WorldWideScience

Sample records for csitl crystal array

  1. Experimental studies on radiation damages of CsI(Tl) crystals

    He Jingtang; Mao Yufang; Dong Xiaoli; Chen Duanbao; Li Zuhao

    1997-01-01

    The results of experimental studies on radiation damage of CsI(Tl) crystal were reported. There are radiation damage effects on CsI(Tl) crystal. Experimental studies on recovery of damaged CsI(Tl) crystals were made. It seems that after heating at 200 degree C for 4 hours, the damaged crystals could be recovered completely

  2. Color centers in heavily irradiated CsI(Tl) crystals

    Yakovlev, V.; Meleshko, A.; Trefilova, L.

    2008-01-01

    The absorption and luminescence properties of CsI(Tl) crystals colored by irradiation are studied by the method of the time-resolved spectroscopy. The scheme of the electron transitions in CsI(Tl) crystal is suggested to explain the appearance of the color centers under exposure to the near-UV light. It is established that either of the two types activator color centers holds the charge carrier with opposite sign. The model of the hole Tl 2+ v c - activator color center is suggested. According to the model the positive charge of Tl 2+ ion is compensated by the negative charge of a close cation vacancy v c - . The color center emission reveals in the cathode-luminescence spectrum of the colored CsI(Tl) crystal. The high-dose irradiation of CsI(Tl) crystal results in the reduction of the decay time of the near-thallium self-trapped excitons (STE) emission. The decay kinetics of Tl 2+ v c - emission contains the time components typical for the decay kinetics of near-thallium STE emission. The reason of the observed effects is the energy transfer from the near-thallium STE excitons to the color centers via the inductive-resonant mechanism

  3. Comparison of functional parameters of CsI:Tl crystals and thick films

    Fedorov, A.; Gektin, A.; Lebedynskiy, A.; Mateychenko, P.; Shkoropatenko, A.

    2013-01-01

    500 mkm thick CsI:Tl columnar films can be produced using thermal evaporation in vacuum by sublimation of the same bulk crystal. Comparison of afterglow and radiation stability of deposited CsI:Tl films with source crystal was the aim of current work. It is shown that the afterglow in the films is always below its level in initial single crystal. It was ascertained that the annealing atmospheres influence the processes leading to the activator depletion of the films during the thermal processing. -- Highlights: ► Thick CsI:Tl columnar films were obtained by thermal evaporation in vacuum. ► Radiation stability of such CsI:Tl films appears to be better than that of crystal. ► CsI:Tl film parameters can be modified by annealing in different atmospheres

  4. Radiation Hardness Study of CsI(Tl) Crystals for Belle II Calorimeter

    Matvienko, D V; Sedov, E V; Shwartz, B A

    2017-01-01

    The Belle II calorimeter (at least, its barrel part) consists of CsI(Tl) scintillation crystals which have been used at the Belle experiment. We perform the radiation hardness study of some typical Belle crystals and conclude their light output reductions are acceptable for Belle II experiment where the absorption dose can reach 10 krad during the detector operation. CsI(Tl) crystals have high stablity and low maintenance cost and are considered as possible option for the calorimeter of the future Super-Charm-Tau factory (SCT) in Novosibirsk. Our study demonstrates sufficiently high radiation hardness of CsI(Tl) crystals for SCT conditions.

  5. Scintillation detector composed by new type of avalanche photodiode and CsI(Tl) crystal

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Using S5345 type of avalanche photodiode produced by Hamamatsu for the CsI(Tl) crystal readout, the spectrum of γ ray were measured. Energy resolution of 6.8% for 1.27 MeV γ ray from 22 Na source was obtained. The relation between energy resolution and coupling area, dimension of crystal, shaping time and bias were measured

  6. Development of low-background CsI(Tl) crystals for WIMP search

    Lee, H.S.; Bhang, H.; Hahn, I.S.; Hwang, M.J.; Kim, H.J.; Kim, S.C.; Kim, S.K.; Kim, S.Y.; Kim, T.Y.; Kim, Y.D.; Kwak, J.W.; Kwon, Y.J.; Lee, J.; Lee, J.I.; Lee, M.J.; Li, J.; Myung, S.S.; Park, H.; Zhu, J.J.

    2007-01-01

    Search for weakly interacting massive particles (WIMPs) is being carried out at the underground laboratory, Yangyang, Korea. Characteristics and internal background of CsI(Tl) crystal have been investigated. In our extensive R and D, we reduced internal background in the CsI(Tl) crystal. With the latest, we have achieved 5.50+/-0.10cpd (counts/keV/kg/day) at 10-15keV low-energy region. Further reduction of internal background is foreseen with the CsI powder lately produced

  7. Pulse shape analysis using CsI(Tl) Crystals

    Silva, J.; Fiori, E.; Loher, B.; Savran, D.; Wirth, R.; Vencelj, M.

    2013-06-01

    The decay time of CsI(Tl) scintillating material consists of more than a single exponential component. The ratio between the intensity of these components varies as a function of the ionizing power of the absorbed particles, such as γ -rays or protons, and the temperature. This property can therefore be used for particle discrimination and for temperature monitoring, using pulse shape analysis. An unsupervised method that uses fuzzy clustering algorithms for particle identification based on pulse shape analysis is presented. The method is applied to discriminate between photon and proton-induced signals in CsI(Tl) scintillator detectors. The first results of a method that uses pulse shape analysis for correcting the temperature-dependent gain effect of the detector are also presented. The method aims at conserving a good energy resolution in a temperature varying environment without the need to measure the temperature of the detector externally (authors)

  8. Experimental studies on using silicon photodiode as read-out component of CsI(Tl) crystal

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Experimental studies on using silicon photodiode as the read-out component of CsI(Tl) crystal are reported. The read-out properties of two different types of silicon photodiode produced by Hamamatsu were measured, including relations between energy resolution and bias, shaping time, sensitive area of photodiode and the dimension of the crystal

  9. Search for solar axions with CsI(Tl) crystal detectors

    Yoon, Y.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejon 34047 (Korea, Republic of); Park, H.K. [Center for Underground Physics, Institute for Basic Science (IBS), Daejon 34047 (Korea, Republic of); Basic Science, IBS-UST School, Daejeon 34047 (Korea, Republic of); Bhang, H.; Choi, J.H. [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Collaboration: The KIMS collaboration

    2016-06-01

    The results of a search for solar axions from the Korea Invisible Mass Search (KIMS) experiment at the Yangyang Underground Laboratory are presented. Low-energy electron-recoil events would be produced by conversion of solar axions into electrons via the axio-electric effect in CsI(Tl) crystals. Using data from an exposure of 34,596 kg⋅days, we set a 90 % confidence level upper limit on the axion-electron coupling, g{sub ae}, of 1.39×10{sup −11} for an axion mass less than 1 keV/c{sup 2}. This limit is lower than the indirect solar neutrino bound, and fully excludes QCD axions heavier than 0.48 eV/c{sup 2} and 140.9 eV/c{sup 2} for the DFSZ and KSVZ models respectively.

  10. Development of low background CsI(Tl) and NaI(Tl) crystals for WIMP search

    Lee, Hyun Su [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2015-08-17

    We have developed low background CsI(Tl) and NaI(Tl) crystals to search for weakly interacting massive particles as well as to verify the origin of the annual modulation signal observed by the DAMA/LIBRA experiment. Extensive studies about the contamination mechanisim of {sup 137}Cs in CsI powder lead to the growth of ultra-low-background CsI(Tl) crystals. Similar approaches for NaI(Tl) crystals have been applied to reduce internal backgrounds to less than 0.5 counts/kg/day/keV. Status and understanding of backgrounds and background reduction in NaI(Tl) crystals will be discussed.

  11. Light yield of a CsI(Tl) crystal under irradiation by protons with the energy from 3 to 15 MeV

    Dorchoman, D.; Konstantin, M.; Lazarovich, D.; Muntyanu, I.; Oganesyan, K.O.; Porokhovoj, S.Yu.

    1976-01-01

    Measurement results are presented of light yield in CsI(Tl) crystals at the irradiation by protons with the energy from 3 to 15 MeV. Plates of 100x100x2 mm size are used as CsI(Tl) scintillator samples. A brief analysis of possible sistematic errors is given which allows to estimate the total error upon the light yield valve determination equal to 0,5%. Measurement results of crystal light yield show that the dependence of CsI(Tl) light yield on proton energy is described by the straight line passing through the origin

  12. Pulse shaper for scintillation detectors with NaI(Tl) or CsI(Tl) crystals

    Novisov, B.S.; Maksimenko, A.S.; Baryshev, A.V.; Zhukov, A.V.

    1978-01-01

    The basic circuit of a signal shaper for scintillation detectors with NaI(Tl) and CsI(Tl) crystals is described. To increase amplitude resolution, it is suggested to integrate not the whole charge at the photomultiplier output, but a part of the charge during the initial 100 ns of the current pulse; the remaining part of the current signal is compensated directly at the photomultiplier anode by means of an electric circuit. The principal elements of the spectrometric signal shaper include an input transistor amplifier, a compensation circuit, a key element, a shaper amplifier of time pulses, a shaper of signal duration for controlling the key element, and an output spectrometric amplifier. This device, being used, one can shape pulses at durations of 100 ns and more. The shaper restoration time does not exceed 50 ns. When the shaper operates with NaI(Tl) crystals and at counting rate of 10 6 pulse/s, the amplitude resolution with and without the compensation circuit is 17% and 21% respectively

  13. Comparison of CsI(Tl) and CsI(Na) partially slotted crystals for high-resolution SPECT imaging

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Sakellios, N.; Karakatsanis, N.; Gektin, A.; Boyarintsev, A.; Pedash, V.; Gayshan, V.

    2006-01-01

    Dedicated systems based on Position Sensitive Photomultiplier Tubes (PSPMTs) coupled to scintillators, have been used over the past years for the construction of compact systems, suitable for applications such as small animal imaging and small organs imaging. Most of the proposed systems are based on fully pixelized scintillators. Previous studies have shown that partially slotted scintillators offer a good compromise between cost, energy resolution and spatial resolution. In this work, the performance of two sets of CsI(Tl) and CsI(Na) partially slotted crystals is compared. Initial results show that CsI(Tl) scintillators are more suitable for gamma-ray detection, since their performance in terms of sensitivity, spatial and energy resolution is superior than that of CsI(Na)

  14. Near threshold pulse shape discrimination techniques in scintillating CsI(Tl) crystals

    Wu, S.C.; Yue, Q.; Lai, W.P.; Li, H.B.; Li, J.; Lin, S.T.; Liu, Y.; Singh, V.; Wang, M.Z.; Wong, H.T.; Xin, B.; Zhou, Z.Y.

    2004-01-01

    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low-energy γ's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ-events are different. Several methods of pulse shape discrimination (PSD) are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. PSD becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments

  15. Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors

    Lee, H. S.; Bhang, H. C.; Choi, J. H.; Kim, D. W.; Kim, S. C.; Kim, S. K.; Kwak, J. W.; Lee, J.; Lee, J. H.; Lee, M. J.; Lee, S. J.; Myung, S. S.; Ryu, S.; Dao, H.; Li, J.; Li, X.; Li, Y. J.; Yue, Q.; Zhu, J. J.; Hahn, I. S.

    2007-01-01

    The Korea Invisible Mass Search (KIMS) experiment presents new limits on the weakly interacting massive particle (WIMP)-nucleon cross section using data from an exposure of 3409 kg·d taken with low-background CsI(Tl) crystals at the Yangyang Underground Laboratory. The most stringent limit on the spin-dependent interaction for a pure proton case is obtained. The DAMA signal region for both spin-independent and spin-dependent interactions for the WIMP masses greater than 20 GeV/c 2 is excluded by the single experiment with crystal scintillators

  16. Structure and scintillation properties of CsI(Tl) films on Si single crystal substrates

    Guo, Lina [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Shuang, E-mail: shuangliu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen, Dejun; Zhang, Shangjian; Liu, Yong; Zhong, Zhiyong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Falco, Charles M. [University of Arizona, College of Optical Sciences, AZ 85721 (United States)

    2016-10-30

    Highlights: • We obtained the desired micro-columnar structure of CsI(Tl) films on the orienting Si substrates. • We improved the micro-columnar structure of CsI(Tl) films under the relatively large deposition rate through using the substrate with a pre-deposited CsI nanolayer. • We modeled the interface structures between the CsI(Tl) films with (200) and (310) orientation and Si(111) substrates to explain the preferred orientation of film under the influence of the orienting substrate significantly. • We gained a new spectrum of the CsI(Tl) films peaked at 740 nm wavelength. - Abstract: CsI(Tl) scintillation films fabricated on glass substrates are widely applied for X-ray imaging because their ability to grow in micro-columnar structure and proper emission wavelength matching CCD cameras. But the coupling process between the CsI(Tl) films and Si-based photo detector would cause coupling loss. In this work, CsI(Tl) films were deposited on the orienting Si substrates and the Si substrates covered by the pre-deposited CsI nanolayers. Structure and scintillation properties of films were examined by using scanning electron microscopy, X-ray diffraction, photoluminescence and radioluminescent spectrum. The films deposited on the orienting Si substrates show the micro-columnar morphology with perfect single crystalline structure and the photoluminescence spectra with bimodal distribution. The performances of the films prepared on the pre-deposited CsI nanolayer, containing micro-columns structure and the light yield are improved.

  17. Structure and scintillation properties of CsI(Tl) films on Si single crystal substrates

    Guo, Lina; Liu, Shuang; Chen, Dejun; Zhang, Shangjian; Liu, Yong; Zhong, Zhiyong; Falco, Charles M.

    2016-01-01

    Highlights: • We obtained the desired micro-columnar structure of CsI(Tl) films on the orienting Si substrates. • We improved the micro-columnar structure of CsI(Tl) films under the relatively large deposition rate through using the substrate with a pre-deposited CsI nanolayer. • We modeled the interface structures between the CsI(Tl) films with (200) and (310) orientation and Si(111) substrates to explain the preferred orientation of film under the influence of the orienting substrate significantly. • We gained a new spectrum of the CsI(Tl) films peaked at 740 nm wavelength. - Abstract: CsI(Tl) scintillation films fabricated on glass substrates are widely applied for X-ray imaging because their ability to grow in micro-columnar structure and proper emission wavelength matching CCD cameras. But the coupling process between the CsI(Tl) films and Si-based photo detector would cause coupling loss. In this work, CsI(Tl) films were deposited on the orienting Si substrates and the Si substrates covered by the pre-deposited CsI nanolayers. Structure and scintillation properties of films were examined by using scanning electron microscopy, X-ray diffraction, photoluminescence and radioluminescent spectrum. The films deposited on the orienting Si substrates show the micro-columnar morphology with perfect single crystalline structure and the photoluminescence spectra with bimodal distribution. The performances of the films prepared on the pre-deposited CsI nanolayer, containing micro-columns structure and the light yield are improved.

  18. A study of the impact of radiation exposure on the uniformity of large CsI(Tl) crystals for the BaBar detector

    Hryn'ova, Tetiana; Kim, Peter; Kocian, Martin; Perl, Martin; Rogers, Howard; Schindler, Rafe H.; Wisniewski, William J.

    2004-01-01

    We describe an apparatus that allows simultaneous exposure of large CsI(Tl) crystals to ionizing radiation and precise measurement of the longitudinal changes in light yield of the crystals. We present herein the results from this device for exposures up to 10krad

  19. Photonic Crystal Nanocavity Arrays

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  20. Development of surgical gamma probes with TlBr semiconductors and CsI(Tl) scintillators crystals

    Costa, Fabio Eduardo da

    2006-01-01

    Radio guided surgery, using probes with radiation detectors, has been prominence in the medical area in the last decade. This technique consists in injecting a radioactive substance to concentrate in tumour and assist the localization during the surgical procedure. The radio guided surgeries allowing the identification of lymph node has revolutioned the behavior of tumour in initial stadium when are being spread by lymphatic way. The conditions imposed to the surgery due the proximity between some lymph nodes, demands of the probes, a small diameters and capacity of individual identification of these lymph nodes radiolabelled by a specific tracer. The international market supplies these probes with CdTe semiconductors and scintillators, but there is some time lack a promptly technical assistance in the Brazilian market. This work developed probes with national technology, using CsI(Tl) scintillators crystals and, in substitution to CdTe crystals semiconductors, the TlBr crystal, that is a new semiconductor detector in a world-wide development, with advantages in relation to the CdTe. Both crystals have been grown in IPEN. All the necessary electronics, specially, the preamplifier, that was also a restrictive factor for development of these types of probe in the country, have been developed with components found in the national market. Systematic measures of spatial resolution, spatial selectivity, maximum sensitivity and quality of the shielding have been carried the probes development. The results have shown that the probes, one with the CsI(Tl) crystal and another with TlBr semiconductor presented the requested performance in the international literature for radio guided probes. (author)

  1. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Joo, H.W.; Kim, G.B.; Kim, K.W.; Kim, S.C.; Kim, S.K.; Lee, J.H.; Lee, J.K.; Myung, S.S.; Hahn, I.S.; Jeon, E.J.; Kang, W.G.; Kim, Y.D.; Kim, Y.H.; Li, J.; Kim, H.J.; Leonard, D.S.

