dose in pediatric CT.

    Science.gov (United States)

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Radiation doses in head CT examinations in Serbia: comparison among different CT units

    International Nuclear Information System (INIS)

    Arandjic, D.; Ciraj-Bjelac, O.; Bozovic, P.; Stankovic, J.; Hadnadjev, D.; Stojanovic, S.

    2012-01-01

    A rapid increase in number of Computed Tomography (CT) examinations has been observed world wide. As haed CT is the most frequent CT examination, the purpose of this study was to collect and analyse patient doses in children and adults in different CT units for this procedure. The study included 8 CT units from three manufacturers (Siemens, Toshiba and General Electric). Data for adults and pediatric patients were collected in terms of CTDIvol and DLP values. The doses were estimated as a mean value of 10 patients on each CT unit. For pediatrics, doses were collected for four age groups (0-1year, >1-5years, >5-10years and >10-15years). Comparing different manufacturers and the same number of detector rows it was observed that, in case of 16 slices units, doses were very similar on Siemens and General Electric scanner. CTDIvol and DLP on Siemens scanner were 60 mGy and 1066 mGy·cm, respectively, while on General Electric those values were 66 mGy and 1050 mGy·cm. However, this trend was not observed in case of 64 slices units. CTDIvol and DLP values collected on Toshiba were much higher (177 mGy and 2109 mGy·cm) than in case of Siemens scanner (59 mGy and 1060 mGy·cm). Doses on 16 and 64 slices Siemens scanners were very similar, while on 4 slices were higher. Except in two units, doses were were in line with DRLs. In case of pediatrics, doses increase with patient age and again Siemens scanner showed the lowest values while the highest were observed on Toshiba. (authors)

  8. Evaluation of effective dose from CT scans for overweight and obese adult patients using the VirtualDose software

    International Nuclear Information System (INIS)

    Liang, Baohui; Gao, Yiming; Chen, Zhi; Xu, X. George

    2017-01-01

    This paper evaluates effective dose (ED) of overweight and obese patients who undergo body computed tomography (CT) examinations. ED calculations were based on tissue weight factors in the International Commission on Radiological Protection Publication 103 (ICRP 103). ED per unit dose length product (DLP) are reported as a function of the tube voltage, body mass index (BMI) of patient. The VirtualDose software was used to calculate ED for male and female obese phantoms representing normal weight, overweight, obese 1, obese 2 and obese 3 patients. Five anatomic regions (chest, abdomen, pelvis, abdomen/pelvis and chest/abdomen/pelvis) were investigated for each phantom. The conversion factors were computed from the DLP, and then compared with data previously reported by other groups. It was observed that tube voltage and BMI are the major factors that influence conversion factors of obese patients, and that ED computed using ICRP 103 tissue weight factors were 24% higher for a CT chest examination and 21% lower for a CT pelvis examination than the ED using ICRP 60 factors. For body CT scans, increasing the tube voltage from 80 to 140 kVp would increase the conversion factors by as much as 19-54% depending on the patient's BMI. Conversion factor of female patients was ∼7% higher than the factors of male patients. DLP and conversion factors were used to estimate ED, where conversion factors depended on tube voltage, sex, BMI and tissue weight factors. With increasing number of obese individuals, using size-dependence conversion factors will improve accuracy, in estimating patient radiation dose. (authors)

  9. Research on the radiation doses to adults receiving from main types of medical X-ray CT examinations

    International Nuclear Information System (INIS)

    Gao Linfeng; Wang Bin; Yao Jie; Qian Aijun; Zheng Junzheng; Zhuo Weihai; Qu Liangyong

    2013-01-01

    To study and master the doses to examinees receiving from the wide spread X-CT examinations, is a key issue for strengthening the medical radiation protection. In the studies of the medical exposure levels during the Eleventh Five-Year Plan period in Shanghai, based on the brands of X-CT scanners and their distributions in different levels of hospitals, a total of 45 sets (about 30% of all) of scanners were selected for the field study. Among the 8 commonly performed examinations, the scan parameters and their relevant dosimetry information for 500 adults were collected, and their typical effective doses were estimated with the dose conversion factors. The results showed that the averages of weighted CT dose index (CTDI w ) were 55.4, 12.5 and 18.4 mGy, and the dose length products (DLP) were averaged to be 603, 294 and 415 mGy·cm, for the skull, chest and abdomen X-CT scans, respectively. The typical effective doses were estimated to be 1.4, 5.3, and 7.5 mSv for adults in the head, chest and abdomen X-CT scans, respectively. The values of CTDI w for skull scans were generally higher than those for the ear canal, eye, or sinus examinations. It is clear that the optimization between the image quality and the radiation dose should be further strengthened. Particular attentions should be paid in selecting the scanning parameters for various types of X-CT scans, and the diagnostic reference levels for X-CT examinations should be continuously improved. (authors)

  10. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    Science.gov (United States)

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p ASIR images (p ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  11. Organ dose evaluation for CT scans based on in-phantom measurements

    International Nuclear Information System (INIS)

    Liu Haikuan; Zhuo Weihai; Chen Bo; Yi Yanling; Li Dehong

    2009-01-01

    Objective: To explore the organ doses and their distributions in different projections of CT scans. Methods: The CT values were measured and the linear absorption coefficients were derived for the main organs of the anthropomorphic phantom to compare with the normal values of human beings. The radiophotoluminescent glass dosimeters were set into various tissues or organs of the phantom for mimic measurements of the organ doses undergoing the head, chest, abdomen and pelvis CT scans, respectively. Results: The tissue equivalence of the phantom used in this study was good. The brain had the largest organ dose undergoing the head CT scan. The organ doses in thyroid, breast, lung and oesophagus were relatively large in performing the chest CT scan, while the liver, stomach, colon and lung had relatively hrge organ doses in abdomen CT practice. The doses in bone surface and colon exceeded by 50 mGy in a single pelvis CT scan. Conclusions: The organ doses and their distributions largely vary with different projections of CT scans. The organ doses of colon, bone marrow,gonads and bladder are fairly large in performing pelvis CT scan, which should be paid attention in the practice. (authors)

  12. Clinical application of low-dose CT in patients with rib fractures

    International Nuclear Information System (INIS)

    Ge Xiaojun; Wu Hao; Hua Yanqing; Wang Mingpeng; Mao Dingbiao; Tang Ping; Hu Fei; Zhang Guozhen

    2011-01-01

    Objective: To evaluate images quality and diagnostic feasibility of low-dose CT in patients with traumatic rib fractures. Methods: Twenty-five patients presented with thoracic injury were underwent 64-slice spiral CT scanning in inspiration breath-hold technique. Two scan protocols were performed. In one scan protocol noise index (NI) is 11, and in another NI is 21, but the other scan parameters were no difference. The mean value of tube current, the volume CT dose index (CTDI vol ), and effective dose (ED) were recorded. Image quality was scored by 2 experienced radiologists using the 5-points scale. The numbers and degrees of rib fractures were recorded. The data were tested by using the Wilcoxon signed rank sum test. The differences of the inter-observer were determined by Kappa statistics. Results: The mean CTDIvol and ED in scan protocol with NI of 11 were (13.88±5.17) mGy and (8.14± 3.21) mSv, and that with NI of 21 were (3.91±1.57) mGy and (2.31±0.97) mSv. Compared the scan with NI of 11, there was 72% intrinsic dose reduction in the scan with NI of 21. The mean value of tube current in scan with NI of 11 and 21 were (195.88±69.33) mAs and (54.56±21.54) mAs. All patients with Ⅱ and Ⅲ degree and most patients with Ⅰ degree rib fractures that identified by the scan with NI of 11 were detected by the scan with NI of 21. There were no statistical difference between two scans with the Wilcoxon, signed rank sum test. The diagnostic acceptability and image noise score in the scan with NI of 11 were 4.9±0.2 and 4.6±0.5, and that with NI = 21 were 3.5±0.5 and 3.3±0.5. There was prefect concordance in the inter-observers in diagnostic, acceptability on finding of rib fractures, diagnostic acceptability and image noise (Kappa =0.876, 0.820, 0.792, P<0.01) between two scan protocols. Conclusion: Rib fractures can be diagnosed by the low-dose CT using the scan protocol with NI of 21. (authors)

  13. Radiation dose in CT are meeting the challenge

    International Nuclear Information System (INIS)

    Wang Jun

    2003-01-01

    Despite comprising only 2% of all examinations, CT contributed around 20% of the collective dose to the population from diagnostic imaging. An abdominal examination in an adult with an effective dose of 10 mSv has been estimated to increase the lifetime risk of fatal cancer by 1 in 2000. Children are 10 times more sensitive to the effects of radiation than middle aged adults. Girls are more sensitive than boys. Variations in CT practice, ease of using, urgency in multislice CT, unawaring of the 'uncoupling effect' in CT may be contributing to increasing in radiation dose. We must train and have an awareness of emerging materials and the implied changes in practice, with revision of protocols to take account of advances. The 'as low as reasonably achievable (ALARA) ' principle applies just as much to CT as it does to conventional radiography

  14. Clinical value of CARE dose 4D technique in decreasing CT scanning dose of adult chest

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Fang Bidong; Ge Wen

    2011-01-01

    Objective: To investigate the value of CARE Dose 4D technique in decreasing radiation dose and improving image quality of multi-slice spiral CT in adult chest scanning. Methods: 100 patients of chest CT scanning were equally divided into study group and control group randomly. CARE Dose 4D Technique was used in study group. Effective mAs value, volume CT dose index (CTDI vol ) and dose length product (DLP) were displayed automatically in machine while chest scanning; those values and actual mAs value of every image were recorded respectively. The image quality at apex of lung, lower edge of aorta arch, middle area of left atrium and base of lung on every image of 400 images was judged and classified as three level (excellent, good, poor) by two deputy chief physicians with double blind method, the image noise at corresponding parts was measured. Results: While setting 80 mAs for quality reference mAs, the effective mAs value in study group most decreased 44 mAs than control group with an average decrease of 9.60 (12.0%), CTDI vol with 4.75 mGy with an average decrease of 0.95 mCy (11.0%), DLP 99.50% in study group, with 98.0% in control group. But it was higher at apex of lung and base of lung, lower at middle area of left atrium, and similar at lower edge of aorta arch in study group than contrast group. The image noise were lower at apex of lung and base of lung in study group than control group (t =6.299 and 2.332, all P<0.05), higher at middle area of left atrium in study group than control group (t=3.078, P<0.05) and similar at lower edge of aorta arch in study group than control group (t=1.191, P>0.05). Conclusions: CARE Dose 4D technique provides a function regulated mAs real-time on line, it not only raises utilization rate of radiation and decreases radiation dose, but also promises and increases image quality in chest CT scanning, and has some clinical significance. (authors)

  15. Optimizing the balance between radiation dose and image quality in pediatric head CT: findings before and after intensive radiologic staff training.

    Science.gov (United States)

    Paolicchi, Fabio; Faggioni, Lorenzo; Bastiani, Luca; Molinaro, Sabrina; Puglioli, Michele; Caramella, Davide; Bartolozzi, Carlo

    2014-06-01

    The purpose of this study was to assess the radiation dose and image quality of pediatric head CT examinations before and after radiologic staff training. Outpatients 1 month to 14 years old underwent 215 unenhanced head CT examinations before and after intensive training of staff radiologists and technologists in optimization of CT technique. Patients were divided into three age groups (0-4, 5-9, and 10-14 years), and CT dose index, dose-length product, tube voltage, and tube current-rotation time product values before and after training were retrieved from the hospital PACS. Gray matter conspicuity and contrast-to-noise ratio before and after training were calculated, and subjective image quality in terms of artifacts, gray-white matter differentiation, noise, visualization of posterior fossa structures, and need for repeat CT examination was visually evaluated by three neuroradiologists. The median CT dose index and dose-length product values were significantly lower after than before training in all age groups (27 mGy and 338 mGy ∙ cm vs 107 mGy and 1444 mGy ∙ cm in the 0- to 4-year-old group, 41 mGy and 483 mGy ∙ cm vs 68 mGy and 976 mGy ∙ cm in the 5- to 9-year-old group, and 51 mGy and 679 mGy ∙ cm vs 107 mGy and 1480 mGy ∙ cm in the 10- to 14-year-old group; p training were significantly lower than the levels before training (p staff training can be effective in reducing radiation dose while preserving diagnostic image quality in pediatric head CT examinations.

  16. Evaluation of doses delivered during CT examination by different scanners for purposes of intercomparison and dose optimization

    International Nuclear Information System (INIS)

    Bashiru, Adam

    2017-07-01

    This research study was aimed at performing dosimetry intercomparison on different CT scanners in the diagnostic radiology departments of Korle-Bu Teaching Hospital (KBTH), Sweden Ghana Medical Center (SGMC) and Global Medical and Imaging Center (GMIC). Using the standard body phantom and integrated ion chamber technique volume computed tomography dose index (CTDIvol) and Dose-Length Product (DLPs) within the phantom were evaluated. The ion chamber technique was applied to two 16 slice Siemens and one Toshiba Aquilion one CT scanners. CTDIvol and DLP values for the standard body polymethyl methacrylate (PMMA) phantom were estimated and comparison made with corresponding console displayed values for accuracy and also to deduce a suitable method for optimization of patients and occupationally exposed worker doses. Effective doses were also calculated. An intra and inter institutional comparison of measured doses and console displayed doses were performed. Chest protocol at Automatic Exposure Control (AEC) was applied during the scanning of the phantom. Estimated CTDIvol values (mGy) were 17mGy, 24mGy and 13.1mGy for SGMC, GMIC and KBTH respectively. These values deviated from the console displayed values by 24.1%, 22.9% and 31.3% respectively. Similarly, estimated DLP values (mGy.cm) were 675mGy.cm,944mGy.cm and 419mGy.cm for SGMC, GMIC and KBTH respectively deviating from the console displayed values by 24.1%, 24.2% and 29% respectively. In terms of effective doses (E), the calculated E (mSv) values were 9.45mSv, 13.2mSv and 5.87mSv estimated from the DLPs from SGMC, GMIC and KBTH respectively using K, the anatomy-specific dose coefficient expressing effective dose normalized to DLP in a standard CT dosimetry phantom of 0.014 mSv mGy-1 cm-1. The estimated doses were compared to other selected international Dose Reference Levels (DRLs) and were within range. (au)

  17. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  18. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  19. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  20. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2011-01-01

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient (γ 2 = 0.86, P 2 vs. 326.3 ± 124.8 cm 2 ), mean density (-212.9 ± 53.1 HU vs. -221.1 ± 56.3 HU), and image noise (13.8 ± 2.3 vs. 13.6 ± 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  1. Deep learning for low-dose CT

    Science.gov (United States)

    Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge

    2017-09-01

    Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.

  2. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  3. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  4. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  5. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children

    International Nuclear Information System (INIS)

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-01-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children. (orig.)

  6. Diagnostic reference levels for common computed tomography (CT) examinations: results from the first Nigerian nationwide dose survey.

    Science.gov (United States)

    Ekpo, Ernest U; Adejoh, Thomas; Akwo, Judith D; Emeka, Owujekwe C; Modu, Ali A; Abba, Mohammed; Adesina, Kudirat A; Omiyi, David O; Chiegwu, Uche H

    2018-01-29

    To explore doses from common adult computed tomography (CT) examinations and propose national diagnostic reference levels (nDRLs) for Nigeria. This retrospective study was approved by the Nnamdi Azikiwe University and University Teaching Hospital Institutional Review Boards (IRB: NAUTH/CS/66/Vol8/84) and involved dose surveys of adult CT examinations across the six geographical regions of Nigeria and Abuja from January 2016 to August 2017. Dose data of adult head, chest and abdomen/pelvis CT examinations were extracted from patient folders. The median, 75th and 25th percentile CT dose index volume (CTDI vol ) and dose-length-product (DLP) were computed for each of these procedures. Effective doses (E) for these examinations were estimated using the k conversion factor as described in the ICRP publication 103 (E DLP  =  k × DLP ). The proposed 75th percentile CTDI vol for head, chest, and abdomen/pelvis are 61 mGy, 17 mGy, and 20 mGy, respectively. The corresponding DLPs are 1310 mGy.cm, 735 mGy.cm, and 1486 mGy.cm respectively. The effective doses were 2.75 mSv (head), 10.29 mSv (chest), and 22.29 mSv (abdomen/pelvis). Findings demonstrate wide dose variations within and across centres in Nigeria. The results also show CTDI vol comparable to international standards, but considerably higher DLP and effective doses.

  7. TU-PIS-Exhibit Hall-01: CT Dose Optimization Technologies II

    International Nuclear Information System (INIS)

    Driesser, I; Angel, E

    2014-01-01

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Siemens‘ Commitment to the Right Dose in Computed Tomography Presentation Time: 11:15 - 11:45 AM Providing sustainable clinical results at highest patient safety: This is the challenge in medical imaging. Especially for Computed Tomography this means applying not simply the lowest, but the right dose for sound diagnostic imaging. Consequently, Siemens is committed to deliver the right dose in CT. In order to reduce radiation to the right dose, the first step is to provide the right dose technology. Through decades of research and development in CT imaging, Siemens CT has constantly introduced new ideas leading to a comprehensive portfolio of unique CARE technologies to deliver the right dose. For example automated kV adjustment based on patient size and the clinical question with CARE kV and three generations of iterative reconstruction. Based on the right dose technology, the next step is to actually scan at the right dose. For this, it is key to know the right dose targets for every examination. Siemens continuously involves CT experts to push developments further and outline how users can best adapt their procedures to the right dose. For users to know whether they met the right dose targets, it is therefore important to understand and monitor the actual absolute dose values. All scanners are delivered with defined default protocols which automatically use the available right dose technologies. Finally, to deliver the right dose not just in singular cases, but ideally to patients everywhere, organizations need then to manage dose across

  8. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Hardie, Andrew D.; Felmly, Lloyd M.; Perry, Jonathan D.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Caruso, Damiano [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncological and Pathological Sciences, Latina (Italy); Canstein, Christian [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Siemens Medical Solutions USA, Malvern, PA (United States); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-02-15

    To compare single-energy (SECT) and dual-energy (DECT) abdominal CT examinations in matched patient cohorts regarding differences in radiation dose and image quality performed with second- and third-generation dual-source CT (DSCT). We retrospectively analysed 200 patients (100 male, 100 female; mean age 61.2 ± 13.5 years, mean body mass index 27.5 ± 3.8 kg/m{sup 2}) equally divided into four groups matched by gender and body mass index, who had undergone portal venous phase abdominal CT with second-generation (group A, 120-kV-SECT; group B, 80/140-kV-DECT) and third-generation DSCT (group C, 100-kV-SECT; group D, 90/150-kV-DECT). The radiation dose was normalised for 40-cm scan length. Dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNRs) were calculated for various organs and vessels. Subjective overall image quality and reader confidence were assessed. The effective normalised radiation dose was significantly lower (P < 0.001) in groups C (6.2 ± 2.0 mSv) and D (5.3 ± 1.9 mSv, P = 0.103) compared to groups A (8.8 ± 2.3 mSv) and B (9.7 ± 2.4 mSv, P = 0.102). Dose-independent FOM-CNR peaked for liver, kidney, and portal vein measurements (all P ≤ 0.0285) in group D. Subjective image quality and reader confidence were consistently rated as excellent in all groups (all ≥1.53 out of 5). With both DSCT generations, abdominal DECT can be routinely performed without radiation dose penalty compared to SECT, while third-generation DSCT shows improved dose efficiency. (orig.)

  9. Concepts for dose determination in flat-detector CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A

    2008-01-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDI L=100mm , where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm x 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDI L determination with respect to the desired CTDI ∞ . Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of ≥600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of ≥600 mm appeared to be necessary to approximate CTDI ∞ in within 1%. MC

  10. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis

    Energy Technology Data Exchange (ETDEWEB)

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth [Peninsula Radiology Academy, Plymouth (United Kingdom); Vardhanabhuti, Varut [Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth (United Kingdom); University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Pokfulam (China); Stuckey, Colin; Gutteridge, Catherine [Plymouth Hospitals NHS Trust, Plymouth (United Kingdom); Hyde, Christopher [University of Exeter Medical School, St Luke' s Campus, Exeter (United Kingdom); Roobottom, Carl [Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth (United Kingdom); Plymouth Hospitals NHS Trust, Plymouth (United Kingdom)

    2017-10-15

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. (orig.)

  11. An improved analytical model for CT dose simulation with a new look at the theory of CT dose

    International Nuclear Information System (INIS)

    Dixon, Robert L.; Munley, Michael T.; Bayram, Ersin

    2005-01-01

    Gagne [Med. Phys. 16, 29-37 (1989)] has previously described a model for predicting the sensitivity and dose profiles in the slice-width (z) direction for CT scanners. The model, developed prior to the advent of multidetector CT scanners, is still widely used; however, it does not account for the effect of anode tilt on the penumbra or include the heel effect, both of which are increasingly important for the wider beams (up to 40 mm) of contemporary, multidetector scanners. Additionally, it applied only on (or near) the axis of rotation, and did not incorporate the photon energy spectrum. The improved model described herein transcends all of the aforementioned limitations of the Gagne model, including extension to the peripheral phantom axes. Comparison of simulated and measured dose data provides experimental validation of the model, including verification of the superior match to the penumbra provided by the tilted-anode model, as well as the observable effects on the cumulative dose distribution. The initial motivation for the model was to simulate the quasiperiodic dose distribution on the peripheral, phantom axes resulting from a helical scan series in order to facilitate the implementation of an improved method of CT dose measurement utilizing a short ion chamber, as proposed by Dixon [Med. Phys. 30, 1272-1280 (2003)]. A more detailed set of guidelines for implementing such measurements is also presented in this paper. In addition, some fundamental principles governing CT dose which have not previously been clearly enunciated follow from the model, and a fundamental (energy-based) quantity dubbed 'CTDI-aperture' is introduced

  12. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Suzuki, Kayo [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Nakamoto, Yuji [Kyoto University Hospital, Department of Diagnostic Radiology, Kyoto (Japan); Onishi, Yumiko; Sakamoto, Setsu; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Senda, Michio [Institute of Biomedical Research and Innovation, Department of Molecular Imaging, Kobe (Japan); Kita, Masato [Kobe City Medical Center General Hospital, Department of Obstetrics and Gynecology, Kobe (Japan)

    2010-08-15

    To evaluate low-dose non-enhanced CT (ldCT) and full-dose contrast-enhanced CT (ceCT) in integrated {sup 18}F-fluorodeoxyglucose (FDG) PET/CT studies for restaging of uterine cancer. A group of 100 women who had undergone treatment for uterine cervical (n=55) or endometrial cancer (n=45) underwent a conventional PET/CT scans with ldCT, and then a ceCT scan. Two observers retrospectively reviewed and interpreted the PET/ldCT and PET/ceCT images in consensus using a three-point grading scale (negative, equivocal, or positive) per patient and per lesion. Final diagnoses were obtained by histopathological examination, or clinical follow-up for at least 6 months. Patient-based analysis showed that the sensitivity, specificity and accuracy of PET/ceCT were 90% (27/30), 97% (68/70) and 95% (95/100), respectively, whereas those of PET/ldCT were 83% (25/30), 94% (66/70) and 91% (91/100), respectively. Sensitivity, specificity and accuracy did not significantly differ between two methods (McNemar test, p=0.48, p=0.48, and p=0.13, respectively). There were 52 sites of lesion recurrence: 12 pelvic lymph node (LN), 11 local recurrence, 8 peritoneum, 7 abdominal LN, 5 lung, 3 supraclavicular LN, 3 liver, 2 mediastinal LN, and 1 muscle and bone. The grading results for the 52 sites of recurrence were: negative 5, equivocal 0 and positive 47 for PET/ceCT, and negative 5, equivocal 4 and positive 43 for PET/ldCT, respectively. Four equivocal regions by PET/ldCT (local recurrence, pelvic LN metastasis, liver metastasis and muscle metastasis) were correctly interpreted as positive by PET/ceCT. PET/ceCT is an accurate imaging modality for the assessment of uterine cancer recurrence. Its use reduces the frequency of equivocal interpretations. (orig.)

  13. Poster — Thur Eve — 06: Dose assessment of cone beam CT imaging protocols as part of SPECT/CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Tonkopi, E; Ross, AA [Department of Diagnostic Imaging, Queen Elizabeth II Health Sciences Centre, CDHA (Canada); Department of Radiology, Dalhousie University (Canada)

    2014-08-15

    Purpose: To assess radiation dose from the cone beam CT (CBCT) component of SPECT/CT studies and to compare with other CT examinations performed in our institution. Methods: We used an anthropomorphic chest phantom and the 6 cc ion chamber to measure entrance breast dose for several CBCT and diagnostic CT acquisition protocols. The CBCT effective dose was calculated with ImPACT software; the CT effective dose was evaluated from the DLP value and conversion factor, dependent on the anatomic region. The RADAR medical procedure radiation dose calculator was used to assess the nuclear medicine component of exam dose. Results: The entrance dose to the breast measured with the anthropomorphic phantom was 0.48 mGy and 9.41 mGy for cardiac and chest CBCT scans; and 4.59 mGy for diagnostic thoracic CT. The effective doses were 0.2 mSv, 3.2 mSv and 2.8 mSv respectively. For a small patient represented by the anthropomorphic phantom, the dose from the diagnostic CT was lower than from the CBCT scan, as a result of the exposure reduction options available on modern CT scanners. The CBCT protocols used the same fixed scanning techniques. The diagnostic CT dose based on the patient data was 35% higher than the phantom dose. For most SPECT/CT studies the dose from the CBCT component was comparable with the dose from the radiopharmaceutical. Conclusions: The patient radiation dose from the cone beam CT scan can be higher than that from a diagnostic CT and should be taken into consideration in evaluating total SPECT/CT patient dose.

  14. Cloud-based CT dose monitoring using the DICOM-structured report. Fully automated analysis in regard to national diagnostic reference levels

    International Nuclear Information System (INIS)

    Boos, J.; Rubbert, C.; Heusch, P.; Lanzman, R.S.; Aissa, J.; Antoch, G.; Kroepil, P.

    2016-01-01

    To implement automated CT dose data monitoring using the DICOM-Structured Report (DICOM-SR) in order to monitor dose-related CT data in regard to national diagnostic reference levels (DRLs). Materials and Methods: We used a novel in-house co-developed software tool based on the DICOM-SR to automatically monitor dose-related data from CT examinations. The DICOM-SR for each CT examination performed between 09/2011 and 03/2015 was automatically anonymized and sent from the CT scanners to a cloud server. Data was automatically analyzed in accordance with body region, patient age and corresponding DRL for volumetric computed tomography dose index (CTDI vol ) and dose length product (DLP). Results: Data of 36 523 examinations (131 527 scan series) performed on three different CT scanners and one PET/CT were analyzed. The overall mean CTDI vol and DLP were 51.3 % and 52.8 % of the national DRLs, respectively. CTDI vol and DLP reached 43.8 % and 43.1 % for abdominal CT (n = 10 590), 66.6 % and 69.6 % for cranial CT (n = 16 098) and 37.8 % and 44.0 % for chest CT (n = 10 387) of the compared national DRLs, respectively. Overall, the CTDI vol exceeded national DRLs in 1.9 % of the examinations, while the DLP exceeded national DRLs in 2.9 % of the examinations. Between different CT protocols of the same body region, radiation exposure varied up to 50 % of the DRLs. Conclusion: The implemented cloud-based CT dose monitoring based on the DICOM-SR enables automated benchmarking in regard to national DRLs. Overall the local dose exposure from CT reached approximately 50 % of these DRLs indicating that DRL actualization as well as protocol-specific DRLs are desirable. The cloud-based approach enables multi-center dose monitoring and offers great potential to further optimize radiation exposure in radiological departments.

  15. Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume, E-mail: g.landry@lmu.de [Department of Medical Physics, Ludwig-Maximilians-University, Munich D85748, Germany and Department of Radiation Oncology, Ludwig-Maximilians-University, Munich D81377 (Germany); Nijhuis, Reinoud; Thieke, Christian; Reiner, Michael; Ganswindt, Ute; Belka, Claus [Department of Radiation Oncology, Ludwig-Maximilians-University, Munich D81377 (Germany); Dedes, George; Handrack, Josefine; Parodi, Katia [Department of Medical Physics, Ludwig-Maximilians-University, Munich D85748 (Germany); Janssens, Guillaume; Orban de Xivry, Jonathan [ICTEAM, Université Catholique de Louvain, Louvain-La-Neuve B1348 (Belgium); Kamp, Florian; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich D81675, Germany and Physik-Department, Technische Universität München, Garching D85748 (Germany); Paganelli, Chiara; Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan 20133 (Italy)

    2015-03-15

    Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigated deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT

  16. The application and shielding value of low-dose CT scanning in hypoxic ischemic encephalopathy of neonate

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Cheng Jianmin; Chen Yu; Chen Tinggang

    2006-01-01

    Objective: To investigate the application and shielding value of multi-slice spiral CT scanning with low-dose in hypoxic ischemic encephalopathy (HIE) of neonate. Methods: 60 neonates with HIE diagnosed by clinic were prospectively selected and randomly divided into two groups averagely. The technical parameters were tube tension 120 kV, slice thickness and gap 6 mm, conventional tube current 250 mAs and low dose 50 mAs. Weighted CT dose index (CTDI w ) and dose length product (DLP) were compared to each other. The image noise were analyzed with water phantom of children's skull. The mean and standard deviation of CT value were statistically analyzed. The image quality was blindly evaluated in two different dose groups. Results: (1) The mAs, CTDI w and DLP in low dose group were 20 % of conventional dose group; (2) The noise of water phantom in low dose group was larger than in conventional dose group with the significant difference (t=34.533, P < 0.01 ); (3) The imaging quality in low dose group was mostly better, but inferior to conventional dose group, while there is no poor images to influence the diagnosis of HIE. Conclusions: The low dose scanning will be practical in diagnosis of HIE, and beneficial to protect the newborn which corresponds to the optimizing principle of ICRP in medical radiation protection. (authors)

  17. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S; Wang, Y; Weng, H [Chiayi Chang Gung Memorial Hospital of The C.G.M.F, Puzi City, Chiayi County, Taiwan (China)

    2015-06-15

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.

  18. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    International Nuclear Information System (INIS)

    Liao, S; Wang, Y; Weng, H

    2015-01-01

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle

  19. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    Science.gov (United States)

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evaluation of the CT dose index for scans with an ECG using a 320-row multiple-detector CT scanner

    International Nuclear Information System (INIS)

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Shouichi; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Katada, Kazuhiro; Toyama, Hiroshi

    2015-01-01

    The relationship between heart rate (HR) and computed tomography dose index (CTDI) was evaluated using an electrocardiogram (ECG) gate scan for scan applications such as prospective triggering, Ca scoring, target computed tomography angiography (CTA), prospective CTA and retrospective gating, continuous CTA/CFA (cardiac functional analysis) and CTA/CFA modulation. Even in the case of a volume scan, doses for the multiple scan average dose were similar to those for CTDI. Moreover, it was found that the ECG gate scan yields significantly different doses. When selecting the optimum scan, the doses were dependent on many factors such as HR, scan rotation time, active time, pre-specified cardiac phase and modulation rate. Therefore, it is necessary to take these results into consideration when selecting the scanning parameters. (authors)

  1. Improved image quality and radiation dose reduction in liver dynamic CT scan with the protocol change

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yu Jin; Cho, Pyong Kon [Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2015-06-15

    The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5-24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120 kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100 kVp, apply SAFIRE strength 0-5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120 kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100 kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100 kVp than 120 kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality

  2. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  3. Effects of sparse sampling schemes on image quality in low-dose CT

    International Nuclear Information System (INIS)

    Abbas, Sajid; Lee, Taewon; Cho, Seungryong; Shin, Sukyoung; Lee, Rena

    2013-01-01

    Purpose: Various scanning methods and image reconstruction algorithms are actively investigated for low-dose computed tomography (CT) that can potentially reduce a health-risk related to radiation dose. Particularly, compressive-sensing (CS) based algorithms have been successfully developed for reconstructing images from sparsely sampled data. Although these algorithms have shown promises in low-dose CT, it has not been studied how sparse sampling schemes affect image quality in CS-based image reconstruction. In this work, the authors present several sparse-sampling schemes for low-dose CT, quantitatively analyze their data property, and compare effects of the sampling schemes on the image quality.Methods: Data properties of several sampling schemes are analyzed with respect to the CS-based image reconstruction using two measures: sampling density and data incoherence. The authors present five different sparse sampling schemes, and simulated those schemes to achieve a targeted dose reduction. Dose reduction factors of about 75% and 87.5%, compared to a conventional scan, were tested. A fully sampled circular cone-beam CT data set was used as a reference, and sparse sampling has been realized numerically based on the CBCT data.Results: It is found that both sampling density and data incoherence affect the image quality in the CS-based reconstruction. Among the sampling schemes the authors investigated, the sparse-view, many-view undersampling (MVUS)-fine, and MVUS-moving cases have shown promising results. These sampling schemes produced images with similar image quality compared to the reference image and their structure similarity index values were higher than 0.92 in the mouse head scan with 75% dose reduction.Conclusions: The authors found that in CS-based image reconstructions both sampling density and data incoherence affect the image quality, and suggest that a sampling scheme should be devised and optimized by use of these indicators. With this strategic

  4. Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction

    International Nuclear Information System (INIS)

    Niesten, Joris M.; Schaaf, Irene C. van der; Riordan, Alan J.; Jong, Hugo W.A.M. de; Eijspaart, Daniel; Smit, Ewoud J.; Mali, Willem P.T.M.; Velthuis, Birgitta K.; Horsch, Alexander D.