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137 Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  2. Particle gamma correlations in {sup 12}C measured with the CsI(Tl) based detector array CHIMERA

    Cardella, G., E-mail: cardella@ct.infn.it [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Acosta, L. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Amorini, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Castoldi, A. [INFN Sezione di Milano e Politecnico Milano (Italy); De Filippo, E. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Dell' Aquila, D. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Francalanza, L. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Gnoffo, B. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Guazzoni, C. [INFN Sezione di Milano e Politecnico Milano (Italy); Lanzalone, G. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Minniti, T.; Morgana, E.; Norella, S. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Pagano, A. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Pagano, E.V. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Papa, M.; Pirrone, S. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); and others

    2015-11-01

    The gamma decay of the first excited 4.44 MeV 2+level of {sup 12}C, populated by inelastic scattering of proton and {sup 16}O beams at various energies was studied in order to test γ-ray detection efficiency and the quality of angular distribution information given by the CsI(Tl) detectors of the 4π CHIMERA array. The γ-decay was measured in coincidence with ejectile scattered particles in an approximately 4π geometry allowing to extract the angular distribution in the reference frame of recoiling {sup 12}C target. The typical sin{sup 2} (2θ) behavior of angular distribution was observed in the case of {sup 16}O beam. Besides that, for the proton beam, in order to explain the observed distribution, the addition of an incoherent flat contribution was required. This latter is the effect of proton spin flip events allowing the population of M=±1 magnetic substates, that is not possible in reactions induced by {sup 16}O beam. A comparison with previously collected data, obtained measuring only in and out of plane proton-γ-ray coincidences, confirms the good quality of the angular distribution information given by the apparatus. Possible applications with radioactive beams are outlined.

  3. Studies of scintillation light nonproportionality of ZnSe(Te), CsI(Tl) and YAP(Ce) crystals using heavy ions

    Klamra, W; Kapusta, M; Kérek, A; Moszynski, M; Norlin, L O; Novák, D; Possnert, G

    2002-01-01

    The scintillation light yield for ZnSe(Te), CsI(Tl) and YAP(Ce) crystals have been studied with alpha particles, sup 1 sup 2 C and sup 8 sup 1 Br in the energy region 2.8-42.2 MeV. A nonproportional behavior was observed, mostly pronounced for alpha particles on YAP(Ce). The results are understood in terms of delta-rays effect.

  4. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Sekiya, H.; Hattori, K.; Kubo, H.; Miuchi, K.; Nagayoshi, T.; Nishimura, H.; Okada, Y.; Orito, R.; Takada, A.; Takeda, A.; Tanimori, T.; Ueno, K.

    2006-01-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6x6x20mm 3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to read out every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137 Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors

  5. Effect of crystal shape, size and reflector type on operation characteristics of gamma-radiation detectors based on CsI(Tl) and CsI(Na) scintillators

    Globus, M.E.; Grinyov, B.V.; Ratner, M.A.

    1996-01-01

    Operation characteristics of CsI(Tl) and CsI(Na) scintillation detectors, to a large degree connected with light collection in crystals, are calculated for various shapes, sizes and reflecting surface types. Allowance is made for the true light reflection indicatrix which is characterized by the effective mirror constituent of the reflected light, p. Its value , averaged over incidence angle, is used for the classification of reflecting surfaces. Operation characteristics (in particular, spectrometric ones) are found to be essentially dependent on . Tables of operation characteristics, given below, permit one to make inferential conclusions on an optimal combination of the shape, sizes an the reflecting surface version

  6. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  7. Novel laser-processed CsI:Tl detector for SPECT

    Sabet, H., E-mail: hsabet@mgh.harvard.edu; Uzun-Ozsahin, D.; El-Fakhri, G. [Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 (United States); Bläckberg, L. [Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 and Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden)

    2016-05-15

    Purpose: The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. Methods: The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm{sup 2} and 0.625 × 0.625 mm{sup 2} pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. Results: The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. Conclusions: The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner.

  8. Novel laser-processed CsI:Tl detector for SPECT

    Sabet, H.; Uzun-Ozsahin, D.; El-Fakhri, G.; Bläckberg, L.

    2016-01-01

    Purpose: The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. Methods: The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm"2 and 0.625 × 0.625 mm"2 pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. Results: The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. Conclusions: The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner.

  9. Factors which define the α/γ ratio in CsI:Tl crystals

    Kudin, Alexander M.; Sysoeva, Elena P.; Sysoeva, Elena V.; Trefilova, Larisa N.; Zosim, Dmitry I.

    2005-01-01

    Dependences of light yield and α/γ ratio on the Tl concentration have been studied within a wide range of shaping times. It is shown that the α/γ ratio essentially depends on the Tl concentration. Proper combination of the Tl concentration and optimum shaping time in electronics allows to obtain detectors with rather high light output for γ-rays, α-particles and α/γ ratio values. It has been shown that both the light yield at α-excitation and the α/γ-ratio depend on the time of crystal storage after polishing. On the basis of the idea of the formation of deformation-induced point defects in a thin surface-adjacent layer, the causes of the temporary increasing in light yield for α-particle are explained. An explanation is given of the results obtained by Gwin and Murray concerning the fact that the α/γ ratio is practically independent on Tl concentration

  10. Composite detector for mixed radiations based on CsI(Tl) and dispersions of small ZnSe(Te) crystals

    Ryzhikov, V.; Gal'chinetskii, L.; Katrunov, K.; Lisetskaya, E.; Gavriluk, V.; Zelenskaya, O.; Starzhynskiy, N.; Chernikov, V.

    2005-01-01

    A new large area detector of high-energy X-ray and β-radiation has been designed and studied. A composite material based on small-crystalline ZnSe(Te) was applied onto the wide surface of a light guide. An experimental specimen has been prepared, which showed β-sensitivity C β =5.5cm 2 . The spectrograms of a 90 Sr+ 90 Y β-source obtained with the specimen under study make it possible to evaluate the age of the source by the ratio of low- and high-energy regions of the spectrum. The combined detector (CD) comprises a single crystalline plate of ZnSe(Te) placed onto the output window of a scintillating transparent light guide made of CsI(Tl) in the shape of a truncated pyramid. The CsI(Tl) light guide is used to create an additional channel for detection of γ-radiation, as well as for protecting the photodiode from the penetrating radiation. It is shown that introduction of the light guide does not worsen the energy resolution characteristics of ZnSe(Te). Separate detection of α- and γ-radiation has been achieved under simultaneous excitation by 239 Pu (ZnSe(Te), R α =6%) and 241 Am (CsI(Tl), R γ =20%). The use of selective optical filters allows separation of the peaks of total absorption (p.t.a.) in the case of their superposition

  11. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  12. Pulse shape discrimination properties of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B single crystal in comparison with CsI:Tl

    Rawat, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Netrakanti, P.K.; Kashyap, V.K.S.; Mitra, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, A.K.; Desai, D.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, G. Anil [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-21

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B and CsI:Tl were grown by Czochralski and Bridgman techniques, respectively. While both the crystals exhibited similar emission at about 550 nm, their scintillation decay times showed significantly different characteristics. The average scintillation decay time of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal was found to be about 284 ns for alpha excitation compared to 108 ns measured for a gamma source. On the other hand in CsI:Tl crystals, the alpha excitation resulted in a lower average decay time of 600 ns compared to 1200 ns with gamma excitation. Their pulse shape discrimination (PSD) for gamma and alpha radiations were studied by coupling the scintillators with photomultiplier tube or SiPM and employing an advanced digitizer as well as a conventional zero-crossing setup. In spite of having a poor α/γ light yield ratio, the PSD figure of merit and the difference of zero-crossing time in Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystals were found to be superior in comparison to CsI:Tl crystals.

  13. Timing characteristics of Ce doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} single crystals in comparison with CsI(Tl) scintillators

    Tyagi, M.; Singh, A.K.; Singh, S.G.; Sen, S.; Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Desai, V.V.; Nayak, B.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-10-15

    Single crystals of Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce with B codopants were successfully grown using the Czochralski technique. The timing characteristics of the crystal was measured by coupling the crystal to photomultiplier tubes (PMT) or silicon photodiodes [Si(PIN)]. The two prompt γ-rays emitted in a cascade from {sup 60}Co or {sup 22}Na source were detected in coincidence using Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:Ce,B crystal detectors and a BaF{sub 2} detector. The time resolution of these crystals are observed to be better than that measured for CsI:Tl crystal coupled to PMT or Si(PIN) in an identical measurement setup. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Recent progress in the development of CsI(Tl) crystal-Si-photodiode spectrometric detection assemblies

    Semynozhenko, V.P.; Grinyov, B.V.; Nekrasov, V.V.; Borodenko, Yu.A.

    2005-01-01

    Highly sensitive spectrometric γ-detection assemblies are developed using a comprehensive approach (optimization of crystal growth conditions as well as of treatment and packing of scintillators, creation of low-noise charge-sensitive preamplifiers and shapers). The detection assemblies with CsI(Tl)≤100 cm 3 have a sensitivity of about 20 pulse/s(mcR/h), their energy resolution with respect to 137 Cs γ-line being ≤8.5%. The assemblies with lesser scintillator volumes (1-5 cm 3 ) provide a resolution lower than 6% with respect to 137 Cs and ≤40% with respect to 241 Am

  15. Coupled Photonic Crystal Cavity Array Laser

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  16. Liquid crystal-based hydrophone arrays

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  17. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    Saengkaew, Phannee; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho [Chulalongkorn University, Department of Nuclear Engineering, Faculty of Engineering, Bangkok (Thailand); Sanorpim, Sakuntam [Chulalongkorn University, Department of Physics, Faculty of Science, Bangkok (Thailand); Jitpukdee, Manit [Kasetsart University, Department of Applied Radiation and Isotope, Faculty of Science, Bangkok (Thailand); Yordsri, Visittapong; Thanachayanont, Chanchana [Ministry of Science and Technology, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani (Thailand); Nuntawong, Noppadon [Ministry of Science and Technology, National Electronic and Computer Technology Center, National Science and Technology Development Agency, Pathumthani (Thailand)

    2016-08-15

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ∝540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ∝600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the

  18. The 8{pi} miniball charged-particle detector array

    Ball, G C; Galindo-Uribarri, A; Andrews, H R; Bray, N C; Lori, J D; Radford, D C; Smith, L V; Tapp, G A; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Drake, T E [Toronto Univ., ON (Canada). Dept. of Physics; Waddington, J C [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics

    1992-08-01

    A modular miniature array of 24 CsI(Tl) crystals (0.5 cm) thick coupled to large area photodiodes has been constructed to operate inside the 8{pi} spectrometer. The array was designed to have good resolution, high efficiency, and adequate granularity for detecting light charged particles emitted in coincidence with the gamma rays from the decay of high-spin states populated in heavy-ion fusion-evaporation reactions. 17 refs., 2 tabs., 3 figs.

  19. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems

    Ryzhikov, V.D.; Opolonin, A.D.; Pashko, P.V.; Svishch, V.M.; Volkov, V.G.; Lysetskaya, E.K.; Kozin, D.N.; Smith, C.

    2005-01-01

    Results of experimental studies of detector arrays scintillator-photodiode (S-PD) and scintillator-photoreceiving device (S-PRD) used for X-ray digital radiography have shown that there exist further possibilities to increase spatial resolution of this system up to 2-3 line pairs per mm. Theoretical analysis and experimental studies show that the two-energy detection method not only allows one to detect organics on the background of metal, but also substantially increases (by 3-5 times) the detection ability of the system as a whole, especially if parameters of the S-PD pair are optimized, in particular, when ZnSe(Te) is used in the low-energy circuit. A possibility to distinguish, in principle, between substances with insignificant differences in atomic number has been theoretically proven--by transition to multi-energy radiography. 3D-imaging has been realized using S-PD detector arrays. On base of theoretical and experimental search was installation of several types of inspection systems for control objects with square size 0.4x0.6-2.5x3.5 m

  20. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    Gruber, Gregory J. [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera.

  1. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    Gruber, Gregory J.

    2000-01-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm 3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera

  2. Concentration dependence of the light yield and energy resolution of NaI:Tl and CsI:Tl crystals excited by gamma, soft X-rays and alpha particles

    Trefilova, L N; Kovaleva, L V; Zaslavsky, B G; Zosim, D I; Bondarenko, S K

    2002-01-01

    Based on the analysis of light yield dependence on activator concentration for NaI:Tl and CsI:Tl excited by gamma-rays, soft X-rays and alpha-particles, an explanation of the effect of energy resolution enhancement with the rise of Tl content has been proposed. Based on the concept regarding the electron track structure, we proposed an alternative explanation of the intrinsic resolution value. The concept does not take into account the non-proportional response to electrons of different energies and is based on the statistic fluctuation of scintillation photon number formed outside and inside the regions of higher ionization density.

  3. Temperature dependence of CsI(Tl) gamma-ray excited scintillation characteristics

    1993-01-01

    Gamma-ray excited emission spectrum, absolute scintillation yield, rise and decay time constants, and thermoluminescence emissions of CsI(Tl) were measured at -100 to +50 C, for crystals from 4 different vendors. The thermoluminescence glow curves were the only property that varied significantly from crystal to crystal; room temperature operation in current mode could be susceptible to temperature fluctuations. The CsI(Tl) emission spectrum has emission bands peaking around 400 and 560 nm; the former band disappears between -50 and -75 C. The RT absolute scintillation yield was calculated to be 65,500±4,100 photons/MeV. The two primary decay time constants increases about exponentially with inverse temperature. An ultra-fast decay component was confirmed. Applications are discussed

  4. Investigating the origins of double photopeaks in CsI:Tl samples through activator mapping

    Onken, Drew R.; Gridin, Sergii; Williams, Richard T.; Williams, Charles B.; Donati, George L.; Gayshan, Vadim; Vasyukov, Sergey; Gektin, Alex

    2018-06-01

    Careful examination of the origins of double photopeaks in CsI:Tl provides a foundation for exploring the relationship between activator homogeneity and photopeak resolution in scintillators. In rare cases, certain CsI:Tl crystals exhibit a second photopeak in the pulse-height spectrum. A combination of optical mapping and ICP-MS measurements reveals the presence of two distinct regions with differing Tl concentrations in these crystals. The oscillator strength of the 299 nm absorption A-band of Tl in CsI was measured to be 0.0526 ± 0.0008; this parameter can be used to quantify activator concentration from the optical absorption. Using published measurements of luminescence intensity versus Tl concentration, the distributions of Tl measured from optical absorption maps of the samples were reconstructed into photopeaks in good agreement with experiment. The distribution of Tl concentrations in these particular crystals allowed examining luminescence pulse shape as a function of Tl concentration.

  5. A cadmium-zinc-telluride crystal array spectrometer

    McHugh, H. R.; Quam, W.; DeVore, T.; Vogle, R.; Weslowski, J.

    2003-01-01

    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5

  6. 2D director calculation for liquid crystal optical phased array

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  7. Results from an investigation of the physical origins of nonproportionality in CsI(Tl)

    Asztalos, S.; Hennig, W.; Warburton, W. K.

    2011-10-01

    The relative scintillation response per energy deposited by Compton electrons, or nonproportionality, has traditionally been considered an intrinsic scintillator property. However, such an interpretation is inconsistent with recent results that show nonproportionality to depend on external factors such as shaping time, temperature and supplier. Apparently, at least some of the overall nonproportionality has an extrinsic origin. In this work we describe the results from a suite of measurements designed to test the hypothesis that nonproportionality in CsI(Tl) material has an extrinsic component that correlates with impurity levels. Our choice of material was motivated by the excellent energy resolution observed in one bulk crystal (6.4%)—a marked departure from that measured with conventional CsI(Tl) stock (8-8.5%). Six bulk CsI(Tl) crystals were procured and diced into 44 wafers. Using X-ray fluorescence techniques no conclusive evidence for impurities was found in any of the wafers at the 1-50 ppm level. One crystal exhibited a distinct correlation among energy resolution, decay lifetimes, nonproportionality and a very low level of Tl doping.

  8. Results from an investigation of the physical origins of nonproportionality in CsI(Tl)

    Asztalos, S.; Hennig, W.; Warburton, W.K.

    2011-01-01

    The relative scintillation response per energy deposited by Compton electrons, or nonproportionality, has traditionally been considered an intrinsic scintillator property. However, such an interpretation is inconsistent with recent results that show nonproportionality to depend on external factors such as shaping time, temperature and supplier. Apparently, at least some of the overall nonproportionality has an extrinsic origin. In this work we describe the results from a suite of measurements designed to test the hypothesis that nonproportionality in CsI(Tl) material has an extrinsic component that correlates with impurity levels. Our choice of material was motivated by the excellent energy resolution observed in one bulk crystal (6.4%)-a marked departure from that measured with conventional CsI(Tl) stock (8-8.5%). Six bulk CsI(Tl) crystals were procured and diced into 44 wafers. Using X-ray fluorescence techniques no conclusive evidence for impurities was found in any of the wafers at the 1-50 ppm level. One crystal exhibited a distinct correlation among energy resolution, decay lifetimes, nonproportionality and a very low level of Tl doping.

  9. Epitaxial Ge-crystal arrays for X-ray detection

    Kreiliger, T; Falub, C V; Müller, E; Känel, H von; Isa, F; Isella, G; Chrastina, D; Bergamaschini, R; Marzegalli, A; Miglio, L; Kaufmann, R; Niedermann, P; Neels, A; Dommann, A; Meduňa, M

    2014-01-01

    Monolithic integration of an X-ray absorber layer on a Si CMOS chip might be a potentially attractive way to improve detector performance at acceptable costs. In practice this requires, however, the epitaxial growth of highly mismatched layers on a Si-substrate, both in terms of lattice parameters and thermal expansion coefficients. The generation of extended crystal defects, wafer bowing and layer cracking have so far made it impossible to put the simple concept into practice. Here we present a way in which the difficulties of fabricating very thick, defect-free epitaxial layers may be overcome. It consists of an array of densely packed, three-dimensional Ge-crystals on a patterned Si(001) substrate. The finite gap between neighboring micron-sized crystals prevents layer cracking and substrate bowing, while extended defects are driven to the crystal sidewalls. We show that the Ge-crystals are indeed defect-free, despite the lattice misfit of 4.2%. The electrical characteristics of individual Ge/Si heterojunction diodes are obtained from in-situ measurements inside a scanning electron microscope. The fabrication of monolithically integrated detectors is shown to be compatible with Si-CMOS processing

  10. Distributed hydrophone array based on liquid crystal cell

    Brodzeli, Zourab; Ladouceur, Francois; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir; Guo, Grace Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.

    2012-02-01

    We describe a fibre optic hydrophone array system that could be used for underwater acoustic surveillance applications e.g. military, counter terrorist and customs authorities in protecting ports and harbors, offshore production facilities or coastal approaches as well as various marine applications. In this paper we propose a new approach to underwater sonar systems using voltage-controlled Liquid Crystals (LC) and simple multiplexing method. The proposed method permits measurements of sound under water at multiple points along an optical fibre using low cost components (LC cells), standard single mode fibre, without complex interferometric measurement techniques, electronics or demodulation software.

  11. SPAD array chips with full frame readout for crystal characterization

    Fischer, Peter; Blanco, Roberto; Sacco, Ilaria; Ritzert, Michael [Heidelberg University (Germany); Weyers, Sascha [Fraunhofer Institute for Microelectronic Circuits and Systems (Germany)

    2015-05-18

    We present single photon sensitive 2D camera chips containing 88x88 avalanche photo diodes which can be read out in full frame mode with up to 400.000 frames per second. The sensors have an imaging area of ~5mm x 5mm covered by square pixels of ~56µm x 56µm with a ~55% fill factor in the latest chip generation. The chips contain a self triggering logic with selectable (column) multiplicities of up to >=4 hits within an adjustable coincidence time window. The photon accumulation time window is programmable as well. First prototypes have demonstrated low dark count rates of <50kHz/mm2 (SPAD area) at 10 degree C for 10% masked pixels. One chip version contains an automated readout of the photon cluster position. The readout of the detailed photon distribution for single events allows the characterization of light sharing, optical crosstalk etc., in crystals or crystal arrays as they are used in PET instrumentation. This knowledge could lead to improvements in spatial or temporal resolution.

  12. Effects of film thickness on scintillation characteristics of columnar CsI:Tl films exposed to high gamma radiation doses

    Shinde, Seema; Singh, S.G.; Sen, S.; Gadkari, S.C., E-mail: gadkari@barc.gov.in

    2016-02-21

    Oriented columnar films of Tl doped CsI (CsI:Tl) of varying thicknesses from 50 µm to 1000 µm have been deposited on silica glass substrates by a thermal evaporation technique. The SEM micrographs confirmed the columnar structure of the film while the powder X-ray diffraction pattern recorded for the films revealed a preferred orientation of the grown columns along the <200> direction. Effects of high energy gamma exposure up to 1000 Gy on luminescence properties of the films were investigated. Results of radio-luminescence, photo-luminescence and scintillation studies on the films are compared with those of a CsI:Tl single crystal with similar thickness. A possible correlation between the film thicknesses and radiation damage in films has been observed. - Highlights: • CsI:Tl films of different thicknesses deposited for γ and α detection. • Pulse-height spectra found to degrade with increasing thickness. • Radiation damage is found more in films than single crystal of comparable thickness. • Detection efficiency increases for γ while it is invariant for α beyond 50 µm.

  13. Effects of film thickness on scintillation characteristics of columnar CsI:Tl films exposed to high gamma radiation doses

    Shinde, Seema; Singh, S.G.; Sen, S.; Gadkari, S.C.

    2016-01-01

    Oriented columnar films of Tl doped CsI (CsI:Tl) of varying thicknesses from 50 µm to 1000 µm have been deposited on silica glass substrates by a thermal evaporation technique. The SEM micrographs confirmed the columnar structure of the film while the powder X-ray diffraction pattern recorded for the films revealed a preferred orientation of the grown columns along the direction. Effects of high energy gamma exposure up to 1000 Gy on luminescence properties of the films were investigated. Results of radio-luminescence, photo-luminescence and scintillation studies on the films are compared with those of a CsI:Tl single crystal with similar thickness. A possible correlation between the film thicknesses and radiation damage in films has been observed. - Highlights: • CsI:Tl films of different thicknesses deposited for γ and α detection. • Pulse-height spectra found to degrade with increasing thickness. • Radiation damage is found more in films than single crystal of comparable thickness. • Detection efficiency increases for γ while it is invariant for α beyond 50 µm.

  14. Theoretical analysis and experimental evaluation of a CsI(Tl) based electronic portal imaging system

    Sawant, Amit; Zeman, Herbert; Samant, Sanjiv; Lovhoiden, Gunnar; Weinberg, Brent; DiBianca, Frank

    2002-01-01

    This article discusses the design and analysis of a portal imaging system based on a thick transparent scintillator. A theoretical analysis using Monte Carlo simulation was performed to calculate the x-ray quantum detection efficiency (QDE), signal to noise ratio (SNR) and the zero frequency detective quantum efficiency [DQE(0)] of the system. A prototype electronic portal imaging device (EPID) was built, using a 12.7 mm thick, 20.32 cm diameter, CsI(Tl) scintillator, coupled to a liquid nitrogen cooled CCD TV camera. The system geometry of the prototype EPID was optimized to achieve high spatial resolution. The experimental evaluation of the prototype EPID involved the determination of contrast resolution, depth of focus, light scatter and mirror glare. Images of humanoid and contrast detail phantoms were acquired using the prototype EPID and were compared with those obtained using conventional and high contrast portal film and a commercial EPID. A theoretical analysis was also carried out for a proposed full field of view system using a large area, thinned CCD camera and a 12.7 mm thick CsI(Tl) crystal. Results indicate that this proposed design could achieve DQE(0) levels up to 11%, due to its order of magnitude higher QDE compared to phosphor screen-metal plate based EPID designs, as well as significantly higher light collection compared to conventional TV camera based systems

  15. A BaF2 crystal array for high energy -ray measurements

    A very well-known such array is called two-arm-photon- spectrometer (TAPS) [1]. It consists of large (25 cm long) hexagonal BaF¾ crystals ar- ranged in packs of 64 crystals. ... light which may not reach the photomultiplier tube. A sketch of the ...

  16. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  17. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging

    Lazaro, D; Buvat, I; Loudos, G; Strul, D; Santin, G; Giokaris, N; Donnarieix, D; Maigne, L; Spanoudaki, V; Styliaris, S; Staelens, S; Breton, V

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT4 application for tomographic emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small-animal imaging and consisting of a CsI(Tl) crystal array coupled to a position-sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99m Tc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 μm. The difference between experimental and simulated system sensitivities for different source-to-collimator distances was within 2%. Simulated and experimental scatter fractions in a [98-82 keV] energy window differed by less than 2% for sources located in water. Simulated and experimental energy spectra agreed very well between 40 and 180 keV. These results demonstrate the ability and flexibility of GATE for simulating original detector designs. The main weakness of GATE concerns the long computation time it requires: this issue is currently under investigation by the GEANT4 and the GATE collaborations

  18. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing

    Mark G. Scullion

    2014-11-01

    Full Text Available We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

  19. Sub-threshold wavelength splitting in coupled photonic crystal cavity arrays

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    Coupled photonic crystal (PhC) cavity arrays have recently been found to increase the output power of nanocavity lasers by coherent coupling of a large number of cavities [1]. We have measured the sub-threshold behaviour of such structures in order to gain better understanding of the mode structure....... PhC structures defined by circular holes placed in a quadratic lattice with pitch a=280 nm were fabricated in a GaAs membrane and cavity arrays were realized by introducing single missing holes with intracavity hole distances of two, three, five and seven holes. Arrays with different number...... of coupled cavities were fabricated and characterized using photoluminescence measurements of quantum dots embedded in the GaAs PhC membrane. Since the collection spot size was ~2.5 μm and therefore small compared to the arrays, spectra were taken at several positions of each array....

  20. A BaF2 crystal array for high energy-ray measurements

    Abstract. We shall discuss about the scientific motivation and construction of a 7 × 7 BaF2 crystal array at Variable Energy Cyclotron Centre, Calcutta. This detector would be used to measure high energy -ray photons from GDR decay and proton–neutron bremsstrahlung reactions at the present 88'' cyclotron and upcoming ...

  1. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  2. Low-cost scalable quartz crystal microbalance array for environmental sensing

    Anazagasty, Cristain [University of Puerto Rico; Hianik, Tibor [Comenius University, Bratislava, Slovakia; Ivanov, Ilia N [ORNL

    2016-01-01

    Proliferation of environmental sensors for internet of things (IoT) applications has increased the need for low-cost platforms capable of accommodating multiple sensors. Quartz crystal microbalance (QCM) crystals coated with nanometer-thin sensor films are suitable for use in high-resolution (~1 ng) selective gas sensor applications. We demonstrate a scalable array for measuring frequency response of six QCM sensors controlled by low-cost Arduino microcontrollers and a USB multiplexer. Gas pulses and data acquisition were controlled by a LabVIEW user interface. We test the sensor array by measuring the frequency shift of crystals coated with different compositions of polymer composites based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) while films are exposed to water vapor and oxygen inside a controlled environmental chamber. Our sensor array exhibits comparable performance to that of a commercial QCM system, while enabling high-throughput 6 QCM testing for under $1,000. We use deep neural network structures to process sensor response and demonstrate that the QCM array is suitable for gas sensing, environmental monitoring, and electronic-nose applications.

  3. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130 Te. An upper limit for neutrinoless decay half life of 2.1 x 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed. (orig.)

  4. Alpha-gamma pulse shape discrimination in CsI:Tl, CsI:Na and BaF sub 2 scintillators

    Dinca, L E; Haas, J; Bom, V R; Eijk, C W E

    2002-01-01

    Some scintillating materials offer the possibility of measuring well separated alpha and gamma scintillation response using a single crystal. Eventually aiming at thermal neutron detection using sup 6 Li or sup 1 sup 0 B admixture, pulse shape discrimination measurements were made on three scintillators: CsI:Tl, CsI:Na and pure BaF sub 2 crystals. A very good alpha/gamma discrimination was obtained using sup 2 sup 2 Na, sup 2 sup 4 sup 1 Am (gamma) and sup 2 sup 4 sup 4 Cm (alpha) radioactive sources.

  5. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  6. Development of an application specific scintimammography detector based on a crystal scintillator array and a PSPMT

    Majewski, S; Goode, A; Kross, B J; Steinbach, D; Weisenberger, A; Williams, M; Wojci, R

    1998-01-01

    We report the results of studies conducted with small field of view scintimammography camera based on a position-sensitive photomultiplier tube (5'' Hamamatsu R3292) and several pixelized crystal scintillator arrays made of YAP, CsI(Na) and NaI(Tl) scintillators. Laboratory tests and pre-clinical phantom studies were conducted to compare and optimize the performances of the prototypes with special emphasis on spatial resolution (approx 2-3mm) and sufficient energy resolution for scatter rejection.

  7. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  8. Sliding three-phase contact line of printed droplets for single-crystal arrays

    Kuang, Minxuan; Wu, Lei; Li, Yifan; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-01-01

    Controlling the behaviours of printed droplets is an essential requirement for inkjet printing of delicate three-dimensional (3D) structures or high-resolution patterns. In this work, molecular deposition and crystallization are regulated by manipulating the three-phase contact line (TCL) behaviour of the printed droplets. The results show that oriented single-crystal arrays are fabricated based on the continuously sliding TCL. Owing to the sliding of the TCL on the substrate, the outward capillary flow within the evaporating droplet is suppressed and the molecules are brought to the centre of the droplet, resulting in the formation of a single crystal. This work provides a facile strategy for controlling the structures of printed units by manipulating the TCL of printed droplets, which is significant for realizing high-resolution patterns and delicate 3D structures. (paper)

  9. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  10. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    Lee, Seung-Jae; Lee, Chaeyeong [Department of Radiological Science, Yonsei University, Wonju 26493 (Korea, Republic of); Kang, Jihoon, E-mail: ray.jihoon.kang@gmail.com [Department of Biomedical Engineering, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626 (Korea, Republic of); Chung, Yong Hyun, E-mail: ychung@yonsei.ac.kr [Department of Radiological Science, Yonsei University, Wonju 26493 (Korea, Republic of)

    2017-01-21

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  11. Spherical porphyrin sensor array based on encoded colloidal crystal beads for VOC vapor detection.

    Xu, Hua; Cao, Kai-Di; Ding, Hai-Bo; Zhong, Qi-Feng; Gu, Hong-Cheng; Xie, Zhuo-Ying; Zhao, Yuan-Jin; Gu, Zhong-Ze

    2012-12-01

    A spherical porphyrin sensor array using colloidal crystal beads (CCBs) as the encoding microcarriers has been developed for VOC vapor detection. Six different porphyrins were coated onto the CCBs with distinctive encoded reflection peaks via physical adsorption and the sensor array was fabricated by placing the prepared porphyrin-modified CCBs together. The change in fluorescence color of the porphyrin-modified CCBs array serves as the detection signal for discriminating between different VOC vapors and the reflection peak of the CCBs serves as the encoding signal to distinguish between different sensors. It was demonstrated that the VOC vapors detection using the prepared sensor array showed excellent discrimination: not only could the compounds from the different chemical classes be easily differentiated (e.g., alcohol vs acids vs ketones) but similar compounds from the same chemical family (e.g., methanol vs ethanol) and the same compound with different concentration ((e.g., Sat. ethanol vs 60 ppm ethanol vs 10 ppm ethanol) could also be distinguished. The detection reproducibility and the humidity effect were also investigated. The present spherical sensor array, with its simple preparation, rapid response, high sensitivity, reproducibility, and humidity insensitivity, and especially with stable and high-throughput encoding, is promising for real applications in artificial olfactory systems.

  12. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with

  13. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by cove......Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown...... that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can...... perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications. © 2015 AIP Publishing LLC....

  14. Theoretical model and experimental verification on the PID tracking method using liquid crystal optical phased array

    Wang, Xiangru; Xu, Jianhua; Huang, Ziqiang; Wu, Liang; Zhang, Tianyi; Wu, Shuanghong; Qiu, Qi

    2017-02-01

    Liquid crystal optical phased array (LC-OPA) has been considered with great potential on the non-mechanical laser deflector because it is fabricated using photolithographic patterning technology which has been well advanced by the electronics and display industry. As a vital application of LC-OPA, free space laser communication has demonstrated its merits on communication bandwidth. Before data communication, ATP (acquisition, tracking and pointing) process costs relatively long time to result in a bottle-neck of free space laser communication. Meanwhile, dynamic real time accurate tracking is sensitive to keep a stable communication link. The electro-optic medium liquid crystal with low driving voltage can be used as the laser beam deflector. This paper presents a fast-track method using liquid crystal optical phased array as the beam deflector, CCD as a beacon light detector. PID (Proportion Integration Differentiation) loop algorithm is introduced as the controlling algorithm to generate the corresponding steering angle. To achieve the goal of fast and accurate tracking, theoretical analysis and experimental verification are demonstrated that PID closed-loop system can suppress the attitude random vibration. Meanwhile, theoretical analysis shows that tracking accuracy can be less than 6.5μrad, with a relative agreement with experimental results which is obtained after 10 adjustments that the tracking accuracy is less than12.6μrad.