    2014-01-01

    To investigate whether iterative reconstruction (IR) in cerebral CT perfusion (CTP) allows for 50 % dose reduction while maintaining image quality (IQ). A total of 48 CTP examinations were reconstructed into a standard dose (150 mAs) with filtered back projection (FBP) and half-dose (75 mAs) with two strengths of IR (middle and high). Objective IQ (quantitative perfusion values, contrast-to-noise ratio (CNR), penumbra, infarct area and penumbra/infarct (P/I) index) and subjective IQ (diagnostic IQ on a four-point Likert scale and overall IQ binomial) were compared among the reconstructions. Half-dose CTP with high IR level had, compared with standard dose with FBP, similar objective (grey matter cerebral blood volume (CBV) 4.4 versus 4.3 mL/100 g, CNR 1.59 versus 1.64 and P/I index 0.74 versus 0.73, respectively) and subjective diagnostic IQ (mean Likert scale 1.42 versus 1.49, respectively). The overall IQ in half-dose with high IR level was scored lower in 26-31 %. Half-dose with FBP and with the middle IR level were inferior to standard dose with FBP. With the use of IR in CTP imaging it is possible to examine patients with a half dose without significantly altering the objective and diagnostic IQ. The standard dose with FBP is still preferable in terms of subjective overall IQ in about one quarter of patients. (orig.)

  5. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  6. Results of the Austrian CT dose study 2010. Typical effective doses of the most frequent CT examinations; Ergebnisse der Oesterreichischen CT-Dosisstudie 2010. Effektive Dosen der haeufigsten CT-Untersuchungen und Unterschiede zwischen Anwendern

    Energy Technology Data Exchange (ETDEWEB)

    Homolka, Peter; Leithner, Robert; Billinger, Jochen [Medizinische Universitaet Wien (Austria). Zentrum fuer Medizinische Physik und Biomedizinische Technik; Gruber, Michael [Medizinische Universitaet Wien (Austria). Universitaetsklinik fuer Radiologie und Nuklearmedizin

    2014-10-01

    Purpose: To determine typical doses from common CT examinations of standard sized adult patients and their variability between CT operators for common CT indications. Materials and Methods: In a nationwide Austrian CT dose survey doses from approx. 10,000 common CT examinations of adults during 2009 and 2010 were collected and 'typical' radiation doses to the 'average patient', which turned out to have 75.6 kg body mass, calculated. Conversion coefficients from DLP to effective dose were determined and effective doses calculated according to ICRP 103. Variations of typically applied doses to the 'average patient' were expressed as ratios between 90{sup th} and 10{sup th} percentile (inter-percentile width, IPW90/10), 1st and 3{sup rd} quartile (IPW75/25), and Maximum/Minimum. Results: Median effective doses to the average patients for standard head and neck scans were 1.8 mSv (cervical spine), 1.9 mSv (brain: trauma/bleeding, stroke) to 2.2 mSv (brain: masses) with typical variation between facilities of a factor 2.5 (IPW90/10) and 1.7 (IPW75/25). In the thorax region doses were 6.4 to 6.8 mSv (pulmonary embolism, pneumonia and inflammation, oncologic scans), the variation between facilities was by a factor of 2.1 (IPW90/10) and 1.5 (IPW75/25), respectively. In the abdominal region median effective doses from 6.5 mSv (kidney stone search) to 22 mSv (liver lesions) were found (acute abdomen, staging/metastases, lumbar spine: 9-12 mSv; oncologic abdomen plus chest 16 mSv; renal tumor 20 mSv). Variation factors between facilities were on average for abdominal scans 2.7 (IPW90/10) and 1.8 (IPW75/25). Conclusion: Variations between CT operators are generally moderate for most operators, but in some indications the ratio between the minimum and the maximum of average dose to the typical standard patients exceeds a factor of 4 or even 5. Therefore, comparing average doses to Diagnostic Reference Levels (DRLs) and optimizing protocols need to

  7. Comparison of dose evaluation index by pencil beam convolution and anisotropic analytical algorithm in stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    We previously studied dose distributions of stereotactic radiotherapy (SRT) for lung cancer. Our aim is to compare in combination pencil beam convolution with the inhomogeneity correction algorithm of Batho power low [PBC (BPL)] to the anisotropic analytical algorithm (AAA) by using the dose evaluation indexes. There were significant differences in D95, planning target volume (PTV) mean dose, homogeneity index, and conformity index, V10, and V5. The dose distributions inside the PTV calculated by PBC (BPL) were more uniform than those of AAA. There were no significant differences in V20 and mean dose of total lung. There was no large difference for the whole lung. However, the surrounding high-dose region of PTV became smaller in AAA. The difference in dose evaluation indexes extended between PBC (BPL) and AAA that as many as low CT value of lung. When the dose calculation algorithm is changed, it is necessary to consider difference dose distributions compared with those of established practice. (author)

  8. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Ming; Chu, Sung-Yu; Hsu, Ming-Yi [Chang Gung University, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, College of Medicine, Taoyuan (China); Liao, Ying-Lan [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Tsai, Hui-Yu [Chang Gung University, Department of Medical Imaging and Radiological Sciences, College of Medicine, Taoyuan (China); Chang Gung University, Healthy Aging Research Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan (China)

    2014-02-15

    To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR). The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDI{sub vol}), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts. The low-tube-voltage protocol showed 23-31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDI{sub vol} and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01). Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality. (orig.)

  9. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Santangelo, Teresa [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Duhamel, Alain [University of Lille (EA 2694), Department of Biostatistics, CHU Lille, Lille (France); Deschildre, Antoine [CHU Lille - University of Lille, Department of Pediatric Pulmonology, Lille (France)

    2017-02-15

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol{sub 32}) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP{sub 32} was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP{sub 32}, CTDI{sub vol32} and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP{sub 32}, 0.78-1.25 mGy for the CTDI{sub vol32} and 1.6-2.1 mGy for the SSDE. (orig.)

  10. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    International Nuclear Information System (INIS)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques; Santangelo, Teresa; Duhamel, Alain; Deschildre, Antoine

    2017-01-01

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol 32 ) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP 32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP 32 , CTDI vol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP 32 , 0.78-1.25 mGy for the CTDI vol32 and 1.6-2.1 mGy for the SSDE. (orig.)

  11. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  12. Routine chest and abdominal high-pitch CT: An alternative low dose protocol with preserved image quality

    International Nuclear Information System (INIS)

    Amacker, Nadja A.; Mader, Caecilia; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2012-01-01

    Objective: To investigate the radiation dose and image quality of the high-pitch dual source computer tomography (DSCT) for routine chest and abdominal scans. Methods: 130 consecutive patients (62 female, 68 male, median age 55 years) were included. All patients underwent 128-slice high-pitch DSCT (chest n = 99; abdomen n = 84) at a pitch of 3.2. Two observers independently rated image quality using a 4-point score (1: excellent to 4: non-diagnostic). Image noise was measured and operational radiation dose quantities were recorded. An additional group of 132 patients (chest, n = 80; abdomen n = 52) scanned with standard-pitch CT matched for age, gender, and body mass index (BMI) served as control group. Results: Interobserver agreement for image quality rating was good (k = 0.74). Subjective image quality of high-pitch CT was diagnostic in all patients (median score chest; 2, median score abdomen: 2). Image noise of high-pitch CT was comparable to standard-pitch for the chest (p = 0.32) but increased in the abdomen (p < 0.0001). For high-pitch CT radiation dose was 4.4 ± 0.9 mSv (chest) and 6.5 ± 1.2 mSv (abdomen). These values were significantly lower compared to standard-pitch CT (chest: 5.5 ± 1.2 mSv; abdomen: 11.3 ± 3.8 mSv). Conclusion: Based on the technical background high-pitch dual source CT may serve as an alternative scan mode for low radiation dose routine chest and abdominal CT.

  13. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukihiro, E-mail: yatsushi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Takahashi, Masashi; Murata, Kiyoshi [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Ikeda, Mitsuru [Department of Radiological and Medical Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Aichi (Japan); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Miyara, Tetsuhiro [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Department of Radiology, Okinawa Prefectural Yaeyama Hospital, Ishigaki 907-0022, Okinawa (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Koyama, Mitsuhiro [Department of Radiology, Osaka Medical College, Takatsuki 569-8686, Osaka (Japan); Sato, Yukihisa [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Department of Radiology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka 537-8511, Osaka (Japan); Moriya, Hiroshi [Department of Radiology, Ohara General Hospital, Fukushima 960-8611 (Japan); Noma, Satoshi [Department of Radiology, Tenri Hospital, Tenri 632-8552, Nara (Japan); Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Murayama, Sadayuki [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan)

    2015-07-15

    Highlights: • Using AIDR 3D, ULDCT showed comparable LND of solid nodules to LDCT. • Using AIDR 3D, LND of smaller GGN in ULDCT was inferior to that in LDCT. • Effective dose in ULDCT was about only twice of that in chest X-ray. • BMI values in study population were mostly in the normal range body habitus. - Abstract: Purpose: To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). Materials and methods: This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3 mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). Results: For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC

  14. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    International Nuclear Information System (INIS)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S.

    2015-01-01

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  15. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S. [MGH Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  16. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT

    International Nuclear Information System (INIS)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U.

    2012-01-01

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI vol values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 ± 2.5 vs. 11.4 ± 1.4, p < 0.001; 14.2 ± 3.7 vs. 16.1 ± 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 ± 201.1 vs. 849.8 ± 90.9, p < 0,001; 504.4 ± 134.4 vs. 471.5 ± 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 ± 35.8 vs. 155.5 ± 12.3 (p < 0.001), thorax 427.4 ± 44.5 vs. 388.3 ± 57.5 (p < 0.001), abdomen 520.3 ± 50.2 vs. 490.8 ± 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 ± 2.6 (4-row MDCT) and 24.1 ± 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  17. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis.

    Science.gov (United States)

    Nagatani, Yukihiro; Takahashi, Masashi; Murata, Kiyoshi; Ikeda, Mitsuru; Yamashiro, Tsuneo; Miyara, Tetsuhiro; Koyama, Hisanobu; Koyama, Mitsuhiro; Sato, Yukihisa; Moriya, Hiroshi; Noma, Satoshi; Tomiyama, Noriyuki; Ohno, Yoshiharu; Murayama, Sadayuki

    2015-07-01

    To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC curve (AUC) was 0.844 ± 0.017 in ULDCT and 0.876 ± 0.026 in LDCT (p=0.057). For ground glass nodules with LD 8mm or more, LNDP was similar between both methods, as AUC 0.899 ± 0.038 in ULDCT and 0.941 ± 0.030 in LDCT. (p=0.144). ULDCT using AIDR3D with an equivalent radiation dose to chest x-ray could have comparable LNDP to LDCT with AIDR3D except for smaller ground

  18. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    Energy Technology Data Exchange (ETDEWEB)

    Denison, K; Smith, S [GE Healthcare, Waukesha, WI (United States)

    2014-06-15

    DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ

  19. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    International Nuclear Information System (INIS)

    Denison, K; Smith, S

    2014-01-01

    DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ

  20. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  1. SU-E-I-31: Differences Observed in Radiation Doses Across 2 Similar CT Scanners From Adult Brain-Neck CT Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [Graduate School of Medicine, Nagoya University, Nagoya, JP (Japan); UCLA School of Medicine, Los Angeles, CA (United States); McMillan, K; Bostani, M; Cagnon, C; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimation of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.

  2. Evidence of dose saving in routine CT practice using iterative reconstruction derived from a national diagnostic reference level survey.

    Science.gov (United States)

    Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A

    2015-09-01

    To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.

  3. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  4. Paediatric urological investigations - dose comparison between urology-related and CT irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Mark; Florescu, Cosmin [Southern Health, Diagnostic Imaging, Melbourne (Australia); Johnstone, Lilian [Monash Children' s Hospital, Department of Paediatrics, Melbourne (Australia); Habteslassie, Daniel [Monash University, Department of Medicine, Melbourne (Australia); Ditchfield, Michael [Southern Health, Diagnostic Imaging, Melbourne (Australia); Monash Children' s Hospital, Diagnostic Imaging, Melbourne (Australia); Monash University, Department of Medicine, Melbourne (Australia)

    2013-07-15

    Urological investigation in children frequently involves high radiation doses; however, the issue of radiation for these investigations receives little attention compared with CT. To compare the radiation dose from paediatric urological investigations with CT, which is commonly regarded as the more major source of radiation exposure. We conducted a retrospective audit in a tertiary paediatric centre of the number and radiation dose of CT scans, micturating cystourethrography exams and urological nuclear medicine scans from 2006 to 2011. This was compared with radiation doses in the literature and an audit of the frequency of these studies in Australia. The tertiary centre audit demonstrated that the ratio of the frequency of urological to CT examinations was 0.8:1 in children younger than 17 years. The ratio of the radiation dose of urological to CT examinations was 0.7:1. The ratio in children younger than 5 years was 1.9:1. In Australia the frequency of urological procedures compared with CT was 0.4:1 in children younger than 17 years and 3.1:1 in those younger than 5 years. The ratio of radiation-related publications was 1:9 favouring CT. The incidence and radiation dose of paediatric urological studies is comparable to those of CT. Nevertheless the radiation dose of urological procedures receives considerably less attention in the literature. (orig.)

  5. Effective and organ doses from common CT examinations in one general hospital in Tehran, Iran

    Science.gov (United States)

    Khoramian, Daryoush; Hashemi, Bijan

    2017-09-01

    Purpose: It is well known that the main portion of artificial sources of ionizing radiation to human results from X-ray imaging techniques. However, reports carried out in various countries have indicated that most of their cumulative doses from artificial sources are due to CT examinations. Hence assessing doses resulted from CT examinations is highly recommended by national and international radiation protection agencies. The aim of this research has been to estimate the effective and organ doses in an average human according to 103 and 60 ICRP tissue weighting factor for six common protocols of Multi-Detector CT (MDCT) machine in a comprehensive training general hospital in Tehran/Iran. Methods: To calculate the patients' effective dose, the CT-Expo2.2 software was used. Organs/tissues and effective doses were determined for about 20 patients (totally 122 patients) for every one of six typical CT protocols of the head, neck, chest, abdomen-pelvis, pelvis and spine exams. In addition, the CT dosimetry index (CTDI) was measured in the standard 16 and 32 cm phantoms by using a calibrated pencil ionization chamber for the six protocols and by taking the average value of CT scan parameters used in the hospital compared with the CTDI values displayed on the console device of the machine. Results: The values of the effective dose based on the ICRP 103 tissue weighting factor were: 0.6, 2.0, 3.2, 4.2, 2.8, and 3.9 mSv and based on the ICRP 60 tissue weighting factor were: 0.9, 1.4, 3, 7.9, 4.8 and 5.1 mSv for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams respectively. Relative differences between those values were -22, 21, 23, -6, -31 and 16 percent for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams, respectively. The average value of CTDIv calculated for each protocol was: 27.32 ± 0.9, 18.08 ± 2.0, 7.36 ± 2.6, 8.84 ± 1.7, 9.13 ± 1.5, 10.42 ± 0.8 mGy for the head, neck, chest, abdomen-pelvis and spine CT exams, respectively

  6. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  7. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  8. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    Science.gov (United States)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  9. The application of dose-reduction simulation in neonatal head CT scan

    International Nuclear Information System (INIS)

    Liu Yue; Peng Yun; Zeng Jinjin; Zhang Qifeng; Li Jianying

    2009-01-01

    Objective: To determine the effects of dose reduction on multi-slice spiral CT (MSCT) of neonatal head and assess the lowest possible radiation for acceptable clinical images. Methods: Fifty-seven newborns suspected intracranial hemorrhage were entered into the study and underwent MSCT scans. Original images at three anatomic levels (posterior fossa, basal ganglia, centrum semiovale) were collected and synthetic noise was added so as to simulate dose reductions of 25%, 40%, 50% and 70%, respectively by using the noise addition tool. A total of 855 image data sets were obtained for the 57 patients. Original and simulated dose-reduction scan images were analyzed. Image noise and image quality were assessed by two independent experienced pediatric radiologists using diagnostic acceptability score, subjective image noise score on a 5-point scale and objective noise index. Image noise was measured by respectively placing region of interest (ROI) at cerebellum, thalamus and corona radiata of 3 different slices. And the noise index and mean value was calculated. The degree of inter-observer concordance was determined by Kappa statistical analysis. The Spearman statistical correlations between the noise index and diagnostic acceptability score were performed. Results: On the images of original dose and simulated dose reductions of 25%, 40%, 50% and 70%, the diagnostic acceptability was 4.47±0.51, 3.96±0.33, 3.21±0.45, 2.92±0.32, and 1.85±0.57, respectively, the subjective image scores were 1.62±0.48, 1.99±0.48, 2.76±0.81, 3.19±0.67, and 4.27±0.54, respectively, the noise index were 1.90±0.19, 2.17±0.20. 2.44± 0.25, 2.68±0.28, and 3.37±0.39, respectively. The two radiologists had good interobserver agreement for diagnostic acceptability (K=0.860, P=0.017) and for image noise scoring(K=0.630, P=0.022). There was significant statistical correlation between image noise index and diagnostic acceptability (r= 0.826,P=0.001). At 40% dose reduction to the standard

  10. Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Platon, Alexandra; Jlassi, Helmi; Becker, Christoph D.; Poletti, Pierre-Alexandre [University Hospital of Geneva, Department of Radiology, Geneva 14 (Switzerland); Rutschmann, Olivier T. [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Verdun, Francis R. [University Institute for Radiation Physics, Lausanne (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Clinic of Digestive Surgery, Geneva (Switzerland)

    2009-02-15

    The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30 mAs), followed by standard CT (180 mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) {>=} 18.5. In slim patients (BMI < 18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI {>=} 18.5. (orig.)

  11. Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis

    International Nuclear Information System (INIS)

    Platon, Alexandra; Jlassi, Helmi; Becker, Christoph D.; Poletti, Pierre-Alexandre; Rutschmann, Olivier T.; Verdun, Francis R.; Gervaz, Pascal

    2009-01-01

    The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30 mAs), followed by standard CT (180 mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) ≥ 18.5. In slim patients (BMI < 18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI ≥ 18.5. (orig.)

  12. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT

    International Nuclear Information System (INIS)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J.; Maentele, Werner; Bauer, Ralf W.

    2012-01-01

    Highlights: ► The dual-energy protocol delivers the lowest effective dose of the investigated protocols for standard chest CT examinations, thus enabling functional imaging (like dual-energy perfusion) and can produce weighted images without dose penalty. ► The high-pitch protocol goes along with a 16% increase in dose compared to the standard 120 kV protocol and thus should preferably be used in pediatric, acute care settings (e.g. pulmonary embolism, aortic dissection and the like) or restless patients. ► The difference in effective dose estimates between ICRP 60 and 103 is minimal. ► Tube potential definitely has an effect on estimates of effective dose. - Abstract: Purpose: To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Materials and methods: Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014 mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120 kV, (2) single-source 100 kV, (3) high-pitch 120 kV, and (4) dual-energy with 100/Sn140 kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. Results: DLP-based estimates differed by 4.5–16.56% and 5.2–15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04 m

  13. Ambient dose measurement in some CT departments in Khartoum State

    International Nuclear Information System (INIS)

    Mohammed, S. A. H.

    2012-09-01

    Computerized Tomography (CT) is now one of the most important radiological examinations world wide.The frequency of CT examinations is increasing rapidly from 2% of all radiological examinations in some countries a decade age to 10-15% now. During the imaging procedure, staff may expose to a significant dose. Therefore, ambient dose measurement is important in the shortage of regular personal monitoring in sudan. This study intended to evaluate the ambient dose at some CT departments (Medical Military hospital, Alamal National Hospital, Elnelin Diagnostic Center and Modern Medical Centre). These departments were equipped with daul, 16 and 64 multi detector CT machines. A survey meter (Radios) was used to measure ambient doses in three locations: Doors, Control Rooms and Adjacent Rooms. The ambient dose equivalent (scatter dose) was measured at various distances from the isocenter of the CT unit at various angles to establish isodose cartography. The mean and range of radiation at control room is 10.00-0.20 and mean (7.05μSv/hr,) reception 1.0-0 (0.40) and doors 4.00-100.00 (73.5) for height 1 meter above the ground. For height 2 meters at control room 0-10.00 (6,75), reception 0-90.00 (30) at door 9.00-90.00 (49.50). This study confirms that low levels of radiation dose are received by staff during CT imaging and these levels are within safe limits as prescribed by the national and international regulations. (Author)

  14. Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner

    OpenAIRE

    Livingstone Roshan; Pradip Joe; Dinakran Paul; Srikanth B

    2010-01-01

    Objective: To evaluate the radiation dose and image quality using a manual protocol and dose modulation techniques in a 6-slice CT scanner. Materials and Methods: Two hundred and twenty-one patients who underwent contrast-enhanced CT of the chest were included in the study. For the manual protocol settings, constant tube potential (kV) and tube current-time product (mAs) of 140 kV and 120 mAs, respectively, were used. The angular and z-axis dose modulation techniques utilized a constant tu...

  15. Evaluation of radiation dose in 64-row whole-body CT of multiple injured patients compared to 4-row CT; Evaluation der Strahlendosis bei Polytrauma-CT-Untersuchungen eines 64-Zeilen-CT im Vergleich zur 4-Zeilen-CT

    Energy Technology Data Exchange (ETDEWEB)

    Harrieder, A.; Geyer, L.L.; Koerner, M.; Deak, Z.; Wirth, S.; Reiser, M.; Linsenmaier, U. [Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2012-05-15

    Purpose: To evaluate radiation exposure in whole-body CT (WBCT) of multiple injured patients comparing 4-row multidetector computed tomography (MDCT) to 64-row MDCT. Materials and Methods: 200 WBCT studies were retrospectively evaluated: 92 4-row MDCT scans and 108 64-row MDCT scans. Each CT protocol was optimized for the particular CT system. The scan length, CT dose index (CTDI), and dose length product (DLP) were recorded and analyzed for radiation exposure. The mean effective dose was estimated based on conversion factors. Student's t-test was used for statistical analysis. Results: The mean CTDI{sub vol} values (mGy) of the thorax and abdomen were significantly reduced with 64-row MDCT (10.2 {+-} 2.5 vs. 11.4 {+-} 1.4, p < 0.001; 14.2 {+-} 3.7 vs. 16.1 {+-} 1.7, p < 0.001). The DLP values (mGy x cm) of the head and thorax were significantly increased with 64-row MDCT (1305.9 {+-} 201.1 vs. 849.8 {+-} 90.9, p < 0,001; 504.4 {+-} 134.4 vs. 471.5 {+-} 74.1, p = 0.030). The scan lengths (mm) were significantly increased with 64-row MDCT: head 223.6 {+-} 35.8 vs. 155.5 {+-} 12.3 (p < 0.001), thorax 427.4 {+-} 44.5 vs. 388.3 {+-} 57.5 (p < 0.001), abdomen 520.3 {+-} 50.2 vs. 490.8 {+-} 51.6 (p < 0.001). The estimated mean effective doses (mSv) were 22.4 {+-} 2.6 (4-row MDCT) and 24.1 {+-} 4.6 (64-row MDCT; p = 0.001), resulting in a percentage increase of 8 %. Conclusion: The radiation dose per slice of the thorax and abdomen can be significantly decreased by using 64-row MDCT. Due to the technical advances of modern 64-row MDCT systems, the scan field can be adapted to the clinical demands and, if necessary, enlarged without time loss. As a result, the estimated mean effective dose might be increased in WBCT. (orig.)

  16. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Liu, Q; Qiu, J; Zhuo, W [Institute of Radiation Medicine Fudan University, Shanghai (China); Majer, M; Knezevic, Z; Miljanic, S [Radiation Chemistry and Dosimetry Laboratory, Ruder Boskovic Institute, Zagreb (Croatia); Hrsak, H [Clinical Hospital Centre Zagreb, Zagreb (Croatia)

    2016-06-15

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the top of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)

  17. Evaluation of patient absorbed dose in a PET-CT test

    International Nuclear Information System (INIS)

    Guerra P, F.; Mourao F, A. P.; Santana, P. C.

    2017-10-01

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg 18 F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the 18 F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  18. Evaluation of patient absorbed dose in a PET-CT test

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Mourao F, A. P. [Federal University of Minas Gerais, Department of Nuclear Engineering, Av. Antonio Carlos 6627, CEP 31270-901, Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P. C., E-mail: fgpaiva92@gmail.com [Federal University of Minas Gerais, Medical School, Av. Prof. Alfredo Balena 190, CEP 30123970, Santa Efigenia, Belo Horizonte, Minas Gerais (Brazil)

    2017-10-15

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg {sup 18}F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the {sup 18}F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  19. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  20. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT

    International Nuclear Information System (INIS)

    Barras, Heloise; Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine

    2016-01-01

    Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique

  1. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    Science.gov (United States)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Correction of conebeam CT values using a planning CT for derivation of the 'dose of the day'

    International Nuclear Information System (INIS)

    Zijtveld, Mathilda van; Dirkx, Maarten; Heijmen, Ben

    2007-01-01

    Background and purpose: Verification of the actually delivered 3D dose distribution during each treatment fraction ('dose of the day') is the most complete and clinical relevant 'in-vivo' check of an IMRT treatment. To do this, during patient treatment portal dose images are routinely acquired with our electronic portal imaging device to derive the delivered fluence map for each treatment field. In addition, a conebeam CT scan is acquired just prior to treatment to derive the patient geometry at the time of treatment. However, the use of conebeam CT scans for dose calculation is hampered by inaccuracies in the conversion of CT values to electron densities due to an enlarged scatter contribution. Materials and methods: In this work, a method is described for mapping of Hounsfield Units of the planning CT to the conebeam CT scan, while accounting for non-rigidity in the anatomy, e.g. related to weight loss, in an approximate way. The method was validated for head and neck cancer patients by comparing dose distributions calculated using adjusted Hounsfield Units with a golden standard. Results and conclusions: The observed dose differences were less than 1% in the majority of points, and in at least 96% of the points a 3D γ analysis resulted in γ values of less than 1 when applying a 2%/2 mm criterion, showing that this straightforward approach allows for an accurate dose calculation based on conebeam CT scans

  3. Ultra-low-dose CT imaging of the thorax: decreasing the radiation dose by one order of magnitude

    International Nuclear Information System (INIS)

    Lambert, Lukas; Banerjee, Rohan; Votruba, Jiri; El-Lababidi, Nabil; Zeman, Jiri

    2016-01-01

    Computed tomography (CT) is an indispensable tool for imaging of the thorax and there is virtually no alternative without associated radiation burden. The authors demonstrate ultra-low-dose CT of the thorax in three interesting cases. In an 18-y-old girl with rheumatoid arthritis, CT of the thorax identified alveolitis in the posterior costophrenic angles (radiation dose = 0.2 mSv). Its resolution was demonstrated on a follow-up scan (4.2 mSv) performed elsewhere. In an 11-y-old girl, CT (0.1 mSv) showed changes of the right collar bone consistent with chronic recurrent multifocal osteomyelitis. CT (0.1 mSv) of a 9-y-old girl with mucopolysaccharidosis revealed altogether three hamartomas, peribronchial infiltrate, and spine deformity. In some indications, the radiation dose from CT of the thorax can approach that of several plain radiographs. This may help the pediatrician in deciding whether 'gentle' ultra-low-dose CT instead of observation or follow-up radiographs will alleviate the uncertainty of the diagnosis with little harm to the child. (author)

  4. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans.

    Science.gov (United States)

    Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki

    2012-10-01

    To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (pASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; pASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Reducing dose in head CT: A phantom study

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Carvalho, A. E.; Andrade, M. E.; Khoury, H. J.

    2013-01-01

    Thirty two head CT scans were acquired employing an anthropomorphic phantom which contains small lesions in posterior fosse, using 2 scanners, one with 64 slices 'Siemens Sensation' and other with 6 slices P hilip Brilliance . Parameters as Tube current (I [mA]), Collimation (C [mm]), spectrum energy (kVp) and dynamic range were changed during studies, looking for the optimal acquisition/processing conditions which permit both, good lesion detectability and the lowest dose. Air kerma (mGy) was measured with a ionization chamber and the air kerma index (Ca,100 [mGy]) was calculated as dose index. Image quality was analyzed by 5 expert criteria using a 5 points-scale (1=poor, 2=fair, 3=good, 4=very good, 5=excellent) and also using 5 Figure of merit in the spatial and frequency domains: Contrast C(%), Contrast to Noise Ratio CNR, Signal to Noise Ratio SNR, Normalized Mean Square Error (NMSE) and the Spectral Distance (SD). Objective and subjective results were correlated. We observed that doses can be diminished until a 25% respect to the usual practice with both technologies, diminishing mainly the mAs, without affecting lesion detection. As a result, we propose an optimized protocol for each scanner as follow: The use of 250 mAs, 120 kVp and the collimation of 6 slices x 1.50 mm per rotation to detect the lesions in posterior fosse with good image quality for the Philips Brilliance 6 tested, while 150 mAs, 100 kVp and slice thickness of 3 mm were needed with the Siemens Sensation 64. (Author)

  6. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR)

    Energy Technology Data Exchange (ETDEWEB)

    Vachha, Behroze, E-mail: bvachha@partners.org [Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114 (United States); Brodoefel, Harald; Wilcox, Carol; Hackney, David B.; Moonis, Gul [Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215 (United States)

    2013-12-01

    Purpose: To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Materials and methods: HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Results: Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Conclusion: Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality.

  7. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR)

    International Nuclear Information System (INIS)

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B.; Moonis, Gul

    2013-01-01

    Purpose: To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Materials and methods: HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Results: Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Conclusion: Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality

  8. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR).

    Science.gov (United States)

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul

    2013-12-01

    To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  10. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2011-07-15

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient ({gamma}{sup 2} = 0.86, P < 0.001). For the next study, 177 patients (mean age, 7.9 years; the CTDIvol group) underwent contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the best fit equation. CTDIvol values on the dose report after CT scanning, noise differences from the target noise, areas, and mean densities were compared between these two groups. The CTDIvol values (mean{+-}standard deviation, 1.6 {+-} 0.7 mGy) and the noise differences from the target noise (1.1 {+-} 0.9 HU) of the CTDIvol group were significantly lower than those of the weight-based group (2.0 {+-} 1.0 mGy, 1.8 {+-} 1.4 HU) (P < 0.001). In contrast, no statistically significant difference was found in area (317.0 {+-} 136.8 cm{sup 2} vs. 326.3 {+-} 124.8 cm{sup 2}), mean density (-212.9 {+-} 53.1 HU vs. -221.1 {+-} 56.3 HU), and image noise (13.8 {+-} 2.3 vs. 13.6 {+-} 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  11. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    International Nuclear Information System (INIS)

    Hopkins, Katharine L.; Vajtai, Petra L.; Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R.; Koudelka, Caroline W.; Bardo, Dianna M.E.

    2013-01-01

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI vol ). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  12. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Katharine L.; Vajtai, Petra L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Koudelka, Caroline W. [Oregon Health and Science University, Division of Biostatistics, Department of Public Health and Preventive Medicine, Portland, OR (United States); Bardo, Dianna M.E. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Cardiovascular Medicine, Portland, OR (United States)

    2013-09-15

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI{sub vol}). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  13. Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey

    Energy Technology Data Exchange (ETDEWEB)

    Granata, Claudio [IRCCS Istituto Giannina Gaslini, Department of Radiology, Genoa (Italy); Origgi, Daniela; Palorini, Federica [Istituto Europeo di Oncologia, Department of Medical Physics, Milan (Italy); Matranga, Domenica [University of Palermo, Department of Sciences for Health Promotion and Mother and Child Care ' ' G. D' Alessandro' ' , Palermo (Italy); Salerno, Sergio [University of Palermo, Department of Medical and Forensic Biopathology and Biotechnologies, Section of Radiology, Palermo (Italy)

    2015-05-01

    Multidetector CT (MDCT) scanners have contributed to the widespread use of CT in paediatric imaging. However, concerns are raised for the associated radiation exposure. Very few surveys on radiation exposure from MDCT studies in children are available. The aim of this study was to outline the status of radiation exposure in children from MDCT practice in Italy. In this retrospective multicentre study we asked Italian radiology units with an MDCT scanner with at least 16 slices to provide dosimetric and acquisition parameters of CT examinations in three age groups (1-5, 6-10, 11-15 years) for studies of head, chest and abdomen. The dosimetric results were reported in terms of third-quartile volumetric CT dose index (CTDI{sub vol}) (mGy), size-specific dose estimate (SSDE) (mGy), dose length product (DLP) (mGy cm), and total DLP for multiphase studies. These results were compared with paediatric European and adult Italian published data. A multivariate analysis assessed the association of CTDI{sub vol} with patient characteristics and scanning modalities. We collected data from 993 MDCT examinations performed at 25 centres. For age groups 1-5 years, 6-10 years and 11-15 years, the CTDI{sub vol}, DLP and total DLP values were statistically significantly below the values observed in our analogous national survey in adults, although the difference decreased with increasing age. CTDI{sub vol} variability among centres was statistically significant (variance = 0.07; 95% confidence interval = 0.03-0.16; P < 0.001). This study reviewed practice in Italian centres performing paediatric imaging with MDCT scanners. The variability of doses among centres suggests that the use of standardised CT protocols should be encouraged. (orig.)

  14. Pulmonary nodules: Effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system—Comparison of performance between different-dose CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, Masahiro, E-mail: m-yanagawa@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Honda, Osamu, E-mail: ohonda@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Kikuyama, Ayano, E-mail: a-kikuyama@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Gyobu, Tomoko, E-mail: t-gyobu@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Sumikawa, Hiromitsu, E-mail: h-sumikawa@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Koyama, Mitsuhiro, E-mail: m-koyama@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Tomiyama, Noriyuki, E-mail: tomiyama@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)

    2012-10-15

    Purpose: To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Materials and methods: Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m{sup 2}) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. Results: The consensus panel found 265 non-calcified nodules ≤30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p < 0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p < 0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. Conclusion: CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings.

  15. Pulmonary nodules: Effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system—Comparison of performance between different-dose CT scans

    International Nuclear Information System (INIS)

    Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki

    2012-01-01

    Purpose: To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Materials and methods: Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m 2 ) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. Results: The consensus panel found 265 non-calcified nodules ≤30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p < 0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p < 0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. Conclusion: CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings

  16. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    International Nuclear Information System (INIS)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T.; O'Brien, Maureen M.

    2018-01-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  17. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); O' Brien, Maureen M. [Cincinnati Children' s Hospital Medical Center, Division of Oncology, Cancer and Blood Disease Institute, Cincinnati, OH (United States)

    2018-02-15

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  18. The determination of patient dose from 18F-FDG PET/CT examination

    International Nuclear Information System (INIS)

    Khamwan, K.; Krisanachinda, A.; Pasawang, P.