  15. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  16. An electrically tunable plenoptic camera using a liquid crystal microlens array

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-01-01

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF

  17. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing

    Kottapalli, A G P; Asadnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M S

    2012-01-01

    In order to perform underwater surveillance, autonomous underwater vehicles (AUVs) require flexible, light-weight, reliable and robust sensing systems that are capable of flow sensing and detecting underwater objects. Underwater animals like fish perform a similar task using an efficient and ubiquitous sensory system called a lateral-line constituting of an array of pressure-gradient sensors. We demonstrate here the development of arrays of polymer microelectromechanical systems (MEMS) pressure sensors which are flexible and can be readily mounted on curved surfaces of AUV bodies. An array of ten sensors with a footprint of 60 (L) mm × 25 (W) mm × 0.4 (H) mm is fabricated using liquid crystal polymer (LCP) as the sensing membrane material. The flow sensing and object detection capabilities of the array are illustrated with proof-of-concept experiments conducted in a water tunnel. The sensors demonstrate a pressure sensitivity of 14.3 μV Pa −1 . A high resolution of 25 mm s −1 is achieved in water flow sensing. The sensors can passively sense underwater objects by transducing the pressure variations generated underwater by the movement of objects. The experimental results demonstrate the array’s ability to detect the velocity of underwater objects towed past by with high accuracy, and an average error of only 2.5%. (paper)

  18. The development of a single-crystal fiber-array scintillator area detector

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  19. Diamond turning of small Fresnel lens array in single crystal InSb

    Jasinevicius, R G; Duduch, J G; Cirino, G A; Pizani, P S

    2013-01-01

    A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors. (paper)

  20. Equivalent thermal history reconstruction from a partially crystallized glass-ceramic sensor array

    Heeg, Bauke

    2015-11-01

    The basic concept of a thermal history sensor is that it records the accumulated exposure to some unknown, typically varying temperature profile for a certain amount of time. Such a sensor is considered to be capable of measuring the duration of several (N) temperature intervals. For this purpose, the sensor deploys multiple (M) sensing elements, each with different temperature sensitivity. At the end of some thermal exposure for a known period of time, the sensor array is read-out and an estimate is made of the set of N durations of the different temperature ranges. A potential implementation of such a sensor was pioneered by Fair et al. [Sens. Actuators, A 141, 245 (2008)], based on glass-ceramic materials with different temperature-dependent crystallization dynamics. In their work, it was demonstrated that an array of sensor elements can be made sensitive to slight differences in temperature history. Further, a forward crystallization model was used to simulate the variations in sensor array response to differences in the temperature history. The current paper focusses on the inverse aspect of temperature history reconstruction from a hypothetical sensor array output. The goal of such a reconstruction is to find an equivalent thermal history that is the closest representation of the true thermal history, i.e., the durations of a set of temperature intervals that result in a set of fractional crystallization values which is closest to the one resulting from the true thermal history. One particular useful simplification in both the sensor model as well as in its practical implementation is the omission of nucleation effects. In that case, least squares models can be used to approximate the sensor response and make reconstruction estimates. Even with this simplification, sensor noise can have a destabilizing effect on possible reconstruction solutions, which is evaluated using simulations. Both regularization and non-negativity constrained least squares

  1. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  2. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Arafa Safia

    2017-01-01

    Full Text Available We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  3. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  4. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  5. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays.

    Calva-Coraza, E; Alva-Sánchez, H; Murrieta-Rodríguez, T; Martínez-Dávalos, A; Rodríguez-Villafuerte, M

    2017-10-01

    We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137 Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals

    Ziegler, S.I.; Pichler, B.J.; Rafecas, M.; Schwaiger, M.

    2001-01-01

    rats and mice showed the feasibility of in vivo imaging using this PET scanner. The first LSO-APD prototype tomograph has been successfully introduced for in vivo animal imaging. APD arrays in combination with LSO crystals offer new design possibilities for positron tomographs with finely granulated detector channels. (orig.)

  7. Using the combination CsI(Tl) + photodiode for identification and energy measurement of light particles

    Guinet, D.; Chambon, B.; Cheynis, B.; Demeyer, A.; Drain, D.; Hu, X.C.; Pastor, C.; Vagneron, L.; Zaid, K.; Giorni, A.; Heuer, D.; Lleres, A.; Viano, J.B.

    1989-01-01

    The feasibility of discriminating light charged particles in charge and mass using the CsI(Tl) + photodiode combination is demonstrated. Experiment layout and results for a test using a beam of 30 MeV/nucleon α particles impinging on self-supporting gold and aluminium targets are shown

  8. Systematics in the light response of BGO, CsI(Tl) and GSO(Ce) scintillators to charged particles

    Avdeichikov, V; Nikitin, V A; Nomokonov, V P; Wegner, A

    2002-01-01

    The light response of a BGO crystal has been measured for particles Z=1-8, A=1-16 in the energy range approx 2-60 A MeV. The reaction products are identified by a DELTA E(Si)-E(Sci/PD) telescope. The position of the jump in the value of the signal from the PD at the punch-through points is used to calibrate both the DELTA E(Si) and E(Sci/PD) scales in MeV. The dependence of the light output on the energy E, ion atomic number Z and mass A is parameterized by the power law relation, L(Z,A,E)=a sub 1 (Z,A)E sup a sup sub 2 sup ( sup Z sup , sup A sup ). The parameters a sub 1 and a sub 2 have a smooth dependence on Z for all three crystals. The mass dependence of a sub 1 ,a sub 2 is deduced as a simple analytical expression. The systematics of these parameters is presented for BGO, CsI(Tl) and GSO(Ce) scintillators as a function of Z,A. Calculations of the response function, based on the Murray-Mayer model provide an excellent description of the shape of L(Z,A,E) versus E dependence, but show some deviations in ...

  9. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    Lu, Wei; Asher, Sanford A.; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-01-01

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  10. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    Lu, Wei [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Asher, Sanford A., E-mail: asher@pitt.edu [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min, E-mail: minxue@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yi, Da [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2016-10-05

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  11. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  12. Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array

    Vinke, R.; Loehner, H.; Schaart, D.R.; Dam, H.T. van; Seifert, S.; Beekman, F.J.; Dendooven, P.

    2010-01-01

    When optimizing the timing performance of a time-of-flight positron emission tomography (TOF-PET) detector based on a monolithic scintillation crystal coupled to a photosensor array, time walk as a function of annihilation photon interaction location inside the crystal needs to be considered. In order to determine the 3D spatial coordinates of the annihilation photon interaction location, a maximum likelihood estimation algorithm was developed, based on a detector characterization by a scan of a 511 keV photon beam across the front and one of the side surfaces of the crystal. The time walk effect was investigated using a 20 mmx20 mmx12 mm LYSO crystal coupled to a fast 4x4 multi-anode photomultiplier tube (MAPMT). In the plane parallel to the photosensor array, a spatial resolution of 2.4 mm FWHM is obtained. In the direction perpendicular to the MAPMT (depth-of-interaction, DOI), the resolution ranges from 2.3 mm FWHM near the MAPMT to 4 mm FWHM at a distance of 10 mm. These resolutions are uncorrected for the ∼1mm beam diameter. A coincidence timing resolution of 358 ps FWHM is obtained in coincidence with a BaF 2 detector. A time walk depending on the 3D annihilation photon interaction location is observed. Throughout the crystal, the time walk spans a range of 100 ps. Calibration of the time walk vs. interaction location allows an event-by-event correction of the time walk.

  13. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    Fienberg, A. T.; Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Fatemi, R.; Ferrari, C.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Kaspar, J.; Kiburg, B.; Li, L.; Mastroianni, S.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Venanzoni, G.; Van Wechel, T. D.; Wall, K. B.; Winter, P.; Yai, K.

    2015-05-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.

  14. Radiation damage of CsI(Tl) scintillators: blocking of energy transfer process of V sub k centers to Tl sup + activators

    Hamada, M M; Shimizu, S; Kubota, S

    2002-01-01

    This paper reports the emission spectra, light output, transmission and decay curves of CsI(Tl) crystals irradiated with gamma rays at different doses, ranging from 1x10 sup 5 to 5x10 sup 5 Gy. The crystals were coated with black or white tapes. Significant decreases in the emission spectra and light output values were observed for the crystals coated with white tape as the radiation dose increased. The decrease in the degree of the rising part of the decay curve in the irradiated crystals is attributed to the blocking of the energy transfer processes of V sub k lattice disorders, which were produced in irradiated crystals. The scintillation mechanism is affected in the crystal irradiated at 5x10 sup 5 Gy. However for crystals irradiated below 10 sup 5 Gy the mechanism process is not altered, and the decrease in the light output is due to internal transmission loss. It was also observed that the damage for irradiation is not permanent and it obeys a bi-exponential function.

  15. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals

    Hao Qingzhen; Zhao Yanhui; Juluri, Bala Krishna; Kiraly, Brian; Huang, Tony Jun; Liou, Justin; Khoo, Iam Choon

    2011-01-01

    Frequency-addressed tunable transmission is demonstrated in optically thin metallic nanohole arrays embedded in dual-frequency liquid crystals (DFLCs). The optical properties of the composite system are characterized by the transmission spectra of the nanoholes, and a prominent transmission peak is shown to originate from the resonance of localized surface plasmons at the edges of the nanoholes. An ∼17 nm shift in the transmission peak is observed between the two alignment configurations of the liquid crystals. This DFLC-based active plasmonic system demonstrates excellent frequency-dependent switching behavior and could be useful in future nanophotonic applications.

  16. Experimental evidence of infrared scintillation in crystals

    Belogurov, S; Carugno, Giovanni; Conti, E; Iannuzzi, D; Meneguzzo, Anna Teresa

    2000-01-01

    We present experimental results on infrared emission induced by protons in some solid-state samples. Infrared scintillation occurs in many crystals, with different yield values and time-response behaviours. A rough measurement of the emission wavelength of CsI(Tl) is also reported.

  17. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  18. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  19. Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm

    B. Adelin

    2017-03-01

    Full Text Available Single-mode, widely tunable laser diodes in the mid-infrared range are highly interesting for demanding spectroscopic applications involving multi-species discrimination. We report on an alternative approach using single frequency laser arrays. Single-mode laser arrays were fabricated using all-photonic-crystal electrically pumped distributed feedback cavities on GaSb. The fabricated lasers exhibit thresholds in the 3.2 kA/cm2 range in a continuous wave regime at room temperature. The maximum output power reaches 1 mW and single mode operation with a side-mode suppression ratio of 30 dB is demonstrated. These lasers were used to perform tunable diode laser absorption spectroscopy of several gases in standard gas cells. Continuous spectral coverage of a 40 nm band using 10 lasers seems an achievable goal using laser arrays with PhC lattice constant variations of 1 nm from laser to laser.

  20. Design and performance of modularized NaI(Tl) detectors with rectangular crystal elements: An array of 49 and the Crystal Box

    Wilson, S.L.; Hofstadter, R.; Hughes, E.B.; Lin, Y.C.; Parks, R.; Rolfe, J.; Bolton, R.D.; Bowman, J.D.; Cooper, M.D.; Hoffman, C.M.; Hogan, G.E.; Mariam, F.G.; Mischke, R.E.; Nagle, D.E.; Piilonen, L.E.; Sandberg, V.D.; Sanders, G.H.; Werbeck, R.; Williams, R.A.; Frank, J.S.; Hallin, A.L.; Matis, H.S.; Sennhauser, U.; Wright, S.C.

    1988-01-01

    An array of 49 NaI(Tl) modules each 20 inch in depth and 2.5 inch x 2.5 inch in cross section has been constructed and its properties, especially energy resolution, explored for positrons in the range 20 MeV - 18 GeV. A subsequent much larger detector, the Crystal Box, has also been constructed from 396 modules of the same cross section, but mostly 12 inch in depth, and operated as a γ-ray and positron detector in a search for rare muon decays. The calibration procedure used for the Crystal Box and its characteristic resolutions in energy, impact point and time are described. (orig.)

  1. A theoretical study of CsI:Tl columnar scintillator image quality parameters by analytical modeling

    Kalyvas, N., E-mail: nkalyvas@teiath.gr; Valais, I.; Michail, C.; Fountos, G.; Kandarakis, I.; Cavouras, D.

    2015-04-11

    Medical X-ray digital imaging systems such as mammography, radiography and computed tomography (CT), are composed from efficient radiation detectors, which can transform the X-rays to electron signal. Scintillators are materials that emit light when excited by X-rays and incorporated in X-ray medical imaging detectors. Columnar scintillator, like CsI:T1 is very often used for X-ray detection due to its higher performance. The columnar form limits the lateral spread of the optical photons to the scintillator output, thus it demonstrates superior spatial resolution compared to granular scintillators. The aim of this work is to provide an analytical model for calculating the MTF, the DQE and the emission efficiency of a columnar scintillator. The model parameters were validated against published Monte Carlo data. The model was able to predict the overall performance of CsI:Tl scintillators and suggested an optimum thickness of 300 μm for radiography applications. - Highlights: • An analytical model for calculating MTF, DQE and Detector Optical Gain (DOG) of columnar phosphors was developed. • The model was fitted to published efficiency and MTF Monte Carlo data. • A good fit was observed for 300 µm columnar CsI:Tl thickness. • The performance of the 300 µm column thickness CsI:Tl was better in terms of MTF and DOG for radiographic applications.

  2. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-16

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  4. Three-dimensional imaging through turbid media based on polarization-difference liquid-crystal microlens array

    Xin, Zhaowei; Wei, Dong; Li, Dapeng; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    In this paper, a polarization difference liquid-crystal microlens array (PD-LCMLA) for three dimensional imaging application through turbid media is fabricated and demonstrated. This device is composed of a twisted nematic liquidcrystal cell (TNLCC), a polarizer and a liquid-crystal microlens array. The polarizer is sandwiched between the TNLCC and LCMLA to help the polarization difference system achieving the orthogonal polarization raw images. The prototyped camera for polarization difference imaging has been constructed by integrating the PD-LCMLA with an image sensor. The orthogonally polarized light-field images are recorded by switching the working state of the TNLCC. Here, by using a special microstructure in conjunction with the polarization-difference algorithm, we demonstrate that the three-dimensional information in the scattering media can be retrieved from the polarization-difference imaging system with an electrically tunable PD-LCMLA. We further investigate the system's potential function based on the flexible microstructure. The microstructure provides a wide operation range in the manipulation of incident beams and also emerges multiple operation modes for imaging applications, such as conventional planar imaging, polarization imaging mode, and polarization-difference imaging mode. Since the PD-LCMLA demonstrates a very low power consumption, multiple imaging modes and simple manufacturing, this kind of device presents a potential to be used in many other optical and electro-optical systems.

  5. Liquid-crystal microlens array with swing and adjusting focus and constructed by dual patterned ITO-electrodes

    Dai, Wanwan; Xie, Xingwang; Li, Dapeng; Han, Xinjie; Liu, Zhonglun; Wei, Dong; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Under the condition of existing intense turbulence, the object's wavefront may be severely distorted. So, the wavefront sensors based on the traditional microlens array (MLA) with a fixed focal length can not be used to measure the wavefront effectively. In order to obtain a larger measurement range and higher measurement accuracy, we propose a liquid-crystal microlens array (LCMLA) with needed ability of swing focus over the focal plane and further adjusting focal length, which is constructed by a dual patterned ITO electrodes. The main structure of the LCMLA is divided into two layers, which are made of glass substrate with ITO transparent electrodes. The top layer of each liquid-crystal microlens consists of four rectangular electrodes, and the bottom layer is a circular electrode. In common optical measurements performed, the operations are carried out such as adding the same signal voltage over four electrodes of each microlens to adjust the focal length of the lens cell and adding a signal voltage with different RMS amplitude to adjust the focus position on the focal plane. Experiments show that the LCMLA developed by us demonstrate a desired focal length adjustable function and dynamic swing ability, so as to indicate that the method can be used not only to measure wavefront but also correct the wavefront with strong distortion.

  6. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-01-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd 3 Al 2 Ga 3 O 12 ) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm 2 detector area with 64 channels was used. One channel has a 3 by 3 mm 2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm 2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm 3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137 Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce

  7. Calibrating the CsI(Tl) detectors of the GARFIELD apparatus

    Abbondanno, U; Casini, G; Cavaletti, R; Cavallaro, S; Chiari, M; D'Agostino, M; Gramegna, F; Lanchais, A; Margagliotti, G V; Mastinu, P F; Milazzo, P M; Moroni, A; Nannini, A; Ordine, A; Vannini, G; Vannucci, L

    2002-01-01

    The energy and charge dependence of the light output of the CsI(Tl) detectors of the GARFIELD apparatus has been investigated for heavy ions with 5<=Z<=16 in the energy range from 2.2 to 8.3 A MeV. The results have been compared to an analytical expression successfully used in previous calibration procedures at higher energies, and a rather good agreement was obtained between measured and calculated quantities. The resulting parameter set was successfully applied to another set of experimental data. The overall result demonstrates the validity of the above mentioned calibration procedure in a wide range of incident ion energies and masses.

  8. The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy

    Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M

    2002-01-01

    This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...

  9. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4 pi detector

    Alderighi, M; Basssini, R; Berceanu, I; Blicharska, J; Boiano, C; Borderie, B; Bougault, R; Bruno, M; Cali, C; Cardella, G; Cavallaro, S; D'Agostino, M; D'andrea, M; Dayras, R; De Filippo, E; Fichera, F; Geraci, E; Giustolisi, F; Grzeszczuk, A; Guardone, N; Guazzoni, P; Guinet, D; Iacono-Manno, M; Kowalski, S; La Guidara, E; Lanchais, A L; Lanzalone, G; Lanzanò, G; Le Neindre, N; Li, S; Maiolino, C; Majka, Z; Manfredi, G; Nicotra, D; Paduszynski, T; Pagano, A; Papa, M; Petrovici, C M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rivet, M F; Rosato, E; Sacca, G; Sechi, G; Simion, V; Sperduto, M L; Steckmeyer, J C; Trifiró, A; Trimarchi, M; Urso, S; Vannini, G; Vigilante, M; Wilczynski, J; Wu, H; Xiao, Z; Zetta, L; Zipper, W

    2002-01-01

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 pi heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,alpha) and (n,gamma) reactions is also discussed.

  10. Single-Crystal Diffraction from Two-Dimensional Block Copolymer Arrays

    Stein, G. E.; Kramer, E. J.; Li, X.; Wang, J.

    2007-01-01

    The structure of oriented 2D block copolymer single crystals is characterized by grazing-incidence small-angle x-ray diffraction, demonstrating long-range sixfold orientational order. From line shape analysis of the higher-order Bragg diffraction peaks, we determine that translational order decays algebraically with a decay exponent η=0.2, consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young theory for a 2D crystal with a shear modulus μ=2x10 -4 N/m

  11. Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods

    Dominec, Filip; Kadlec, Christelle; Němec, Hynek; Kužel, Petr; Kadlec, Filip

    2014-01-01

    Roč. 22, č. 25 (2014), s. 30492-30503 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : metamaterials * photonic crystals * negative refractive index * dielectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.488, year: 2014

  12. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm{sup 3} crystals

    Yamaya, Taiga; Mitsuhashi, Takayuki; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Matsumoto, Takahiro; Kawai, Hideyuki; Suga, Mikio [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Watanabe, Mitsuo, E-mail: taiga@nirs.go.jp [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601 (Japan)

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm{sup 3} cubic crystals, in contrast to our previous development using 3.0 mm{sup 3} cubic crystals. The crystal block was composed of a 16 x 16 x 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 x 0.993 x 0.993 mm{sup 3} in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 x 4 array of MPPCs), each having a sensitive area of 3.0 x 3.0 mm{sup 2}, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  13. YAP:Ce and CsI(Tl) detectors for dielectronic recombination experiment at the CSRm

    Wen, W.Q.; Ma, X.; Xu, W.Q.; Meng, L.J.; Zhu, X.L.; Gao, Y.; Wang, S.L.; Zhang, P.J.; Zhao, D.M.; Liu, H.P.; Zhu, L.F.; Yang, X.D.; Li, J.; Ma, X.M.; Yan, T.L.; Yang, J.C.; Yuan, Y.J.; Xia, J.W.; Xu, H.S.; Xiao, G.Q.

    2013-01-01

    Highlights: • YAP:Ce and CsI(Tl) scintillation detectors are developed to detect heavy ions at the storage ring. • A high count rate of ∼10 7 s −1 is obtained with the YAP:Ce detector for heavy ion detection. • YAP:Ce detector shows good performance for DR experiment with 3.7 MeV/u 112 Sn 35+ . -- Abstract: The storage ring CSRm in Lanzhou provides good possibilities for electron-ion collision studies with cooled ion beams. To carry on the recombination experiment at the CSRm, a scintillation detector CsI(Tl) to detect the recombined ions was developed and tested. In addition, a YAP:Ce detector has been developed and installed at CSRm and capability of handling a high count rate of ∼10 7 s −1 has been obtained which is sufficient for the future dielectronic recombination experiment at the CSRm. The comparison of the characteristics of these two detectors is presented

  14. Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units.

    Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang

    2013-08-01

    A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.

  15. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  16. Range-energy relation, range straggling and response function of CsI(Tl), BGO and GSO(Ce) scintillators for light ions

    Avdeichikov, V; Jakobsson, B; Rodin, A M; Ter-Akopian, G M

    2000-01-01

    Range-energy relations and range straggling of sup 1 sup , sup 2 sup , sup 3 H and sup 4 sup , sup 6 He isotopes with the energy approx 50A MeV are measured for the CsI(Tl), BGO and GSO(Ce) scintillators with an accuracy better than 0.2% and 5%, respectively. The Si-Sci/PD telescope was exposed to secondary beams from the mass separator ACCULINNA. The experimental technique is based on the registration of the 'jump' in the amplitude of the photodiode signal for ions passing through the scintillation crystal. Light response of the scintillators for ions 1<=Z<=4 is measured in energy range (5-50)A MeV, the results are in good agreement with calculations based on Birks model. The energy loss straggling for particles with DELTA E/E=0.01-0.50 and mass up to A=10 in 286 mu m DELTA E silicon detector is studied and compared with theoretical prescriptions. The results allow a precise absolute calibration of the scintillation crystal and to optimize the particle identification by the DELTA E-E(Sci/PD) method.

  17. Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

    Yuan Cai; Xu Shi-Lin; Yao Jian-Quan; Zhao Xiao-Lei; Cao Xiao-Long; Wu Liang

    2014-01-01

    A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials. (interdisciplinary physics and related areas of science and technology)

  18. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  19. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Kato, T; Kataoka, J; Nakamori, T; Kishimoto, A; Yamamoto, S; Sato, K; Ishikawa, Y; Yamamura, K; Kawabata, N; Ikeda, H; Kamada, K

    2013-01-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 10 5 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  20. On the elimination of the afterglow of CsI(Tl) scintillation detector

    Alfassi, Z.B.; Ifergan, Y.; Wengrowicz, U.; Weinstein, Marcelo

    2009-01-01

    The use of CsI(Tl) in survey meters is limited to low dose-rate fields due to the afterglow effect, which can take up to 20 min in case of 120 s exposure to 4 R/h field. Even mixtures of low and high dose-rate fields are prohibited since the afterglow effect of the high dose-rate field prevents the use of the meter in the low dose-rate field. It was found that heating the scintillation detector to 60 deg. C shortened considerably the time of the afterglow effect to 3 s, even after exposure of 120 s to fields of 4 R/h. It is suggested to start heating the detector immediately when reaching high dose-rate field and adjusting the calibration to the measured temperature.

  1. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  2. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators

    Grodzicka-Kobylka, M., E-mail: m.grodzicka@ncbj.gov.pl; Szczesniak, T.; Moszyński, M.

    2017-06-01

    The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.

  3. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  4. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  5. Study on the property of the avalanche photodiode as the readout component for scintillation crystals

    He Jingtang; Chen Duanbao; Zhu Guoyi; Mao Yufang; Dong Xiaoli; Li Zuhao

    1996-01-01

    The new avalanche photodiode (APD) and a CsI(Tl) crystal formed a scintillation detector. The energy spectrum of γ rays was measured by this detector. The measured results were compared with that measured by photomultiplier. Our plan is to use APD as PbWO 4 readout component for forward luminosity electromagnetic calorimeter at τ-C factory

  6. Performance of a monolithic LaBr{sub 3}:Ce crystal coupled to an array of silicon photomultipliers

    Ulyanov, Alexei, E-mail: alexey.uliyanov@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Morris, Oran [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway (Ireland); Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Nelms, Nick; Shortt, Brian [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Slavicek, Tomas; Granja, Carlos; Solar, Michael [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic)

    2016-02-21

    A gamma-ray detector composed of a single 28×28×20 mm{sup 3} LaBr{sub 3}:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  7. Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures

    Mahajan, V K; Misra, M; Raja, K S; Mohapatra, S K

    2008-01-01

    The effect of crystallization and surface chemistry of nanotubular titanium dioxide (TiO 2 ) in connection with the photoelectrochemical process is reported in this investigation. TiO 2 nanotubular arrays were synthesized by a simple anodization process in an acidified fluoride electrolyte at room temperature. The TiO 2 nanotubes were amorphous in as-anodized condition; their transformation to crystalline phases was a function of annealing temperature and gaseous environment. The anatase phase was observed predominantly after annealing in non-oxidizing atmospheres, whereas annealing in an oxygen environment showed a mixture of anatase and rutile phases. X-ray photoelectron spectroscopy was used to determine the chemical environment of the surface, which revealed the presence of phosphate, oxygen vacancies and pentacoordinated Ti in hydrogen annealed samples. Diffuse reflectance photospectrometry of non-oxygen annealed samples showed long absorption tails extending in the visible region. The photoelectrochemical response of the TiO 2 nanotubes annealed in different conditions was investigated. Photoelectrochemical performance under simulated solar light was improved by annealing the nanotubular TiO 2 samples in non-oxidizing environment

  8. Photonic Crystals with Large Complete Bandgap Composed of an Approximately Ordered Array of Laurel-Crown-Like Structures Fabricated by Employing Anodic Aluminum Oxide Template

    Chan, Der-Sheng; Chau, Yuan-Fong

    2013-01-01

    An innovative fabrication processes of a photonic crystal composed of an approximately ordered array of laurel-crown-like structures by employing an anodic aluminum oxide (AAO) template is presented. We found that the intensity of the electric field is affected by the microstructure and surface morphology of aluminum foil after etching the scalloped barrier oxide layer (BOL). In addition, the electric current is strongly dependent on the electric field distribution in the scalloped BOL at the pore bottoms. By using a different step potential (DSP) of 30-60 V in series, the proposed photonic crystal is fabricated and possesses a large complete photonic bandgap.

  9. Development of a PET detector module incorporating a silicon photodiode array

    Rosenfeld, A.B.; Takacs, G.J.; Lerch, M.L.F.; Simmonds, P.E.

    2000-01-01

    Full text: We are developing a new Positron Emission Tomography (PET) detection sub-module with depth of interaction capability. The new sub-module is simple and robust to minimise module assembly complications and is completely independent of photomultiplier tubes. The new sub-module has also been designed to maximise its flexibility for easy sub-module coupling so as to form a complete, customised, detection module to be used in PET scanners dedicated to human brain and breast, and small animal studies. Blue enhanced, silicon 8x8 detector arrays are used to read out the scintillation crystals, and form the basis of the new module. The new detectors were designed by the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong in collaboration with the High Energy Physics Department, University of Melbourne and produced by SPO D etector , Ukraine. Complementing the work on the silicon photodetectors, we have also carried out simulations of the propagation of the scintillation light in the crystals, and the effect of crystal dimensions and surface treatment on the distribution of light detected by the photodiode array. The distribution of light over the photodiodes has then been used to test various algorithms for calculating the point of interaction of the gamma ray in the crystal. Simulations of the light propagation show that for a crystal of dimensions 25mm x 25mm x 3mm, it is possible to determine the point of interaction in 2 dimensions with an average accuracy of just over 0.5mm. The resulting photon distribution detected by the array. The surface treatment, while having a large effect on the light output, does not have a great effect on the accuracy. If these dimensions change to 25mm x 25mm x 6mm then the surface conditions have a greater effect on the accuracy. It is possible however, with careful surface treatment, to achieve an accuracy of around 0.6mm, only marginally worse than the case for the 3mm thick crystal. Gamma ray

  10. Two-dimensional diced scintillator array for innovative, fine-resolution gamma camera

    Fujita, T.; Kataoka, J.; Nishiyama, T.; Ohsuka, S.; Nakamura, S.; Yamamoto, S.

    2014-01-01

    We are developing a technique to fabricate fine spatial resolution (FWHM<0.5mm) and cost-effective photon counting detectors, by using silicon photomultipliers (SiPMs) coupled with a finely pixelated scintillator plate. Unlike traditional X-ray imagers that use a micro-columnar CsI(Tl) plate, we can pixelate various scintillation crystal plates more than 1 mm thick, and easily develop large-area, fine-pitch scintillator arrays with high precision. Coupling a fine pitch scintillator array with a SiPM array results in a compact, fast-response detector that is ideal for X-ray, gamma-ray, and charged particle detection as used in autoradiography, gamma cameras, and photon counting CTs. As the first step, we fabricated a 2-D, cerium-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) scintillator array of 0.25 mm pitch, by using a dicing saw to cut micro-grooves 50μm wide into a 1.0 mm thick Ce:GAGG plate. The scintillator plate is optically coupled with a 3.0×3.0mm pixel 4×4 SiPM array and read-out via the resistive charge-division network. Even when using this simple system as a gamma camera, we obtained excellent spatial resolution of 0.48 mm (FWHM) for 122 keV gamma-rays. We will present our plans to further improve the signal-to-noise ratio in the image, and also discuss a variety of possible applications in the near future

  11. Cosmic ray effect on the X-ray Trigger Telescope of UFFO/Lomonosov using YSO scintillation crystal array in space

    Kim, M. B.; Jeong, S.; Jeong, H. M.

    2017-01-01

    UFFO Burst Alert and Trigger telescope (UBAT) is the X-ray trigger telescope of UFFO/Lomonosov to localize X-ray source with coded mask method and X-ray detector. Its X-ray detector is made up of 36 8×8 pixels Yttrium OxyorthoSilicate (Y2SiO5:Ce, YSO) scintillation crystal arrays and 36 64-channe...

  12. crystal

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  13. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  14. CsI(Tl) with photodiodes for identifying subsurface radionuclide contamination

    Stromswold, D.C.; Meisner, J.E.; Nicaise, W.F.

    1994-10-01

    At the US Department of Energy's Hanford Site near Richland, Washington, underground radioactive contamination exists as the result of leaks, spills, and intentional disposal of waste products from plutonium-production operations. Characterizing these contaminants in preparation for environmental remediation is a major effort now in progress. In this paper, a cylindrical (15 x 61 mm) CsI(Tl) scintillation detector with two side-mounted photodiodes has been developed to collect spectral gamma-ray data in subsurface contaminated formations at the U.S. Department of Energy's Hanford Site. It operates inside small-diameter, thick-wall steel pipes pushed into the ground to depths up to 20 m by a cone penetrometer. The detector provides a rugged, efficient, magnetic-field-insensitive means for identifying gamma-ray-emitting contaminants (mainly 137 Cs and 60 Co). Mounting two 3 x 30-mm photodiodes end-to-end on a flat area along the detector's side provides efficient light collection over the length of the detector

  15. Photonic Crystal Nanocavity Arrays

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    ... ranging from low-threshold nonlinear optics to improved lasers. In this article, we review some of our recent experimental results on such structures, ranging from tile measurement of group velocities below...

  16. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT

    Ito, Mikiko; Sim, Kwang-Souk; Lee, Jae Sung; Park, Min-Jae; Hong, Seong Jong

    2010-01-01

    PET detectors with depth-of-interaction (DOI) encoding capability allow high spatial resolution and high sensitivity to be achieved simultaneously. To obtain DOI information from a mono-layer array of scintillation crystals using a single-ended readout, the authors devised a method based on light spreading within a crystal array and performed Monte Carlo simulations with individual scintillation photon tracking to prove the concept. A scintillation crystal array model was constructed using a grid method. Conventional grids are constructed using comb-shaped reflector strips with rectangular teeth to isolate scintillation crystals optically. However, the authors propose the use of triangularly shaped teeth, such that scintillation photons spread only in the x-direction in the upper halves of crystals and in the y-direction in lower halves. DOI positions can be estimated by considering the extent of two-dimensional light dispersion, which can be determined from the multiple anode outputs of a position-sensitive PMT placed under the crystal array. In the main simulation, a crystal block consisting of a 29 x 29 array of 1.5 mm x 1.5 mm x 20 mm crystals and a multi-anode PMT with 16 x 16 pixels were used. The effects of crystal size and non-uniform PMT output gain were also explored by simulation. The DOI resolution estimated for 1.5 x 1.5 x 20 mm 3 crystals was 2.16 mm on average. Although the flood map was depth dependent, each crystal was well identified at all depths when a corner of the crystal array was irradiated with 511 keV gamma rays (peak-to-valley ratio ∼9:1). DOI resolution was better than 3 mm up to a crystal length of 28 mm with a 1.5 x 1.5 mm 2 or 2.0 x 2.0 mm 2 crystal surface area. The devised light-sharing method allowed excellent DOI resolutions to be obtained without the use of dual-ended readout or multiple crystal arrays.

  17. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  18. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier

    Lee, Min Sun; Lee, Jae Sung

    2015-01-01

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  19. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Li Feng; Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-06-04

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm{sup -2} is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work.

  20. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi; Li Feng; Liu Baoting

    2008-01-01

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm -2 is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work

  1. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  2. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    Bolle, C.A.; Gammel, P.L.; Grier, D.G.; Murray, C.A.; Bishop, D.J.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields

  3. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  4. Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies

    Yan, D.; Sun, Z.Y.; Yue, K.; Wang, S.T.; Zhang, X.H.; Yu, Y.H.; Chen, J.L.; Tang, S.W.; Fang, F.; Zhou, Y.; Sun, Y.; Wang, Z.M.; Sun, Y.Z.

    2017-01-01

    A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of 14 O and 15 O isotopes was achieved using the range information.

  5. Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies

    Yan, D.; Sun, Z.Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yue, K., E-mail: yueke@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, S.T.; Zhang, X.H.; Yu, Y.H.; Chen, J.L.; Tang, S.W.; Fang, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, Y.; Sun, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lanzhou University, Lanzhou 730000 (China); Wang, Z.M.; Sun, Y.Z. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-01-21

    A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of {sup 14}O and {sup 15}O isotopes was achieved using the range information.