    2010-01-01

    The use of positron emission tomography/computed tomography (PET/CT) system has heightened the need for medical diagnosis. However, the patient dose is increasing in comparison to whole-body PET/CT dose. The aim of this study is to determine the patient effective dose in 35 oncology Thai patients with the age range of 28-60 y from PET scan using [fluorine-18]-fluoro-2-deoxy-D-glucose and from CT scan. Cumulated activity and residence time of various organs were calculated from time-activity curves by using S-value based on the body mass. Mean organ absorbed dose and the effective dose from CT scan were calculated using the Medical Internal Radiation Dosimetry method and Monte Carlo simulation, respectively. The average whole-body effective doses from PET and CT were 4.40 ± 0.61 and 14.45 ± 2.82 mSv, respectively, resulting in the total patient dose of 18.85 mSv. This can be used as the reference dose in Thai patients. (authors)

  19. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  20. Assessment of pulmonary function using pixel indexes of multiple-slice spiral CT low-dose two-phase scanning in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Zhang Lihua; Wang Yunhua; Jiang Zhongbiao; Zhang Lejun; Sun Wanli; Zhang Chunming

    2012-01-01

    Objective: To explore the values of pixel indexes (PI) with multiple-slice spiral CT low-dose two-phase scanning for assessing the pulmonary function in chronic obstructive pulmonary disease (COPD). Methods: Thirty-six patients with COPD (COPD group)and 30 healthy people (control group)underwent pulmonary function test (PFT). Chest 64-MSCT low-dose (50 mAs) scanning at full inspiration and expiration, routine scanning (100 mAs) at inspiration were performed. The effective dose (ED) was calculated. The lung was divided into three regions (upper, middle, lower). PI of lung were divided into five groups: -960--1024, -910--960, -800--910, -700--800, -400--700. The PI -910 (sum of the PI under -910 HU) of low-dose scanning at each region were measured and calculated using pulmo software. All PI included PIin -910 , PIiex -910 , PIin -910 -PIiex -910 , PIiex -910 /PIin -910 and (PIin -910 -PIiex -910 )/PIin -910 . All patients underwent PFT within 3 days after 64-MSCT canning, FEV1% and FEV1/FVC were selected for comparison. Results: The PIin in three regions (-960 - -1024, -910 - -960, -800 - -910) were statistically significant between normal and COPD groups (U=0.00, 57.00, 20.50, P<0.01). The PIex in all regions were statistically significant (U=0.00, 0.00, 71.52, 191.00, 6.00, P<0.01). PI -910--1024 at expiration and inspiration were correlated with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, P<0.01). PIin -910 , PIex -910 ,PIiex -910 /PIin -910 , (PIin -910 -PIex -910 )/PIin -910 had a good correlation with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, -0.674, -0.642, 0.674, 0.642, P<0.01). Conclusion: Pixel indexes of 64-MSCT low-dose two-phase scanning can be used to evaluate pulmonary function in COPD patients. (authors)

  1. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  2. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  3. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  4. Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?

    Science.gov (United States)

    Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L

    2018-05-01

    Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.

  5. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  6. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma.

    Science.gov (United States)

    Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T

    2018-02-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (PCT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.

  7. Thyroid doses and risk to paediatric patients undergoing neck CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Spampinato, Maria Vittoria; Tipnis, Sameer; Huda, Walter [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Tavernier, Joshua [Medical University of South Carolina, College of Medicine, Charleston, SC (United States)

    2015-07-15

    To estimate thyroid doses and cancer risk for paediatric patients undergoing neck computed tomography (CT). We used average CTDI{sub vol} (mGy) values from 75 paediatric neck CT examinations to estimate thyroid dose in a mathematical anthropomorphic phantom (ImPACT Patient CT Dosimetry Calculator). Patient dose was estimated by modelling the neck as mass equivalent water cylinder. A patient size correction factor was obtained using published relative dose data as a function of water cylinder size. Additional correction factors included scan length and radiation intensity variation secondary to tube-current modulation. The mean water cylinder diameter that modelled the neck was 14 ± 3.5 cm. The mathematical anthropomorphic phantom has a 16.5-cm neck, and for a constant CT exposure, would have thyroid doses that are 13-17 % lower than the average paediatric patient. CTDI{sub vol} was independent of age and sex. The average thyroid doses were 31 ± 18 mGy (males) and 34 ± 15 mGy (females). Thyroid cancer incidence risk was highest for infant females (0.2 %), lowest for teenage males (0.01 %). Estimated absorbed thyroid doses in paediatric neck CT did not significantly vary with age and gender. However, the corresponding thyroid cancer risk is determined by gender and age. (orig.)

  8. Bibliometrics analysis of the PubMed literatures on low-dose CT

    International Nuclear Information System (INIS)

    Wang Qian; Xia Guanghui; Ma Xiaohong; Zhao Xinming

    2012-01-01

    Objective: The purposes of this study were to evaluate the developmental rule and feature in low-dose CT examinations and to provide useful references for study in the future. Materials and Methods: The journal articles on PubMed from 2002 to 2011 were processed by Thomson Data Analyzer and five aspects were analysed: time, authors, institutions, journals, countries, and keywords. Results: The number of journal articles in low-dose CT examinations were 6 433, 3165 were from US (49.2%), 112 from China (1.4%); 3664 authors (80.42%) published only one article, the famous authors published more than 4 articles; there were 9 core journals in this area. In the last decade, the number and quality of the journal articles in low -dose CT have been dramatically increased. Conclusion: The interest on the low -dose CT examination has been steadily increasing, and world famous research teams have been established. The research in low-dose CT is a multi-discipline involving medicine, medical physics, and mathematics. Cooperation between multiple scientific domains is needed for the future studies. (authors)

  9. Prospective evaluation of the radiologist's hand dose in CT-guided interventions

    International Nuclear Information System (INIS)

    Rogits, B.; Jungnickel, K.; Loewenthal, D.; Dudeck, O.; Pech, M.; Ricke, J.; Kropf, S.; Nekolla, E.A.; Wieners, G.

    2013-01-01

    Purpose: Assessment of radiologist's hand dose in CT-guided interventions and determination of influencing factors. Materials and Methods: The following CT-guided interventions were included: Core biopsy, drainage, periradicular therapy, and celiac plexus neurolysis. The hand dose was measured with an immediately readable dosimeter, the EDD-30 (Unfors, Sweden). The default parameters for CT fluoroscopy were 120 kV, 90 mA and a 4 mm slice thickness. All interventions were performed on a 16-slice CT unit (Aquilion 16 Toshiba, Japan). The tumor size, degree of difficulty (1 - 3), level of experience and device parameters (mAs, dose-length product, scan time) were documented. Results: 138 CT-guided interventions (biopsy n = 99, drainage n = 23, pain therapy n = 16) at different locations (lung n = 41, retroperitoneum n = 53, liver n = 25, spine n = 19) were included. The lesion size was 4 - 240 mm (median: 23 mm). The fluoroscopy time per intervention was 4.6 - 140.2 s (median: 24.2 s). The measured hand dose ranged from 0.001 - 3.02 mSv (median: 0.22 mSv). The median hand dose for lung puncture (n = 41) was slightly higher (median: 0.32 mSv, p = 0.01) compared to that for the liver, retroperitoneum and other. Besides physical influencing factors, the degree of difficulty (p = 0.001) and summed puncture depth (p = 0.004) correlated significantly with the hand dose. Conclusion: The median hand dose for different CT-guided interventions was 0.22 mSv. Therefore, the annual hand dose limit would normally only be reached with about 2000 interventions. (orig.)

  10. Evaluation of a Chest Circumference-Adapted Protocol for Low-Dose 128-Slice Coronary CT Angiography with Prospective Electrocardiogram Triggering

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chenying; Wang, Zufei; Ji, Jiansong; Wang, Hailin; Hu, Xianghua; Chen, Chunmiao [Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang 323000 (China)

    2015-11-01

    To assess the effect of chest circumference-adapted scanning protocol on radiation exposure and image quality in patients undergoing prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). One hundred-eighty-five consecutive patients, who had undergone prospective ECG triggering CCTA with a 128-slice CT, were included in the present study. Nipple-level chest circumference, body weight and height were measured before CT examinations. Patients were divided into four groups based on kV/ref·mAs = 100/200, 100/250, 120/200, and 120/250, when patient's chest circumference was ≤ 85.0 (n = 56), 85.0-90.0 (n = 53), 90.0-95.0 (n = 44), and > 95.0 (n = 32), respectively. Image quality per-segment was independently assessed by two experienced observers. Image noise and attenuation were also measured. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The effective radiation dose was calculated using CT dose volume index and the dose-length product. A significant correlation was observed between patients' chest circumference and body mass index (r = 0.762, p < 0.001). Chest circumference ranged from 74 to 105 cm, and the mean effective radiation dose was 1.9-3.8 mSv. Diagnostic image quality was obtained in 98.5% (2440/2478) of all evaluated coronary segments without any significant differences among the four groups (p = 0.650). No significant difference in image noise was observed among the four groups (p = 0.439), thus supporting the validity of the chest circumference-adapted scanning protocol. However, vessel attenuation, SNR and CNR were significantly higher in the 100 kV groups than in the 120 kV groups (p < 0.05). A measure of chest circumference can be used to adapt tube voltage and current for individualized radiation dose control, with resultant similar image noise and sustained diagnostic image quality.

  11. Patient doses from CT examinations in the United Arab Emirates

    International Nuclear Information System (INIS)

    Janeczek, J.

    2006-01-01

    Full text of publication follows: The main goal of the study was to estimate effective patient doses from the 6 most common CT examinations for different types of CT scanners within the United Arab Emirates. The results were used to assess future trends in patient CT doses following rapid replacement of axial and single-slice spiral scanners by multi-slice scanners. At present all three types of scanner technology exist: axial, spiral and multi-slice with axial scanners being gradually replaced by multi-slice scanners as the medical infrastructure of the country is modernized. Altogether there are more than 30 CT scanners in the country with a population of 4 million. Out of these 11 scanners are 16-slice models with tube-current modulation system. The majority of larger United Arab Emirates hospitals have at least two CT scanners: a single slice and 4 or 16-slice scanner. The survey was carried out with data collection forms distributed to the majority of CT scanner users in the United Arab Emirates hospitals, both private and government. Effective doses for different examinations were calculated from T.L.D. measurements using an Alderson Rando phantom simulating an average size patient. Our results show that effective doses to patients initially increased with the introduction of 4-slice scanners. Multi-slice scanners with 16 and more slices have tube-current modulation system as a standard. It is routinely used by radiographers in almost all examinations resulting in patient dose reduction up to 40 % in certain examinations. Another factor affecting population dose is the increased number of patients examined using multi-slice scanners. In the United Arab Emirates there was an increase of more than 30 % in the annual number of patients examined using multi-slice scanners in comparison to single-slice scanners. This fact is attributed to the ease and speed of operation of multi-slice scanners. Rapid increase in number of CT examinations is of concern. Medical

  12. SU-F-SPS-03: Direct Measurement of Organ Doses Resulting From Head and Cervical Spine Trauma CT Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, C; Lipnharski, I; Quails, N; Correa, N; Rill, L; Arreola, M [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: This retrospective study analyzes the exposure history of emergency department (ED) patients undergoing head and cervical spine trauma computed tomography (CT) studies. This study investigated dose levels received by trauma patients and addressed any potential concerns regarding radiation dose issues. Methods: Under proper IRB approval, a cohort of 300 trauma cases of head and cervical spine trauma CT scans received in the ED was studied. The radiological image viewing software of the hospital was used to view patient images and image data. The following parameters were extracted: the imaging history of patients, the reported dose metrics from the scanner including the volumetric CT Dose Index (CTDIvol) and Dose Length Product (DLP). A postmortem subject was scanned using the same scan techniques utilized in a standard clinical head and cervical spine trauma CT protocol with 120 kVp and 280 mAs. The CTDIvol was recorded for the subject and the organ doses were measured using optically stimulated luminescent (OSL) dosimeters. Typical organ doses to the brain, thyroid, lens, salivary glands, and skin, based on the cadaver studies, were then calculated and reported for the cohort. Results: The CTDIvol reported by the CT scanner was 25.5 mGy for the postmortem subject. The average CTDIvol from the patient cohort was 34.1 mGy. From these metrics, typical average organ doses in mGy were found to be: Brain (44.57), Thyroid (33.40), Lens (82.45), Salivary Glands (61.29), Skin (47.50). The imaging history of the cohort showed that on average trauma patients received 26.1 scans over a lifetime. Conclusion: The average number of scans received on average by trauma ED patients shows that radiation doses in trauma patients may be a concern. Available dose tracking software would be helpful to track doses in trauma ED patients, highlighting the importance of minimizing unnecessary scans and keeping doses ALARA.

  13. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  14. Low-dose respiratory-gated PET/CT: based on 30 mA tube current

    International Nuclear Information System (INIS)

    Wu Ping; Li Sijin; Zhang Yanlan; Hao Xinzhong; Qin Zhixing; Yan Min; Cheng Pengliang; Wu Zhifang

    2013-01-01

    Objective: To establish a low-dose but image-comparable respiratory-gated PET/CT (RG PET/CT) protocol based on 30 mA tube current plus other improved scanning parameters, such as the tube current, the number of respiratory phase and length of breathing cycle. Methods: Twenty-six patients with 18 F-FDG-intaking lung nodules underwent one-bed standard-dose PET/CT (120 mA, 2 min/bed) and low dose RG PET/CT (30 mA, 6 respiratory phases, 1 min/phase). The radiation dose and image quality were analyzed subsequently with signal to noise ratio (SNR) for PET and the homogeneity, noise level for CT in the water phantom respectively. Otherwise the CT images were both visual evaluated by two experienced doctors. In addition, different respiratory cycle was simulated to observe its relation with radiation dose. Results: The effective dose of low-dose RG PET/CT was 4.88∼7.69 mSv [mean (5.68±0.83) mSv]. The PET SNR showed no significance between groups. The homogeneity of 30 mA is good (< 5 HU), although noise level was high, the visual character like lobulation, speculation of lung nodule was superior in some respiratory phases. The radiation dose was positively correlated with respiratory cycle. Conclusions: The performance of low-dose RG PET/CT was comparable to those of standard-dose PET/CT based on a protocol with 30 mA tube current, 6 respiratory phases and breathing state of eupnoea. It produced a much lower radiation exposure and the image quality was enough for clinical use such as delineation of tumor active target, characterization and staging of lung nodules, etc. (authors)

  15. Ultralow dose CT for pulmonary nodule detection with chest X-ray equivalent dose - a prospective intra-individual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael [University Zurich, Department of Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard; Desbiolles, Lotus; Bauer, Ralf W.; Wildermuth, Simon [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University of Montreal, Department of Radiology, CHU Sainte-Justine, Montreal, Quebec (Canada); Rengier, Fabian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Warschkow, Rene [Cantonal Hospital St. Gallen, Department of Surgery, St. Gallen (Switzerland); Alkadhi, Hatem [University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Leschka, Sebastian [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland)

    2017-08-15

    To prospectively evaluate the accuracy of ultralow radiation dose CT of the chest with tin filtration at 100 kV for pulmonary nodule detection. 202 consecutive patients undergoing clinically indicated chest CT (standard dose, 1.8 ± 0.7 mSv) were prospectively included and additionally scanned with an ultralow dose protocol (0.13 ± 0.01 mSv). Standard dose CT was read in consensus by two board-certified radiologists to determine the presence of lung nodules and served as standard of reference (SOR). Two radiologists assessed the presence of lung nodules and their locations on ultralow dose CT. Sensitivity and specificity of the ultralow dose protocol was compared against the SOR, including subgroup analyses of different nodule sizes and types. A mixed effects logistic regression was used to test for independent predictors for sensitivity of pulmonary nodule detection. 425 nodules (mean diameter 3.7 ± 2.9 mm) were found on SOR. Overall sensitivity for nodule detection by ultralow dose CT was 91%. In multivariate analysis, nodule type, size and patients BMI were independent predictors for sensitivity (p < 0.001). Ultralow dose chest CT at 100 kV with spectral shaping enables a high sensitivity for the detection of pulmonary nodules at exposure levels comparable to plain film chest X-ray. (orig.)

  16. HERCA Position Paper. The process of CT dose optimisation through education and training and role of CT Manufacturers - October 2014. Addendum to HERCA CT Position paper: The process of CT dose optimisation through education and training and the role of the manufacturers - November 2015

    International Nuclear Information System (INIS)

    2014-10-01

    CT is the most important source of exposures to radiation in most developed countries today. For this reason CT dose optimisation is of great importance. In this position paper four main stakeholders who are involved in CT dose optimisation are identified. These are the CT manufacturers, the medical doctors, the CT technologists and the medical physicists. HERCA has been working together with the CT manufacturers and COCIR since 2010 following a self-commitment provided by COCIR in 2011. A number of dose optimisation and management tools have been developed by the CT manufacturers and are now available on modern CT scanners. These are presented in this paper. The process of CT dose optimisation can only be achieved if all the stakeholders involved work together as a team and are educated and trained in the use of CT dose optimisation and management tools. The CT manufacturers have an important role in this process. They need to ensure that their staff is properly trained, they need to provide proper education and training to the other three stakeholders involved and these three stakeholders need to find the time and be willing to be trained. This is clearly stated in this position paper with the aim of ensuring appropriate and effective use of CT imaging equipment. On 1 April 2015, HERCA organised a multi-stakeholder meeting kindly hosted by the French Nuclear Safety Authority (ASN) in its premises in Paris. The stakeholders included: - COCIR, supported by the main manufacturers of CT equipment (GE, Philips, Siemens and Toshiba), - The professional organisations: ESR, ESPR, EFRS, EANM, ESTRO and EFOMP, - The international organisations IAEA, EC, and the US FDA (present as observers). The objective of the meeting was to exchange views with a variety of key stakeholders on issues with regard to the optimised use of computed tomography (CT) scanners. The ultimate goal of this focus on dose optimisation is to ensure the best patient care by providing an optimised

  17. Patient dose in CT fluoroscopy examinations

    International Nuclear Information System (INIS)

    Ito, Yusuke; Kobayashi, Masanao; Kataoka, Yumi; Ida, Yoshihiro; Kato, Ryoichi; Katada, Kazuhiro; Asada, Yasuki; Suzuki, Shoichi

    2008-01-01

    CT fluoroscopy(CTF) results in a high dose for the area under investigation in comparison with other types of examination. On the basis of data from April 2005 to March 2008, we measured the X-ray doses at the target site in CTF of the lungs, lumbar vertebrae, and pelvis as well as the X-ray dose to the female reproductive organs, and calculated the effective dose. The CT equipment used was an Aquilion 16. TLDs were inserted into an anthropomorphic phantom in positions corresponding to the target sites and the reproductive organs. Standard tube voltage and tube current were used as measurement conditions, and the scanning time used was the average value for each type of examination during the two years. Dose measurements were taken in the following order: scanography, helical scan, CTF, helical scan. X-ray element calibration was carried out through reciprocal comparison made between an ionization chamber dosimeter corrected according to government standards and the TLD for each tube voltage used for measurement. Dose estimation software was used to calculate the effective doses. During the two years there were 136 CTF examinations. These included 43 scans of the lungs, 13 of lumbar vertebrae, and 18 of the pelvis. The X-ray doses were 0.1 mGy at both the ovaries and the uterus for lung scans, 2 mGy at the ovaries and 1 mGy at the uterus for lumbar vertebrae scans, and 40 mGy at the ovaries and 20 mGy at the uterus for pelvic scans. The effective dose was highest for the lumbar vertebrae, followed by the lungs and finally the pelvis. (author)

  18. Is Weight-Based Adjustment of Automatic Exposure Control Necessary for the Reduction of Chest CT Radiation Dose?

    Science.gov (United States)

    Prakash, Priyanka; Gilman, Matthew D.; Shepard, Jo-Anne O.; Digumarthy, Subba R.

    2010-01-01

    Objective To assess the effects of radiation dose reduction in the chest CT using a weight-based adjustment of the automatic exposure control (AEC) technique. Materials and Methods With Institutional Review Board Approval, 60 patients (mean age, 59.1 years; M:F = 35:25) and 57 weight-matched patients (mean age, 52.3 years, M:F = 25:32) were scanned using a weight-adjusted AEC and non-weight-adjusted AEC, respectively on a 64-slice multidetector CT with a 0.984:1 pitch, 0.5 second rotation time, 40 mm table feed/rotation, and 2.5 mm section thickness. Patients were categorized into 3 weight categories; 90 kg (n = 48). Patient weights, scanning parameters, CT dose index volumes (CTDIvol) and dose length product (DLP) were recorded, while effective dose (ED) was estimated. Image noise was measured in the descending thoracic aorta. Data were analyzed using a standard statistical package (SAS/STAT) (Version 9.1, SAS institute Inc, Cary, NC). Results Compared to the non-weight-adjusted AEC, the weight-adjusted AEC technique resulted in an average decrease of 29% in CTDIvol and a 27% effective dose reduction (p 91 kg weight groups, respectively, compared to 20.3, 27.9 and 32.8 mGy, with non-weight-adjusted AEC. No significant difference was observed for objective image noise between the chest CT acquired with the non-weight-adjusted (15.0 ± 3.1) and weight-adjusted (16.1 ± 5.6) AEC techniques (p > 0.05). Conclusion The results of this study suggest that AEC should be tailored according to patient weight. Without weight-based adjustment of AEC, patients are exposed to a 17 - 43% higher radiation-dose from a chest CT. PMID:20046494

  19. Is Weight-Based Adjustment of Automatic Exposure Control Necessary for the Reduction of Chest CT Radiation Dose?

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Priyanka; Kalra, Mannudeep K.; Gilman, Matthew D.; Shepard, Jo Anne O.; Digumarthy, Subba R. [Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2010-02-15

    To assess the effects of radiation dose reduction in the chest CT using a weight-based adjustment of the automatic exposure control (AEC) technique. With Institutional Review Board Approval, 60 patients (mean age, 59.1 years; M:F = 35:25) and 57 weight-matched patients (mean age, 52.3 years, M:F = 25:32) were scanned using a weight-adjusted AEC and nonweight- adjusted AEC, respectively on a 64-slice multidetector CT with a 0.984:1 pitch, 0.5 second rotation time, 40 mm table feed/rotation, and 2.5 mm section thickness. Patients were categorized into 3 weight categories; < 60 kg (n = 17), 60-90 kg (n = 52), and > 90 kg (n = 48). Patient weights, scanning parameters, CT dose index volumes (CTDIvol) and dose length product (DLP) were recorded, while effective dose (ED) was estimated. Image noise was measured in the descending thoracic aorta. Data were analyzed using a standard statistical package (SAS/STAT) (Version 9.1, SAS institute Inc, Cary, NC). Compared to the non-weight-adjusted AEC, the weight-adjusted AEC technique resulted in an average decrease of 29% in CTDIvol and a 27% effective dose reduction (p < 0.0001). With weight-adjusted AEC, the CTDIvol decreased to 15.8, 15.9, and 27.3 mGy for the < 60, 60-90 and > 91 kg weight groups, respectively, compared to 20.3, 27.9 and 32.8 mGy, with non-weight adjusted AEC. No significant difference was observed for objective image noise between the chest CT acquired with the non-weight-adjusted (15.0 {+-} 3.1) and weight-adjusted (16.1 {+-} 5.6) AEC techniques (p > 0.05). The results of this study suggest that AEC should be tailored according to patient weight. Without weight-based adjustment of AEC, patients are exposed to a 17 - 43% higher radiation-dose from a chest CT.

  20. CT of the chest in suspected child abuse using submillisievert radiation dose

    International Nuclear Information System (INIS)

    Sanchez, Thomas R.; Seibert, J.A.; Stein-Wexler, Rebecca; Lee, Justin S.; Coulter, Kevin P.

    2015-01-01

    The cornerstone of child abuse imaging is the skeletal survey, but initial imaging with radiographs may not demonstrate acute and non-displaced fractures, especially those involving the ribs. Given the high mortality of undiagnosed non-accidental trauma, timely diagnosis is crucial. CT is more sensitive in assessing rib fractures; however the effective radiation dose of a standard chest CT is high. We retrospectively identified four children (three boys, one girl; age range 1-4 months) admitted between January 2013 and February 2014 with high suspicion for non-accidental trauma from unexplained fractures of the long bones; these children all had CT of the chest when no rib fractures were evident on the skeletal survey. The absorbed radiation dose estimates for organs and tissue from the four-view chest radiographs and subsequent CT were determined using Monte Carlo photon transport software, and the effective dose was calculated using published tissue-weighting factors. In two children, CT showed multiple fractures of the ribs, scapula and vertebral body that were not evident on the initial skeletal survey. The average effective dose for a four-view chest radiograph across the four children was 0.29 mSv and the average effective dose for the chest CT was 0.56 mSv. Therefore the effective dose of a chest CT is on average less than twice that of a four-view chest radiograph. Our protocol thus shows that a reduced-dose chest CT may be useful in the evaluation of high specificity fractures of non-accidental trauma when the four-view chest radiographs are negative. (orig.)

  1. CT of the chest in suspected child abuse using submillisievert radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Thomas R.; Seibert, J.A.; Stein-Wexler, Rebecca [Medical Center Children' s Hospital, Division of Pediatric Radiology, University of California-Davis, Sacramento, CA (United States); Lee, Justin S. [University of California-Davis, Department of Radiology, Sacramento, CA (United States); Coulter, Kevin P. [Medical Center Children' s Hospital, Department of Pediatrics, University of California-Davis, Sacramento, CA (United States)

    2015-07-15

    The cornerstone of child abuse imaging is the skeletal survey, but initial imaging with radiographs may not demonstrate acute and non-displaced fractures, especially those involving the ribs. Given the high mortality of undiagnosed non-accidental trauma, timely diagnosis is crucial. CT is more sensitive in assessing rib fractures; however the effective radiation dose of a standard chest CT is high. We retrospectively identified four children (three boys, one girl; age range 1-4 months) admitted between January 2013 and February 2014 with high suspicion for non-accidental trauma from unexplained fractures of the long bones; these children all had CT of the chest when no rib fractures were evident on the skeletal survey. The absorbed radiation dose estimates for organs and tissue from the four-view chest radiographs and subsequent CT were determined using Monte Carlo photon transport software, and the effective dose was calculated using published tissue-weighting factors. In two children, CT showed multiple fractures of the ribs, scapula and vertebral body that were not evident on the initial skeletal survey. The average effective dose for a four-view chest radiograph across the four children was 0.29 mSv and the average effective dose for the chest CT was 0.56 mSv. Therefore the effective dose of a chest CT is on average less than twice that of a four-view chest radiograph. Our protocol thus shows that a reduced-dose chest CT may be useful in the evaluation of high specificity fractures of non-accidental trauma when the four-view chest radiographs are negative. (orig.)

  2. Relationship of radiation dose and spiral pitch for multi-slice CT system

    International Nuclear Information System (INIS)

    Song Shaojuan; Wang Wei; Liu Chuanya

    2006-01-01

    Objective: To study the relations of radiation dose and spiral pitch for multi-slice CT system. Methods: 16 mm dose phantom with solidose 300/400 pen-style ion chamber inserted into each of five holes in turn was scanned with different spiral pitch by LightSpeed 16-slice CT and Sensation 16-slice and 64-slice CT and radiation dose. Results: CTDI vol of axial scan and spiral scan for the three types of CT system are: (1) LightSpeed 16-slice CT: 28.9 (axial), 51.4 (pitch 0.562), 30.8 (pitch 0.938) and 16.5 ( pitch 1.75 ); (2) Sensation 16-slice CT: 41.2(axial) and 40.3(pitch 0.5) ,41.5(pitch 1) and 43.2(pitch 1.5); (3) Sensation 64- slice CT: 41.2(axial) and 40.3(pitch 0.5),41.5(pitch 1),43.2(pitch 1.5). Conclusions: For LightSpeed 16-slice CT, the measured radiation dose decreased with the increase of spiral pitch, the image quality could keep constant only if we increase mAs. While for Sensation 16-slice and 64-slice CT system, the measured radiation dose was identical for different pitch, and the image quality was identical because of the use of mAs auto control technique The mAs should be adjusted in different way according to the type of CT system when the pitch is changed in daily operation. (authors)

  3. Experimental study of abdominal CT scanning exposal doses adjusted on the basis of pediatric abdominal perimeter

    International Nuclear Information System (INIS)

    Wei Wenzhou; Zhu Gongsheng; Zeng Lingyan; Yin Xianglin; Yang Fuwen; Liu Changsheng

    2006-01-01

    Objective: To optimize the abdominal helical CT scanning parameters in pediatric patients and to reduce its radiation hazards. Methods: 60 canines were evenly grouped into 4 groups on the basis of pediatric abdominal perimeter, scanned with 110,150,190 and 240 mAs, and their qualities of canine CT images were analyzed. 120 pediafric patients with clinic suspected abdominal diseases were divided into 4 groups on the basis of abdominal perimeter, scanned by optimal parameters and their image qualities were analyzed. Results: After CT exposure were reduced, the percentages of total A and B were 90.9 % and 92.0 % in experimental canines and in pediatric patients, respectively. Compared with conventional CT scanning, the exposure and single slice CT dose index weighted (CTDIw) were reduced to 45.8%-79.17%. Conclusion: By adjusted the pediatric helical CT parameters basedon the of pediatric abdominal perimeter, exposure of patient to the hazards of radiation is reduced. (authors)

  4. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-10-15

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  5. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    International Nuclear Information System (INIS)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2016-01-01

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  6. Use of normoxic polymer gel dosimeters for measuring diagnostic doses on CT scanners

    International Nuclear Information System (INIS)

    Hill, B; Venning, A J; Baldock, C

    2004-01-01

    X-ray CT has been used to evaluate polymer gel dosimeters for dose response in the therapeutic dose range. This method of polymer gel dosimeter evaluation has been shown to be useful for instance in the comparison of complex sterotactic field distributions with treatment plans. Image averaging and subtraction techniques are used for noise reduction in polymer gel dosimeters resulting in the delivery of several CT slices across the polymer gel dosimeters. It was a logical progression to evaluate normoxic polymer gel dosimeters with optimized CT scanning protocols. During these investigations it was found that unirradiated regions in irradiated normoxic polymer gel dosimetry phantoms polymerised possibly as a result of the evaluation using CT. This prompted an investigation of the CT diagnostic dose response of the normoxic polymer gel dosimeter in order to determine the dose contribution when evaluated using a CT scanner. Having established that there was an effect on the normoxic polymer gel dosimeter when evaluating with a CT scanner the suitability of these gels in the determination of CT diagnostic dose measurement was further investigated

  7. Dose monitoring using the DICOM structured report: assessment of the relationship between cumulative radiation exposure and BMI in abdominal CT

    International Nuclear Information System (INIS)

    Boos, J.; Lanzman, R.S.; Meineke, A.; Heusch, P.; Sawicki, L.M.; Antoch, G.; Kröpil, P.

    2015-01-01

    Aim: To perform a systematic, large-scale analysis using the Digital Imaging and Communication in Medicine structured report (DICOM-SR) to assess the relationship between body mass index (BMI) and radiation exposure in abdominal CT. Materials and methods: A retrospective analysis of DICOM-SR of 3121 abdominal CT examinations between April 2013 and March 2014 was performed. All examinations were conducted using a 128 row CT system. Patients (mean age 61 ± 15 years) were divided into five groups according to their BMI: group A <20 kg/m 2 (underweight), group B 20–25 kg/m 2 (normal weight), group C 25–30 kg/m 2 (overweight), group D 30–35 kg/m 2 (obese), and group E > 35 kg/m 2 (extremely obese). CT dose index (CTDI vol ) and dose–length product (DLP) were compared between all groups and matched to national diagnostic reference values. Results: The mean CTDI vol and DLP were 5.4 ± 2.9 mGy and 243 ± 153 mGy·cm in group A, 6 ± 3.6 mGy and 264 ± 179 mGy• cm in group B, 7 ± 3.6 mGy and 320 ± 180 mGy• cm in group C, 8.1 ± 5.2 mGy and 375 ± 306 mGy• cm in group D, and 10 ± 8 mGy and 476 ± 403 mGy• cm in group E, respectively. Except for group A versus group B, CTDI vol and DLP differed significantly between all groups (p<0.05). Significantly more CTDI vol values exceeded national diagnostic reference values in groups D and E (2.1% and 6.3%) compared to group B (0.5%, p<0.05). Conclusion: DICOM-SR is a comprehensive, fast, and reproducible way to analyse dose-related data at CT. It allows for automated evaluation of radiation dose in a large study population. Dose exposition is related to the patient's BMI and is increased by up to 96% for extremely obese patients undergoing abdominal CT. - Highlights: • DICOM-SR was used to implement automatic CT-dose monitoring. • DICOM-SR allowed for a fast and comprehensive analysis of CT dose data. • Radiation exposure for abdominal CT was increased by up to 96% for

  8. Low-dose multislice CT in febrile neutropenic patients

    International Nuclear Information System (INIS)

    Wendel, F.; Jenett, M.; Hahn, D.; Sandstede, J.; Geib, A.

    2005-01-01

    Purpose: to define the value of low-dose multislice CT in a clinical setting for early detection of pneumonia in neutropenic patients with fever of unknown origin. Materials and methods: thirty-five neutropenic patients suffering from fever of unknown origin with normal chest X-ray underwent unenhanced low-dose CT of the chest (120 kV, 10 eff. mAs, collimation 4 x 1 mm) using a multislice CT scanner. Axial und frontal slices with a thickness of 5 mm were calculated. If no pneumonia was found, standard antibiotics were given and a repeated examination was performed if fever continued. In case of pneumonia, antimycotic therapy was added and a follow-up CT was performed within one week. Regression or progression of pneumonia at follow-up served as evidence of pneumonia; lowering of fever within 48 h or inconspicuous follow-up CT was regarded as absence of pneumonia. Results: ten of 35 patients had pneumonic infiltration, which decreased or increased on follow-up CT in 3 and 6 patients, respectively. One patient revealed leucemic infiltration by bronchoalveolar lavage. Twenty-five of 35 patients had no evidence of pneumonia. Twenty of these patients were free of fever within 48 h under antibiotics; one patient died due to his basic illness. Out of 4 patients with persisting fever, 3 patients had no pneumonia on repeated examination; one patient showed disseminated micronodular infiltration. Frontal reconstructions helped to differentiate infiltration from atelectasis in 4 patients. Sensitivity and specificity for the detection of pneumonia at the first examination were 90% and 96%, negative predictive value was 96%. Conclusion: low-dose multislice CT should be performed in neutropenic patients having a fever of unknown origin and normal chest X-ray. (orig.)