  6. Evaluation of polymer-coated CsI:Tl as an alpha/beta pulse shape discriminating flow-cell

    Branton, S.D.; Fjeld, R.A.; DeVol, T.A.

    1996-01-01

    A pulse shape discriminating flow-cell radiation detection system constructed with polymer coated CsI:Tl was evaluated for simultaneous gross alpha/gross beta quantification. The CsI:TI scintillator was crushed and sieved to 63-90 μm particle size and microencapsulated with Parylene C to reduce its rate of dissolution. Averaged over the first hour of use, the pulse shape discrimination figure-of-merit was 1.4 and the detection efficiencies were 64.9 ± 5.7 %, 52.5 ± 4.5 % and 4.5 ± 0.2 % for 233 U, 90 Sr/ 90 Y and 14 C , respectively. The typical background count rate in the alpha and beta pulse shape window was 0.17 and 0.004 cps, respectively. The resultant minimum detectable activity for a 30 second count time was calculated to be 0.19 ± 0.01 Bq, 0.9 ± 0.1 Bq and 11.4 ± 0.6 Bq for 233 U, 90 Sr/ 90 Y and 14 C, respectively. Although the 3 μm thick microencapsulation reduced CsI:Tl dissolution, the detection efficiency declined by a factor of two after 4.8 hours while the pulse shape resolution degraded slightly

  7. A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals

    Kato, T., E-mail: katou.frme.8180@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Nakamori, T.; Miura, T.; Matsuda, H.; Kishimoto, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Sato, K.; Ishikawa, Y.; Yamamura, K.; Nakamura, S.; Kawabata, N. [Solid State Division, Hamamatsu Photonics K. K., 1126-1, Ichino-cho, Hamamatsu, Shizuoka (Japan); Ikeda, H. [ISAS/JAXA, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa (Japan); Yamamoto, S. [Kobe City College of Technology, 8-3, Gakuenhigashimati, Nishi-ku, Kobe-shi, Hyougo 651-2194 (Japan); Kamada, K. [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13, Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-01-21

    We have developed a large-area monolithic Multi-Pixel Photon Counter (MPPC) array consisting of 4×4 channels with a three-side buttable package. Each channel has a photosensitive area of 3×3 mm{sup 2} and 3600 Geiger mode avalanche photodiodes (APDs). For typical operational gain of 7.5×10{sup 5} at +20 °C, gain fluctuation over the entire MPPC device is only ±5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤400kcps per channel. We first fabricated a gamma-ray camera consisting of the MPPC array with one-to-one coupling to a Ce-doped (Lu,Y){sub 2}(SiO{sub 4})O (Ce:LYSO) crystal array (4×4 array of 3×3×10 mm{sup 3} crystals). Energy and time resolutions of 11.5±0.5% (FWHM at 662 keV) and 493±22ps were obtained, respectively. When using the charge division resistor network, which compiles signals into four position-encoded analog outputs, the ultimate positional resolution is estimated as 0.19 mm in both X and Y directions, while energy resolution of 10.2±0.4% (FWHM) was obtained. Finally, we fabricated submillimeter Ce:LYSO and Ce-doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} (Ce:GGAG) scintillator matrices each consisting of 1.0×1.0, 0.7×0.7 and 0.5×0.5 mm{sup 2} pixels, to further improve the spatial resolution. In all types of Ce:LYSO and Ce:GGAG matrices, each crystal was clearly resolved in the position histograms when irradiated by a {sup 137}Cs source. The energy resolutions for 662 keV gamma-rays for each Ce:LYSO and Ce:GGAG scintillator matrix were ≤14.3%. These results suggest excellent potential for its use as a high spatial medical imaging device, particularly in positron emission tomography (PET). -- Highlights: ► We developed a newly designed large-area monolithic MPPC array. ► We obtained fine gain uniformity, and good energy and time resolutions when coupled to the LYSO scintillator. ► We fabricated gamma-ray camera consisting of the MPPC array and submillimeter pixelized LYSO and GGAG scintillators. ► In

  8. Understanding internal backgrounds in NaI(Tl) crystals toward a 200 kg array for the KIMS-NaI experiment

    Adhikari, P.; Adhikari, G.; Oh, S.Y. [Sejong University, Department of Physics, Seoul (Korea, Republic of); Choi, S.; Joo, H.W.; Kim, K.W.; Kim, S.K. [Seoul National University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Ha, C.; Jeon, E.J.; Kang, W.G.; Kim, H.O.; Kim, N.Y.; Lee, H.S.; Lee, J.H.; Lee, M.H.; Leonard, D.S.; Li, J.; Olsen, S.L.; Park, H.K.; Park, K.S.; So, J.H.; Yoon, Y.S. [Institute for Basic Science, Center for Underground Physics, Daejeon (Korea, Republic of); Hahn, I.S. [Ewha Womans University, Department of Science Education, Seoul (Korea, Republic of); Kim, H.J. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Kim, Y.D. [Sejong University, Department of Physics, Seoul (Korea, Republic of); Institute for Basic Science, Center for Underground Physics, Daejeon (Korea, Republic of); Kim, Y.H. [Institute for Basic Science, Center for Underground Physics, Daejeon (Korea, Republic of); Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, H.S. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-04-15

    The Korea Invisible Mass Search (KIMS) collaboration has developed low-background NaI(Tl) crystals that are suitable for the direct detection of WIMP dark matter. Building on experience accumulated during the KIMS-CsI programs, the KIMS-NaI experiment will consist of a 200 kg NaI(Tl) crystal array surrounded by layers of shielding structures and will be operated at the Yangyang underground laboratory. The goal is to provide an unambiguous test of the DAMA/LIBRA annual modulation signature. Measurements of six prototype crystals show progress in the reduction of internal contamination from radioisotopes. Based on our understanding of these measurements, we expect to achieve a background level in the final detector configuration that is less than 1 count/day/keV/kg for recoil energies around 2 keV. The annual modulation sensitivity for the KIMS-NaI experiment shows that an unambiguous 7σ test of the DAMA/LIBRA signature would be possible with a 600 kg year exposure with this system. (orig.)

  9. Design, instrumentation and response characteristics of a 2 pi multi-detector of CsI(Tl) scintillators mounted inside the Plastic Ball spectrometer

    Joulaeizadeh, L.; Gasparic, I.; Bacelar, J.; Caplar, R.; Löhner, H.

    2010-01-01

    A 2 pi hemispherical detector consisting of 64 CsI(Tl) scintillator modules covering the angular range of 80 degrees -160 degrees has been constructed. This detector is employed as the Inner Shell of the Plastic Ball detector and was used in two experimental programs concerning the study of pionic

  10. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    Cama, G.; Jacobs, T.; Dimaki, Maria

    2010-01-01

    among all the sensors of the array. As well, dedicated sensor interface electronics were developed and optimized for fast spectra acquisition of all 16 QCRs with a miniaturized impedance analyzer. This allowed performing cell cultivation experiments for the observation of fast cellular reaction kinetics...

  11. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor.

    Jha, Sunil K; Hayashi, Kenshi

    2015-03-01

    In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  13. A new hybrid photomultiplier tube as detector for scintillating crystals

    De Notaristefani, F.; Vittori, F.; Puertolas, D.

    2002-01-01

    In this work, we have attentively studied the performance of a new hybrid photomultiplier tube (HPMT) as detector for photons from scintillating crystals. The HPMT is equipped with a YAP window in order to improve light collection and increase measured light response from scintillating crystals. Several measurements have been performed on BGO, LSO, CsI(Tl) and NaI(Tl) planar crystals having three different surface treatments as well as on YAP : Ce and CsI(Tl) matrices. Such crystals have been coupled to two HPMTs, one equipped with a YAP window (Y-HPMT) and the other with a conventional quartz window (Q-HPMT). Measurements on crystals coupled to the Y-HPMT have shown a consistent improvement of the light response, thanks to the presence of the YAP window. Indeed, the light response measured with the Y-HPMT was on average equal to 1.5, 2.1 and 2.6 times that obtained with the Q-HPMT for planar crystals with white painted (diffusive), fine ground and polished rear surfaces, respectively. With regards to crystal matrices, we measured a light response increase of about 1.2 times

  14. 1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-01-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ∼0.6 eVspectral bandpass, 10 (micro)m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser(λ = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  15. Scintillation response of CsI: Tl crystal under neutron, gamma, alpha particles and beta excitations

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Lopes, Valdir Maciel; Berretta, Jose Roberto; Cardenas, Jose Patricio Nahuel, E-mail: macoper@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Among the converters of X and gamma radiation in light photons, known as scintillators, the one which is the most efficient emits photons with a wavelength near 400 nm. Particularly, among them, the cesium iodine doped with thallium (CsI:Tl) crystal is that which matches better between the light emission spectrum (peak at 540 nm) and the quantum sensitivity curve of the photodiodes and CCD (Charge Coupled Device). This explains the renewed interest in using this crystal as scintillator. Although the CsI:Tl crystal is commercially available, its local development would give the possibility to obtain it in different geometric configurations and coupling. Moreover, there is a special interest in studying new conditions that will alter the properties of this crystal in order to achieve a optimal level of its functional characteristics. Having an efficient national scintillator with low cost is a strategic opportunity to study the response of a detector applied to different types of radiation. The crystal of cesium iodide activated with thallium (CsI:Tl) has a high gamma detection efficiency per unit volume. In this paper, the CsI:Tl crystal, grown by the vertical Bridgman technique in evacuated silica ampoules and with the purpose of use as radiation detectors, is described. To evaluate the scintillator, measures of the thallium distribution in the crystal volume were taken, with overall efficiency score. The scintillator response was studied through gamma radiation from sources of {sup 137}Cs, {sup 60}Co, {sup 22}Na, {sup 54}Mn, {sup 131}I and {sup 99m}Tc; the beta radiation from source of {sup 90}Sr/{sup 90}Y, alpha particles from {sup 241}Am source and the scintillator response to neutrons from Am/Be source. The energetic resolution for {sup 137}Cs gamma rays (662 keV) was 10%. The results showed the validity of using the CsI:Tl crystal developed in our laboratory, in many applications in the area of radiation detectors. (author)

  16. Crystal scintillators for use in check-light source for thermoluminescent systems

    Nagpal, J. S.; Sabharwal, S. C.; Chougaonkar, M. P.; Godbole, S. V.

    1999-08-01

    Beta ( 63Ni, Emax 0.063 MeV) excited radioluminescence of indigenously grown crystal scintillators CsI(Tl), Bi 4Ge 3O 12 and CdWO 4 has been studied for its use in check-light source needed for thermoluminescence systems. Temperature coefficient of the light output over 298-323 K and the beta-induced TL of the scintillators over 298-553 K are reported.

  17. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    Zhai, Yujia; Palard, Marylene; Mathew, Leo; Hussain, Muhammad Mustafa; Willson, Grant Grant; Tutuc, Emanuel; Banerjee, Sanjay Kumar

    2012-01-01

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  18. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  19. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  20. Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application

    Chen, Yongbo; Li, Xiaomin; Bi, Zhijie; He, Xiaoli; Li, Guanjie; Xu, Xiaoke; Gao, Xiangdong

    2018-05-01

    The hierarchical TiO2 (H-TiO2) nanorod arrays (NRAs) composed of single-crystalline nanorods and nanocrystals were finely designed and successfully constructed for electrochromic (EC) application. By combining layer-by-layer (LBL) method and hydrothermal crystallization technique, the superfine nanocrystals (5-7 nm), which can provide abundant active sites and facilitate ion insertion/extraction during EC reactions, were uniformly and conformally assembled on the surface of single-crystalline TiO2 (SC-TiO2) NRAs. The as-formed H-TiO2 NRAs integrate the advantages of one-dimensional NRAs with fast kinetics and superfine nanocrystals with high ion capacity, showing highly enhanced EC performance. Large optical contrast (40.3%), shorter coloring/bleaching time (22/4 s), high coloration efficiency (11.2 cm2 C-1), and excellent cycling stability can be achieved in H-TiO2 NRAs, superior to the pristine SC-TiO2 NRAs and nanocrystalline TiO2 films. This work provides a feasible and well-designed strategy to explore high-performance materials for EC application.

  1. Radiation damage in undoped CsI and CsI(Tl)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1992-01-01

    Radiation damage has been studied in undoped CsI and CsI(TI) crystals using 60 Co gamma radiation for doses up to ∼ 4.2 x 10 6 . Samples from various manufacturers were measured ranging in size from 2.54 cm long cylinders to a 30 cm long block. Measurements were made on the change in optical transmission and scintillation light output as a function of dose. Although some samples showed a small change in transmission, a significant change in light output was observed for all samples. Recovery from damage was also studied as a function of time and exposure to UV light. A short lived phosphorescence was observed in undoped CsI, similar to the phosphorescence seen in CsI(TI)

  2. Scintillation crystal mounting apparatus

    Engdahl, L.W.; Deans, A.J.

    1982-01-01

    An improved detector head for a gamma camera is disclosed. The detector head includes a housing and a detector assembly mounted within the housing. Components of the detector assembly include a crystal sub-assembly, a phototube array, and a light pipe between the phototube array and crystal sub-assembly. The invention provides a unique structure for maintaining the phototubes in optical relationship with the light pipe and preventing the application of forces that would cause the camera's crystal to crack

  3. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Kocak, F., E-mail: fkocak@uludag.edu.tr

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO{sub 4} and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies.

  4. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  5. Scalable gamma-ray camera for wide-area search based on silicon photomultipliers array

    Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2018-03-01

    Portable coded-aperture imaging systems based on scintillators and semiconductors have found use in a variety of radiological applications. For stand-off detection of weakly emitting materials, large volume detectors can facilitate the rapid localization of emitting materials. We describe a scalable coded-aperture imaging system based on 5.02 × 5.02 cm2 CsI(Tl) scintillator modules, each partitioned into 4 × 4 × 20 mm3 pixels that are optically coupled to 12 × 12 pixel silicon photo-multiplier (SiPM) arrays. The 144 pixels per module are read-out with a resistor-based charge-division circuit that reduces the readout outputs from 144 to four signals per module, from which the interaction position and total deposited energy can be extracted. All 144 CsI(Tl) pixels are readily distinguishable with an average energy resolution, at 662 keV, of 13.7% FWHM, a peak-to-valley ratio of 8.2, and a peak-to-Compton ratio of 2.9. The detector module is composed of a SiPM array coupled with a 2 cm thick scintillator and modified uniformly redundant array mask. For the image reconstruction, cross correlation and maximum likelihood expectation maximization methods are used. The system shows a field of view of 45° and an angular resolution of 4.7° FWHM.

  6. Optimized orientation of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal for applications in medical ultrasonic arrays

    Zhou, Dan; Chen, Jing; Luo, Laihui; Zhao, Xiangyong; Luo, Haosu

    2008-08-01

    In order to extend the potential applications of medical ultrasonic array transducers, two optimized directions with the maximal electromechanical coefficient k33' and minimal k31 are determined for [001] and [110] poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals using the experimental method. The maximum values of k33' can reach 92.8% and 93.3%, respectively, corresponding to [001]W/[110]L and [110]W/[1-11]L cuts. Furthermore, we simulate the performances of three 3.5 MHz linear array transducers based on the determined directions by PIEZOCAD. Results indicate that under the [001]W/[110]L direction, 25% broader bandwidth, 40% shorter pulse length, and 3 dB higher sensitivity can be obtained compared to the traditional Pb(Zr1-xTix)O3 transducers.

  7. Multiple matching scheme for broadband 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 single crystal phased-array transducer

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-01-01

    Lead magnesium niobate–lead titanate single crystal 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and back...

  8. Crystal scintillators for use in check-light source for thermoluminescent systems

    Nagpal, J.S.; Sabharwal, S.C.; Chougaonkar, M.P.; Godbole, S.V

    1999-08-11

    Beta ({sup 63}Ni, E{sub max} 0.063 MeV) excited radioluminescence of indigenously grown crystal scintillators CsI(Tl), Bi{sub 4}Ge{sub 3}O{sub 12} and CdWO{sub 4} has been studied for its use in check-light source needed for thermoluminescence systems. Temperature coefficient of the light output over 298-323 K and the beta-induced TL of the scintillators over 298-553 K are reported. (author)

  9. A study on light collection of small scintillating crystals

    Vittori, F; Malatesta, T; Puertolas, D

    2000-01-01

    Measurements are described concerning the light collection efficiency of YAP:Ce and CsI(Tl) crystals pillars with thicknesses ranging between 3 and 28 mm and cross-sections of 0.6 x 0.6 and 1 x 1 mm sup 2. These measurements have shown that the light collection is strongly dependent on the length of the pillar rather than on its cross-sectional area. A Monte Carlo code has been developed in order to evaluate the light collection efficiency as a function of the pillar geometry and surface treatment. Particular attention has been paid to the light transition through the crystal-photocathode window interface. The possibility to improve light detection by using a new photon detector provided with a YAP photocathode window has been verified.

  10. Proceedings of the Flat-plate Solar Array Project Research Forum on the High-speed Growth and Characterization of Crystals for Solar Cells

    Dumas, K. A. (Editor)

    1984-01-01

    Theoretical and experimental phenomena, applications, and characterization including stress/strain and other problem areas that limit the rate of growth of crystals suitable for processing into efficient, cost-effective solar cells are discussed. Melt spinning, ribbon growth, rapid solidification, laser recrystallization, and ignot growth of silicon and metals are also discussed.

  11. Development of a model for on-line control of crystal growth by the AHP method

    Gonik, M. A.; Lomokhova, A. V.; Gonik, M. M.; Kuliev, A. T.; Smirnov, A. D.

    2007-05-01

    The possibility to apply a simplified 2D model for heat transfer calculations in crystal growth by the axial heat close to phase interface (AHP) method is discussed in this paper. A comparison with global heat transfer calculations with the CGSim software was performed to confirm the accuracy of this model. The simplified model was shown to provide adequate results for the shape of the melt-crystal interface and temperature field in an opaque (Ge) and a transparent crystal (CsI:Tl). The model proposed is used for identification of the growth setup as a control object, for synthesis of a digital controller (PID controller at the present stage) and, finally, in on-line simulations of crystal growth control.

  12. A new avalanche photo diode based readout for the crystal barrel calorimeter

    Urban, Martin [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at ELSA has proven successful in the measurement of double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions on a polarized neutron target with high efficiency, the main calorimeter consisting of 1320 CsI(Tl) crystals has to be integrated into the first level trigger. Key requirement to achieve this goal is an exchange of the existing PIN photo diode by a new avalanche photo diode (APD) readout. The main advantage of the new readout system is that it will provide timing information which allows a fast trigger signal. The energy resolution will remain compatible to the previous system. Besides the development of automated test routines for the front end electronics, the characterization of all APDs was successfully accomplished in Bonn. After tests with a 3 x 3 CsI(Tl) crystal matrix at the tagged photon beam facilities at ELSA and MAMI the first half of the Crystal Barrel was upgraded in 2014. This talk shows the result of the latest test measurements including the gain stabilization of the new APD readout electronics and presents the progress of the ongoing upgrade.

  13. Multiple matching scheme for broadband 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 single crystal phased-array transducer

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-01-01

    Lead magnesium niobate–lead titanate single crystal 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the −6 dB transducer bandwidth can be improved significantly by using double λ∕8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A −6 dB bandwidth of 110% and two-way insertion loss of −46.5 dB were achieved. PMID:19657405

  14. Multiple matching scheme for broadband 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal phased-array transducer

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double λ /8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  15. Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer.

    Lau, S T; Li, H; Wong, K S; Zhou, Q F; Zhou, D; Li, Y C; Luo, H S; Shung, K K; Dai, J Y

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double lambda8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  16. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    Schlosser, D.M., E-mail: dieter.schlosser@pnsensor.de [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Huth, M.; Hartmann, R. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Abboud, A.; Send, S. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Conka-Nurdan, T. [Türkisch-Deutsche Universität, Sakinkaya Cad. 86, Beykoz, 34820 Istanbul (Turkey); Shokr, M.; Pietsch, U. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Strüder, L. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany)

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 µm, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9–13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 µm only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive {sup 57}Co source. - Highlights: • Position and energy resolving pnCCD+CsI(Tl) detector for energies from 1-150 keV • Detection in the pnCCD (122keV): 1% energy and <75µm spatial resolution • Detection in the scintillator (122keV): 9-12% energy and ~30µm spatial resolution.

  17. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  18. ISPA (imaging silicon pixel array) experiment

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  19. Array capabilities and future arrays

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  20. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    Abd Rahman Mohd Yusri

    2011-01-01

    Full Text Available Abstract A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.

  1. SNP Arrays

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  2. Study of the reaction {sup 22}O(p,p') with MUST detector. Development of the Cs(Tl) part of MUST-2 detector; Etude de la reaction {sup 22}O(p,p') avec le detecteur MUST. Developpement de l'etage CsI(Tl) de l'ensemble MUST 2

    Becheva, E

    2004-11-01

    Elastic and inelastic proton scattering on the unstable nuclei {sup 22}O was measured in inverse kinematics at the GANIL facility. A secondary beam of {sup 22}O at 46.6 MeV/A with intensity of {approx} 1000 pps, impinged on a (CH{sub 2}){sub n} target. Recoiling protons were detected in the silicon strip array MUST. We measured the angular distributions of the ground and 2{sub 1}{sup +} states of {sup 22}O. Phenomenological and microscopic analysis of the data were performed. The phenomenological analysis using a global potential parameterization of Becchetti and Greenlees and CH89 yields a value of the deformation parameter {beta}{sub p,p}, = 0.23{+-}0.04 for {sup 22}O, much lower than that of {sup 20}O. The ratio of neutron and proton matrix element M{sub n}/M{sub p} is found equal to 1.46{+-}0.50. The microscopic analysis used of densities and transition densities calculated within HFB and QRPA models respectively. Optical potential were obtained through both folding and JLM procedures. A ratio M{sub n}/M{sub p}=2.5{+-}1.0 is deduced. Contrary of {sup 20}O, {sup 22}O behaviours like a doubly magic nucleus, suggesting a pronounced sub-shell closure at N=14. To develop the study of direct reactions induced by radioactive beams, we have developed and built, a new multi-detector MUST II devoted to light charged particle detection. In this work we established the requirements for the CsI(Tl) detector stage, and test four CsI detector prototypes, constructed by the SCIONIX company. (author)

  3. Graphene-based photonic crystal

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radiation in doped graphene the damping and skin effect in the photonic crystal are also suppressed. The advantages of the graphene-based photonic crystal are discussed.

  4. electrode array

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  5. Gamma-ray detection with an UV-enhanced photodiode and scintillation crystals emitting at short wavelengths

    Johansen, G.A.

    1997-01-01

    A low-noise ion implanted photodiode with high spectral response in the deep blue/UV region has been tested as read-out device for scintillation crystals with matching emission spectra (YAP(Ce), GSO(Ce), BGO and CsI(Tl)). This gamma-ray detector concept is attractive in many industrial applications where compactness, reliability and ambient temperature operation are important. The results show that the amount of detected scintillation light energy falls rapidly off as the wavelength of the scintillation light decreases. It is concluded that the dynamic spectral response of the photodiode, due to increasing carrier collection times, is considerably less than the DC response at short wavelengths. The diode is not useful in pulse mode operation with scintillation crystals emitting at wavelengths below about 400 nm. For read-out of CsI(Tl) with 661.6 keV gamma-radiation, however, the photodiode concept shows better energy resolution (7.1%) than other detectors. (orig.)

  6. Filter arrays

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  7. A new spectroscopic imager for X-rays from 0.5 keV to 150 keV combining a pnCCD and a columnar CsI(Tl) scintillator

    Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.

    2017-04-01

    By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.

  8. Tomographic array

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  9. Tomographic array

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  10. Seed-mediated growth of patterned graphene nanoribbon arrays

    Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael

    2017-09-12

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.

  11. Construction of a test stand for the measurement of the light output uniformity of CALIFA crystals

    Susenburger, Markus; Ignatov, Alexander; Kroell, Thorsten [Technische Universitaet Darmstadt, Darmstadt (Germany)

    2016-07-01

    Currently, the Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is under construction. One experiment at GSI and FAIR is called Reactions with Relativistic Radioactive Beams (R{sup 3}B). A key component of the R{sup 3}B is the CALorimeter for In Flight detection of γ-rays and light charged pArticles (CALIFA), which will surround the R{sup 3}B target chamber and will be capable of the detection of γ-rays in a wide energy range from 100 keV to 30 MeV as well as of light charged particles. CALIFA is built out of two parts, the so called CALIFA barrel and CALIFA endcap. The barrel consists of 1952 CsI(Tl) detector crystals which have to fulfill several specifications. One of these specifications is the uniformity of the light output. Depending on the location of the deposited energy, the crystal's light output varies due to optical focusing effects. This behavior can be manipulated by lapping the crystal's surface. The aim of this work is the development of a test stand which will check if the crystals match the requirements according to the light output uniformity. Because of the large number of crystals needed to be tested, the stand automates the test procedure, which guarantees comparable test measurement for all crystals. The development and construction of this stand is reported.

  12. Ultra compact spectrometer apparatus and method using photonic crystals

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  13. Taub-Nut Crystal

    Imazato, Harunobu; Mizoguchi, Shun'ya; Yata, Masaya

    We consider the Gibbons-Hawking metric for a three-dimensional periodic array of multi-Taub-NUT centers, containing not only centers with a positive NUT charge but also ones with a negative NUT charge. The latter are regarded as representing the asymptotic form of the Atiyah-Hitchin metric. The periodic arrays of Taub-NUT centers have close parallels with ionic crystals, where the Gibbons-Hawking potential plays the role of the Coulomb static potential of the ions, and are similarly classified according to their space groups. After a periodic identification and a Z2 projection, the array is transformed by T-duality to a system of NS5-branes with the SU(2) structure, and a further standard embedding yields, though singular, a half-BPS heterotic 5-brane background with warped compact transverse dimensions. A discussion is given on the possibility of probing the singular geometry by two-dimensional gauge theories.

  14. Improvement of crystal identification performance for a four-layer DOI detector composed of crystals segmented by laser processing

    Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga

    2017-09-01

    We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all

  15. Crystals in crystals

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  16. Virtual Crystallizer

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  17. single crystals

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  18. Crystal Systems.

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  19. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays

    Li, Yan; Liu, Fang-Ting; Chang, Yin; Wang, Jian; Wang, Cheng-Wei

    2017-12-01

    Structuring the materials in the form of photonic crystals is a new strategy for photocatalytic applications. Herein, a new concept of photonic crystal-induced p-n coaxial heterojunction film photocatalyst of Cu3SnS4/TiO2 (CTS/PhC-TNAs) was well-designed and successfully fabricated by combining periodic pulse anodic oxidation and in-situ self-assembling methods Such nanostructured CTS/PhC-TNAs exhibited significantly improved photocatalytic degradation activity under simulated sunlight irradiation with methyl orange (MO) as the target pollutants. Within 120 min, 82% of the MO (10 mg/L) was photodegraded and its kinetic constant per specific surface area reached 0.05332 μmol/m2h, which is 1.6 and 12.8 times more quickly than that of PhC-TNAs and CTS, respectively. Its significantly enhanced photocatalytic activity could be mainly attributed to a joint effect of the unique photonic crystal property of PhC-TNAs and the nanostructured hollow p-n coaxial hetero-junction, which result in an increased efficiency of charge separation and transfer and also an improved spectral response capability. This photonic crystal film photocatalyst has the potential for enhancing the photocatalytic activity via further optimizing the photonic stop band of PhC-TNAs. The study presents a new means to design the kind of photonic crystal structural-induced novel photocatalysts with high photocatalytic activities in pollution treatment.

  20. Beam-Mode Piezoelectric Properties of Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals for Medical Linear Array Applications

    Wang, Wei; Wang, Sheng; Zhang, Yaoyao; Zhao, Xiangyong; Luo, Haosu

    2011-11-01

    In this work, the dielectric and beam-mode piezoelectric properties of ternary 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMNT35/35/30) piezoelectric single crystals were investigated. The Curie temperature ( T C) and rhombohedral-to-tetragonal phase-transition temperature ( T rt) are 187°C and 127°C, about 30°C higher than those of PMNT crystals. The beam-mode coupling coefficient k {33/ w } was found to be 90.3%. Furthermore, 3.5-MHz linear arrays based on PIMNT35/35/30 crystals and Pb(Zr1- x Ti x )O3 ceramic (PZT-5H) were simulated using PiezoCAD software. The results indicate that the sensitivity and -6 dB bandwidth of a PIMNT35/35/30 transducer would be approximately 4 dB and 20% higher, respectively, compared with a traditional PZT transducer.

  1. Assessment of array scintillation detector for follicle thyroid 2-d image acquisition using Monte Carlo simulation

    Silva, Carlos Borges da; Braz, Delson

    2008-01-01

    Full text: This work presents an innovative study to find out the adequate scintillation inorganic detector array to be used coupled to a specific light photo sensor, a charge coupled device (CCD), through a fiber optic plate. The goal is to choose the type of detector that fits a 2-dimensional imaging acquisition of a cell thyroid tissue application with high resolution and detection efficiency in order to map a follicle image using gamma radiation emission. A point or volumetric source-detector simulation by using a MCNP4B general code, considering different source energies, detector materials and geometry including pixel sizes and reflector types was performed. In this study, simulations were performed for 7 x 7, 31 x 31 and 127 x 127 arrays using CsI(Tl), BGO, CdWO 4 , LSO, GOS and GSO scintillation detectors with pixel dimensions ranging from 1 x 1 cm 2 to 10 x 10 μm 2 and radiation thickness ranging from 1 mm to 10 mm. The effect of all these parameters was investigated to find the best source-detector system that results in an image with the best contrast details. The results showed that it is possible to design a specific imaging system that allows searching for in-vitro studies, specifically in radiobiology applied to endocrine physiology. A 2D image of two thyroid follicles simulated by using MCNP4B code is shown

  2. Coupling in reflector arrays

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  3. Surface modification of YIG by magnet array

    Atalay, S.; Kolat, V.S.; Bakır, H.G.; Izgi, T.; Kaya, A.O.; Kaya, O.A.; Gencer, H.

    2015-01-01

    Highlights: • The surface of YIG films were magnetically modulated by magnet array. • The surface modulated YIG films formed sharp band gaps. • A very small magnetic field change leads a large change in the peak value of band gap frequency. - Abstract: In this work, magnetostatic surface spin waves (MSSW) were propagated along the single crystal YIG (Y_3Fe_5O_1_2) film grown on GGG substrate. In order to obtain magnonic crystals, unlike the conventional methods, the surface of YIG films were magnetically modulated by magnet array in one and two-dimensions. The surface modulated YIG films formed sharp band gaps at approximately 6.55 GHz and 6.58 GHz at 1600 Oe magnetic field for one and two-dimensional magnonic crystals, respectively. It was found that a very small magnetic field change leads a large change in the peak value of band gap frequency.

  4. Surface modification of YIG by magnet array

    Atalay, S., E-mail: satalay@inonu.edu.tr [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Kolat, V.S. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Bakır, H.G. [Inonu University, Science and Art Faculty, Astronomy Department, 44280 Malatya (Turkey); Izgi, T.; Kaya, A.O. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Kaya, O.A. [Inonu University, Education Faculty, Computer Education and Educational Technology Department, 44280 Malatya (Turkey); Gencer, H. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey)

    2015-11-01

    Highlights: • The surface of YIG films were magnetically modulated by magnet array. • The surface modulated YIG films formed sharp band gaps. • A very small magnetic field change leads a large change in the peak value of band gap frequency. - Abstract: In this work, magnetostatic surface spin waves (MSSW) were propagated along the single crystal YIG (Y{sub 3}Fe{sub 5}O{sub 12}) film grown on GGG substrate. In order to obtain magnonic crystals, unlike the conventional methods, the surface of YIG films were magnetically modulated by magnet array in one and two-dimensions. The surface modulated YIG films formed sharp band gaps at approximately 6.55 GHz and 6.58 GHz at 1600 Oe magnetic field for one and two-dimensional magnonic crystals, respectively. It was found that a very small magnetic field change leads a large change in the peak value of band gap frequency.

  5. Monomial Crystals and Partition Crystals

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  6. RNA Crystallization

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  7. Crystallization mechanisms of acicular crystals

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  8. Evaluation of digital detector arrays systems for industrial radiography

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: aline@lin.ufrj.br, E-mail: davi@lin.ufrj.br.br, E-mail: celio@lin.ufrj.br, E-mail: soraia@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: davi.oliveira@uerj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentação Nuclear

    2017-07-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  9. Evaluation of digital detector arrays systems for industrial radiography

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T.

    2017-01-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  10. 3D DNA Crystals and Nanotechnology

    Paul J. Paukstelis

    2016-08-01

    Full Text Available DNA’s molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.

  11. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators

    Bando, T., E-mail: bando.takahiro@nifs.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohdachi, S.; Suzuki, Y. [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2016-11-15

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.

  12. Fiber Laser Array

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  13. Optical properties of titanium dioxide nanotube arrays

    Abdelmoula, Mohamed [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Close, Thomas; Richter, Christiaan, E-mail: christiaan.richter@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York, 14623 (United States)

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  14. Hanging drop crystal growth apparatus

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  15. Influence of Y2O3 Addition on Crystallization, Thermal, Mechanical, and Electrical Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramic for Ceramic Ball Grid Array Package

    Li, Bo; Li, Wei; Zheng, Jingguo

    2018-01-01

    Y2O3 addition has a significant influence on the crystallization, thermal, mechanical, and electrical properties of BaO -Al2O3 -B2O3 -SiO2 (BABS) glass-ceramics. Semi-quantitative calculation based on x-ray diffraction demonstrated that with increasing Y2O3 content, both the crystallinity and the phase content of cristobalite gradually decreased. It is effective for the additive Y2O3 to inhibit the formation of cristobalite phase with a large coefficient of thermal expansion value. The flexural strength and the Young's modulus, thus, are remarkably increased from 140 MPa to 200 MPa and 56.5 GPa to 63.7 GPa, respectively. Also, the sintering kinetics of BABS glass-ceramics with various Y2O3 were investigated using the isothermal sintering shrinkage curve at different sintering temperatures. The sintering activation energy Q sharply decreased from 99.8 kJ/mol to 81.5 kJ/mol when 0.2% Y2O3 was added, which indicated that a small amount of Y2O3 could effectively promote the sintering procedure of BABS glass-ceramics.