  9. Benefits of sinogram-affirmed iterative reconstruction in 0.4 mSv ultra-low-dose CT of the upper abdomen following transarterial chemoembolisation: comparison to low-dose and standard-dose CT and filtered back projection technique

    International Nuclear Information System (INIS)

    Bodelle, B.; Isler, S.; Scholtz, J.-E.; Frellesen, C.; Luboldt, W.; Vogl, T.J.; Beeres, M.

    2016-01-01

    Aim: To evaluate the advantage of sinogram-affirmed iterative reconstruction (SIR) compared to filtered back projection (FBP) in upper abdomen computed tomography (CT) after transarterial chemoembolisation (TACE) at different tube currents. Materials and methods: The study was approved by the institutional review board. Written informed consent was obtained from all patients. Post-TACE CT was performed with different tube currents successively varied in four steps (180, 90, 45 and 23 mAs) with 40 patients per group (mean age: 60±12 years, range: 23–85 years, sex: 70 female, 90 male). The data were reconstructed with standard FBP and five different SIR strengths. Image quality was independently rated by two readers on a five-point scale. High (Lipiodol-to-liver) as well as low (liver-to-fat) contrast-to-noise ratios (CNRs) were intra-individually compared within one dose to determine the optimal strength (S1–S5) and inter-individually between different doses to determine the possibility of dose reduction using the Kruskal–Wallis test. Results: Subjective image quality and objective CNR analysis were concordant: intra-individually, SIR was significantly (p<0.001) superior to FBP. Inter-individually, regarding different doses (180 versus 23 ref mAs), there was no significant (p=1.00) difference when using S5 SIR at 23 mAs instead of FBP. Conclusion: SIR allows for an 88% dose reduction from 3.43 to 0.4 mSv in unenhanced CT of the liver following TACE without subjective or objective loss in image quality. - Highlights: • Diagnostic image quality and radiation dose of ultra-low-dose CT of the upper abdomen using sinogram affirmed iterative reconstruction following transarterial chemoembolization in comparison to low-dose and standard dose CT and filtered back projection technique. • Ultra-low dose CT of the upper abdomen using sinogram affirmed iterative reconstruction allows for significant dose reduction by 88%. • Ultra-low dose CT of the upper abdomen

  10. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    Science.gov (United States)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  11. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    International Nuclear Information System (INIS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Xu, X George; Long, Daniel J; Bolch, Wesley E; Liu, Bob

    2015-01-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. (paper)

  12. Doses from pediatric CT examinations in Norway: are pediatric scan protocols developed and in daily use?

    International Nuclear Information System (INIS)

    Friberg, Eva G.

    2008-01-01

    Doses to pediatric patients from CT examinations are known to be unnecessarily high if scan protocols developed for adult patients are adopted. This overexposure is most often not recognized by the operating radiographer, due to the digital behavior of the imaging system. Use of optimized size-specific pediatric scan protocols is therefore essential to keep the doses at an appropriate level. The aim of this study was to investigate the doses to pediatric patients from CT examinations and to evaluate the level of optimization of the scan protocols. Patient data, applied scan parameters together with the dose parameters volume computed tomography dose index (CTD vol ) and dose length product (DLP) for examinations of the head, chest and abdomen were collected by means of a questionnaire from five university hospitals. The effective dose was estimated from the total DLP by use of region-specific conversion coefficients (E DLP ). Totally 136, 108 and 82 questionnaires were received for examinations of the head, chest and abdomen, respectively. Large variations in patient doses between the hospitals were observed, addressing the need for optimization of the scan protocols in general. Most of the hospitals applied successive lower mAs with decreasing patient age for all scan areas, while the use of lower tube voltage for small patients and a higher tube voltage for large patients were more rarely. This indicates the presence, to a certain level, of size specific scan protocols at some Norwegian hospitals. Focus on developing size-specific scan protocols for pediatric patients are important to reduce the doses and risks associated with pediatric CT examinations. (author)

  13. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca [Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1 (Canada); Battista, Jerry J.; Jordan, Kevin J. [Departments of Medical Biophysics and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario N6A 4L6 (Canada)

    2016-08-15

    irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  14. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  15. Measurement of adult and paediatric patient doses during head CT scan

    International Nuclear Information System (INIS)

    Suliman, S. A.

    2011-03-01

    CT represents only 5% of all x-ray imaging and yet the radiation from CT examination is 40% to 67% of all medical radiation. The dose from single CT examinations can range from 1.0 mSv to 27.0 mSv. The radiation given by diagnostic CT is comparable to the low dose received by Japanese survivors of the atomic bombs. As per united nations scientific committee UNSCEAR 2000(2), CT contributes over 34% collective dose from diagnostic x-ray examinations in the world. This figure is much larger than this for developed countries, approaching as much as 50% to 70% even thought the frequency of CT examinations in these countries is of the order of 5 to 12%. It thus implies a small but statistically significant increased risk for developing cancer as a result of the radiation. The objective of the study were to investigate doses from CT examinations of adult and paediatric patients in brain CT examination and compare the doses with international standard as provided in DRLs. A total of 59 patients (paediatric and adults) were examined at the department of radiology, Al Ribat University Hospital-Khartoum. The mean age was 40.80 years for adults while the mean weight was 70.04 kg and the mean age for paediatric was 5.10 years while the mean weight was 20kg. DLP for adults were 1000.25 mGy.cm, 733.33 for paediatrics. The mean effective dose for adults patient was 0.48 mSv in rang (0.49-0.44)mSv, while for paediatric patients was 0.31 mSv in rang between (0.49-0.11) mSv. The DRL was 1120 mGy.cm, a value which is higher than the European Guidelines on quality criteria for computed tomography. The study has shown a great need for referring criteria, continuous training of staff in radiation dose optimization concepts. Further studies are required in order to establish a reference level in Sudan.(Author)

  16. Exposure dose to gonad and its reduction in CT examinations

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Menju, Mina; Nakazawa, Masato

    2006-01-01

    Exposure doses to gonad (ovary and uterus) due to scattering at the ordinary CT examinations of head, breast, and abdomen (liver) were measured and their reductions by the protective apron usually used in clinic were evaluated by comparison of the given and International Commission of Radiological Protection (ICRP) data for risk assessment. Multi-slice helical/scanno-helical CT for the regions under ordinary diagnostic conditions was done by the apparatus Toshiba Aquilion 16 for the human body phantom (Alderson) with or without the apron (Hagoromo) equivalent to 0.25 mm thick lead. Doses inside and outside the beam flux were measured by the thermoluminescent dosimeter, of which data were corrected by Radcal Model 300 ionization chamber. The doses in the gonad due to scattering were found to be in the range from 0.01 (head CT) to 1 (liver CT) mGy and to be reduced in 20-30% by the apron. Found dose were far smaller than the ICRP threshold values for inducing teratosis and infertality. (T.I.)

  17. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.

  18. Radiation dose reduction on multidetector abdominal CT using adaptive statistical iterative reconstruction technique in children

    International Nuclear Information System (INIS)

    Zhang Qifeng; Peng Yun; Duan Xiaomin; Sun Jihang; Yu Tong; Han Zhonglong

    2013-01-01

    Objective: To investigate the feasibility to reduce radiation doses on pediatric multidetector abdominal CT using the adaptive statistical iterative reconstruction technique (ASIR) associated with automated tube current modulation technique (ATCM). Methods: Thirty patients underwent abdominal CT with ATCM and the follow-up scan with ATCM cooperated with 40% ASIR. ATCM was used with age dependent noise index (NI) settings: NI = 9 for 0-5 year old and NI = 11 for > 5 years old for simple ATCM group, NI = 11 for 0-5 year old and NI = 15 for > 5 years old for ATCM cooperated with 40% ASIR group (AISR group). Two radiologists independently evaluated images for diagnostic quality and image noise with subjectively image quality score and image noise score using a 5-point scale. Interobserver agreement was assessed by Kappa test. The volume CT dose indexes (CTDIvol) for the two groups were recorded. Statistical significance for the CTDIvol value was analyzed by pair-sample t test. Results: The average CTDIvol for the ASIR group was (1.38 ± 0.64) mGy, about 60% lower than (3.56 ± 1.23) mGy for the simple ATCM group, and the CTDIvol of two groups had statistically significant differences. (t = 33.483, P < 0.05). The subjective image quality scores for the simple ATCM group were 4.43 ± 0.57 and 4.37 ±0.61, Kappa = 0.878, P < 0.01 (ASIR group: 4.70 ± 0.47 and 4.60 ± 0.50, Kappa = 0.783, P < 0.01), by two observers. The image noise score for the simple ATCM group were 4.03 ±0.56 and 3.83 ±0.53, Kappa = 0.572, P < 0.01 (ASIR group: 4.20 ± 0.48 and 4.10 ± 0.48, Kappa = 0.748, P < 0.01), by two observers. All images had acceptable diagnostic image quality. Conclusion: Lower radiation dose can be achieved by elevating NI with ASIR in pediatric CT abdominal studies, while maintaining diagnostically acceptable images. (authors)

  19. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [The Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Allegheny General Hospital, Department of Radiology, Pittsburgh, PA (United States); Ceschin, Rafael C.; Clayton, Barbara L.; Sutcavage, Tom; Tadros, Sameh S.; Panigrahy, Ashok [The Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States)

    2011-09-15

    The use of the adaptive statistical iterative reconstruction (ASIR) algorithm has been shown to reduce radiation doses in adults undergoing abdominal CT studies while preserving image quality. To our knowledge, no studies have been done to validate the use of ASIR in children. To retrospectively evaluate differences in radiation dose and image quality in pediatric CT abdominal studies utilizing 40% ASIR compared with filtered-back projection (FBP). Eleven patients (mean age 8.5 years, range 2-17 years) had separate 40% ASIR and FBP enhanced abdominal CT studies on different days between July 2009 and October 2010. The ASIR studies utilized a 38% mA reduction in addition to our pediatric protocol mAs. Study volume CT dose indexes (CTDI{sub vol}) and dose-length products (DLP) were recorded. A consistent representative image was obtained from each study. The images were independently evaluated by two radiologists in a blinded manner for diagnostic utility, image sharpness and image noise. The average CTDI{sub vol} and DLP for the 40% ASIR studies were 4.25 mGy and 185.04 mGy-cm, compared with 6.75 mGy and 275.79 mGy-cm for the FBP studies, representing 37% and 33% reductions in both, respectively. The radiologists' assessments of subjective image quality did not demonstrate any significant differences between the ASIR and FBP images. In our experience, the use of 40% ASIR with a 38% decrease in mA lowers the radiation dose for children undergoing enhanced abdominal examinations by an average of 33%, while maintaining diagnostically acceptable images. (orig.)

  20. Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study

    International Nuclear Information System (INIS)

    Vorona, Gregory A.; Ceschin, Rafael C.; Clayton, Barbara L.; Sutcavage, Tom; Tadros, Sameh S.; Panigrahy, Ashok

    2011-01-01

    The use of the adaptive statistical iterative reconstruction (ASIR) algorithm has been shown to reduce radiation doses in adults undergoing abdominal CT studies while preserving image quality. To our knowledge, no studies have been done to validate the use of ASIR in children. To retrospectively evaluate differences in radiation dose and image quality in pediatric CT abdominal studies utilizing 40% ASIR compared with filtered-back projection (FBP). Eleven patients (mean age 8.5 years, range 2-17 years) had separate 40% ASIR and FBP enhanced abdominal CT studies on different days between July 2009 and October 2010. The ASIR studies utilized a 38% mA reduction in addition to our pediatric protocol mAs. Study volume CT dose indexes (CTDI vol ) and dose-length products (DLP) were recorded. A consistent representative image was obtained from each study. The images were independently evaluated by two radiologists in a blinded manner for diagnostic utility, image sharpness and image noise. The average CTDI vol and DLP for the 40% ASIR studies were 4.25 mGy and 185.04 mGy-cm, compared with 6.75 mGy and 275.79 mGy-cm for the FBP studies, representing 37% and 33% reductions in both, respectively. The radiologists' assessments of subjective image quality did not demonstrate any significant differences between the ASIR and FBP images. In our experience, the use of 40% ASIR with a 38% decrease in mA lowers the radiation dose for children undergoing enhanced abdominal examinations by an average of 33%, while maintaining diagnostically acceptable images. (orig.)

  1. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  2. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Bastarrika, Gorka [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Cardiac Imaging Unit, Clinica Univ. de Navarra, Pamplona (Spain)], e-mail: bastarrika@unav.es

    2012-06-15

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 {+-} 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 {+-} 58.3 mL) with respect to ECG-gated CT (142.7 {+-} 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 {+-} 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols.

  3. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  4. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  5. A review of patient dose and optimisation methods in adult and paediatric CT scanning

    International Nuclear Information System (INIS)

    Dougeni, E.; Faulkner, K.; Panayiotakis, G.

    2012-01-01

    Highlights: ► CT scanning frequency has grown with the development of new clinical applications. ► Up to 32-fold dose variation was observed for similar type of procedures. ► Scanning parameters should be optimised for patient size and clinical indication. ► Cancer risks knowledge amongst physicians of certain specialties was poor. ► A significant number of non-indicated CT scans could be eliminated. - Abstract: An increasing number of publications and international reports on computed tomography (CT) have addressed important issues on optimised imaging practice and patient dose. This is partially due to recent technological developments as well as to the striking rise in the number of CT scans being requested. CT imaging has extended its role to newer applications, such as cardiac CT, CT colonography, angiography and urology. The proportion of paediatric patients undergoing CT scans has also increased. The published scientific literature was reviewed to collect information regarding effective dose levels during the most common CT examinations in adults and paediatrics. Large dose variations were observed (up to 32-fold) with some individual sites exceeding the recommended dose reference levels, indicating a large potential to reduce dose. Current estimates on radiation-related cancer risks are alarming. CT doses account for about 70% of collective dose in the UK and are amongst the highest in diagnostic radiology, however the majority of physicians underestimate the risk, demonstrating a decreased level of awareness. Exposure parameters are not always adjusted appropriately to the clinical question or to patient size, especially for children. Dose reduction techniques, such as tube-current modulation, low-tube voltage protocols, prospective echocardiography-triggered coronary angiography and iterative reconstruction algorithms can substantially decrease doses. An overview of optimisation studies is provided. The justification principle is discussed along

  6. Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio

    Science.gov (United States)

    Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2016-01-01

    Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336

  7. TH-C-18A-08: A Management Tool for CT Dose Monitoring, Analysis, and Protocol Review

    International Nuclear Information System (INIS)

    Wang, J; Chan, F; Newman, B; Larson, D; Leung, A; Fleischmann, D; Molvin, L; Marsh, D; Zorich, C; Phillips, L

    2014-01-01

    Purpose: To develop a customizable tool for enterprise-wide managing of CT protocols and analyzing radiation dose information of CT exams for a variety of quality control applications Methods: All clinical CT protocols implemented on the 11 CT scanners at our institution were extracted in digital format. The original protocols had been preset by our CT management team. A commercial CT dose tracking software (DoseWatch,GE healthcare,WI) was used to collect exam information (exam date, patient age etc.), scanning parameters, and radiation doses for all CT exams. We developed a Matlab-based program (MathWorks,MA) with graphic user interface which allows to analyze the scanning protocols with the actual dose estimates, and compare the data to national (ACR,AAPM) and internal reference values for CT quality control. Results: The CT protocol review portion of our tool allows the user to look up the scanning and image reconstruction parameters of any protocol on any of the installed CT systems among about 120 protocols per scanner. In the dose analysis tool, dose information of all CT exams (from 05/2013 to 02/2014) was stratified on a protocol level, and within a protocol down to series level, i.e. each individual exposure event. This allows numerical and graphical review of dose information of any combination of scanner models, protocols and series. The key functions of the tool include: statistics of CTDI, DLP and SSDE, dose monitoring using user-set CTDI/DLP/SSDE thresholds, look-up of any CT exam dose data, and CT protocol review. Conclusion: our inhouse CT management tool provides radiologists, technologists and administration a first-hand near real-time enterprise-wide knowledge on CT dose levels of different exam types. Medical physicists use this tool to manage CT protocols, compare and optimize dose levels across different scanner models. It provides technologists feedback on CT scanning operation, and knowledge on important dose baselines and thresholds

  8. Can low-dose CT with iterative reconstruction reduce both the radiation dose and the amount of iodine contrast medium in a dynamic CT study of the liver?

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroto; Okada, Masahiro; Hyodo, Tomoko; Hidaka, Syojiro; Kagawa, Yuki; Matsuki, Mitsuru; Tsurusaki, Masakatsu; Murakami, Takamichi, E-mail: murakami@med.kindai.ac.jp

    2014-04-15

    Purpose: To investigate whether low-dose dynamic CT of the liver with iterative reconstruction can reduce both the radiation dose and the amount of contrast medium. Materials and methods: This study was approved by our institutional review board. 113 patients were randomly assigned to one of two groups. Group A/group B (fifty-eight/fifty-five patients) underwent liver dynamic CT at 120/100 kV, with 0/40% adaptive statistical iterative reconstruction (ASIR), with a contrast dose of 600/480 mg I/kg, respectively. Radiation exposure was estimated based on the manufacturer's phantom data. The enhancement value of the hepatic parenchyma, vessels and the tumor-to-liver contrast of hepatocellular carcinomas (HCCs) were compared between two groups. Two readers independently assessed the CT images of the hepatic parenchyma and HCCs. Results: The mean CT dose indices: 6.38/4.04 mGy, the dose-length products: 194.54/124.57 mGy cm, for group A/group B. The mean enhancement value of the hepatic parenchyma and the tumor-to-liver contrast of HCCs with diameters greater than 1 cm in the post-contrast all phases did not differ significantly between two groups (P > 0.05). The enhancement values of vessels in group B were significantly higher than that in group A in the delayed phases (P < 0.05). Two reader's confidence levels for the hepatic parenchyma in the delayed phases and HCCs did not differ significantly between the groups (P > 0.05). Conclusions: Low-dose dynamic CT with ASIR can reduce both the radiation dose and the amount of contrast medium without image quality degradation, compared to conventional dynamic CT without ASIR.

  9. Low-dose helical computed tomography (CT) in the perioperative workup of adolescent idiopathic scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Abul-Kasim, Kasim; Overgaard, Angelica; Maly, Pavel [Malmoe University Hospital, Department of Radiology, Section of Neuroradiology, University of Lund, Malmoe (Sweden); Ohlin, Acke [Malmoe University Hospital, Department of Orthopaedic Surgery, University of Lund, Malmoe (Sweden); Gunnarsson, Mikael [Malmoe University Hospital, Department of Radiation Physics, University of Lund, Malmoe (Sweden); Sundgren, Pia C. [University of Michigan Health Systems, Department of Radiology, Division of Neuroradiology, Ann Arbor (United States)

    2009-03-15

    The study aims were to estimate the radiation dose in patients examined with low dose spine CT and to compare it with that received by patients undergoing standard CT for trauma of the same region, as well as to evaluate the impact of dose reduction on image quality. Radiation doses in 113 consecutive low dose spine CTs were compared with those in 127 CTs for trauma. The inter- and intraobserver agreement in measurements of pedicular width, and vertebral rotation, measurements of signal-to-noise ratio and assessment of hardware status were the indicators in the evaluation of image quality. The effective dose of the low dose spine CT (0.37 mSv) was 20 times lower than that of a standard CT for trauma (13.09 mSv). This dose reduction conveyed no impact on image quality. This low dose spine CT protocol allows detailed evaluation that is necessary for preoperative planning and postoperative evaluation. (orig.)

  10. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo; Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da; Mourao FIlho, Arnaldo Prata

    2014-01-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18 F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18 F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  11. SU-E-I-34: Evaluating Use of AEC to Lower Dose for Lung Cancer Screening CT Protocols

    International Nuclear Information System (INIS)

    Arbique, G; Anderson, J; Guild, J; Duan, X; Malguria, N; Omar, H; Brewington, C; Zhang, D

    2015-01-01

    Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD) image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems

  12. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  13. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  14. Determination of the optimal dose reduction level via iterative reconstruction using 640-slice volume chest CT in a pig model.

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    Full Text Available To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose, SD12.5, SD15, SD17.5, SD20 (Groups from B to E to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP, and Groups from B to E were reconstructed using iterative reconstruction (IR. Objective and subjective image quality (IQ among groups were compared to determine an optimal radiation reduction level.The noise and signal-to-noise ratio (SNR in Group D had no significant statistical difference from that in Group A (P = 1.0. The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05. There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups of Group D. The effective dose (ED of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001.In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.

  15. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  16. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    International Nuclear Information System (INIS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-01-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens

  17. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Science.gov (United States)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  18. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico); Reynoso-Mejía, Alberto [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F., Mexico and Departamento de Neuroimagen, Instituto Nacional de (Mexico); Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús [Departamento de Neuroimagen, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico)

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  19. Liver perfusion CT during hepatic arteriography for the hepatocellular carcinoma: Dose reduction and quantitative evaluation for normal- and ultralow-dose protocol

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shingo [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan); Katada, Yoshiaki, E-mail: yoshiaki@dokkyomed.ac.jp [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan); Gohkyu, Masaki; Nakajima, Masahiro; Kawabata, Hideyuki; Nozaki, Miwako [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan)

    2012-12-15

    Objectives: The purpose of this study was to investigate whether substantial reduction of the computed tomography (CT) dose is possible in liver CT perfusion imaging by comparing the results of ultralow-dose CT perfusion imaging with those of conventional CT perfusion imaging the same patients and under the same conditions. Materials and methods: The study was composed following two parts: computer simulation and patients study. In computer simulation, noise was added to the images so that the standard deviation (SD) of the CT values in the liver parenchyma became various values using ImageJ. Time density curves (TDCs) were created from the simulated data, and the influence of difference in the SDs on the shapes of the TDCs was investigated. In the patient study, CT perfusion during intra-arterial injection was performed in 30 consecutive patients undergoing transcatheter arterial chemoembolization. CT perfusion images were acquired twice, at 100 mA (CTDI{sub vol}, 300 mGy) for normal and at 20 mA (CTDI{sub vol}, 60 mGy) for the ultralow radiation doses, under the same conditions. Results: No change was observed in the shape of the TDCs and peak values in the analysis of simulation images. A very good correlation was observed between the normal- and ultralow-dose CT images for all analyzed values (R{sup 2} = 0.9885 for blood flow, 0.9269 for blood volume, and 0.8424 for mean transit time). Conclusions: Our results demonstrated that there was no significant difference in the analysis results of perfusion CT between ultralow-dose CT performed using 20% of the conventional dose and normal-dose CT perfusion.

  20. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  1. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    International Nuclear Information System (INIS)

    De Souza Santos, William; Caldas, Linda V.E.; Belinato, Walmir; Pereira Neves, Lucio; Perini, Ana Paula

    2015-01-01

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objective of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)

  2. Evaluation of the radiation doses in newborn patients submitted to CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    De Souza Santos, William; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear (IPENCNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP, (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA, (Brazil); Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG, (Brazil)

    2015-07-01

    The number of computed tomography (CT) scans available to the population is increasing, as well as the complexity of such exams. As a result, the radiation doses are increasing as well. Considering the population exposed to CT exams, pediatric patients are considerably more sensitive to radiation than adults. They have a longer life expectancy than adults, and may receive a higher radiation dose than necessary if the CT scan settings are not adjusted for their smaller body size. As a result of these considerations, the risk of developing cancer is of great concern when newborn patients are involved. The objective of this work was to study the radiation doses on radiosensitive organs of newborn patients undergoing a whole body CT examination, utilizing Monte Carlo simulations. The novelty of this work is the use of pediatric virtual anthropomorphic phantoms, developed at the Department of Nuclear Energy at the Federal University of Pernambuco (DEN/UFPE). The CT equipment utilized during the simulations was a Discovery VCT GE PET/CT system, with a tube voltage of 140 kVp. The X-ray spectrum of this CT scanner was generated by the SRS-78 software, which takes into account the X-ray beam energy used in PET/CT procedures. The absorbed organ doses were computed employing the F6 tally (MeV/g). The results were converted to dose coefficients (mGy/100 mA) for all the structures, considering all employed beams. The highest dose coefficients values were obtained for the brain and the thyroid. This work provides useful information regarding the risks involving ionizing radiation in newborn patients, employing a new and reliable technique. (authors)

  3. Estimation of radiation dose to patients from 18 FDG whole body PET/CT investigations using dynamic PET scan protocol

    Directory of Open Access Journals (Sweden)

    Aruna Kaushik

    2015-01-01

    Full Text Available Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain, 0.09 h (liver, 0.007 h (spleen, 0.0006 h (adrenals, 0.013 h (kidneys and 0.005 h (stomach whereas it was 0.189 h (brain, 0.11 h (liver, 0.01 h (spleen, 0.0007 h (adrenals, 0.02 h (kidneys and 0.004 h (stomach in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  4. Estimation of radiation dose to patients from (18) FDG whole body PET/CT investigations using dynamic PET scan protocol.

    Science.gov (United States)

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D'Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K; Dwarakanath, Bilikere S

    2015-12-01

    There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and carefully weigh the risk-benefit ratios prior to every 18FDG whole body PET/CT

  5. Scan Quality and Entrance Skin Dose in Thoracic CT: A Comparison between Bismuth Breast Shield and Posteriorly Centered Partial CT Scans

    International Nuclear Information System (INIS)

    Tappouni, Rafel; Mathers, Bradley

    2012-01-01

    Objectives. To compare the effectiveness of the bismuth breast shield and partial CT scan in reducing entrance skin dose and to evaluate the effect of the breast shield on image quality (IQ). Methods. Nanodots were placed on an adult anthropomorphic phantom. Standard chest CT, CT with shield, and partial CT were performed. Nanodot readings and effective doses were recorded. 50 patients with chest CTs obtained both with and without breast shields were reviewed. IQ was evaluated by two radiologists and by measuring Hounsfield units (HUs) and standard deviation (SD) of HU in anterior subcutaneous region. Results. Breast shield and the partial CT scans reduced radiation to the anterior chest by 38% and 16%, respectively. Partial CT increased dose to the posterior chest by 37% and effective dose by 8%. Change in IQ in shield CT was observed in the anterior chest wall. Significant change in IQ was observed in 5/50 cases. The shield caused an increase of 20 HU (P = 0.021) and a 1.86 reduction in SD of HU (P = 0.027) in the anterior compared to posterior subcutaneous regions. Summary. Bismuth breast shield is more effective than the partial CT in reducing entrance skin dose while maintaining image quality

  6. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  7. Emphysema Quantification Using Low Dose Chest CT: Changes in Follow-Up Examinations of Asymptomatic Smokers

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Ho; Sun, Joo Sung; Kang, Doo Kyung [Dept. of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); Park, Kwang Joo; Park, Kyung Joo [Dept. of Pulmolary Medicine, Ajou University School of Medicine, Suwon (Korea, Republic of)

    2012-01-15

    To evaluate the changes of emphysema quantification in a follow-up low dose CT compared with pulmonary function test (PFT) results in asymptomatic smokers. We selected 66 asymptomatic smokers (> 40 years old) who underwent a follow-up low dose CT at least one year after the first CT as well as PFT within the same time period. Emphysema quantification was performed using an automated measurement software and an emphysema index (EI) was calculated using multiple threshold values (-970--900 HU). The interval change of EI ({Delta} EI) was compared with the change in the PFT values. Mean follow-up %forced expiratory volume in 1 second (88.1), %forced vital capacity (FVC) (89.5) and forced expiratory flow between 25 and 75% of vital capacity (3.21) were significantly lower compared with the values of initial tests (93.3, 93.1, 3.48). The mean EIs (2.4-25.6%) increased on follow-up CTs compared with initial EIs (2.1-24.5%), though the increase was not statistically significant. In a group with a follow-up period of 2 years or more (n = 32), EI significantly increased when using -900 HU as the threshold. The ({Delta} EIs were poorly correlated with the ({Delta} PFT values, but significantly correlated with ({Delta} FVC (r = -0.32--0.27). Emphysema quantification using low dose CT was not effective for the evaluation of short-term changes in less than a 2-year period, but may be used for long term follow-up series in asymptomatic smokers.

  8. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  9. Prospective estimation of organ dose in CT under tube current modulation

    International Nuclear Information System (INIS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2015-01-01

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI vol -normalized-organ dose coefficients (h organ ) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3) to

  10. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  11. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  12. Dose reduction using prospective electrocardiograph-triggered axial coronary scan on the 64-slice spiral CT

    International Nuclear Information System (INIS)

    Wang Yanyan; Wu Guogeng; Zhou Cheng; Gao Jianhua; Jiao Sheng; Cao Huizhi

    2008-01-01

    Objective: To compare radiation dose and image quality between prospective electrocardiograph (ECG)-triggered axial scan and retrospective ECG-gated helical scan in coronary 64-slice CT angiography (CTA). Methods: Seventy-seven consecutive patients [group A. Average body mass index (BMI): 24.6, heart rate 0.05). Conclusion: Prospective ECG-triggered axial scan in 64-slice coronary CTA can significantly reduce radiation exposure and the image quality can fulfill clinical diagnostic needs. (authors)

  13. Development of a method to estimate organ doses for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John [Department of Medical Physics, University Hospital of Heraklion, Faculty of Medicine, University of Crete, P.O. Box 1352, Iraklion, Crete 71110 (Greece)

    2016-05-15

    Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tube current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.

  14. Preliminary assessment of the dose to the interventional radiologist in fluoro-CT-guided procedures

    International Nuclear Information System (INIS)

    Pereira, M. F.; Alves, J. G.; Sarmento, S.; Santos, J. A. M.; Sousa, M. J.; Gouvea, M.; Oliveira, A. D.; Cardoso, J. V.; Santos, L. M.

    2011-01-01

    A preliminary assessment of the occupational dose to the intervention radiologist received in fluoroscopy computerised tomography (CT) used to guide the collection of lung and bone biopsies is presented. The main aim of this work was to evaluate the capability of the reading system as well as of the available whole-body (WB) and extremity dosemeters used in routine monthly monitoring periods to measure per procedure dose values. The intervention radiologist was allocated 10 WB detectors (LiF: Mg, Ti, TLD-100) placed at chest and abdomen levels above and below the lead apron, and at both right and left arms, knees and feet. A special glove was developed with casings for the insertion of 11 extremity detectors (LiF:Mg, Cu, P, TLD-100H) for the identification of the most highly exposed fingers. The H p (10) dose values received above the lead apron (ranged 0.20-0.02 mSv) depend mainly on the duration of the examination and on the placement of physician relative to the beam, while values below the apron are relatively low. The left arm seems to receive a higher dose value. H p (0.07) values to the hand (ranged 36.30-0.06 mSv) show that the index, middle and ring fingers are the most highly exposed. In this study, the wrist dose was negligible compared with the finger dose. These results are preliminary and further studies are needed to better characterise the dose assessment in CT fluoroscopy. (authors)

  15. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H.M.B. [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  16. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  17. Development of age-specific Japanese physical phantoms for dose evaluation in infant CT examinations

    International Nuclear Information System (INIS)

    Yamauchi-Kawaura, C.; Fujii, K.; Imai, K.; Ikeda, M.; Akahane, K.; Obara, S.; Yamauchi, M.; Narai, K.; Katsu, T.

    2016-01-01

    Secondary to the previous development of age-specific Japanese head phantoms, the authors designed Japanese torso phantoms for dose assessment in infant computed tomography (CT) examinations and completed a Japanese 3-y-old head-torso phantom. For design of age-specific torso phantoms (0, 0.5, 1 and 3 y old), anatomical structures were measured from CT images of Japanese infant patients. From the CT morphometry, it was found that rib cages of Japanese infants were smaller than those in Europeans and Americans. Radiophotoluminescence glass dosemeters were used for dose measurement of a 3-y-old head-torso phantom. To examine the validity of the developed phantom, organ and effective doses by the in-phantom dosimetry system were compared with simulation values in a web-based CT dose calculation system (WAZA-ARI). The differences in doses between the two systems were <20 % at the doses of organs within scan regions and effective doses in head, chest and abdomino-pelvic CT examinations. (authors)

  18. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain, E-mail: aseret@ulg.ac.be [Cyclotron Research Centre, University of Liège, Sart Tilman B30, Liège 4000 (Belgium)

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  19. Measurement of radiation dose to ovaries from CT of the head and trunk

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habdhan, M.A.M.; Kinsara, A.R. [King Abdul Aziz Univ., Nuclear Engineering Dept., Jeddah (Saudi Arabia)

    2001-07-01

    With the rise in concern about doses received by patients over recent years, there has been a growing requirement for information on typical doses and the range of dose received during Computerized Tomography (CT). This study was performed for the assessment of radiation dose to the ovaries from various CT protocols for head and trunk imaging. Thermo luminescent dosimeters (TLD) were used for the dosimetry measurement in an anthropomorphic Rando Alderson phantom. The wanted (obligatory) and unwanted (non-useful) radiation doses delivered to the ovaries during CT examinations of head, facial bone, orbits, abdomen, chest, pelvis, neck, nasopharynx, cervical spine, lumber spine and sacroiliac joint were assessed. The results are compared with the corresponding values published in the literature. A comparison of the received dose from CT examinations and general radiography examinations by the ovaries was made. It is found that relatively high doses of unwanted radiation are delivered with computerized tomography. (author)

  20. MO-E-17A-06: Organ Dose in Abdomen-Pelvis CT: Does TG 111 Equilibrium Dose Concept Better Accounts for KVp Dependence Than Conventional CTDI?

    International Nuclear Information System (INIS)

    Li, X; Morgan, A; Davros, W; Dong, F; Primak, A; Segars, W

    2014-01-01

    Purpose: In CT imaging, a desirable quality assurance (QA) dose quantity should account for the dose variability across scan parameters and scanner models. Recently, AAPM TG 111 proposed to use equilibrium dose-pitch product, in place of CT dose index (CTDI100), for scan modes involving table translation. The purpose of this work is to investigate whether this new concept better accounts for the kVp dependence of organ dose than the conventional CTDI concept. Methods: The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A Monte Carlo program developed and validated for a 128-slice CT system (Definition Flash, Siemens Healthcare) was used to simulate organ dose for abdomenpelvis scans at five tube voltages (70, 80, 100, 120, 140 kVp) with a pitch of 0.8 and a detector configuration of 2x64x0.6 mm. The same Monte Carlo program was used to simulate CTDI100 and equilibrium dose-pitch product. For both metrics, the central and peripheral values were used together with helical pitch to calculate a volume-weighted average, i.e., CTDIvol and (Deq)vol, respectively. Results: While other scan parameters were kept constant, organ dose depended strongly on kVp; the coefficient of variation (COV) across the five kVp values ranged between 70–75% for liver, spleen, stomach, pancreas, kidneys, colon, small intestine, bladder, and ovaries, all of which were inside the primary radiation beam. One-way analysis of variance (ANOVA) for the effect of kVp was highly significant (p=3e−30). When organ dose was normalized by CTDIvol, the COV across the five kVp values reduced to 7–16%. The effect of kVp was still highly significant (p=4e−4). When organ dose was normalized by (Deq)vol, the COV further reduced to 4−12%. The effect of kVp was borderline significant (p=0.04). Conclusion: In abdomen-pelvis CT, TG 111 equilibrium dose concept better accounts for kVp dependence than the conventional CTDI. This work is supported by a faculty startup

  1. MO-E-17A-06: Organ Dose in Abdomen-Pelvis CT: Does TG 111 Equilibrium Dose Concept Better Accounts for KVp Dependence Than Conventional CTDI?

    Energy Technology Data Exchange (ETDEWEB)

    Li, X [Cleveland State University, Cleveland, OH (United States); Morgan, A; Davros, W [Cleveland State University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, Ohio (United States); Dong, F [Cleveland Clinic, Cleveland, Ohio (United States); Primak, A [Siemens Medical Solutions USA, Inc. (United States); Segars, W [Duke University, Durham, NC (United States)

    2014-06-15

    Purpose: In CT imaging, a desirable quality assurance (QA) dose quantity should account for the dose variability across scan parameters and scanner models. Recently, AAPM TG 111 proposed to use equilibrium dose-pitch product, in place of CT dose index (CTDI100), for scan modes involving table translation. The purpose of this work is to investigate whether this new concept better accounts for the kVp dependence of organ dose than the conventional CTDI concept. Methods: The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A Monte Carlo program developed and validated for a 128-slice CT system (Definition Flash, Siemens Healthcare) was used to simulate organ dose for abdomenpelvis scans at five tube voltages (70, 80, 100, 120, 140 kVp) with a pitch of 0.8 and a detector configuration of 2x64x0.6 mm. The same Monte Carlo program was used to simulate CTDI100 and equilibrium dose-pitch product. For both metrics, the central and peripheral values were used together with helical pitch to calculate a volume-weighted average, i.e., CTDIvol and (Deq)vol, respectively. Results: While other scan parameters were kept constant, organ dose depended strongly on kVp; the coefficient of variation (COV) across the five kVp values ranged between 70–75% for liver, spleen, stomach, pancreas, kidneys, colon, small intestine, bladder, and ovaries, all of which were inside the primary radiation beam. One-way analysis of variance (ANOVA) for the effect of kVp was highly significant (p=3e−30). When organ dose was normalized by CTDIvol, the COV across the five kVp values reduced to 7–16%. The effect of kVp was still highly significant (p=4e−4). When organ dose was normalized by (Deq)vol, the COV further reduced to 4−12%. The effect of kVp was borderline significant (p=0.04). Conclusion: In abdomen-pelvis CT, TG 111 equilibrium dose concept better accounts for kVp dependence than the conventional CTDI. This work is supported by a faculty startup

  2. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  3. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Luboldt, Wolfgang [Multiorgan Screening Foundation, Frankfurt (Germany); University Hospital Frankfurt, Department of Radiology, Frankfurt am Main (Germany); University Hospital Dresden, Clinic and Policlinic of Nuclear Medicine, Dresden (Germany); Volker, Teresa; Zoephel, Klaus; Kotzerke, Joerg [University Hospital Dresden, Clinic and Policlinic of Nuclear Medicine, Dresden (Germany); Wiedemann, Baerbel [University Hospital Dresden, Institute of Medical Informatics and Biometrics, Dresden (Germany); Wehrmann, Ursula [University Hospital Dresden, Clinic and Policlinic of Surgery, Dresden (Germany); Koch, Arne; Abolmaali, Nasreddin [University Hospital Dresden, Oncoray, Dresden (Germany); Toussaint, Todd; Luboldt, Hans-Joachim [Multiorgan Screening Foundation, Frankfurt (Germany); Middendorp, Markus; Gruenwald, Frank [University Hospital Frankfurt, Department of Nuclear Medicine, Frankfurt (Germany); Aust, Daniela [University Hospital Dresden, Department of Pathology, Dresden (Germany); Vogl, Thomas J. [University Hospital Frankfurt, Department of Radiology, Frankfurt am Main (Germany)

    2010-09-15

    To determine the performance of FDG-PET/CT in the detection of relevant colorectal neoplasms (adenomas {>=}10 mm, with high-grade dysplasia, cancer) in relation to CT dose and contrast administration and to find a PET cut-off. 84 patients, who underwent PET/CT and colonoscopy (n=79)/sigmoidoscopy (n=5) for (79 x 6+5 x 2)=484 colonic segments, were included in a retrospective study. The accuracy of low-dose PET/CT in detecting mass-positive segments was evaluated by ROC analysis by two blinded independent reviewers relative to contrast-enhanced PET/CT. On a per-lesion basis characteristic PET values were tested as cut-offs. Low-dose PET/CT and contrast-enhanced PET/CT provide similar accuracies (area under the curve for the average ROC ratings 0.925 vs. 0.929, respectively). PET demonstrated all carcinomas (n=23) and 83% (30/36) of relevant adenomas. In all carcinomas and adenomas with high-grade dysplasia (n=10) the SUV{sub max} was {>=}5. This cut-off resulted in a better per-segment sensitivity and negative predictive value (NPV) than the average PET/CT reviews (sensitivity: 89% vs. 82%; NPV: 99% vs. 98%). All other tested cut-offs were inferior to the SUV{sub max}. FDG-PET/CT provides promising accuracy for colorectal mass detection. Low dose and lack of iodine contrast in the CT component do not impact the accuracy. The PET cut-off SUV{sub max}{>=} 5 improves the accuracy. (orig.)

  4. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cut-off

    International Nuclear Information System (INIS)

    Luboldt, Wolfgang; Volker, Teresa; Zoephel, Klaus; Kotzerke, Joerg; Wiedemann, Baerbel; Wehrmann, Ursula; Koch, Arne; Abolmaali, Nasreddin; Toussaint, Todd; Luboldt, Hans-Joachim; Middendorp, Markus; Gruenwald, Frank; Aust, Daniela; Vogl, Thomas J.

    2010-01-01

    To determine the performance of FDG-PET/CT in the detection of relevant colorectal neoplasms (adenomas ≥10 mm, with high-grade dysplasia, cancer) in relation to CT dose and contrast administration and to find a PET cut-off. 84 patients, who underwent PET/CT and colonoscopy (n=79)/sigmoidoscopy (n=5) for (79 x 6+5 x 2)=484 colonic segments, were included in a retrospective study. The accuracy of low-dose PET/CT in detecting mass-positive segments was evaluated by ROC analysis by two blinded independent reviewers relative to contrast-enhanced PET/CT. On a per-lesion basis characteristic PET values were tested as cut-offs. Low-dose PET/CT and contrast-enhanced PET/CT provide similar accuracies (area under the curve for the average ROC ratings 0.925 vs. 0.929, respectively). PET demonstrated all carcinomas (n=23) and 83% (30/36) of relevant adenomas. In all carcinomas and adenomas with high-grade dysplasia (n=10) the SUV max was ≥5. This cut-off resulted in a better per-segment sensitivity and negative predictive value (NPV) than the average PET/CT reviews (sensitivity: 89% vs. 82%; NPV: 99% vs. 98%). All other tested cut-offs were inferior to the SUV max . FDG-PET/CT provides promising accuracy for colorectal mass detection. Low dose and lack of iodine contrast in the CT component do not impact the accuracy. The PET cut-off SUV max ≥ 5 improves the accuracy. (orig.)

  5. Diagnostic accuracy of low-dose versus ultra-low-dose CT for lumbar disc disease and facet joint osteoarthritis in patients with low back pain with MRI correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Hwa [Inje University College of Medicine, Department of Emergency Medicine, Sanggye Paik Hospital, Nowon-gu (Korea, Republic of); Yun, Seong Jong; Jo, Hyeon Hwan; Kim, Dong Hyeon [Republic of Korea Air Force, Department of Radiology, Aerospace Medical Center, Cheongwon-gun, Chungcheongbuk-do (Korea, Republic of); Song, Jae Gwang [Republic of Korea Air Force, Department of Orthopedic Surgery, Aerospace Medical Center, Cheongwon-gun, Chungcheongbuk-do (Korea, Republic of); Park, Yong Sung [Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2018-04-15

    To compare the image quality, radiation dose, and diagnostic performance between low-dose (LD) and ultra-low-dose (ULD) lumbar-spine (L-spine) CT with iterative reconstruction (IR) for patients with chronic low back pain (LBP). In total, 260 patients with chronic LBP who underwent L-spine CT between November 2015 and September 2016 were prospectively enrolled. Of these, 143 underwent LD-CT with IR and 117 underwent ULD-CT with IR. The patients were divided according to their body mass index (BMI) into BMI1 (<22.9 kg/m{sup 2}), BMI2 (23.0-24.9 kg/m{sup 2}), and BMI3 (≥25 kg/m{sup 2}) groups. Two blinded radiologists independently evaluated the signal-to-noise ratio (SNR), qualitative image quality, and final diagnoses (lumbar disc disease and facet joint osteoarthritis). L-spine MRIs interpreted by consensus were used as the reference standard. All data were statistically analyzed. ULD protocol showed significantly lower SNR for all patients (p < 0.001) except the vertebral bodies and lower qualitative image quality for BMI3 patients (p ≤ 0.033). There was no statistically significant difference between ULD (sensitivity, 95.1-98.1%; specificity, 92.5-98.7%; accuracy, 94.6-98.0%) and LD protocols (sensitivity, 95.6-100%; specificity, 95.5-98.9%; accuracy, 97.4-98.1%), (all p≥0.1) in the BMI1 and BMI2; while dose was 60-68% lower with the ULD protocol. Interobserver agreements were excellent or good with regard to image quality and final diagnoses. For the BM1 and BMI2 groups, ULD-CT provided an acceptable image quality and exhibited a diagnostic accuracy similar to that of LD-CT. These findings suggest that it is a useful diagnostic tool for patients with chronic LBP who exhibit a BMI of <25 kg/m{sup 2}. (orig.)

  6. Diagnostic accuracy of low-dose versus ultra-low-dose CT for lumbar disc disease and facet joint osteoarthritis in patients with low back pain with MRI correlation

    International Nuclear Information System (INIS)

    Lee, Sun Hwa; Yun, Seong Jong; Jo, Hyeon Hwan; Kim, Dong Hyeon; Song, Jae Gwang; Park, Yong Sung

    2018-01-01

    To compare the image quality, radiation dose, and diagnostic performance between low-dose (LD) and ultra-low-dose (ULD) lumbar-spine (L-spine) CT with iterative reconstruction (IR) for patients with chronic low back pain (LBP). In total, 260 patients with chronic LBP who underwent L-spine CT between November 2015 and September 2016 were prospectively enrolled. Of these, 143 underwent LD-CT with IR and 117 underwent ULD-CT with IR. The patients were divided according to their body mass index (BMI) into BMI1 (<22.9 kg/m 2 ), BMI2 (23.0-24.9 kg/m 2 ), and BMI3 (≥25 kg/m 2 ) groups. Two blinded radiologists independently evaluated the signal-to-noise ratio (SNR), qualitative image quality, and final diagnoses (lumbar disc disease and facet joint osteoarthritis). L-spine MRIs interpreted by consensus were used as the reference standard. All data were statistically analyzed. ULD protocol showed significantly lower SNR for all patients (p < 0.001) except the vertebral bodies and lower qualitative image quality for BMI3 patients (p ≤ 0.033). There was no statistically significant difference between ULD (sensitivity, 95.1-98.1%; specificity, 92.5-98.7%; accuracy, 94.6-98.0%) and LD protocols (sensitivity, 95.6-100%; specificity, 95.5-98.9%; accuracy, 97.4-98.1%), (all p≥0.1) in the BMI1 and BMI2; while dose was 60-68% lower with the ULD protocol. Interobserver agreements were excellent or good with regard to image quality and final diagnoses. For the BM1 and BMI2 groups, ULD-CT provided an acceptable image quality and exhibited a diagnostic accuracy similar to that of LD-CT. These findings suggest that it is a useful diagnostic tool for patients with chronic LBP who exhibit a BMI of <25 kg/m 2 . (orig.)

  7. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    Science.gov (United States)

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  8. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study.

    Science.gov (United States)

    De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M

    2017-02-01

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.

  9. Low-dose quantitative phase contrast medical CT

    Science.gov (United States)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the

  10. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images

    International Nuclear Information System (INIS)

    Koivula, Lauri

    2016-01-01

    gamma index criteria were over 91%, 85%, and 38% with heterogeneous, dual bulk, and homogeneous sCTs, respectively. There were no significant changes to gamma index pass rates for IMPT plans first optimized in CT and then calculated in heterogeneous sCT versus IMPT plans first optimized in heterogeneous sCT and then calculated on standard CT. Conclusions: This study demonstrates that proton therapy dose calculations on heterogeneous sCTs are in good agreement with plans generated with standard planning CT. An MRI-only based RTP workflow is feasible in IMPT for brain tumors and prostate cancers.

  11. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, Lauri [Department of Radiation Oncology, Comprehensive Cancer Center, Helsinki University Central Hospital, P.O. Box 180, Helsinki 00029 HUS (Finland)

    2016-08-15

    gamma index criteria were over 91%, 85%, and 38% with heterogeneous, dual bulk, and homogeneous sCTs, respectively. There were no significant changes to gamma index pass rates for IMPT plans first optimized in CT and then calculated in heterogeneous sCT versus IMPT plans first optimized in heterogeneous sCT and then calculated on standard CT. Conclusions: This study demonstrates that proton therapy dose calculations on heterogeneous sCTs are in good agreement with plans generated with standard planning CT. An MRI-only based RTP workflow is feasible in IMPT for brain tumors and prostate cancers.

  12. Point Organ Radiation Dose in Abdominal CT: Effect of Patient Off-Centering in an Experimental Human Cadaver Study.

    Science.gov (United States)

    Ali Khawaja, Ranish Deedar; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Lira, Diego; Zhang, Da; Liu, Bob; Primak, Andrew; Xu, George; Kalra, Mannudeep K

    2017-08-01

    To determine the effect of patient off-centering on point organ radiation dose measurements in a human cadaver scanned with routine abdominal CT protocol. A human cadaver (88 years, body-mass-index 20 kg/m2) was scanned with routine abdominal CT protocol on 128-slice dual source MDCT (Definition Flash, Siemens). A total of 18 scans were performed using two scan protocols (a) 120 kV-200 mAs fixed-mA (CTDIvol 14 mGy) (b) 120 kV-125 ref mAs (7 mGy) with automatic exposure control (AEC, CareDose 4D) at three different positions (a) gantry isocenter, (b) upward off-centering and (c) downward off-centering. Scanning was repeated three times at each position. Six thimble (in liver, stomach, kidney, pancreas, colon and urinary bladder) and four MOSFET dosimeters (on cornea, thyroid, testicle and breast) were placed for calculation of measured point organ doses. Organ dose estimations were retrieved from dose-tracking software (eXposure, Radimetrics). Statistical analysis was performed using analysis of variance. There was a significant difference between the trends of point organ doses with AEC and fixed-mA at all three positions (p 92% for both protocols; p < 0.0001). For both protocols, the highest mean difference in point doses was found for stomach and lowest for colon. Measured absorbed point doses in abdominal CT vary with patient-centering in the gantry isocenter. Due to lack of consideration of patient positioning in the dose estimation on automatic software-over estimation of the doses up to 92% was reported. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Radiation doses to children with shunt-treated hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lise J. [Helse Fonna, Department of Radiology, Stord Hospital, Stord (Norway); Friberg, Eva G.; Boerretzen, Ingelin; Olerud, Hilde [The Norwegian Radiation Protection Authority, Oesteraas (Norway); Laegreid, Liv [Haukeland University Hospital, Department of Paediatrics, Bergen (Norway); Rosendahl, Karen [University of Bergen, Department of Surgical Sciences, Radiology Section, Bergen (Norway); Great Ormond Street Hospital for Children, Department of Diagnostic Radiology, London (United Kingdom)

    2007-12-15

    Children with shunt-treated hydrocephalus are still followed routinely with frequent head CT scans. To estimate the effective dose, brain and lens doses from these examinations during childhood, and to assess dose variation per examination. All children born between 1983 and 1995 and treated for hydrocephalus between 1983 and 2002 were included. We retrospectively registered the number of examinations and the applied scan parameters. The effective dose was calculated using mean conversion factors from the CT dose index measured free in air, while doses to the lens and brain were estimated using tabulated CT dose index values measured in a head phantom. A total of 687 CT examinations were performed in 67 children. The mean effective dose, lens dose and brain dose to children over 6 months of age were 1.2 mSv, 52 mGy and 33 mGy, respectively, and the corresponding doses to younger children were 3.2 mSv, 60 mGy and 48 mGy. The effective dose per CT examination varied by a factor of 64. None of the children was exposed to doses known to cause deterministic effects. However, since the threshold for radiation-induced damage is not known with certainty, alternative modalities such as US and MRI should be used whenever possible. (orig.)

  14. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  15. Dose indices: everybody wants a number

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2014-01-01

    This paper discusses the merits and weaknesses of the standard terms that have been developed to quantify CT dose: CT dose indices (CTDI), dose length product (DLP) and effective dose. The difference between the measured CTDI vol and the CTDI vol displayed on the CT scanner illustrates a clinical dilemma. Displayed CTDI vol represents the radiation dose delivered to a plastic phantom, which is significantly different from the dose delivered to the patient, depending on the size of the patient. Although effective dose is simple to calculate for an individual patient, it was never intended for this purpose. The need for a simple, appropriate method to estimate pediatric patient doses led to the development of the size-specific dose estimate (SSDE), the newest CT dose index. Here I compare SSDE and its merits to the use of effective dose to estimate patient dose. The discussion concludes with a few sample calculations and basic clinical applications of SSDE to better quantify pediatric patient dose from CT scans. (orig.)

  16. Conventional and CT angiography in children: dosimetry and dose comparisons

    International Nuclear Information System (INIS)

    Frush, Donald P.; Yoshizumi, Terry

    2006-01-01

    Tremendous advances have been made in imaging in children with both congenital and acquired heart disease. These include technical advances in cardiac catheterization and conventional angiography, especially with advancements in interventional procedures, as well as noninvasive imaging with MR and CT angiography. With rapid advances in multidetector CT (MDCT) technology, most recently 64-detector array systems (64-slice MDCT), have come a number of advantages over MR. However, both conventional and CT angiography impart radiation dose to children. Although the presence of radiation exposure to children has long been recognized, it is apparent that our ability to assess this dose, particularly in light of the rapid advancements, has been limited. Traditional methods of dosimetry for both conventional and CT angiography are somewhat cumbersome or involve a potential for substantial uncertainty. Recent developments in dosimetry, including metal oxide semiconductor field effect transistors (MOSFET) and the availability of anthropomorphic, tissue-equivalent phantoms have provided new opportunities for dosimetric assessments. Recent work with this technology in state-of-the-art cardiac angiography suites as well as with MDCT have offered direct comparisons of doses in infants and children undergoing diagnostic cardiac evaluation. It is with these dose data that assessment of risks, and ultimately the assessment of risk-benefit, can be better achieved. (orig.)

  17. Estimation of patient dose in 18 F-FDG and 18 F-FDOPA PET/CT examinations

    Directory of Open Access Journals (Sweden)

    Aruna Kaushik

    2013-01-01

    Full Text Available Purpose: To estimate specific organ and effective doses to patients resulting from the 18 F-FDG ( 18 F-2-deoxy-D-glucose and 18 F-FDOPA (6-fluoro-( 18 F-L-3, 4-dihydroxyphenylalanine PET/CT examinations for whole body and brain. Materials and Methods: Three protocols for whole body and three for brain PET/CT were used. The CTDI values were measured using standard head and body CT phantoms and also computed using a software CT-Expo for dose evaluation from the CT component. OLINDA software based on MIRD method was used for estimating doses from the PET component of the PET/CT examination. Results: The organ doses from 18 F-FDG and 18 F-FDOPA whole body and brain PET/CT studies were estimated. The total effective dose from a typical protocol of whole body PET/CT examination was 14.4 mSv for females and 11.8 mSv for male patients from 18 F-FDG, whereas it was 11 mSv for female and 9.1 mSv for male patients from 18 F-FDOPA. The total effective doses from a typical protocol for PET/CT studies of brain was 6.5 mSv for females and 5.1 mSv for males from 18 F-FDG whereas it was 3.7 mSv for females and 2.8 mSv for males from 18 F-FDOPA. Conclusions: The effective radiation doses from whole body PET/CT examination was approximately 4-8 times higher than the background radiation dose from both 18 F-FDG and 18 F-FDOPA scans, while it was 1-3 times the background radiation dose from PET/CT scans of brain.

  18. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    International Nuclear Information System (INIS)

    Rampado, Osvaldo; Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-01-01

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K_a_i_r), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses

  19. The relationship of body mass index and abdominal fat on the radiation dose received during routine computed tomographic imaging of the abdomen and pelvis.

    Science.gov (United States)

    Chan, Victoria O; McDermott, Shaunagh; Buckley, Orla; Allen, Sonya; Casey, Michael; O'Laoide, Risteard; Torreggiani, William C

    2012-11-01

    To determine the relationship of increasing body mass index (BMI) and abdominal fat on the effective dose acquired from computed tomography (CT) abdomen and pelvis scans. Over 6 months, dose-length product and total milliamp-seconds (mAs) from routine CT abdomen and pelvis scans of 100 patients were recorded. The scans were performed on a 64-slice CT scanner by using an automatic exposure control system. Effective dose (mSv) based on dose-length product, BMI, periumbilical fat thickness, and intra-abdominal fat were documented for each patient. BMI, periumbilical fat thickness, and intra-abdominal fat were compared with effective dose. Thirty-nine men and 61 women were included in the study (mean age, 56.3 years). The mean BMI was 26.2 kg/m(2). The mean effective dose was 10.3 mSv. The mean periumbilical fat thickness was 2.4 cm. Sixty-five patients had a small amount of intra-abdominal fat, and 35 had a large amount of intra-abdominal fat. The effective dose increased with increasing BMI (P abdominal fat (P abdominal fat significantly increases the effective dose received from CT abdomen and pelvis scans. Copyright © 2012 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Lung cancer screening with low-dose CT

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2003-01-01

    Screening for lung cancer is hoped to reduce mortality from this common tumour, which is characterised by a dismal overall survival, relatively well defined risk groups (mainly heavy cigarette smokers and workers exposed to asbestos) and a lack of early symptoms. In the past studies using sputum cytology and chest radiography have failed to demonstrate any reduction in lung cancer mortality through screening. One of the reasons is probably the relatively poor sensitivity of both these tests in early tumours. Low radiation dose computed tomography (CT) has been shown to have a much higher sensitivity for small pulmonary nodules, which are believed to be the most common presentation of early lung cancer. As, however, small pulmonary nodules are common and most are not malignant, non-invasive diagnostic algorithms are required to correctly classify the detected lesions and avoid invasive procedures in benign nodules. Nodule density, size and the demonstration of growth at follow-up have been shown to be useful in this respect and may in the future be supplemented by contrast-enhanced CT and positron emission tomography. Based on these diagnostic algorithms preliminary studies of low-dose CT in heavy smokers have demonstrated a high proportion of asymptomatic, early, resectable cancers with good survival. As, however, several biases could explain these findings in the absence of the ultimate goal of cancer screening, i.e. mortality reduction, most researchers believe that randomised controlled trials including several 10000 subjects are required to demonstrate a possible mortality reduction. Only then general recommendations to screen individuals at risk of lung cancer with low-dose CT should be made. It can be hoped that international cooperation will succeed in providing results as early as possible

  1. Cost reduction in abdominal CT by weight-adjusted dose.

    Science.gov (United States)

    Arana, Estanislao; Martí-Bonmatí, Luis; Tobarra, Eva; Sierra, Consuelo

    2009-06-01

    To analyze the influence of contrast dose adjusted by weight vs. fixed contrast dose in the attenuation and cost of abdominal computed tomography (CT). A randomised, consecutive, parallel group study was conducted in 151 patients (74 men and 77 women, age range 22-67 years), studied with the same CT helical protocol. A dose at 1.75 ml/kg was administered in 101 patients while 50 patients had a fixed dose of 120 ml of same non-ionic contrast material (320 mg/ml). Mean enhancements were measured at right hepatic lobe, superior abdominal aorta and inferior cava vein. Statistical analysis was weight-stratified (81 kg). Aortic attenuation was significantly superior (p61 kg in dose-adjusted group, presented higher hepatic attenuation, being statistically significant in those >81 kg (p80 kg, there was an over cost of euro 10.7 per patient. An injection volume of 1.75 ml/kg offers an optimal diagnostic quality with a global savings of euro 1.34 per patient.

  2. Trends in examination frequency and collective effective doses from computed tomography (CT) procedures in Sudan

    International Nuclear Information System (INIS)

    Yousif, S. B. I.

    2011-01-01

    This study was carried out to estimate the examination frequency and collective dose to population from CT procedures in Sudan. To calculate the annual collective dose from CT examinations a survey was done at 10 hospitals providing data of examinations frequency per day. The data of effective dose have been obtained from pervious study on effective dose per CT examination in Sudan. Then the annual examination frequency and annual collective effective dose had been calculated and discussed providing that the annual collective effective dose from CT examinations is (1482 man.Sv). The highest percentage examination frequency was for head examination (40%). The highest percentage contribution to the total collective dose from CT examinations was for abdomen examinations (32%). The calculated annual examination frequency and annual collective effective dose had been compared with the results of literature and international studies to evaluate the estimated values. The calculated annual collective dose from CT examinations is much lower comparing with the results presented in the literature. The study offers an insight on the examination frequency and the percentage of the risk from different standard radiographic examination within the country. (Author)

  3. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    Science.gov (United States)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  4. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    Bondt, Timo de; Parizel, Paul M. [Antwerp University Hospital and University of Antwerp, Department of Radiology, Antwerp (Belgium); Mulkens, Tom [H. Hart Hospital, Department of Radiology, Lier (Belgium); Zanca, Federica [GE Healthcare, DoseWatch, Buc (France); KU Leuven, Imaging and Pathology Department, Leuven (Belgium); Pyfferoen, Lotte; Casselman, Jan W. [AZ St. Jan Brugge-Oostende AV Hospital, Department of Radiology, Brugge (Belgium)

    2017-02-15

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. (orig.)

  5. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  6. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  7. CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Jung Keun; Kim, Joo-Young; Park, Sung Yong; Park, Sang-Yoon; Kim, Dae Yong; Chie, Eui Kyu; Pyo, Hong Ryull; Cho, Kwan Ho

    2006-01-01

    Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for 192 Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V ref ), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm 3 ) and CTV (24.9 cm 3 ) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm 3 , respectively) for Group 2 (p = 0.003). The mean V ref for all patients was 129.6 cm 3 for the conventional plan and 97.0 cm 3 for the CTV plan (p = 0.003). The mean V ref in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and

  8. Relationship between radiation dose estimation in patients submitted to abdominal tomography examination and the body mass index; Relacao entre a estimativa de dose de radiacao em pacientes submetidos a exame de tomografia computadorizada do abdomen e o indice de massa corporal

    Energy Technology Data Exchange (ETDEWEB)

    Capaverde, Alexandre da S.; Pimentel, Juliana; Froner, Ana Paula P., E-mail: alexandre.capaverde@acad.pucrs.br, E-mail: juliana.pimentel@pucrs.br, E-mail: ana.froner@pucrs.br [Hospital Sao Lucas (HSL/PUCRS), Porto Alegre, RS (Brazil); Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Fac. de Fisica

    2014-07-01

    Because of the radiation dose in computed tomography (CT) is relatively high, it is important to have an estimate of the dose to which the patient is submitted, considering parameters and correction factors, so that the value is closer to the real. The objective of this study is to relate the estimated dose in patients undergoing abdominal CT with BMI (Body Mass Index) groups, considering the specific size of the anatomical region. The work developed in a hospital in Porto Alegre, Brazil, using 16 Siemens Somatom Emotion equipment. We selected 30 adult that underwent to CT of the abdomen in January 2014. Of these, 13 using dose reduction mechanism (Care Dose), (Sample 1) and the rest without this mechanism (Sample 2). Registered weight, height, CTDI{sub vol} (Computed Tomography Dose Index) and anteroposterior and lateral diameter at the umbilicus. BMI and the correction factor for the dose estimates were calculated, according to the specific size of the abdomen. It was determined the percentage change between the CTDI{sub vol} values provided by CT and the value of CTDI{sub vol} after application of the correction factor, plus the average percentage change for each BMI group. The mean percentage change was between 54% and 19% for sample 1 and between 35% and 10% for sample 2, the lowest to highest BMI group. There was a reduction in the medium average percent with the increasing of the BMI groups in both samples. A larger sample of individuals for verification of results is required.

  9. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  10. Estimation of organ doses and risk of cancer associated with CT examination

    International Nuclear Information System (INIS)

    Ahmed, Nagla Nooraldaim

    2017-11-01

    The purpose of this study to estimate the organ closes and risk of cancer associated with CT examinations in Khartoum state, where the study conducted in three hospitals; Alzytouna , royal scan and Royal Care. From April to November 2017, and the data collected from 120 patients, 40 patents from each hospital undergoing CT brain and abdomen examinations. The data were entered to CT - Expo version 2.4 software for calculation the effective dose and organ dose and by Xray risk web site for calculate the risk factor associated with CT examinations. Results have shown the values of effective dose that found 9.73 mSv for all patients and for female and male 9.9 mSv respectively. The effective dose from Brain examinations in three hospitals Alzytouna Royal scan and Royal Care was 16.9 mSv, 3.7 mSv, 3.8 mSv respectively, and from abdomen examinations was 4.2 mSv, 7.6 mSv, 22.2 mSv respectively. Comparing te effective dose from the hospitals, for Ct. Brain in Alzytouna hospital was higher than other hospitals; and for CT Abdomen in Royal Care hospital was higher than other hospitals, but still under the risk levels according to the ICRP report. For organ doses results, the most organs exposed from CT. brain was brain, salivary gland, thyroid gland, Bone marrow, Bone surface, Extra thoracic tissue, Eye lens and oral mucosa received ( 70,2, 66.4,15.04, 10.9, 24.9, 14.8,89.5,65.07) mSv respectively. The most organs exposed from CT. Abdomen were liver, stomach, low, Large intestine, Bladder, Bone surface, upper , Large intestine, spleen, kidney, small intestine and prostate received (16.53, 12.8, 33.43, 41.01,20.5, 38.4, 14.7, 28.9, 37.5,30.5 ) mSv respectively. This study found that te ability of cancer induced i the female was higher from the male; dut to body component of the female. (Author)

  11. Low dose CT in early lung cancer diagnosis: prevalence data

    International Nuclear Information System (INIS)

    Cardinale, Luciano; Cortese, Giancarlo; Ferraris, Fabrizio; Perotto, Fabio; Fava, Cesare; Borasio, Piero; Dogliotti, Luigi; Novello, Silvia; Scagliotti, Giorgio

    2005-01-01

    Purpose. Lung cancer has a high mortality rate and its prognosis largely depends on early detection. We report the prevalence data of the study on early detection of lung cancer with low-dose spiral CT underway at our hospital. Materials and methods. Since the beginning of 2001, 519 asymptomatic volunteers have undergone annual blood tests, sputum tests, urinalyses and low-dose spiral CT. The inclusion criteria were age (55 years old), a history of cigarette smoking and a negative history for previous neoplastic disease. The diagnostic workup varied depending on the size and CT features of the nodules detected. Results. At baseline, the CT scan detected nodules> 5 mm in 22% of subjects; the nodules were single in 42 and multiple in 71. In 53% of cases the findings were completely negative, while in 122 (23.4%) nodules with a diameter [it

  12. Convolution-based estimation of organ dose in tube current modulated CT

    Science.gov (United States)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  13. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    Science.gov (United States)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  14. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Yang, K; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length was used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dose estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.

  15. Application of low-dose radiation protocols in survey CT scans

    International Nuclear Information System (INIS)

    Fu Qiang; Liu Ting; Lu Tao; Xu Ke; Zhang Lin

    2009-01-01

    Objective: To characterize the protocols with low-dose radiation in survey CT scans for localization. Methods: Eighty standard adult patients, head and body phantoms were recruited. Default protocols provided by operator's manual setting were that all the tube voltage for head, chest, abdomen and lumbar was 120 kV; the tube currents were 20,10,20 and 40 mA, respectively. Values of kV and mA in the low-dose experiments were optimized according to the device options. For chest and abdomen, the tube position were compared between default (0 degree) and 180 degree. Phantoms were scanned with above protocols, and the radiation doses were measured respectively. Paired t-test were used for comparisons of standard deviation in CT value, noise and exposure surface dose (ESD) between group with default protocols and group with optimized protocols. Results: The optimized protocols in low-dose CT survey scans were 80 kV, 10 mA for head, 80 kV, 10 mA for chest, 80 kV, 10 mA for abdomen and 100 kV, 10 mA for lumbar. The values of ESD for phantom scan in default and optimized protocols were 0.38 mGy/0.16 mGy in head, 0.30 mGy/0.20 mGy in chest, 0.74 mGy/0.30 mGy in abdomen and 0.81 mGy/0.44 mGy in lumbar, respectively. Compared with default protocols, the optimized protocols reduced the radiation doses 59%, 33%, 59% and 46% in head, chest, abdomen and lumbar. When tube position changed from 0 degree to 180 degree, the ESD were 0.24 mGy/0.20 mGy for chest; 0.37 mGy/0.30 mGy for abdomen, and the radiation doses were reduced 20% and 17%. Conclusion: A certain amount of image noise is increased in low-dose protocols, but image quality is still acceptable without problem in CT localization. The reduction of radiation dose and the radiation harm to patients are the superiority. (authors)

  16. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  17. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  18. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    Science.gov (United States)

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  19. Detection of pulmonary metastatic nodules: usefulness of low-dose multidetector CT in comparison with chest radiograph

    International Nuclear Information System (INIS)

    Kim, Ki Nam; Lee, Ki Nam; Yang, Doo Kyung; Lee, Soo Keol

    2006-01-01

    We wanted to evaluate the usefulness of low-dose multidetector CT for the detection and follow-up of pulmonary metastatic nodules in patients suffering with malignancy. We retrospectively reviewed the conventional chest radiographs and low-dose multidetector CT (low-dose CT) scans of 81 patients who had been under the diagnosis of malignancy. We reviewed the detection of pulmonary nodules and we counted the number of nodules detected by each method. The nodules were confirmed by surgical operation and by the radiologic criteria. The accuracy, sensitivity, specificity and positive and negative predictive values of each method for detecting metastatic nodules were compared with χ 2 tests. Low-dose CT depicted more nodules than did chest radiograph, and the indeterminate nodules seen on chest radiograph may be clearly benign on low-dose CT (eg. calcified granulomas or bony lesions). The accuracy of low-dose CT (75.3%) was significantly higher than that of chest radiograph (49.4%) for the detection for metastatic nodules (ρ < 0.05). Low-dose CT may provide better information than does chest radiograph for diagnosing pulmonary metastasis

  20. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishinara, Okinawa 903-0215 (Japan); Kalender, Willi A. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen (Germany); Lee, Chang Hyun [Department of Radiology, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul (Korea, Republic of); Lynch, David A. [Department of Radiology, National Jewish Health, 1400 Jackson St, A330 Denver, Colorado 80206 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2017-01-15

    Highlights: • Various techniques have led to substantial radiation dose reduction of chest CT. • Automatic modulation of tube current has been shown to reduce radiation dose. • Iterative reconstruction makes significant radiation dose reduction possible. • Processing time is a limitation for full iterative reconstruction, currently. • Validation of diagnostic accuracy is desirable for routine use of low dose protocols. - Abstract: The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation.

  1. Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Pradip, Joe; Dinakran, Paul M.; Srikanth, B.

    2010-01-01

    Objectives: To evaluate the radiation dose and image quality using a manual protocol and dose modulation techniques in a 6-slice CT scanner. Materials and Methods: Two hundred and twenty-one patients who underwent contrast-enhanced CT of the chest were included in the study. For the manual protocol settings, constant tube potential (kV) and tube current-time product (mAs) of 140 kV and 120 mAs, respectively, were used. The angular and z-axis dose modulation techniques utilized a constant tube potential of 140 kV; mAs values were automatically selected by the machine. Effective doses were calculated using dose-length product (DLP) values and the image quality was assessed using the signal-to-noise (SNR) ratio values. Mean effective doses using manual protocol for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 8.58 mSv, 8.54 mSv, and 9.07 mSv, respectively. Mean effective doses using z-axis dose modulation for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 4.95 mSv, 6.87 mSv, and 10.24 mSv, respectively. The SNR at the region of the liver for patients of body weight of 40-60 kg was 5.1 H, 6.2 H, and 8.8 H for manual, angular, and z-axis dose modulation, respectively. Conclusion: Dose reduction of up to 15% was achieved using angular dose modulation and of up to 42% using z-axis dose modulation, with acceptable diagnostic image quality compared to the manual protocol. (author)

  2. Comparison of image quality in head CT studies with different dose-reduction strategies

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Nielsen, Rikke; Fink-Jensen, Vibeke

    The number of multi-detector CT examinations is increasing rapidly. They allow high quality reformatted images providing accurate and precise diagnosis at maximum speed. Brain examinations are the most commonly requested studies, and although they come at a lower effective dose than body CT, can...... account to a considerable radiation dose as many patients undergo repeated studies. Therefore, various dose-reduction strategies are applied such as automated tube current and voltage modulation and recently different iterative reconstruction algorithms. However, the trade-off of all dose......-reduction maneuvers is reduction of image quality due to image noise or artifacts. The aim of our study was therefore to find the best diagnostic images with lowest possible dose. We present results of dose- and image quality optimizing strategies of brain CT examinations at our institution. We compare sequential...

  3. Validation of a large-scale audit technique for CT dose optimisation

    International Nuclear Information System (INIS)

    Wood, T. J.; Davis, A. W.; Moore, C. S.; Beavis, A. W.; Saunderson, J. R.

    2008-01-01

    The expansion and increasing availability of computed tomography (CT) imaging means that there is a greater need for the development of efficient optimisation strategies that are able to inform clinical practice, without placing a significant burden on limited departmental resources. One of the most fundamental aspects to any optimisation programme is the collection of patient dose information, which can be compared with appropriate diagnostic reference levels. This study has investigated the implementation of a large-scale audit technique, which utilises data that already exist in the radiology information system, to determine typical doses for a range of examinations on four CT scanners. This method has been validated against what is considered the 'gold standard' technique for patient dose audits, and it has been demonstrated that results equivalent to the 'standard-sized patient' can be inferred from this much larger data set. This is particularly valuable where CT optimisation is concerned as it is considered a 'high dose' technique, and hence close monitoring of patient dose is particularly important. (authors)

  4. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    Science.gov (United States)

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P ASIR levels of ≥40% (P ASIR levels ≥60% (P ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  5. Dose reduction in coronary artery imaging with 64-row multi-slice helical CT with body mass index-dependent mA selection

    International Nuclear Information System (INIS)

    Gao Jianhua; Wang Guisheng; Zheng Jingchen; Li Jianying; Sun Xianchang; Gao Caihong; Dai Ruping

    2008-01-01

    Objective: To evaluate the robustness of body mass index (BMI) adapted tube current selection method for obtaining consistent image quality in MSCT coronary artery imaging. Methods: Initially one hundred patients in the control group (C group) underwent cardiac scans using GE 64-row VCT with standard scan protocol (640 mA, 120 kV, 0.35 sec, body bowtie, C 2 filter). Noise measurement was obtained for each patient using the average of three consecutive slices in the ascending aorta with ROI of 10 mm x 10 mm to establish the relationship between BMI, desired image noise (IN) and required mA. An excel table was established to predict the required mA to achieve a desired IN for each patient with different BMI. A second group of one hundred cardiac patients (L group) was scanned with BMI-adapted mA from the table to evaluate the practicability of this method. BMI, IN, CT dose index (CTDI), effective dose (ED) were all recorded. Results: For the control group of 100 patients, the mean values and standard deviations of image quality score (IQS), BMI, IN and ED were 3.71±0.54, 25.08±2.63, 24.56±5.03 and (17.63±1.68) mSv (with range of 15-22 mSv). Regression analysis indicated linear relationship between BMI and image noise with fixed mA. Using the relationship between tube current and image noise and noise ratio between large bowtie and cardiac bowtie, the following equation for the required tube current Xma to achieve present image noise of INa for patient with certain BMI value when using cardiac bowtie could be then obtained: Xma=Fma x [(k 1 x BMI + c 1 )/Ina] 2 , where Fma=640 mA, k 1 =1.033, c 1 = -3.2, INa=27 in the study. (2) For the patients in L group, the mean values and standard deviations of IQS, BMI, and IN were 3.69±0.53, 25.07±2.91, and 26.61±3.44, respectively. The average tube current used was (469.95±113.45) mA, depending on patient's BMI values. The average effectively dose was (9.08±2.25) mSv. There was no statistically difference between the

  6. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  7. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  8. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  9. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    Science.gov (United States)

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  10. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Scott, A; Allahverdian, J [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80, 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT.

  11. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    International Nuclear Information System (INIS)

    Zhou, Y; Scott, A; Allahverdian, J

    2014-01-01

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80, 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT

  12. CT dose survey in adults: what sample size for what precision?

    International Nuclear Information System (INIS)

    Taylor, Stephen; Muylem, Alain van; Howarth, Nigel; Gevenois, Pierre Alain; Tack, Denis

    2017-01-01

    To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)

  13. CT dose survey in adults: what sample size for what precision?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stephen [Hopital Ambroise Pare, Department of Radiology, Mons (Belgium); Muylem, Alain van [Hopital Erasme, Department of Pneumology, Brussels (Belgium); Howarth, Nigel [Clinique des Grangettes, Department of Radiology, Chene-Bougeries (Switzerland); Gevenois, Pierre Alain [Hopital Erasme, Department of Radiology, Brussels (Belgium); Tack, Denis [EpiCURA, Clinique Louis Caty, Department of Radiology, Baudour (Belgium)

    2017-01-15

    To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)

  14. Computer-aided pulmonary nodule detection. Performance of two CAD systems at different CT dose levels

    International Nuclear Information System (INIS)

    Hein, Patrick Alexander; Rogalla, P.; Klessen, C.; Lembcke, A.; Romano, V.C.

    2009-01-01

    Purpose: To evaluate the impact of dose reduction on the performance of computer-aided lung nodule detection systems (CAD) of two manufacturers by comparing respective CAD results on ultra-low-dose computed tomography (ULD-CT) and standard dose CT (SD-CT). Materials and Methods: Multi-slice computed tomography (MSCT) data sets of 26 patients (13 male and 13 female, patients 31 - 74 years old) were retrospectively selected for CAD analysis. Indication for CT examination was staging of a known primary malignancy or suspected pulmonary malignancy. CT images were consecutively acquired at 5 mAs (ULD-CT) and 75 mAs (SD-CT) with 120kV tube voltage (1 mm slice thickness). The standard of reference was determined by three experienced readers in consensus. CAD reading algorithms (pre-commercial CAD system, Philips, Netherlands: CAD-1; LungCARE, Siemens, Germany: CAD-2) were applied to the CT data sets. Results: Consensus reading identified 253 nodules on SD-CT and ULD-CT. Nodules ranged in diameter between 2 and 41 mm (mean diameter 4.8 mm). Detection rates were recorded with 72% and 62% (CAD-1 vs. CAD-2) for SD-CT and with 73% and 56% for ULD-CT. Median also positive rates per patient were calculated with 6 and 5 (CAD-1 vs. CAD-2) for SD-CT and with 8 and 3 for ULD-CT. After separate statistical analysis of nodules with diameters of 5 mm and greater, the detection rates increased to 83% and 61% for SD-CT and to 89% and 67% for ULD-CT (CAD-1 vs. CAD-2). For both CAD systems there were no significant differences between the detection rates for standard and ultra-low-dose data sets (p>0.05). Conclusion: Dose reduction of the underlying CT scan did not significantly influence nodule detection performance of the tested CAD systems. (orig.)

  15. Cost reduction in abdominal CT by weight-adjusted dose

    International Nuclear Information System (INIS)

    Arana, Estanislao; Marti-Bonmati, Luis; Tobarra, Eva; Sierra, Consuelo

    2009-01-01

    Aim: To analyze the influence of contrast dose adjusted by weight vs. fixed contrast dose in the attenuation and cost of abdominal computed tomography (CT). Materials and methods: A randomised, consecutive, parallel group study was conducted in 151 patients (74 men and 77 women, age range 22-67 years), studied with the same CT helical protocol. A dose at 1.75 ml/kg was administered in 101 patients while 50 patients had a fixed dose of 120 ml of same non-ionic contrast material (320 mg/ml). Mean enhancements were measured at right hepatic lobe, superior abdominal aorta and inferior cava vein. Statistical analysis was weight-stratified ( 81 kg). Results: Aortic attenuation was significantly superior (p 61 kg in dose-adjusted group, presented higher hepatic attenuation, being statistically significant in those >81 kg (p 80 kg, there was an over cost of Euro 10.7 per patient. Conclusions: An injection volume of 1.75 ml/kg offers an optimal diagnostic quality with a global savings of Euro 1.34 per patient.

  16. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    International Nuclear Information System (INIS)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul

    2012-01-01

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 μSv), followed by AZ3000CT (332.4 μSv), Somatom Emotion 6 (199.38 μSv), and 3D eXaM (111.6 μSv); it was the lowest for Implagraphy (83.09 μSv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  17. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  18. Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices

    Energy Technology Data Exchange (ETDEWEB)

    Filograna, Laura [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland); Magarelli, Nicola; Leone, Antonio; Bonomo, Lorenzo [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); De Waure, Chiara; Calabro, Giovanna Elisa [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Rome (Italy); Finkenstaedt, Tim [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Thali, Michael John [University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland)

    2016-07-15

    The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT. Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively. The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2. This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT. (orig.)

  19. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  20. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Imuta, Masanori; Yamamura, Sadahiro; Yuki, Hideaki; Kidoh, Masafumi; Hirata, Kenichiro; Namimoto, Tomohiro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Kumamoto (Japan); Hatemura, Masahiro; Kai, Noriyuki [Kumamoto University Hospital, Department of Central Radiology, Kumamoto (Japan)

    2017-02-15

    We evaluated the effects of a low contrast material (CM) dose protocol using 80-kVp on the image quality of hepatic multiphasic CT scans acquired on a 320-row CT scanner. We scanned 30 patients with renal insufficiency (eGFR < 45 mL/min/1.73 m{sup 2}) using 80-kVp and a CM dose of 300mgI/kg. Another 30 patients without renal insufficiency (eGFR > 60 mL/min/1.73 m{sup 2}) were scanned with the conventional 120-kVp protocol and the standard CM dose of 600mgI/kg. Quantitative image quality parameters, i.e. CT attenuation, image noise, and the contrast-to-noise ratio (CNR) were compared and the visual image quality was scored on a four-point scale. The volume CT dose index (CTDI{sub vol}) and the size-specific dose estimate (SSDE) recorded with the 80- and the 120-kVp protocols were also compared. Image noise and contrast enhancement were equivalent for the two protocols. There was no significant difference in the CNR of all anatomic sites and in the visual scores for overall image quality. The CTDI{sub vol} and SSDE were approximately 25-30 % lower under the 80-kVp protocol. Hepatic multiphase CT using 80-kVp on a 320-row CT scanner allowed for a decrease in the CM dose and a reduction in the radiation dose without image quality degradation in patients with renal insufficiency. (orig.)

  1. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  2. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  3. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  4. Reducing dose in paediatric CT: a preliminary study of radiographers' knowledge

    International Nuclear Information System (INIS)

    Heagney, J.; Lewis, S.; Chaffey, C.; Howlett, G.; Moran, A.; McLean, D.

    2003-01-01

    The objective of this study is to evaluate the responses of Australian radiographers in comparison with current literature on paediatric protocols and scanning recommendations in order to determine how and if paediatric Computed Tomography (CT) exposure reductions are taking place within Medical Imaging Departments. Subjects and Methods: The method involved a dual format; consisting of surveying 30 CT radiographers, and additionally, interviewing 5 senior CT radiographers. Of the 30 surveys completed, one was completed by a PDY radiographer, 7 by CT Senior radiographers and 22 by CT radiographers. The survey contained a range of questions about appropriate paediatric CT scanning parameters and protocols. Five CT Seniors were interviewed to ascertain the current level and opinion of training in paediatric protocols, in-house educational programs and the implementation of radiation dose saving parameters. Radiographers demonstrated reasonable ability to identify suitable paediatric protocols and believed the in-house CT protocols resident to their medical imaging department to be adequate, despite many utilising exposures higher than those from recommended literature. The interviews revealed that no further training in CT paediatric dose reduction was currently available, however survey responses indicated that further training would be beneficial. This study demonstrates that radiographers are aware of the need to reduce exposure parameters for paediatric CT and tend to follow protocols in place within their workplace, regardless of suitability and patient needs. Copyright (2003) Australian Institute of Radiography

  5. Reducing dose in paediatric CT: a preliminary study of radiographers' Knowledge

    International Nuclear Information System (INIS)

    Heagney, Jillian; Lewis, Sarah; Chaffey, Clare; Howlett, Genevieve; Moran, Alexander; McLean, Donald

    2003-01-01

    The objective of this study is to evaluate the responses of Australian radiographers in comparison with current literature on paediatric protocols and scanning recommendations in order to determine how and if paediatric Computed Tomography (CT) exposure reductions are taking place within Medical Imaging Departments. Subjects and Methods: The method involved a dual format; consisting of surveying 30 CT radiographers, and additionally, interviewing 5 senior CT radiographers. Of the 30 surveys completed, one was completed by a PDY radiographer, 7 by CT Senior radiographers and 22 by CT radiographers. The survey contained a range of questions about appropriate paediatric CT scanning parameters and protocols. Five CT Seniors were interviewed to ascertain the current level and opinion of training in paediatric protocols, in-house educational programs and the implementation of radiation dose saving parameters. Radiographers demonstrated reasonable ability to identify suitable paediatric protocols and believed the in-house CT protocols resident to their medical imaging department to be adequate, despite many utilising exposures higher than those from recommended literature. The interviews revealed that no further training in CT paediatric dose reduction was currently available, however survey responses indicated that further training would be beneficial. This study demonstrates that radiographers are aware of the need to reduce exposure parameters for paediatric CT and tend to follow protocols in place within their workplace, regardless of suitability and patient needs Copyright (2003) Australian Institute of Radiography

  6. Developing low-dose C-arm CT imaging for temporomandibular joint (TMJ) disorder in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Cahill, Anne Marie [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Felice, Marc [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Johnson, Laura [Computed Tomography Division, Siemens Healthcare Sector, Shanghai (China); Sarmiento, Marily [Siemens Medical Solutions, Angiography and X-ray Division, Hoffman Estates, IL (United States)

    2011-04-15

    Manufacturers have provided C-arm CT imaging technologies for applications in interventional radiology in recent years. However, clinical imaging protocols and radiation doses have not been well studied or reported. The purpose of this study is to develop low-dose settings for clinically acceptable CT imaging of temporomandibular joint in interventional radiology suites, using a C-arm imaging angiography system. CT scans were performed with a flat-panel digital C-arm angiographic system on a 5-year-old anthropomorphic phantom. The CTDI was determined for various rotation times, dose settings and Cu filter selections. The CTDI values were compared with those of conventional low-dose CT for the same phantom. The effectiveness of using Cu filters to reduce dose was also investigated. Images were reviewed by a senior radiologist for clinical acceptance. The manufacturer's default setting gave an equivalent CTDI of 4.8 mGy. Optimizing the dose settings and adding copper filtration reduced the radiation dose by 94%. This represents a 50% reduction from conventional CT. Use of Cu filters and low-dose settings significantly reduced radiation dose from that of standard settings. This phantom study process successfully guided the clinical implementation of low-dose studies for all ages at our institution. (orig.)

  7. Radiation dose reduction with dictionary learning based processing for head CT

    International Nuclear Information System (INIS)

    Chen, Yang; Shi, Luyao; Hu, Yining; Luo, Limin; Yang, Jiang; Yin, Xindao; Coatrieux, Jean-Louis

    2014-01-01

    In CT, ionizing radiation exposure from the scan has attracted much concern from patients and doctors. This work is aimed at improving head CT images from low-dose scans by using a fast Dictionary learning (DL) based post-processing. Both Low-dose CT (LDCT) and Standard-dose CT (SDCT) nonenhanced head images were acquired in head examination from a multi-detector row Siemens Somatom Sensation 16 CT scanner. One hundred patients were involved in the experiments. Two groups of LDCT images were acquired with 50 % (LDCT50 %) and 25 % (LDCT25 %) tube current setting in SDCT. To give quantitative evaluation, Signal to noise ratio (SNR) and Contrast to noise ratio (CNR) were computed from the Hounsfield unit (HU) measurements of GM, WM and CSF tissues. A blinded qualitative analysis was also performed to assess the processed LDCT datasets. Fifty and seventy five percent dose reductions are obtained for the two LDCT groups (LDCT50 %, 1.15 ± 0.1 mSv; LDCT25 %, 0.58 ± 0.1 mSv; SDCT, 2.32 ± 0.1 mSv; P < 0.001). Significant SNR increase over the original LDCT images is observed in the processed LDCT images for all the GM, WM and CSF tissues. Significant GM–WM CNR enhancement is noted in the DL processed LDCT images. Higher SNR and CNR than the reference SDCT images can even be achieved in the processed LDCT50 % and LDCT25 % images. Blinded qualitative review validates the perceptual improvements brought by the proposed approach. Compared to the original LDCT images, the application of DL processing in head CT is associated with a significant improvement of image quality.

  8. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    International Nuclear Information System (INIS)

    Collier, J; Aldoohan, S; Gill, K

    2014-01-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  9. Automatic CT simulation optimization for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  10. Automatic CT simulation optimization for radiation therapy: A general strategy.

    Science.gov (United States)

    Li, Hua; Yu, Lifeng; Anastasio, Mark A; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M; Low, Daniel A; Mutic, Sasa

    2014-03-01

    In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes

  11. Central index of dose information

    International Nuclear Information System (INIS)

    1991-01-01

    The Central Index of Dose Information (CIDI) is a national database of occupational exposure to radiation operated by the NRPB as agent for the Health and Safety Executive. It receives summarised information on the radiation doses to classified persons in Great Britain annually from Approved Dosimetry Services. This document is the first annual CIDI summary of the data, giving statistics for 1986. (UK)

  12. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  13. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  14. Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation

    International Nuclear Information System (INIS)

    Schlattl, H; Zankl, M; Becker, J; Hoeschen, C

    2012-01-01

    A common dose-saving technique used in modern CT devices is automatic tube current modulation (TCM), which was originally designed to also reduce the dose in paediatric CT patients. In order to be able to deduce detailed organ doses of paediatric models, dose conversion coefficients normalized to CTDI vol for an eight-week-old baby and seven- and eight-year-old children have been computed accounting for TCM. The relative difference in organ dose conversion coefficients with and without TCM is for many organs and examinations less than 10%, but can in some cases amount up to 30%, e.g., for the thyroid in the chest CT of the seven-year-old child. Overall, the impact of TCM on the conversion coefficients increases with increasing age. Besides TCM, also the effect of collimation and tube voltage on organ dose conversion coefficients has been investigated. It could be shown that the normalization to CTDI vol leads to conversion coefficients that can in most cases be considered to be independent of collimation and tube voltage. (paper)

  15. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  16. Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening.

    Science.gov (United States)

    Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin

    2014-01-01

    To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (PASIR levels (PASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.

  17. Automated lung module detection at low-dose CT: preliminary experience

    International Nuclear Information System (INIS)

    Goo, Jin-Mo; Lee, Jeong-Won; Lee, Hyun-Ju; Kim, Seung-Wan; Kim, Jong-Hyo; Im, Jung-Gi

    2003-01-01

    To determine the usefulness of a computer-aided diagnosis (CAD) system for the automated detection of lung nodules at low-dose CT. A CAD system developed for detecting lung nodules was used to process the data provided by 50 consecutive low-dose CT scans. The results of an initial report, a second look review by two chest radiologists, and those obtained by the CAD system were compared, and by reviewing all of these, a gold standard was established. By applying the gold standard, a total of 52 nodules were identified (26 with a diameter ≤ 5 mm; 26 with a diameter > 5 mm). Compared to an initial report, four additional nodules were detected by the CAD system. Three of these, identified only at CAD, formed part of the data used to derive the gold standard. For the detection of nodules > 5 mm in diameter, sensitivity was 77% for the initial report, for the second look review, and 88% for the second look review,and 65% for the CAD system. There were 8.0 ± 5.2 false-positive CAD results per CT study. These preliminary results indicate that a CAD system may improve the detection of pulmonary nodules at low-dose CT

  18. Effective dose estimation in whole-body multislice CT in paediatric trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Robin D.; Saueressig, Ulrich; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A. [University Hospital, Department of Radiology, Freiburg im Breisgau (Germany); Strohm, Peter C.; Zwingmann, Joern; Suedkamp, Norbert P. [University Hospital, Department of Orthopaedic and Trauma Surgery, Freiburg im Breisgau (Germany); Uhl, Markus [University Hospital, Department of Radiology, Section of Paediatric Radiology, Freiburg im Breisgau (Germany)

    2009-03-15

    The number of multislice CT (MSCT) scans performed in polytraumatized children has increased rapidly. There is growing concern regarding the radiation dose in MSCT and its long-term consequences, especially in children. To determine the effective dose to polytraumatized children who undergo whole-body MSCT. A total of 51 traumatized children aged 0-16 years underwent a polytrauma protocol CT scan between November 2004 and August 2006 at our institution. The effective dose was calculated retrospectively by a computer program (CT-Expo 1.5, Hannover, Germany). The mean effective dose was 20.8 mSv (range 8.6-48.9 mSv, SD{+-}7.9 mSv). There was no statistically significant difference in the effective dose between male and female patients. Whole-body MSCT is a superior diagnostic tool in polytraumatized children with 20.8 mSv per patient being a justified mean effective dose. In a potentially life-threatening situation whole-body MSCT provides the clinicians with relevant information to initiate life-saving therapy. Radiologists should use special paediatric protocols that include dose-saving mechanisms to keep the effective dose as low as possible. Further studies are needed to examine and advance dose-saving strategies in MSCT, especially in children. (orig.)

  19. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    Science.gov (United States)

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  20. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  1. Comparison of low dose with standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer under surveillance

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Martin E. [Joint Department of Medical Imaging, Toronto, ON (Canada); Chung, Peter; Warde, Padraig [Princess Margaret Hospital, Department of Radiation Oncology, Toronto, ON (Canada); Haider, Masoom; Jhaveri, Kartik; Khalili, Korosh [Princess Margaret Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Jang, Hyun-Jung [Toronto General Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Panzarella, Tony [Princess Margaret Hospital, Department of Biostatistics, Toronto, ON (Canada)

    2010-07-15

    To compare the image quality and acceptability of a low dose with those of standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer managed by surveillance. One hundred patients (median age 31 years; range 19-83 years), 79 with seminoma and 21 with non-seminoma, underwent abdominal/pelvic imaging with low and standard dose protocols on 64-slice multidetector CT. Three reviewers independently evaluated images for noise and diagnostic quality on a 5-point scale and for diagnostic acceptability. On average, each reader scored noise and diagnostic quality of standard dose images significantly better than corresponding low dose images (p < 0.0001). One reader found all CT examinations acceptable; two readers each found 1/100 (1%) low dose examinations unacceptable. Median and mean dose-length product for low and standard dose protocols were 416.0 and 452.2 (range 122.9-913.4) and 931.9 and 999.8 (range 283.8-1,987.7) mGy cm, respectively. The low dose protocol provided diagnostically acceptable images for at least 99% of patients and achieved mean dose reduction of 55% compared with the standard dose protocol. (orig.)

  2. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    International Nuclear Information System (INIS)

    Hashim, S.; Karim, M.K.A.; Bakar, K.A.; Sabarudin, A.; Chin, A.W; Saripan, M.I.; Bradley, D.A.

    2016-01-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose. - Highlights: • Using TLD-100 dosimeters and a RANDO phantom 5 CT thorax protocol organ doses were assessed. • The specific k coefficient for effective dose estimation of protocols differed with approach. • Organ dose was observed to decrease in the order: thyroid>skin>lung>liver>breast. • E103 k factors were constant for all protocols, lower by ~8% compared to the universal k factor.

  3. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    Chen Yang; Shi Luyao; Shu Huazhong; Luo Limin; Coatrieux, Jean-Louis; Yin Xindao; Toumoulin, Christine

    2013-01-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  4. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    International Nuclear Information System (INIS)

    Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A.; Mildenberger, Peter; Alkadhi, Hatem

    2017-01-01

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  5. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    Energy Technology Data Exchange (ETDEWEB)

    Hinzpeter, Ricarda, E-mail: Ricarda.Hinzpeter@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland); Sprengel, Kai, E-mail: Kai.Sprengel@usz.ch [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Wanner, Guido A., E-mail: Guido.Wanner@sbk-vs.de [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Department of General Surgery, Schwarzwald-Baar Klinikum, University of Freiburg, Klinikstr. 11, D-78052 Villingen-Schwenningen (Germany); Mildenberger, Peter, E-mail: peter.mildenberger@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, University Hospital of Mainz, Langenbeckstr. 1, D-55131 Mainz (Germany); Alkadhi, Hatem, E-mail: hatem.alkadhi@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland)

    2017-03-15

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  6. SU-F-P-45: Clinical Experience with Radiation Dose Reduction of CT Examinations Using Iterative Reconstruction Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V [Baylor Scott and White Healthcare System, Dallas, TX (United States); Zhang, J [University of Kentucky, Lexington, KY (United States)

    2016-06-15

    Purpose: Iterative reconstruction (IR) algorithms have been adopted by medical centers in the past several years. IR has a potential to substantially reduce patient dose while maintaining or improving image quality. This study characterizes dose reductions in clinical settings for CT examinations using IR. Methods: We retrospectively analyzed dose information from patients who underwent abdomen/pelvis CT examinations with and without contrast media in multiple locations of our Healthcare system. A total of 743 patients scanned with ASIR on 64 slice GE lightspeed VCTs at three sites, and 30 patients scanned with SAFIRE on a Siemens 128 slice Definition Flash in one site was retrieved. For comparison, patient data (n=291) from a GE scanner and patient data (n=61) from two Siemens scanners where filtered back-projection (FBP) was used was collected retrospectively. 30% and 10% ASIR, and SAFIRE Level 2 was used. CTDIvol, Dose-length-product (DLP), weight and height from all patients was recorded. Body mass index (BMI) was calculated accordingly. To convert CTDIvol to SSDE, AP and lateral dimensions at the mid-liver level was measured for each patient. Results: Compared with FBP, 30% ASIR reduces dose by 44.1% (SSDE: 12.19mGy vs. 21.83mGy), while 10% ASIR reduced dose by 20.6% (SSDE 17.32mGy vs. 21.83). Use of SAFIRE reduced dose by 61.4% (SSDE: 8.77mGy vs. 22.7mGy). The geometric mean for patients scanned with ASIR was larger than for patients scanned with FBP (geometric mean is 297.48 mmm vs. 284.76 mm). The same trend was observed for the Siemens scanner where SAFIRE was used (geometric mean: 316 mm with SAFIRE vs. 239 mm with FBP). Patient size differences suggest that further dose reduction is possible. Conclusion: Our data confirmed that in clinical practice IR can significantly reduce dose to patients who undergo CT examinations, while meeting diagnostic requirements for image quality.

  7. SU-F-P-45: Clinical Experience with Radiation Dose Reduction of CT Examinations Using Iterative Reconstruction Algorithms

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2016-01-01

    Purpose: Iterative reconstruction (IR) algorithms have been adopted by medical centers in the past several years. IR has a potential to substantially reduce patient dose while maintaining or improving image quality. This study characterizes dose reductions in clinical settings for CT examinations using IR. Methods: We retrospectively analyzed dose information from patients who underwent abdomen/pelvis CT examinations with and without contrast media in multiple locations of our Healthcare system. A total of 743 patients scanned with ASIR on 64 slice GE lightspeed VCTs at three sites, and 30 patients scanned with SAFIRE on a Siemens 128 slice Definition Flash in one site was retrieved. For comparison, patient data (n=291) from a GE scanner and patient data (n=61) from two Siemens scanners where filtered back-projection (FBP) was used was collected retrospectively. 30% and 10% ASIR, and SAFIRE Level 2 was used. CTDIvol, Dose-length-product (DLP), weight and height from all patients was recorded. Body mass index (BMI) was calculated accordingly. To convert CTDIvol to SSDE, AP and lateral dimensions at the mid-liver level was measured for each patient. Results: Compared with FBP, 30% ASIR reduces dose by 44.1% (SSDE: 12.19mGy vs. 21.83mGy), while 10% ASIR reduced dose by 20.6% (SSDE 17.32mGy vs. 21.83). Use of SAFIRE reduced dose by 61.4% (SSDE: 8.77mGy vs. 22.7mGy). The geometric mean for patients scanned with ASIR was larger than for patients scanned with FBP (geometric mean is 297.48 mmm vs. 284.76 mm). The same trend was observed for the Siemens scanner where SAFIRE was used (geometric mean: 316 mm with SAFIRE vs. 239 mm with FBP). Patient size differences suggest that further dose reduction is possible. Conclusion: Our data confirmed that in clinical practice IR can significantly reduce dose to patients who undergo CT examinations, while meeting diagnostic requirements for image quality.

  8. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13 mSv

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael, E-mail: Michael.Messerli@usz.ch [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Rengier, Fabian [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg (Germany); Warschkow, René [Department of Surgery, Cantonal Hospital St. Gallen (Switzerland); Alkadhi, Hatem [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich (Switzerland); Leschka, Sebastian [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich (Switzerland); Wildermuth, Simon; Bauer, Ralf W. [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland)

    2016-12-15

    Highlights: • Computer-aided detection (CAD) of solid pulmonary nodules was compared in 202 patients in standard dose and ultralow dose CT. • The per–nodule sensitivity of CAD was 70% in standard dose CT and 68% in ultralow dose CT. • The per–nodule sensitivity of CAD in standard dose CT was similar to ultralow dose CT in all size subgroups (all p > 0.05). • Adding CAD markings in ultralow dose CT significantly improved the sensitivity of two radiologists from 77% to 88% and from 66% to 79%, respectively. • CAD can serve as an excellent second reader for nodule detection in CT even at dose levels similar to chest X-ray. - Abstract: Objectives: To determine the value of computer-aided detection (CAD) for solid pulmonary nodules in ultralow radiation dose single-energy computed tomography (CT) of the chest using third-generation dual-source CT at 100 kV and fixed tube current at 70 mAs with tin filtration. Methods: 202 consecutive patients undergoing clinically indicated standard dose chest CT (1.8 ± 0.7 mSv) were prospectively included and scanned with an additional ultralow dose CT (0.13 ± 0.01 mSv) in the same session. Standard of reference (SOR) was established by consensus reading of standard dose CT by two radiologists. CAD was performed in standard dose and ultralow dose CT with two different reconstruction kernels. CAD detection rate of nodules was evaluated including subgroups of different nodule sizes (<5, 5–7, >7 mm). Sensitivity was further analysed in multivariable mixed effects logistic regression. Results: The SOR included 279 solid nodules (mean diameter 4.3 ± 3.4 mm, range 1–24 mm). There was no significant difference in per–nodule sensitivity of CAD in standard dose with 70% compared to 68% in ultralow dose CT both overall and in different size subgroups (all p > 0.05). CAD led to a significant increase of sensitivity for both radiologists reading the ultralow dose CT scans (all p < 0.001). In multivariable analysis, the use

  9. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13 mSv

    International Nuclear Information System (INIS)

    Messerli, Michael; Kluckert, Thomas; Knitel, Meinhard; Rengier, Fabian; Warschkow, René; Alkadhi, Hatem; Leschka, Sebastian; Wildermuth, Simon; Bauer, Ralf W.

    2016-01-01

    Highlights: • Computer-aided detection (CAD) of solid pulmonary nodules was compared in 202 patients in standard dose and ultralow dose CT. • The per–nodule sensitivity of CAD was 70% in standard dose CT and 68% in ultralow dose CT. • The per–nodule sensitivity of CAD in standard dose CT was similar to ultralow dose CT in all size subgroups (all p > 0.05). • Adding CAD markings in ultralow dose CT significantly improved the sensitivity of two radiologists from 77% to 88% and from 66% to 79%, respectively. • CAD can serve as an excellent second reader for nodule detection in CT even at dose levels similar to chest X-ray. - Abstract: Objectives: To determine the value of computer-aided detection (CAD) for solid pulmonary nodules in ultralow radiation dose single-energy computed tomography (CT) of the chest using third-generation dual-source CT at 100 kV and fixed tube current at 70 mAs with tin filtration. Methods: 202 consecutive patients undergoing clinically indicated standard dose chest CT (1.8 ± 0.7 mSv) were prospectively included and scanned with an additional ultralow dose CT (0.13 ± 0.01 mSv) in the same session. Standard of reference (SOR) was established by consensus reading of standard dose CT by two radiologists. CAD was performed in standard dose and ultralow dose CT with two different reconstruction kernels. CAD detection rate of nodules was evaluated including subgroups of different nodule sizes (<5, 5–7, >7 mm). Sensitivity was further analysed in multivariable mixed effects logistic regression. Results: The SOR included 279 solid nodules (mean diameter 4.3 ± 3.4 mm, range 1–24 mm). There was no significant difference in per–nodule sensitivity of CAD in standard dose with 70% compared to 68% in ultralow dose CT both overall and in different size subgroups (all p > 0.05). CAD led to a significant increase of sensitivity for both radiologists reading the ultralow dose CT scans (all p < 0.001). In multivariable analysis, the use

  10. Emergency assessment of patients with acute abdominal pain using low-dose CT with iterative reconstruction: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Becker, Minerva; Becker, Christoph D.; Zaidi, Habib; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Halfon Poletti, Alice; Rutschmann, Olivier T. [University Hospital of Geneva, Department of Community, Primary Care and Emergency Medicine, Geneva (Switzerland); Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland)

    2017-08-15

    To determine if radiation dose delivered by contrast-enhanced CT (CECT) for acute abdominal pain can be reduced to the dose administered in abdominal radiography (<2.5 mSv) using low-dose CT (LDCT) with iterative reconstruction algorithms. One hundred and fifty-one consecutive patients requiring CECT for acute abdominal pain were included, and their body mass index (BMI) was calculated. CECT was immediately followed by LDCT. LDCT series was processed using 1) 40% iterative reconstruction algorithm blended with filtered back projection (LDCT-IR-FBP) and 2) model-based iterative reconstruction algorithm (LDCT-MBIR). LDCT-IR-FBP and LDCT-MBIR images were reviewed independently by two board-certified radiologists (Raters 1 and 2). Abdominal pathology was revealed on CECT in 120 (79%) patients. In those with BMI <30, accuracies for correct diagnosis by Rater 1 with LDCT-IR-FBP and LDCT-MBIR, when compared to CECT, were 95.4% (104/109) and 99% (108/109), respectively, and 92.7% (101/109) and 100% (109/109) for Rater 2. In patients with BMI ≥30, accuracies with LDCT-IR-FBP and LDCT-MBIR were 88.1% (37/42) and 90.5% (38/42) for Rater 1 and 78.6% (33/42) and 92.9% (39/42) for Rater 2. The radiation dose delivered by CT to non-obese patients with acute abdominal pain can be safely reduced to levels close to standard radiography using LDCT-MBIR. (orig.)

  11. Doses in pediatric patients undergoing chest and abdomen CT examinations. Preliminary results

    International Nuclear Information System (INIS)

    Jornada, Tiago S.; Silva, Teogenes A. da

    2011-01-01

    Computed tomography (CT) is a non-invasive method of image production that imparts significant doses to a patient, it is expected that pediatric CT examinations will increase the risk of induced cancer in children. In this study the effective doses in a five year-old child submitted to chest or abdomen CT scans were assessed for comparison purposes. The CTEXPO computed program was used with data from routine protocols of a 0 to 13 year-old children in two public hospitals in Belo Horizonte. Hospital A used a Siemens Dual-Slice unit with 80 kV, 41 mA and pitch 2 for chest or abdomen; hospital B used a Multislice GE unit with 120 kV, 45 mA and pitch 1 for chest and 120 kV, 55 mA. and pitch 1 for abdomen. Results of effective doses in a five year-old child were 1.7 and 1.0 mSv in hospital A and 9.1 and 7.2 mSv in hospital B, for chest and abdomen, respectively. Results were compared to the reference effective doses of 7.2 and 5.0 mSv for chest and abdomen respectively that were derived from the air kerma length product values given in ICRP publication 87. Results of hospital A showed that low dose exposures also can be achieved in CT scans of children. Results showed that even a hospital with a modern facility (hospital B) can provided doses higher than reference values if protocols are not adjusted for children. Preliminary results suggested that there is a room for optimizing children exposure submitted to CT scans. (author)

  12. Radiation dosage of various CT-methods in lung diagnostics

    International Nuclear Information System (INIS)

    Heinz-Peer, G.; Weninger, F.; Nowotny, R.; Herold, C.J.

    1996-01-01

    Introduction of the computed tomography index CTDI and the multiple scan average dose (MSAD) has led to standardization of the dose description in CT examinations. Despite the use of these dose parameters, many different dosages are reported in the literature for different CT methods. In addition, there is still a wide range of radiation dosimetry results reported for conventional CT, helical CT, and HRCT used in chest examinations. The variations in dosage are mainly due to difference in factors affecting the dose, i.e. beam geometry, beam quality, scanner geometry ('generation'), and operating parameters. In addition, CT dosimetry instrumentation and methodology make a contribution to dosages. Recent studies calculating differences in factors affecting dosage and CT dosimetry and using similar operating parameters, show similar results in CT dosimetry for conventional and helical CT. On the other hand, dosages for HRCT were greatly reduced. This was mainly caused by narrow beam collimation and increasing section spacing. (orig.) [de

  13. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    International Nuclear Information System (INIS)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A.

    2014-01-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI vol ) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI vol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI vol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI vol in the ASIR group (P 12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of gray-white differentiation, sharpness and overall diagnostic quality in ASIR examinations was not substantially different compared to non-ASIR examinations. The use of ASIR in

  14. 3-D dose verification for IMRT using optical CT based polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, C [Department of Radiation Oncology, Columbia University, New York, New York (United States); Xu, Y [Department of Radiation Oncology, Columbia University, New York, New York (United States); Maryanski, M J [Department of Radiation Oncology, Columbia University, New York, New York (United States); MGS Research Inc., Madison, Connecticut (United States)

    2004-01-01

    In this study BANG[reg] polymer gels in conjunction with OCTOPUS{sup TM} optical CT scanner (MGS Research Inc., Madison, CT) was employed to measure the relative 3D dose distribution of an IMRT treatment. Measured relative dose distributions from the gel measurement were compared with those from treatment planning system calculations and EDR2 film measurements with regard to planar dose distributions in axial, coronal, and sagittal orientations.

  15. 3-D dose verification for IMRT using optical CT based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Wuu, C; Xu, Y; Maryanski, M J

    2004-01-01

    In this study BANG[reg] polymer gels in conjunction with OCTOPUS TM optical CT scanner (MGS Research Inc., Madison, CT) was employed to measure the relative 3D dose distribution of an IMRT treatment. Measured relative dose distributions from the gel measurement were compared with those from treatment planning system calculations and EDR2 film measurements with regard to planar dose distributions in axial, coronal, and sagittal orientations

  16. Occupational doses during the injection of contrast media in paediatric CT procedures

    International Nuclear Information System (INIS)

    Al-Haj, A.N.; Lobriguito, A.M.; Lagarde, C.S.

    2003-01-01

    The administration of intravenous contrast media by hand or power injection in paediatric computed tomography (CT) procedures is carried out at King Faisal Specialist Hospital and Research Centre for chest, abdomen and torso diagnostic examinations. Some procedures require the CT unit to commence patient scanning during the injection of the last volume of the contrast medium. During the injection, even if the nurse is wearing a 0.5 mm lead equivalent protective apron, the head region and the hand are likely to receive high doses. This study was therefore made to assess the head and extremity doses to the nurses during CT procedures where typical exposure parameters of 200 to 220 mA s and 120 kV p were used. Thermoluminescence dosemeters were deployed for three consecutive months in two CT rooms. A total of 96 procedures were performed during this period and they were included in this study. Scattered radiation measurements were done at different locations where the nurse may be positioned. Results showed that the average dose to the head region and the hands per paediatric case were 50 μSv and 80 μSv respectively. This study investigated the factors that affect the dose and found them to be the length of stay inside the room, type of CT examination, exposure parameters and location of the nurse. (author)

  17. Dedicated breast CT: radiation dose for circle-plus-line trajectory

    International Nuclear Information System (INIS)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Noo, Frederic

    2012-01-01

    Purpose: Dedicated breast CT prototypes used in clinical investigations utilize single circular source trajectory and cone-beam geometry with flat-panel detectors that do not satisfy data-sufficiency conditions and could lead to cone beam artifacts. Hence, this work investigated the glandular dose characteristics of a circle-plus-line trajectory that fulfills data-sufficiency conditions for image reconstruction in dedicated breast CT. Methods: Monte Carlo-based computer simulations were performed using the GEANT4 toolkit and was validated with previously reported normalized glandular dose coefficients for one prototype breast CT system. Upon validation, Monte Carlo simulations were performed to determine the normalized glandular dose coefficients as a function of x-ray source position along the line scan. The source-to-axis of rotation distance and the source-to-detector distance were maintained constant at 65 and 100 cm, respectively, in all simulations. The ratio of the normalized glandular dose coefficient at each source position along the line scan to that for the circular scan, defined as relative normalized glandular dose coefficient (RD g N), was studied by varying the diameter of the breast at the chest wall, chest-wall to nipple distance, skin thickness, x-ray beam energy, and glandular fraction of the breast. Results: The RD g N metric when stated as a function of source position along the line scan, relative to the maximum length of line scan needed for data sufficiency, was found to be minimally dependent on breast diameter, chest-wall to nipple distance, skin thickness, glandular fraction, and x-ray photon energy. This observation facilitates easy estimation of the average glandular dose of the line scan. Polynomial fit equations for computing the RD g N and hence the average glandular dose are provided. Conclusions: For a breast CT system that acquires 300-500 projections over 2π for the circular scan, the addition of a line trajectory with equal

  18. Thermoluminescent dosimetry of critical organs in CT pediatric patients

    International Nuclear Information System (INIS)

    Azorin, Juan; Tabares, Musel

    2008-01-01

    This paper presents the determination of absorbed dose in critical organs of pediatric patients submitted to head computed tomography (CT) studies. This research included patients up to 16 years old submitted to head CT studies using a Siemens Somaton 16 plus multislice CT scanner. Doses were measured using locally made LiF: Mg,Cu,P + PTFE thermoluminescent dosimeters (TLD) due to its tissue equivalence and low fading. Results showed that both the organ absorbed doses and the volume computed tomography dose index (CTDI vol ) determined for simple studies were half of those obtained for contrasted studies. In the case of head three-dimensional reconstruction CT studies the CTDI vol value obtained was almost the same that the obtained for simple CT studies but the organ doses were significantly different. These results suggest that the CTDI vol value is a good indication for choosing the exposure parameters of the CT studies and is useful in the determination of the effective dose but it is not related with the organ doses. (author)

  19. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    Science.gov (United States)

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  20. Introduction of guidance dose levels inpaediatrics CT

    International Nuclear Information System (INIS)

    Verdun, F.R.; Valley, J.F.; Bernasconi, M.; Schnyder, P.; Gudinchet, F.

    2001-01-01

    The purpose of this work is to present a methodology in order to define reference levels for chest or abdominal CT examinations performed on children. For children aged from 0 to 6 the CTDI w measured in the head test object (i.e. diameter 16 cm) should be used as a dose indicator. For children older than 12 years old the CTDI w measured in the body test object (i.e. 32 cm) should be used as a dose indicator. For children aged between 6 to 12 we propose to use an intermediate CTDI w in order to avoid an over or underestimation of the dose delivered in the slices. Finally a set of dose length products (DLP) measured in our centre for standard abdominal acquisitions will be given. (author)

  1. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  2. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  3. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all pASIR and UL-ASIR (all pASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  4. Patient dose management practice in computed tomography with special emphasis to pediatric patients

    International Nuclear Information System (INIS)

    Kharita, M. H.; Wali, Kh.

    2010-12-01

    As per UNSCEAR 2000, CT contributes over 34% of collective dose from diagnostic X-Ray examinations in the world. The radiation dose in CT particular importance for children, it is very well known that children are more sensitive and likely to get radiation induced cancer than adults. This paper discusses the radiation dose of patients (adults and children) in Computed Tomography in syria ( 30 CT units form 6 different manufacturers). The radiation dose measurements has covered computed tomography dose index, dose length product and effective dose. The result of this study indicating, that most computed tomography dose index and dose length product values recorded were below dose reference levels, only for high resolution chest protocol, the dose length product results were higher than that of the International Commission on Radiological Protection (author)

  5. Low-dose CT: new tool for screening lung cancer?

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2001-01-01

    Lung cancer is the leading cause of death from malignant tumours as it is very common and has a poor prognosis at advanced tumour stages. Prognosis could be improved by treatment at early stages. As these stages are usually asymptomatic, a diagnostic test that would allow detection of early tumour stages in a population at risk could potentially reduce mortality from lung cancer. Previous approaches using chest radiography and sputum cytology in smokers have been disappointing. Fluorescent bronchoscopy and molecular markers are not yet applicable in clinical routine. Because of its high sensitivity for small pulmonary nodules, which are the most common manifestation of early lung cancer, CT appears suitable as a screening test. Low-dose examination parameters can and should be used for this purpose. From clinical practice it is well known that chest CT often demonstrates small pulmonary nodules, which do not represent lung cancer. Therefore, non-invasive diagnostic algorithms are required to avoid unnecessary biopsies in benign lesions. In preliminary studies of low-dose CT using algorithms based on size and density of detected nodules a large proportion of asymptomatic lung cancers and a large proportion of early, resectable tumour stages were found with a small proportion of invasive procedures for benign nodules. Before this technology can be recommended for broad application, however, further information is required regarding appropriate inclusion criteria (smoking habits, age groups) and screening intervals. Most importantly, further data are required to clarify whether lung cancer screening using low-dose CT can actually reduce mortality from lung cancer. (orig.)

  6. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  7. Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels.

    Science.gov (United States)

    Ernst, Caroline W; Basten, Ines A; Ilsen, Bart; Buls, Nico; Van Gompel, Gert; De Wachter, Elke; Nieboer, Koenraad H; Verhelle, Filip; Malfroot, Anne; Coomans, Danny; De Maeseneer, Michel; de Mey, Johan

    2014-11-01

    To investigate a computed tomographic (CT) protocol with iterative reconstruction at conventional radiography dose levels for the assessment of structural lung abnormalities in patients with cystic fibrosis ( CF cystic fibrosis ). In this institutional review board-approved study, 38 patients with CF cystic fibrosis (age range, 6-58 years; 21 patients 18 years) underwent investigative CT (at minimal exposure settings combined with iterative reconstruction) as a replacement of yearly follow-up posteroanterior chest radiography. Verbal informed consent was obtained from all patients or their parents. CT images were randomized and rated independently by two radiologists with use of the Bhalla scoring system. In addition, mosaic perfusion was evaluated. As reference, the previous available conventional chest CT scan was used. Differences in Bhalla scores were assessed with the χ(2) test and intraclass correlation coefficients ( ICC intraclass correlation coefficient s). Radiation doses for CT and radiography were assessed for adults (>18 years) and children (chest CT protocol can replace the two yearly follow-up chest radiographic examinations without major dose penalty and with similar diagnostic quality compared with conventional CT.

  8. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  9. Comparison of scatter doses from a multislice and a single slice CT scanner

    International Nuclear Information System (INIS)

    Burrage, J. W.; Causer, D. A.

    2006-01-01

    During shielding calculations for a new multislice CT (MSCT) scanner it was found that the manufacturer's data indicated significantly higher external scatter doses than would be generated for a single slice CT (SSCT). Even allowing for increased beam width, the manufacturer's data indicated that the scatter dose per scan was higher by a factor of about 3 to 4. The magnitude of the discrepancy was contrary to expectations and also contrary to a statement by the UK ImPACT group, which indicated that when beam width is taken into account, the scatter doses should be similar. The matter was investigated by comparing scatter doses from an SSCT and an MSCT. Scatter measurements were performed at three points using a standard perspex CTDI phantom, and CT dose indices were also measured to compare scanner output. MSCT measurements were performed with a 40 mm wide beam, SSCT measurements with a 10 mm wide beam. A film badge survey was also performed after the installation of the MSCT scanner to assess the adequacy of lead shielding in the room. It was found that the scatter doses from the MSCT were lower than indicated by the manufacturer's data. MSCT scatter doses were approximately 4 times higher than those from the SSCT, consistent with expectations due to beam width differences. The CT dose indices were similar, and the film badge survey indicated that the existing shielding, which had been adequate for the SSCT, was also adequate for the MSCT

  10. Assessment of pancreatic adenocarcinoma: use of low-dose whole pancreatic CT perfusion and individualized dual-energy CT scanning

    International Nuclear Information System (INIS)

    Li, Hai-ou; Guo, Jun; Li, Xiao; Qi, Yao-dong; Wang, Xi-ming; Xu, Zhuo-dong; Liu, Cheng; Chen, Jiu-hong

    2015-01-01

    The objective of this study was to investigate the value of low-dose whole pancreatic computed tomography (CT) perfusion integrated with individualized dual-energy CT (DECT) scanning in the diagnosis of pancreatic adenocarcinoma. Twenty patients with pancreatic adenocarcinoma underwent pancreatic CT perfusion as well as individualized dual-phase DECT pancreatic scans. Perfusion characteristics of non-tumourous pancreatic parenchyma and pancreatic adenocarcinoma were analysed. Weighted-average 120 kVp images and the optimal monoenergetic images in dual phase were reconstructed and the contrast noise ratio (CNR) of pancreas-to-tumour were compared. There were significant difference on blood flow as well as blood volume between pancreatic adenocarcinoma and the non-tumourous pancreatic parenchyma (P < 0.05), whereas no difference on permeability (P > 0.05). CNRs of pancreas-to-tumour in individualized pancreatic phase were significantly higher than those in venous phase (P < 0.05), and CNRs of optimal monoenergetic images were higher than those on weighted-average 120 kVp images (P < 0.05) in both phase. Total effective radiation dose of CT examination was around 9.32–13.75 mSv. Low-dose whole pancreatic CT perfusion can provide functional information, and the individualized pancreatic phase DECT scan is the optimal method for detecting pancreatic adenocarcinomas. The integration of the two techniques has great value in clinical application.

  11. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Yang, Jie [Pinnacle Health - Fox Chase Regional Cancer Center, Harrisburg, Pennsylvania 17109 (United States)

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  12. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    International Nuclear Information System (INIS)

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-01-01

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm 3 Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT

  13. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  14. Cost-effective pediatric head and body phantoms for computed tomography dosimetry and its evaluation using pencil ion chamber and CT dose profiler

    Directory of Open Access Journals (Sweden)

    A Saravanakumar

    2015-01-01

    Full Text Available In the present work, a pediatric head and body phantom was fabricated using polymethyl methacrylate (PMMA at a low cost when compared to commercially available phantoms for the purpose of computed tomography (CT dosimetry. The dimensions of head and body phantoms were 10 cm diameter, 15 cm length and 16 cm diameter, 15 cm length, respectively. The dose from a 128-slice CT machine received by the head and body phantom at the center and periphery were measured using a 100 mm pencil ion chamber and 150 mm CT dose profiler (CTDP. Using these values, the weighted computed tomography dose index (CTDIw and in turn the volumetric CTDI (CTDIv were calculated for various combinations of tube voltage and current-time product. A similar study was carried out using standard calibrated phantom and the results have been compared with the fabricated ones to ascertain that the performance of the latter is equivalent to that of the former. Finally, CTDIv measured using fabricated and standard phantoms were compared with respective values displayed on the console. The difference between the values was well within the limits specified by Atomic Energy Regulatory Board (AERB, India. These results indicate that the cost-effective pediatric phantom can be employed for CT dosimetry.

  15. MO-E-17A-05: Individualized Patient Dosimetry in CT Using the Patient Dose (PATDOSE) Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A; Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2014-06-15

    Purpose: Radiation dose to the patient undergoing a CT examination has been the focus of many recent studies. While CTDIvol and SSDE-based methods are important tools for patient dose management, the CT image data provides important information with respect to CT dose and its distribution. Coupled with the known geometry and output factors (kV, mAs, pitch, etc.) of the CT scanner, the CT dataset can be used directly for computing absorbed dose. Methods: The HU numbers in a patient's CT data set can be converted to linear attenuation coefficients (LACs) with some assumptions. With this (PAT-DOSE) method, which is not Monte Carlo-based, the primary and scatter dose are computed separately. The primary dose is computed directly from the geometry of the scanner, x-ray spectrum, and the known patient LACs. Once the primary dose has been computed to all voxels in the patient, the scatter dose algorithm redistributes a fraction of the absorbed primary dose (based on the HU number of each source voxel), and the methods here invoke both tissue attenuation and absorption and solid angle geometry. The scatter dose algorithm can be run N times to include Nth-scatter redistribution. PAT-DOSE was deployed using simple PMMA phantoms, to validate its performance against Monte Carlo-derived dose distributions. Results: Comparison between PAT-DOSE and MCNPX primary dose distributions showed excellent agreement for several scan lengths. The 1st-scatter dose distributions showed relatively higher-amplitude, long-range scatter tails for the PAT-DOSE algorithm then for MCNPX simulations. Conclusion: The PAT-DOSE algorithm provides a fast, deterministic assessment of the 3-D dose distribution in CT, making use of scanner geometry and the patient image data set. The preliminary implementation of the algorithm produces accurate primary dose distributions however achieving scatter distribution agreement is more challenging. Addressing the polyenergetic x-ray spectrum and spatially

  16. A method to evaluate the dose increase in CT with iodinated contrast medium

    International Nuclear Information System (INIS)

    Amato, Ernesto; Lizio, Domenico; Settineri, Nicola; Di Pasquale, Andrea; Salamone, Ignazio; Pandolfo, Ignazio

    2010-01-01

    Purpose: The objective of this study is to develop a method to calculate the relative dose increase when a computerized tomography scan (CT) is carried out after administration of iodinated contrast medium, with respect to the same CT scan in absence of contrast medium. Methods: A Monte Carlo simulation in GEANT4 of anthropomorphic neck and abdomen phantoms exposed to a simplified model of CT scanner was set up in order to calculate the increase of dose to thyroid, liver, spleen, kidneys, and pancreas as a function of the quantity of iodine accumulated; a series of experimental measurements of Hounsfield unit (HU) increment for known concentrations of iodinated contrast medium was carried out on a Siemens Sensation 16 CT scanner in order to obtain a relationship between the increment in HU and the relative dose increase in the organs studied. The authors applied such a method to calculate the average dose increase in three patients who underwent standard CT protocols consisting of one native scan in absence of contrast, followed by a contrast-enhanced scan in venous phase. Results: The authors validated their GEANT4 Monte Carlo simulation by comparing the resulting dose increases for iodine solutions in water with the ones presented in literature and with their experimental data obtained through a Roentgen therapy unit. The relative dose increases as a function of the iodine mass fraction accumulated and as a function of the Hounsfield unit increment between the contrast-enhanced scan and the native scan are presented. The data shown for the three patients exhibit an average relative dose increase between 22% for liver and 74% for kidneys; also, spleen (34%), pancreas (28%), and thyroid (48%) show a remarkable average increase. Conclusions: The method developed allows a simple evaluation of the dose increase when iodinated contrast medium is used in CT scans, basing on the increment in Hounsfield units observed on the patients' organs. Since many clinical protocols

  17. A method to evaluate the dose increase in CT with iodinated contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto; Lizio, Domenico; Settineri, Nicola; Di Pasquale, Andrea; Salamone, Ignazio; Pandolfo, Ignazio [Department of Radiological Sciences, University of Messina, Messina 98125 (Italy); Department of Physics, University of Messina, Messina 98166 (Italy); University Hospital ' ' G. Martino' ' , Messina 98125 (Italy); Department of Radiological Sciences, University of Messina, Messina 98125 (Italy) and University Hospital ' ' G. Martino' ' , Messina 98125 (Italy)

    2010-08-15

    Purpose: The objective of this study is to develop a method to calculate the relative dose increase when a computerized tomography scan (CT) is carried out after administration of iodinated contrast medium, with respect to the same CT scan in absence of contrast medium. Methods: A Monte Carlo simulation in GEANT4 of anthropomorphic neck and abdomen phantoms exposed to a simplified model of CT scanner was set up in order to calculate the increase of dose to thyroid, liver, spleen, kidneys, and pancreas as a function of the quantity of iodine accumulated; a series of experimental measurements of Hounsfield unit (HU) increment for known concentrations of iodinated contrast medium was carried out on a Siemens Sensation 16 CT scanner in order to obtain a relationship between the increment in HU and the relative dose increase in the organs studied. The authors applied such a method to calculate the average dose increase in three patients who underwent standard CT protocols consisting of one native scan in absence of contrast, followed by a contrast-enhanced scan in venous phase. Results: The authors validated their GEANT4 Monte Carlo simulation by comparing the resulting dose increases for iodine solutions in water with the ones presented in literature and with their experimental data obtained through a Roentgen therapy unit. The relative dose increases as a function of the iodine mass fraction accumulated and as a function of the Hounsfield unit increment between the contrast-enhanced scan and the native scan are presented. The data shown for the three patients exhibit an average relative dose increase between 22% for liver and 74% for kidneys; also, spleen (34%), pancreas (28%), and thyroid (48%) show a remarkable average increase. Conclusions: The method developed allows a simple evaluation of the dose increase when iodinated contrast medium is used in CT scans, basing on the increment in Hounsfield units observed on the patients' organs. Since many clinical

  18. The bibliometric analysis of literatures on low-dose CT in CNKI

    International Nuclear Information System (INIS)

    Wang Qian; Qi Weiwei; Xia Guanghui; Zhao Xinming; Ma Xiaohong; Zhou Chunwu; Hong Nan

    2013-01-01

    Objective: The purposes of this study were to evaluate the characteristics and rule of the development in national low -dose CT examination, and to supply a useful reference for future studies. Materials and Methods: The journal articles in CNKI which were included by China Academic Journal Network Publishing Database (CAJD) from 2002 to 2011 were processed with Thomson Data Analyzer (TDA). Seven aspects were analyzed: time, authors, funds for scientific research, areal distribution, institutions, authors, and keywords. Results: A total 3148 journal articles on low-dose CT examination and 7352 authors were found. The cooperative rate and degree were 63, 48% and 2.34, respectively. The famous authors were those who published more than 3 articles. Authors were from 33 areas, 471 institutions of 8 systems. Beijing and Shanghai were the most productive areas, publishing 45.9% articles. There were 10 core journals in this research area, 868 articles were funded by certain grants, and number of articles was increased yearly, indicative of the importance of grant in promoting research. Conclusion: The national low-dose CT research was in the young stage compared to the international research, and the research were not evenly distributed national wide. Though the researches have involved multi-institute, multi-system, multi-discipline, the quantities and qualities of papers still have improvement space. Strengthening basic research, improving medical ethics, and optimizing clinical research methods would promote development of low-dose CT studies. (authors)

  19. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review

    International Nuclear Information System (INIS)

    Chawla, Soni C.; Federman, Noah; Zhang, Di; Nagata, Kristen; Nuthakki, Soujanya; McNitt-Gray, Michael; Boechat, M.I.

    2010-01-01

    The increasing use of serial PET/CT scans in the management of pediatric malignancies raises the important consideration of radiation exposure in children. To estimate the cumulative radiation dose from PET/CT studies to children with malignancy and to compare with the data in literature. Two hundred forty-eight clinical PET/CT studies performed on 78 patients (50 boys/28 girls, 1.3 to 18 years old from December 2002 to October 2007) were retrospectively reviewed under IRB approval. The whole-body effective dose (ED) estimates for each child were obtained by estimating the effective dose from each PET/CT exam performed using the ImPACT Patient Dosimetry Calculator for CT and OLINDA for PET. The average number of PET/CT studies was 3.2 per child (range: 1 to 14 studies). The average ED of an individual CT study was 20.3 mSv (range: 2.7 to 54.2), of PET study was 4.6 mSv (range: 0.4 to 7.7) and of PET/CT study was 24.8 mSv (range: 6.2 to 60.7). The average cumulative radiation dose per patient from CT studies was 64.4 mSv (range: 2.7 to 326), from PET studies was 14.5 mSv (range: 2.8 to 73) and from PET/CT studies was 78.9 mSv (range: 6.2 to 399). The radiation exposure from serial PET/CT studies performed in pediatric malignancies was considerable; however, lower doses can be used for both PET and CT studies. The ALARA principle must be applied without sacrificing diagnostic information. (orig.)

  20. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2012-08-15

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 {+-} 3.00) than low-dose ASIR (49.24 {+-} 9.11, P < 0.01) and reference-dose ASIR images (24.93 {+-} 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  1. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Manners, David [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); Wong, Patrick; Murray, Conor; Teh, Joelin [Royal Perth Hospital, Department of Diagnostic Imaging, Perth (Australia); Kwok, Yi Jin [Sir Charles Gairdner Hospital, Department of Diagnostic Imaging, Nedlands, WA (Australia); De Klerk, Nick; Franklin, Peter [University of Western Australia, School of Population Health, Perth, WA (Australia); Alfonso, Helman; Reid, Alison [Curtin University, School of Public Health, Perth, WA (Australia); Musk, A.W.B. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); University of Western Australia, School of Medicine and Pharmacology, Perth, WA (Australia); Brims, Fraser J.H. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); Curtin University, Curtin Medical School, Perth (Australia)

    2017-08-15

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV{sub 1}) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  2. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    International Nuclear Information System (INIS)

    Manners, David; Wong, Patrick; Murray, Conor; Teh, Joelin; Kwok, Yi Jin; De Klerk, Nick; Franklin, Peter; Alfonso, Helman; Reid, Alison; Musk, A.W.B.; Brims, Fraser J.H.

    2017-01-01

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  3. Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Chatterson, Leslie C., E-mail: lch088@mail.usask.ca [Department of Diagnostic Imaging, University of Saskatchewan (Canada); Leswick, David A.; Fladeland, Derek A. [Department of Diagnostic Imaging, University of Saskatchewan (Canada); Hunt, Megan M.; Webster, Stephen [Saskatchewan Ministry of Labour Relations and Workplace Safety (Canada); Lim, Hyun [Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan (Canada)

    2014-07-15

    Purpose: Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. Materials and methods: A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Results: Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P < 0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P < 0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P = 0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P = 0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). Conclusion: ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal

  4. Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT

    International Nuclear Information System (INIS)

    Chatterson, Leslie C.; Leswick, David A.; Fladeland, Derek A.; Hunt, Megan M.; Webster, Stephen; Lim, Hyun

    2014-01-01

    Purpose: Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. Materials and methods: A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Results: Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P < 0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P < 0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P = 0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P = 0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). Conclusion: ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal

  5. Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghee (Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine (Korea, Republic of)); Yoon, Sang-Wook; Yoo, Seung-Min; Kim, Kyoung Ah; Kim, Sang Heum; Lee, Jong Tae (Dept. of Diagnostic Radiology, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of)), email: jansons@cha.ac.kr; Ji, Young Geon (Preventive Medicine, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of))

    2011-12-15

    Background. Tube current is an important determinant of radiation dose and image quality in X-ray-based examination. The combined automatic tube current modulation technique (ATCM) enables automatic adjustment of the tube current in various planes (x-y and z) based on the size and attenuation of the body area scanned. Purpose. To compare image quality and radiation dose of the ATCM with those of a fixed tube current technique (FTC) in CT of the abdomen and pelvis performed with a 16-slice multidetector row CT. Material and Methods. We reviewed 100 patients in whom initial and follow-up CT of the abdomen and pelvis were performed with FTC and ATCM. All acquisition parameters were identical in both techniques except for tube current. We recorded objective image noise in liver parenchyma, subjective image noise and diagnostic acceptability by using a five-point scale, radiation dose, and body mass index (BMI, kg/m2). Data were analyzed with parametric and non-parametric statistical tests. Results. There was no significant difference in image noise and diagnostic acceptability between two techniques. All subjects had acceptable subjective image noise in both techniques. The significant reduction in radiation dose (45.25% reduction) was noted with combined ATCM (P < 0.001). There was a significant linear statistical correlation between BMI and dose reduction (r = -0.78, P < 0.05). Conclusion. The ATCM for CT of the abdomen and pelvis substantially reduced radiation dose while maintaining diagnostic image quality. Patients with lower BMI showed more reduction in radiation dose

  6. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: A new first line patient quality assurance tool

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143 (United States); and others

    2011-04-15

    Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  7. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: a new first line patient quality assurance tool.

    Science.gov (United States)

    Hu, Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean

    2011-04-01

    To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference > 3% or < or = 3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  8. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Franziska M.; Johnson, Thorsten R.C.; Sommer, Wieland H.; Thierfelder, Kolja M.; Meinel, Felix G. [University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-06-01

    To determine the radiation dose, image quality, and clinical utility of non-enhanced chest CT with spectral filtration. We retrospectively analysed 25 non-contrast chest CT examinations acquired with spectral filtration (tin-filtered Sn100 kVp spectrum) compared to 25 examinations acquired without spectral filtration (120 kV). Radiation metrics were compared. Image noise was measured. Contrast-to-noise-ratio (CNR) and figure-of-merit (FOM) were calculated. Diagnostic confidence for the assessment of various thoracic pathologies was rated by two independent readers. Effective chest diameters were comparable between groups (P = 0.613). In spectral filtration CT, median CTDI{sub vol}, DLP, and size-specific dose estimate (SSDE) were reduced (0.46 vs. 4.3 mGy, 16 vs. 141 mGy*cm, and 0.65 vs. 5.9 mGy, all P < 0.001). Spectral filtration CT had higher image noise (21.3 vs. 13.2 HU, P < 0.001) and lower CNR (47.2 vs. 75.3, P < 0.001), but was more dose-efficient (FOM 10,659 vs. 2,231/mSv, P < 0.001). Diagnostic confidence for parenchymal lung disease and osseous pathologies was lower with spectral filtration CT, but no significant difference was found for pleural pathologies, pulmonary nodules, or pneumonia. Non-contrast chest CT using spectral filtration appears to be sufficient for the assessment of a considerable spectrum of thoracic pathologies, while providing superior dose efficiency, allowing for substantial radiation dose reduction. (orig.)

  9. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams

    International Nuclear Information System (INIS)

    Paiva, F.G.

    2017-01-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification

  10. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  11. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  12. Dose-reduced CT with model-based iterative reconstruction in evaluations of hepatic steatosis: How low can we go?

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, Koichiro, E-mail: koyasaka@gmail.com [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Katsura, Masaki [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Akahane, Masaaki [NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625 (Japan); Sato, Jiro [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Matsuda, Izuru [Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8510 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2014-07-15

    Purpose: To determine whether dose-reduced CT with model-based iterative image reconstruction (MBIR) is a useful tool with which to diagnose hepatic steatosis. Materials and methods: This prospective clinical study approved by our Institutional Review Board included 103 (67 men and 36 women; mean age, 64.3 years) patients who provided written informed consent to undergo unenhanced CT. Images of reference-dose CT (RDCT) with filtered back projection (R-FBP) and low- and ultralow-dose CT (dose-length product; 24 and 9% of that of RDCT) with MBIR (L-MBIR and UL-MBIR) were reconstructed. Mean CT numbers of liver (CT[L]) and spleen (CT[S]), and quotient (CT[L/S]) of CT[L] and CT[S] were calculated from selected regions of interest. Bias and limits of agreement (LOA) of CT[L] and CT[L/S] in L-MBIR and UL-MBIR (vs. R-FBP) were assessed using Bland–Altman analyses. Diagnostic methods for hepatic steatosis of CT[L] < 48 Hounsfield units (HU) and CT[L/S] < 1.1 were applied to L-MBIR and UL-MBIR using R-FBP as the reference standard. Results: Bias was larger for CT[L] in UL-MBIR than in L-MBIR (−3.18 HU vs. −1.73 HU). The LOA of CT[L/S] was larger for UL-MBIR than for L-MBIR (±0.425 vs. ±0.245) and outliers were identified in CT[L/S] of UL-MBIR. Accuracy (0.92–0.95) and the area under the receiver operating characteristics curve (0.976–0.992) were high for each method, but some were slightly lower in UL-MBIR than L-MBIR. Conclusion: Dose-reduced CT reconstructed with MBIR is applicable to diagnose hepatic steatosis, however, a low dose of radiation might be preferable.

  13. Regional Diagnostic Reference Levels and Collective Effective Doses from Computed Tomography (CT) Scanners in India

    International Nuclear Information System (INIS)

    Livingstone, R.S.; Dinakaran, P.M.

    2011-01-01

    Diagnostic examinations performed using computed tomography (CT) are on the increase, and the use of this modality needs to be monitored periodically. The aim of this study was to formulate regional diagnostic reference levels (DRLs) and assess collective effective doses from CT scanners in Tamil Nadu, India. In-site CT dose measurements were performed for 127 CT scanners in Tamil Nadu as a part of the Atomic Energy Regulatory Board (AERB) funded project for a period of two years. Regional DRLs were formulated at third quartile level for three CT protocols such as thorax, abdomen and pelvis and were found to be 557 mGy.cm, 521 mGy.cm and 294 mGy.cm, respectively. The collective effective dose in Tamil Nadu was found to be 14.93 man Sv per day. (author)

  14. A method of computerized evaluation of CT based treatment plans in external radiotherapy

    International Nuclear Information System (INIS)

    Heufelder, J.; Zink, K.; Scholz, M.; Kramer, K.D.; Welker, K.

    2003-01-01

    Selection of an optimal treatment plan requires the comparison of dose distributions and dose-volume histograms (DVH) of all plan variants calculated for the patient. Each treatment plan consists generally of 30 to 40 CT slices, making the comparison difficult and time consuming. The present study proposes an objective index that takes into account both physical and biological criteria for the evaluation of the dose distribution. The DHV-based evaluation index can be calculated according to the following four criteria: ICRU conformity (review of the differences between the dose in the planning target volume and the ICRU recommendations); mean dose and dose homogeneity of the planning target volume; the product of tumour complication probability (TCP) and normal tissue complication probability (NTCP); and finally a criterion that takes into account the dose load of non-segmented tissue portions within the CT slice. The application of the objective index is demonstrated for two different clinical cases (esophagus and breast carcinoma). During the evaluation period, the objective index showed a good correlation between the doctor's decision and the proposed objective index. Thus, the objective index is suitable for a computer-based evaluation of treatment plans. (orig.) [de

  15. A study to determine whether the volume-weighted computed tomography dose index gives reasonable estimates of organ doses for thai patients undergoing abdomen and pelvis computed tomography examinations

    Directory of Open Access Journals (Sweden)

    Supawitoo Sookpeng

    2017-01-01

    Full Text Available Introduction: Values for the CTDIvol, which is displayed on scanner consoles, give doses relative to a phantom much larger than most Thai patients, and the CTDIvoldoes not take account of differences in patient size, which affect organ doses. Objective: The purpose of this study was to evaluate relationships for size specific dose estimate (SSDE and volume weighted computed tomography (CT dose index (CTDIvol with patient size for CT scanners operating under automatic tube current modulation (ATCM. Methods: Retrospective data from 244 patients who had undergone abdomen and pelvis examination on GE and Siemens CT scanners were included in this study. The combination of anteroposterior (AP and lateral dimensions at the level of the first lumbar vertebra (L1 was used to represent patient size. Image noise within the liver was measured, and values of the absorbed dose for organs covered by the primary beam such as the liver, stomach and kidney were calculated using methods described in the literature. Values of CTDIvolwere recorded and SSDE calculated according to the American Association of Physics in Medicine (AAPM Report No.204. Linear regression models were used to evaluate the relationship between SSDE, CTDIvol, image noise and patient size. Results: SSDE is 20%-50% larger than the CTDIvol, with values for larger patients being more representative. Both the CTDIvoland image noise decreased with patient size for Siemens scanners, but the decline in SSDE was less significant. For the GE scanner, the CTDIvolwas a factor of 3-4 lower in small patients compared to larger ones, while the SSDE only decreased by a factor of two. Noise actually decreased slightly with patient size. Conclusion: Values of SSDE were similar to the doses calculated for the liver, stomach and kidney, which are covered by the primary beam, confirming that it provides a good estimate of organ-absorbed dose.

  16. Optimisation of CT procedures by dose reduction in abdominal-pelvic studies of chronic patients

    International Nuclear Information System (INIS)

    Calvo, D.; Rodriguez, A.M.; Peinado, M.A.; Fernandez, B.; Fernandez, B.M.; Jimenez, J.R.

    2006-01-01

    Full text of publication follows: Objectives: CT explorations are responsible of a significant increase of collective dose during last twenty years. However, by adapting the procedures to the specific diagnostic requirements of each kind of exploration, dose values can be decreased. This can be specially interesting for chronic patients who undergo several CT controls. The aim of this research is to contrast CT image diagnostic quality by comparing those techniques commonly used in our hospital with lower dose ones. Materials and methods: In a first phase, a study on phantom has been developed to evaluate image quality variations obtained with standard a several low dose techniques. Dose reduction was quantified as well by means of C.T.D.I. w measurements on an abdominal phantom. Both aspects were taken into account to determine a dose threshold below image quality degradation was considered unacceptable from a diagnostic point of view. Subsequently, a group of 50 chronic patients under follow -up was selected to undergo a control CT but with a low dose-technique. Image diagnostic quality was compared with that of previous controls obtained using the standard technique. Three experimented radiologist carried out this evaluation over a sample of six particular slices located at the abdomen and pelvis using an ordinal scale. Such a scale gradate the confidence level of the image for each radiologist. This evaluation was repeated one and two months later without knowledge of previous results to calculate inter and intra -observer variability. Conclusions: CT studies can be carried out with a significant dose reduction preserving their diagnostic capabilities. A quantitative evaluation will be offered at the end of the study, still running. (authors)

  17. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

    Science.gov (United States)

    Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John

    2013-04-01

    The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition

  18. The use of the eyes protection for dose reduction in CT scans of skull

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Silva, Teogenes A.; Alonso, Thessa C.

    2013-01-01

    The technique for imaging the brain scans of the skull by computed tomography (CT) scanning is the volume bounded by the foramen magnum and the apex of the skull. The lenses are radiosensitive tissues and CT scans of the head deposited significant doses on them, since they are in the region of incidence of the primary beam of X-rays. Thus, the variation of the dose deposited in the crystalline skull CT scans for diagnostic imaging of the brain was investigated. Cranial scans were performed using the acquisition protocol routine with or without the use of bismuth to shield the eyes. To carry out the scans we used a male anthropomorphic phantom, Alderson Rando model and dosimeters (TLD-100) were used to record the doses. These TLDs were used to record specific doses internally to the phantom in specific organs (crystalline, pituitary, thyroid, spinal cord and breasts). The scans were performed on a GE machine, model 64 Discovery channels. The data obtained allowed to observe the variation of dose in organs. The highest dose was recorded in the lens (26,18 mGy), followed by spinal cord (17,79 mGy). Comparing the doses of the two scans it was significant variation in the crystal. Scan using bismuth shield generated smaller doses in the eyes and in the eyes occurred the higher dose reduction, about 37%. The results may contribute to spread a suitable procedure for the optimization of CT scans of the skull

  19. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  20. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  1. Estimation of radiation cancer risk in CT-KUB

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.

    2017-08-01

    The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.

  2. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans

    International Nuclear Information System (INIS)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P.

    2013-01-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography

  3. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  4. Analysis of lenses absorbed dose in head CT scan with the use of bismuth shielding

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.S.; Santana, P.C., E-mail: fernanda.stephaniebh@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil); Mourão, A.P. [Centro de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Computed Tomography (CT) has become an important tool to diagnose cancer and to obtain additional information for different clinical questions. However, CT scan usually requires a higher radiation exposure than a conventional radiography examination. Head CT scans are used for diagnosis of traumatic head injuries, infections and other diseases with instability. Based on this information, it was studied the dose variation deposited in the lenses and in nearby organs, such as: pharynx, hypophysis and salivary gland with and without the use of bismuth shield. In this study a head CT scan was performed on anthropomorphic male phantom using a GE scanner. Dose measurements have been performed by using radiochromic film strips to register the individual doses in the organs of interest. The results show that the lenses had a reduction of 26% of the dose with the use of the bismuth shield. (author)

  5. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  6. WAZA-ARI. A dose assessment system for patients in CT scan

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions. (author)

  7. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT

    Energy Technology Data Exchange (ETDEWEB)

    Gay, F.; Lasalle, S.; Neuenschwander, S.; Brisse, H.J. [Institut Curie, Imaging Department, Paris (France); Pavia, Y.; Pierrat, N. [Institut Curie, Medical Physics Department, Paris (France)

    2014-01-15

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. (orig.)

  8. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT

    International Nuclear Information System (INIS)

    Gay, F.; Lasalle, S.; Neuenschwander, S.; Brisse, H.J.; Pavia, Y.; Pierrat, N.

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. (orig.)

  9. MO-DE-204-02: Optimization of the Patient CT Dose in Europe

    International Nuclear Information System (INIS)

    Tsapaki, V.

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  10. MO-DE-204-02: Optimization of the Patient CT Dose in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Tsapaki, V. [Konstantopoulio General Hospital (Greece)

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  11. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination.

    Science.gov (United States)

    McKnight, Colin D; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H; Parmar, Hemant A

    2014-08-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDIvol) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDIvol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDIvol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDIvol in the ASIR group (P ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of

  12. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States)

    2014-08-15

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI{sub vol}) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI{sub vol} value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI{sub vol} for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI{sub vol} in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the

  13. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    Science.gov (United States)

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  14. Clinical indications and radiation doses to the conceptus associated with CT imaging in pregnancy: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Woussen, S.; Vanbeckevoort, D.; Bosmans, H.; Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Lopez-Rendon, X.; Zanca, F. [University Hospitals Leuven, Department of Imaging and Pathology, Leuven (Belgium)

    2016-04-15

    To perform an internal audit at a university hospital with the aim of evaluating the number, clinical indication and operating procedure of computed tomography (CT) performed on pregnant patients and of estimating the radiation doses to the conceptus. A retrospective review was conducted of all CT examinations performed in a single centre on pregnant patients between January 2008 and July 2013. The radiation doses to the conceptus were estimated. The results were compared with published data. The number of CT examinations during pregnancy increased from 3-4 per year in 2008-2011 to 11 per year in 2012. The mean estimated conceptus radiation dose was considered negligible for CT of the head and cervical spine, being less than 0.01 mGy, and for CT of the chest, less than 0.1 mGy. The estimated conceptus radiation dose from abdominopelvic CT was on average 28.7 mGy (range 6.7-60.5 mGy). The number of CT scans of pregnant patients increased threefold during the last few years. Most clinical indications and doses were in line with good clinical practice and literature; only in two cases the dose to the conceptus was higher than 50 mGy. (orig.)

  15. Analytical equations for CT dose profiles derived using a scatter kernel of Monte Carlo parentage with broad applicability to CT dosimetry problems

    International Nuclear Information System (INIS)

    Dixon, Robert L.; Boone, John M.

    2011-01-01

    Purpose: Knowledge of the complete axial dose profile f(z), including its long scatter tails, provides the most complete (and flexible) description of the accumulated dose in CT scanning. The CTDI paradigm (including CTDI vol ) requires shift-invariance along z (identical dose profiles spaced at equal intervals), and is therefore inapplicable to many of the new and complex shift-variant scan protocols, e.g., high dose perfusion studies using variable (or zero) pitch. In this work, a convolution-based beam model developed by Dixon et al.[Med. Phys. 32, 3712-3728, (2005)] updated with a scatter LSF kernel (or DSF) derived from a Monte Carlo simulation by Boone [Med. Phys. 36, 4547-4554 (2009)] is used to create an analytical equation for the axial dose profile f(z) in a cylindrical phantom. Using f(z), equations are derived which provide the analytical description of conventional (axial and helical) dose, demonstrating its physical underpinnings; and likewise for the peak axial dose f(0) appropriate to stationary phantom cone beam CT, (SCBCT). The methodology can also be applied to dose calculations in shift-variant scan protocols. This paper is an extension of our recent work Dixon and Boone [Med. Phys. 37, 2703-2718 (2010)], which dealt only with the properties of the peak dose f(0), its relationship to CTDI, and its appropriateness to SCBCT. Methods: The experimental beam profile data f(z) of Mori et al.[Med. Phys. 32, 1061-1069 (2005)] from a 256 channel prototype cone beam scanner for beam widths (apertures) ranging from a = 28 to 138 mm are used to corroborate the theoretical axial profiles in a 32 cm PMMA body phantom. Results: The theoretical functions f(z) closely-matched the central axis experimental profile data 11 for all apertures (a = 28 -138 mm). Integration of f(z) likewise yields analytical equations for all the (CTDI-based) dosimetric quantities of conventional CT (including CTDI L itself) in addition to the peak dose f(0) relevant to SCBCT

  16. The use of megavoltage CT (MVCT) images for dose recomputations

    International Nuclear Information System (INIS)

    Langen, K M; Meeks, S L; Poole, D O; Wagner, T H; Willoughby, T R; Kupelian, P A; Ruchala, K J; Haimerl, J; Olivera, G H

    2005-01-01

    Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation

  17. Survey of dose distribution in patients due to operation of CT machines

    International Nuclear Information System (INIS)

    Su, Ling-Nah; Hsu, Pin-Chieh; Weng, Pao-Shan.

    1985-01-01

    This paper deals with dose measurement in gonad and eyes with self-fabricated thermoluminescent dosimeters during CT scanning for brain. A female Rando phantom was used as the reference. The experimental results obtained from several patients show that for brain scan, the average eye dose was 169.5 ± 204.1 mrad/slice and gonad dose 0.20 ± 0.15 mrad/slice for male, and that for female was 195.3 ± 193.2 mrad/slice for eyes and 0.04 ± 0.03 mrad/slice for gonad. The results are also compared with that obtained from other models of CT scanner. (author)

  18. Iterative reconstruction reduces abdominal CT dose

    International Nuclear Information System (INIS)

    Martinsen, Anne Catrine Trægde; Sæther, Hilde Kjernlie; Hol, Per Kristian; Olsen, Dag Rune; Skaane, Per

    2012-01-01

    Objective: In medical imaging, lowering radiation dose from computed tomography scanning, without reducing diagnostic performance is a desired achievement. Iterative image reconstruction may be one tool to achieve dose reduction. This study reports the diagnostic performance using a blending of 50% statistical iterative reconstruction (ASIR) and filtered back projection reconstruction (FBP) compared to standard FBP image reconstruction at different dose levels for liver phantom examinations. Methods: An anthropomorphic liver phantom was scanned at 250, 185, 155, 140, 120 and 100 mA s, on a 64-slice GE Lightspeed VCT scanner. All scans were reconstructed with ASIR and FBP. Four readers evaluated independently on a 5-point scale 21 images, each containing 32 test sectors. In total 672 areas were assessed. ROC analysis was used to evaluate the differences. Results: There was a difference in AUC between the 250 mA s FBP images and the 120 and 100 mA s FBP images. ASIR reconstruction gave a significantly higher diagnostic performance compared to standard reconstruction at 100 mA s. Conclusion: A blending of 50–90% ASIR and FBP may improve image quality of low dose CT examinations of the liver, and thus give a potential for reducing radiation dose.

  19. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method

    Science.gov (United States)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher

    2017-12-01

    A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.

  20. On the feasibility of optical-CT imaging in media of different refractive index

    International Nuclear Information System (INIS)

    Rankine, Leith; Oldham, Mark

    2013-01-01

    Purpose: Achieving accurate optical-CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Methods: Software has been developed to simulate optical-CT 3D dosimetry for a range of scanning configurations including parallel-beam, point, and converging light sources. For each configuration the efficacy of three refractive media was investigated: air, water, a fluid closely matched to PRESAGE ® , and perfect matching (RI = 1.00, 1.33, 1.49, and 1.501 respectively). Reconstructions were performed using both filtered backprojection (FBP) and algebraic reconstruction technique (ART). The efficacy of the three configurations and the two algorithms was evaluated by calculating the usable radius (i.e., the outermost radius where data were accurate to within 2%), and gamma (Γ) analysis. This definition recognizes that for optical-CT imaging, errors are greatest near the edge of the dosimeter, where refraction can be most pronounced. Simulations were performed on three types of dose distribution: uniform, volumetric modulated arc therapy (VMAT), and brachytherapy (Cs-137). Results: For a uniformly irradiated dosimeter the usable radius achieved with filtered backprojection was 68% for water-matching and 31% for dry-scanning in air. Algebraic reconstruction gave usable radii of 99% for both water and air (dry-scanning), indicating greater recovery of useful data for the uniform distribution. FBP and ART performed equally well for a VMAT dose distribution where less dose is delivered near the edge of the dosimeter. In this case, the usable radius was 86% and 53% for scanning in water and air, respectively. For brachytherapy, the usable radius was 99% and 98% for scanning in water and air, respectively using FBP, and a major decrease was seen with ART. Point source geometry provided 1%–2% larger usable radii than parallel geometry. Converging geometry recovered less usable dosimetry data (up to 10% reduced usable

  1. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams; Comparação da dose absorvida de dois protocolos de varredura tomográfica em exame de PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, F.G., E-mail: fgpaiva92@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Santana, P.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Mourão Filho, A.P. [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification.

  2. Survey of CT practice in Japan and collective effective dose estimation

    International Nuclear Information System (INIS)

    Nishizawa, Kanae; Maruyama, Takashi; Matsumoto, Masaki; Iwai, Kazuo

    2004-01-01

    Computed tomography (CT) has been established as an important diagnostic tool in clinical medicine and has become a major source of medical exposure. A nationwide survey regarding CT examinations was carried out in Japan in 2000. CT units per million people in Japan numbered 87.8. The annual number of examinations was 0.1 million in those 0-14 years old, 3.54 million for those 15 years old and above, and 3.65 million in total. Eighty percent of examinations for those 0-14 years old were examinations of the head, as were 40% for those 15 years old and above. The number of examinations per 1000 population was 290. The collective effective dose was 295 x 10 3 person·Sv, and the effective dose per caput was evaluated as 2.3 mSv. (author)

  3. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    International Nuclear Information System (INIS)

    Nawfel, RD; Young, G

    2016-01-01

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  4. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    Energy Technology Data Exchange (ETDEWEB)

    Nawfel, RD; Young, G [Brigham & Women’s Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  5. Automatic individualized contrast medium dosage during hepatic computed tomography by using computed tomography dose index volume (CTDI{sub vol})

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Anders; Cederlund, Kerstin; Aspelin, Peter; Brismar, Torkel B. [Intervention and Technology at Karolinska Institutet, Department of Clinical Science, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital in Huddinge, Department of Radiology, Stockholm (Sweden); Bjoerk, Jonas [FoU-centrum Skaane Skaanes Universitetssjukhus i Lund, Lund (Sweden); Nyman, Ulf [University of Lund, Department of Diagnostic Radiology, Lasarettet Trelleborg, Trelleborg (Sweden)

    2014-08-15

    To compare hepatic parenchymal contrast media (CM) enhancement during multi-detector row computed tomography (MDCT) and its correlation with volume pitch-corrected computed tomography dose index (CTDI{sub vol}) and body weight (BW). One hundred patients referred for standard three-phase thoraco-abdominal MDCT examination were enrolled. BW was measured in the CT suite. Forty grams of iodine was administered intravenously (iodixanol 320 mg I/ml at 5 ml/s or iomeprol 400 mg I/ml at 4 ml/s) followed by a 50-ml saline flush. CTDI{sub vol} presented by the CT equipment during the parenchymal examination was recorded. The CM enhancement of the liver was defined as the attenuation HU of the liver parenchyma during the hepatic parenchymal phase minus the attenuation in the native phase. Liver parenchymal enhancement was negatively correlated to both CTDI{sub vol} (r = -0.60) and BW (r = -0.64), but the difference in correlation between those two was not significant. CTDI{sub vol} may replace BW when adjusting CM doses to body size. This makes it potentially feasible to automatically individualize CM dosage by CT. (orig.)

  6. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    Science.gov (United States)

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P  .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  7. SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Q; Shah, P; Li, S; Miyamoto, C [Temple University Hospital, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiation treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.

  8. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  9. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    Directory of Open Access Journals (Sweden)

    Peter B Noël

    Full Text Available PURPOSE: Evaluation of 15,000 computed tomography (CT examinations to investigate if iterative reconstruction (IR reduces sustainably radiation exposure. METHOD AND MATERIALS: Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. RESULTS: IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01. Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv, or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv the dose reduction effect is significant(p*=0.01. On the contrary for unenhanced low-dose scans of the cranial (for example sinuses the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv. CONCLUSION: The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine

  10. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared

  11. Prospective evaluation of the radiologist's hand dose in CT-guided interventions; Prospektive Evaluation der Handdosis des Radiologen im Rahmen von CT-gestuetzten Interventionen

    Energy Technology Data Exchange (ETDEWEB)

    Rogits, B.; Jungnickel, K.; Loewenthal, D.; Dudeck, O.; Pech, M.; Ricke, J. [Magdeburg Univ. (Germany). Radiology and Nuclear Medicine; Kropf, S. [Magdeburg Univ. (Germany). Dept. of Biometry and Medical Informatics; Nekolla, E.A. [The Federal Office for Radiation Protection, Neuherberg (Germany). Dept. of Radiation Protection and Health; Wieners, G. [Charite CVC, Berlin (Germany). Dept. of Radiology

    2013-11-15

    Purpose: Assessment of radiologist's hand dose in CT-guided interventions and determination of influencing factors. Materials and Methods: The following CT-guided interventions were included: Core biopsy, drainage, periradicular therapy, and celiac plexus neurolysis. The hand dose was measured with an immediately readable dosimeter, the EDD-30 (Unfors, Sweden). The default parameters for CT fluoroscopy were 120 kV, 90 mA and a 4 mm slice thickness. All interventions were performed on a 16-slice CT unit (Aquilion 16 Toshiba, Japan). The tumor size, degree of difficulty (1 - 3), level of experience and device parameters (mAs, dose-length product, scan time) were documented. Results: 138 CT-guided interventions (biopsy n = 99, drainage n = 23, pain therapy n = 16) at different locations (lung n = 41, retroperitoneum n = 53, liver n = 25, spine n = 19) were included. The lesion size was 4 - 240 mm (median: 23 mm). The fluoroscopy time per intervention was 4.6 - 140.2 s (median: 24.2 s). The measured hand dose ranged from 0.001 - 3.02 mSv (median: 0.22 mSv). The median hand dose for lung puncture (n = 41) was slightly higher (median: 0.32 mSv, p = 0.01) compared to that for the liver, retroperitoneum and other. Besides physical influencing factors, the degree of difficulty (p = 0.001) and summed puncture depth (p = 0.004) correlated significantly with the hand dose. Conclusion: The median hand dose for different CT-guided interventions was 0.22 mSv. Therefore, the annual hand dose limit would normally only be reached with about 2000 interventions. (orig.)

  12. Low dose CT simulation using experimental noise model

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Satori; Zamyatin, Alexander A. [Toshiba Medical Systems Corporation, Tochigi, Otawarashi (Japan); Silver, Michael D. [Toshiba Medical Research Institute, Vernon Hills, IL (United States)

    2011-07-01

    We suggest a method to obtain system noise model experimentally without relying on assumptions on statistical distribution of the noise; also, knowledge of DAS gain and electronic noise level are not required. Evaluation with ultra-low dose CT data (5 mAs) shows good match between simulated and real data noise. (orig.)

  13. Analysis of thyroid absorbed dose in cervical CT scan with the use of bismuth shielding

    International Nuclear Information System (INIS)

    Santos, Fernanda S.; Gómez, Álvaro M.L.; Mourão, Arnaldo P.; Santana, Priscila C.

    2017-01-01

    The Computed Tomography (CT) has become an important tool to diagnose cancer and to obtain additional information for different clinical questions. Today, it is a very fast, painless and noninvasive test that can be performed high quality images. However, CT scan usually requires a higher radiation exposure dose than a conventional radiography examination. The aim of this study is to determine the dose variation deposited in thyroid and in nearby radiosensitive organs, such as: lenses, pharynx, hypophysis, salivary gland and spinal cord with and without the use of bismuth shielded. A cervical CT scan was performed on anthropomorphic male phantom model Alderson Rando, from the occipital to the first thoracic vertebra, using a GE scanner, Discovery model with 64 channels. Dose measurements have been performed by using radiochromic film strips to register the individual doses in the organs of interest. After the phantom cervical CT scan the radiochromic film strips were processed for obtaining digital images. Digital images were worked to obtain the dose variation profiles for each film. With the data obtained, it was found the organ dose variation. The results show that the thyroid received the highest dose, 40.9 mGy, in the phantom, according to the incidence of the primary X-ray beam. (author)

  14. Analysis of thyroid absorbed dose in cervical CT scan with the use of bismuth shielding

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernanda S.; Gómez, Álvaro M.L.; Mourão, Arnaldo P., E-mail: fernanda.stephaniebh@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Santana, Priscila C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2017-07-01

    The Computed Tomography (CT) has become an important tool to diagnose cancer and to obtain additional information for different clinical questions. Today, it is a very fast, painless and noninvasive test that can be performed high quality images. However, CT scan usually requires a higher radiation exposure dose than a conventional radiography examination. The aim of this study is to determine the dose variation deposited in thyroid and in nearby radiosensitive organs, such as: lenses, pharynx, hypophysis, salivary gland and spinal cord with and without the use of bismuth shielded. A cervical CT scan was performed on anthropomorphic male phantom model Alderson Rando, from the occipital to the first thoracic vertebra, using a GE scanner, Discovery model with 64 channels. Dose measurements have been performed by using radiochromic film strips to register the individual doses in the organs of interest. After the phantom cervical CT scan the radiochromic film strips were processed for obtaining digital images. Digital images were worked to obtain the dose variation profiles for each film. With the data obtained, it was found the organ dose variation. The results show that the thyroid received the highest dose, 40.9 mGy, in the phantom, according to the incidence of the primary X-ray beam. (author)

  15. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT.

    Science.gov (United States)

    Othman, Ahmed E; Bongers, Malte Niklas; Zinsser, Dominik; Schabel, Christoph; Wichmann, Julian L; Arshid, Rami; Notohamiprodjo, Mike; Nikolaou, Konstantin; Bamberg, Fabian

    2018-01-01

    Background Patients with acute non-traumatic abdominal pain often undergo abdominal computed tomography (CT). However, abdominal CT is associated with high radiation exposure. Purpose To evaluate diagnostic performance of a reduced-dose 100 kVp CT protocol with advanced modeled iterative reconstruction as compared to a linearly blended 120 kVp protocol for assessment of acute, non-traumatic abdominal pain. Material and Methods Two radiologists assessed 100 kVp and linearly blended 120 kVp series of 112 consecutive patients with acute non-traumatic pain (onset diagnostic confidence. Both 100 kVp and linearly blended 120 kVp series were quantitatively evaluated regarding radiation dose and image noise. Comparative statistics and diagnostic accuracy was calculated using receiver operating curve (ROC) statistics, with final clinical diagnosis/clinical follow-up as reference standard. Results Image quality was high for both series without detectable significant differences ( P = 0.157). Image noise and artifacts were rated low for both series but significantly higher for 100 kVp ( P ≤ 0.021). Diagnostic accuracy was high for both series (120 kVp: area under the curve [AUC] = 0.950, sensitivity = 0.958, specificity = 0.941; 100 kVp: AUC ≥ 0.910, sensitivity ≥ 0.937, specificity = 0.882; P ≥ 0.516) with almost perfect inter-rater agreement (Kappa = 0.939). Diagnostic confidence was high for both dose levels without significant differences (100 kVp 5, range 4-5; 120 kVp 5, range 3-5; P = 0.134). The 100 kVp series yielded 26.1% lower radiation dose compared with the 120 kVp series (5.72 ± 2.23 mSv versus 7.75 ± 3.02 mSv, P diagnostic accuracy for the assessment of acute non-traumatic abdominal pain.

  16. The evaluation of radioprotection with low dose CT scanning in normal rabbits brain

    International Nuclear Information System (INIS)

    Zhang Shuqing; Gong Shenchu; Wang Tianle; Shen Yunxia; Cui Lei

    2008-01-01

    Objective: To determine wheather a lower radiation dose technique and various pitch could be used in CT of the rabbits' brain without jeopardizing the diagnostic accuracy of the images, and determine the evaluation of radioprotection with low dose CT scanning. Methods: Fifteen rabbits underwent CT using 200 mAs, 110 mAs or 70 mAs,and pitch 1.0 or 1.5. Anatomy details and the confidence level in reaching a diagnosis were evaluated by two radiologists in a double-blinded manner using a 4-point scoring system. The CTDI w of every group were compared. Results: For both reader there was no statistically significant difference between 6 group total score of 1-6 anatomical detail and each of 6 anatomical detail although score for each of 6 anatomical detail. The CTDI w of 70 mAs, in pitch 1.5 group decreased about 76.7%. Conclusion: Radiation dose reduction in brain CT is feasible in clinical use, and quality of images can be re- served. It plays an important role in radiation protection. (authors)

  17. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  18. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  19. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Directory of Open Access Journals (Sweden)

    Adeleye Bamise

    2017-12-01

    Full Text Available The preference for computed tomography (CT for the clinical assessment of pulmonary tuberculosis (PTB infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05 between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05 and female patients (r2 = 0.989, P < 0.05. The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively. These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  20. Decreasing the effective radiation dose in pediatric craniofacial CT by changing head position

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Kuang, Anna A.; Schwartz, Daniel L.; Selden, Nathan R.; Stevens, Donna M.; Bardo, Dianna M.E.

    2010-01-01

    Children are exposed to ionizing radiation during pre- and post-operative evaluation for craniofacial surgery. The primary purpose of the study was to decrease effective radiation dose while preserving the diagnostic quality of the study. In this prospective study 49 children were positioned during craniofacial CT (CFCT) imaging with their neck fully extended into an exaggerated sniff position, parallel to the CT gantry, to eliminate the majority of the cervical spine and the thyroid gland from radiation exposure. Image-quality and effective radiation dose comparisons were made retrospectively in age-matched controls (n = 49). When compared to CT scans reviewed retrospectively, the prospective examinations showed a statistically significant decrease in z-axis length by 16% (P < 0.0001) and delivered a reduced effective radiation dose by 18% (P < 0.0001). The subjective diagnostic quality of the exams performed in the prospective arm was maintained despite a slight decrease in the quality of the brain windows. There was statistically significant improvement in the quality of the bone windows and three-dimensional reconstructed images. Altering the position of the head by extending the neck during pediatric craniofacial CT imaging statistically reduces the effective radiation dose while maintaining the diagnostic quality of the images. (orig.)