  16. A Portable Diode Array Spectrophotometer.

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.

  17. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  18. Carbon nanotube nanoelectrode arrays

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  19. Helium crystals

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  20. Josephson junction arrays

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  1. Phased-array radars

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  2. Storage array reflection considerations

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  3. The EUROBALL array

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  4. Rectenna array measurement results

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  5. Arrayed waveguide Sagnac interferometer.

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  6. Fold distributions at clover, crystal and segment levels for segmented clover detectors

    Kshetri, R; Bhattacharya, P

    2014-01-01

    Fold distributions at clover, crystal and segment levels have been extracted for an array of segmented clover detectors for various gamma energies. A simple analysis of the results based on a model independant approach has been presented. For the first time, the clover fold distribution of an array and associated array addback factor have been extracted. We have calculated the percentages of the number of crystals and segments that fire for a full energy peak event

  7. Focal plane array with modular pixel array components for scalability

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  8. Tunneling effect in cavity-resonator-coupled arrays

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0370-1972",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("Online Submission","http://www.manuscriptxpress.org/osm/",""),new Array("","","x"));writeJournalLinks("", "40001185");issue nav --> Previous Issue | Next Issue >issue nav -->Volume 241, Issue12 (October 2004)Articles in the Current Issue:Rapid Research NoteDielectric and optical studies of phase transitions in [(CH3)2NH2]5Cd2CuCl11 crystal

    Elyashevskyy, Yu.; Dacko, S.; Kosturek, B.; Czapla, Z.; Kapustyanik, V. B.

    2004-10-01

    Single crystals of [(CH3)2 NH2]5Cd2CuCl11 have been grown and their dielectric and optical properties have been studied. Electric permittivity, losses and linear optic birefringence measurements have shown that the obtained new crystal is isomorphous with the original one - [(CH3)2 NH2]5Cd3Cl11. Phase transitions were observed at 175 K (continuous) and 120 K (first order). It means that partial replacing of cadmium atoms by copper ones does not change the structure and the heavy Cd2CuCl11-2 anions do not influence significantly the interaction of dimethylammonium cations.

  10. Triggering the GRANDE array

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  11. ISS Solar Array Management

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  12. Miniature quartz crystal-resonator-based thermogravimetric detector.

    Sai, N; Tagawa, Y; Sohgawa, M; Abe, T

    2014-09-01

    In this work, a new design for a microheater combined with a quartz crystal microbalance (QCM) array for thermogravimetric analysis is presented. Each QCM consists of two electrodes to excite thickness-shear-mode vibrations and one microheater to increase the temperature on the crystal backside. In addition, all the electrode pads are patterned on the crystal backside, making the design of the QCM compact and user-friendly. Finally, the proposed QCM array was employed to separate ethanol from methanol. This was successfully achieved via thermal desorption spectra calculated by differentiating the frequency changes.

  13. See Also:physica status solidi (b)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40000761",""),new Array("Issues","/cgi-bin/jtoc/40000761/",""),new Array("Early View","/cgi-bin/jeview/40000761/",""),new Array("News","/cgi-bin/jabout/40000761/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40000761/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40000761/cover/2231/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40000761/2231_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40000761/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40000761/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40000761/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0031-8965",""),new Array("Contact","/cgi-bin/jabout/40000761/contact.html",""),new Array("Online Submission","http://www.manuscriptxpress.org/osm/",""),new Array("","","x"));writeJournalLinks("", "40000761");issue nav --> Previous Issue | Next Issue >issue nav -->Volume 201, Issue13 (October 2004)Articles in the Current Issue:Rapid Research NoteScintillation properties of lead tungstate crystals doped with the monovalent ion lithium

    Huang, Yanlin; Seo, Hyo Jin; Zhu, Wenliang

    2004-10-01

    Lithium-doped PbWO4 crystals have been grown by the Czochralski method. Optical absorbance, X-ray excited luminescence, light yield measurements and X-ray pulsed excited decays have been investigated. Li+ doping has a very good uniformity and could enhance the luminescence of PbWO4, give some contributions to the fast decay components.

  14. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0370-1972",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("Online Submission","http://www.manuscriptxpress.org/osm/",""),new Array("","","x"));writeJournalLinks("", "40001185");issue nav --> Previous Issue | Next Issue >issue nav -->Volume 241, Issue13 (November 2004)Articles in the Current Issue:Rapid Research NoteStrong Eu emission of annealed Y2O3:Eu nanotube and nano-sized crystals

    Sekita, Masami; Iwanaga, Kenichi; Hamasuna, Tomomi; Mohri, Shinji; Uota, Masafumi; Yada, Mitsunori; Kijima, Tsuyoshi

    2004-11-01

    We have observed a drastic increase of the Eu3+ emission intensity by annealing nanotubes and nano-sized hexagonal-mesostructured crystals of the Y2O3:Eu system together with bulk samples. It is found that there are three Eu3+ sites in all samples. Stark splitting schemes are proposed for the three homogeneous sites.

  15. Magnetophotonic crystals

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  16. Magnetophotonic crystals

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  17. Sensor array signal processing

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  18. Real-Time Hand-Held Magnetometer Array

    2016-04-01

    measurements, we swung a target, pendulum-style, from the ceiling above the array. We could easily observe that the height of the target was varying... crystal oscillator clock signal. The Microblaze processor boots up with the program already present in its RAM at startup. MR-2104 Real-Time

  19. Introduction to adaptive arrays

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  20. Piezoelectric transducer array microspeaker

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  1. Protein Functionalized Nanodiamond Arrays

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  2. Carbon nanotube array actuators

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  3. Photonic time crystals.

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  4. Testing of focal plane arrays

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  5. Control of magnonic spectra in cobalt nanohole arrays: the effects of density, symmetry and defects

    Barman, Anjan

    2010-01-01

    Magnetic nanohole arrays are important systems for propagation of magnetic excitations and are among the potential candidates for magnonic crystals. A thorough investigation of magnonic band structures and the effect of the geometry of the array on them are important. Here, we present a systematic micromagnetic simulation study of magnonic modes in cobalt nanohole (antidot) arrays. In particular, we investigate the effects of the areal density and symmetry of the array and defects introduced in the array. The magnonic modes are strongly dependent on the density and the symmetry of the array but are weakly dependent on the defects. We have further investigated the modes in a tailored array consisting of equally wide hexagonal arrays with varying density. The magnonic spectrum of the tailored array contains additional modes above the modes of the constituent arrays due to the appearance of irregular domain structures at the regions joining arrays of two different types. This opens up the possibility of tuning the magnonic bands in magnetic nanohole arrays by careful design of the structure of the array.

  6. Phase-locking regimes of photonic crystal nanocavity laser arrays

    Skovgård, Troels Suhr; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    -difference time-domain calculations, the typical coupling strength is extracted for realistic structures. Phase-locking regimes are identified, and their stability with respect to parameter variation is investigated. The results suggest that quantum well devices are not well suited for phase-locked nanocavity...

  7. Photonic Crystal Fibers

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  8. Wire Array Photovoltaics

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  9. A review of array radars

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  10. Detector array and method

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  11. Diode lasers and arrays

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  12. Array Theory and Nial

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  13. Piezoelectric transducer array microspeaker

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  14. Measuring Light Reflectance of BGO Crystal Surfaces

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  15. Patterned Colloidal Photonic Crystals.

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    Bollani, M; Bietti, S; Sanguinetti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Tagliaferri, A; Burghammer, M

    2014-01-01

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  17. Quartz substrate infrared photonic crystal

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  18. Graphene-based one-dimensional photonic crystal

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  19. Mesoscale martensitic transformation in single crystals of topological defects

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  20. Concurrent array-based queue

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  1. Radar techniques using array antennas

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  2. Pressure cryocooling protein crystals

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  3. The Big Optical Array

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  4. A 4 probe array

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  5. Timed arrays wideband and time varying antenna arrays

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  6. Waveguiding in supported phononic crystal plates

    Vasseur, J; Hladky-Hennion, A-C; Deymier, P; Djafari-Rouhani, B; Duval, F; Dubus, B; Pennec, Y

    2007-01-01

    We investigate, with the help of the finite element method, the existence of absolute band gaps in the band structure of a free-standing phononic crystal plate and of a phononic crystal slab deposited on a substrate. The two-dimensional phononic crystal is constituted by a square array of holes drilled in an active piezoelectric (PZT5A or AlN) matrix. For both matrix materials, an absolute band gap occurs in the band structure of the free-standing plate provided the thickness of the plate is on the order of magnitude of the lattice parameter. When the plate is deposited on a Si substrate, the absolute band gap still remains when the matrix of the phononic crystal is made of PZT5A. The AlN phononic crystal plate losses its gap when supported by the Si substrate. In the case of the PZT5A matrix, we also study the possibility of localized modes associated with a linear defect created by removing one row of air holes in the deposited phononic crystal plate

  7. Solar collector array

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  8. Photovoltaic cell array

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  9. Phased array antenna control

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  10. Seismometer array station processors

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  11. Lectin-Array Blotting.

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Array processor architecture

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  13. High Resolution Displays Using NCAP Liquid Crystals

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  14. Density of states functions for photonic crystals

    McPhedran, R.C.; McOrist, J.; Sterke, C.M. de; Nicorovici, N.A.; Botten, L.C.; Asatryan, A.A.

    2004-01-01

    We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states (MDOS), and show that this function can be used to calculate both the local density of states (LDOS), which gives position information for emission of radiation from photonic crystals, and the spectral density of states (SDOS), which gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional density of states, which depends only on frequency. We relate all four functions to the band structure and propagating states within the crystal, and give numerical examples of the relation between band structure and density of states functions

  15. A 90 element CdTe array detector

    Iwase, Y.; Onozuka, A.; Ohmori, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Electronic Material and Components Labs.); Funaki, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Materials Development Research Labs.)

    1992-11-15

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 [mu]s, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV [gamma]-rays. (orig.).

  16. A 90 element CdTe array detector

    Iwase, Y.; Funaki, M.; Onozuka, A.; Ohmori, M.

    1992-11-01

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 μs, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV γ-rays.

  17. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  18. Performance analysis of solar cell arrays in concentrating light intensity

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  19. Studies on an automated gain stabilisation for the new APD read-out of the crystal barrel calorimeter

    Pauli, Peter [HISKP Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    For the investigation of the nucleon spectrum it is not enough to measure only cross sections because of the large overlap of resonances. To disentangle these resonances, a partial wave analysis is needed. To find unambiguous solutions it is necessary to measure (double) polarisation observables. The CBELSA/TAPS experiment is an important tool to measure these observables in meson photoproduction off nucleons. To achieve a high efficiency in purely neutral reactions it is important to implement the main calorimeter into the first level trigger. To do so it is necessary to replace the current PIN photo diodes with new avalanche photo diodes (APDs). The new read-out is able to provide a timing signal that is fast enough to use it as a trigger while it does not impair the energy resolution of the calorimeter compared to the previous system. A drawback of APDs is their temperature dependency. To provide a stable gain throughout varying running conditions it is vital to monitor the temperature change and correct it if necessary. The poster shows an approach to ensure temperature stability where the temperature is monitored via a temperature sensitive NTC thermistor and the gain is adjusted via changes of the high voltage supply of the APDs. This method proved successful while it is easy to implement in all 1320 CsI(Tl) crystals of the calorimeter.

  20. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  1. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  2. Crystallization In Multicomponent Glasses

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  3. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Holanda, J.; Silva, D.B.O.; Padrón-Hernández, E.

    2015-01-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth

  4. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  5. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  6. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  7. Educational Cosmic Ray Arrays

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  8. Storage array reflection considerations

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  9. A LaBr{sub 3}: Ce fast-timing array for DESPEC at FAIR

    Roberts, Oliver J., E-mail: O.J.Roberts@brighton.ac.uk [School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ (United Kingdom); Bruce, Alison M. [School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ (United Kingdom); Regan, Patrick H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); National Physics Laboratory, Teddington, TW11 0LW (United Kingdom); Podolyák, Zsolt; Townsley, Christopher M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, John F.; Mulholland, Kieran F. [School of Engineering, The University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smith, Andrew [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2014-06-01

    The design of a fast-timing γ-ray detection array aimed at measuring sub-nanosecond half-lives using LaBr{sub 3}:Ce scintillation crystals is presented. This array will complement novel and existing charged particle and neutron detector arrays at the low-energy branch of a fragment separator (Super-FRS) to be built within the NuSTAR collaboration as part of the future Facility for Anti-proton and Ion Research (FAIR). The array will be used in conjunction with the Advanced Implantation Detector Array (AIDA), to measure implant-decay correlations. Monte-Carlo simulations have been performed to determine the design of the proposed fast-timing array around a localised implantation point. In particular, simulations were used to determine the full-energy peak efficiencies for single cylindrical, conical and ‘hybrid’ detector geometries, as well as complete array configurations of ‘hybrid’ and ∅1.5 in.×2 in. cylindrical crystals. Timing precision calculations were then used to determine the timing response for each configuration based on its simulated efficiency. An informed decision based on the simulated efficiencies and timing precision calculations allowed the optimum configuration for the array to be determined.

  10. Photonic crystal resonator integrated in a microfluidic system

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Niels Asger; Kutter, Jörg Peter

    2008-01-01

    We report on a novel optofluidic system consisting of a silica-based 1D photonic crystal, integrated planar waveguides, and electrically insulated fluidic channels. An array of pillars in a microfluidic channel designed for electrochromatography is used as a resonator for on-column label...

  11. Multiband Photonic Phased-Array Antenna

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  12. Photonic crystal pioneer

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  13. Crystallization Pathways in Biomineralization

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  14. Growth of dopamine crystals

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  15. Selecting Sums in Arrays

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  16. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  17. Apparatus for mounting crystal

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  18. ALICE photon spectrometer crystals

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  19. A BGO detector array and its application in intermediate energy heavy ion experiments

    Li Zuyu; Jin Genming; He Zhiyong; Duan Limin; Wu Heyu; Qi Yujin; Luo Qingzheng; Zhang Baoguo; Wen Wanxin; Dai Guangxi

    1996-01-01

    A BGO crystal (Bi 4 Ge 3 O 12 ) as the E detector of ΔE-E for identification of reaction products has been used for detecting the charged particles emitting from the 25 MeV 40 Ar induced reaction. The responses of the BGO crystal to various light charged particles were measured. A close-packed hexagonal array consisting of thirteen ΔE-E telescopes (Si-BGO) has been developed to detect the light charged particles interfering with each other in intermediate-energy heavy-ion induced reactions. Some applications of this telescope array are also described. (orig.)

  20. Patterned solid state growth of barium titanate crystals

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By

  1. Nonlinear coherent structures in granular crystals

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  2. Crystal Growth Technology

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  3. Food crystallization and eggs.

    Egg products can be utilized to control crystallization in a diverse realm of food products. Albumen and egg yolk can aid in the control of sugar crystal formation in candies. Egg yolk can enhance the textural properties and aid in the control of large ice crystal formation in frozen desserts. In...

  4. Combinatorial aspects of covering arrays

    Charles J. Colbourn

    2004-11-01

    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  5. A LSO scintillator array for a PET detector module with depth of interaction measurement

    Huber, J.S.; Moses, W.W.; Andreaco, M.S.; Petterson, O.

    2000-01-01

    We present construction methods and performance results for a production scintillator array of 64 optically isolated, 3 mm x 3 mm x 30 mm sized LSO crystals. This scintillator array has been developed for a PET detector module consisting of the 8x8 LSO array coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PD). The PMT provides an accurate timing pulse and initial energy discrimination, the PD identifies the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction (DOI). Unlike the previous LSO array prototypes, we now glue Lumirror reflector material directly onto 4 sides of each crystal to obtain an easily manufactured, mechanically rugged array with our desired depth dependence. With 511 keV excitation, we obtain a total energy signal of 3600 electrons, pulse-height resolution of 25% fwhm, and 6-15 mm fwhm DOI resolution

  6. PS-HEMA latex fractionation by sedimentation and colloidal crystallization

    Cardoso André H.

    1999-01-01

    Full Text Available A poly(styrene-co-hydroxyethylmethacrylate latex underwent sedimentation under gravity followed by an spontaneous and extensive colloidal crystallization. It was then fractionated in three visually distinguishable layers. Latex aliquots layers were sampled at different heigths and the particles were characterized by PCS, microelectrophoresis, infrared spectra and analytical electron microscopy. The major fraction was opalescent and contained the colloidal crystals settled in the bottom of the liquid. Two other latex fractions were obtained, which differed in their chemical compositions, particle sizes and topochemical features from the self-arraying particles. Macrocrystallization of the fractionated latex yielded high quality crystals with a low frequency of defects, which confirms that particle chemical homogeneity is an important factor for particle self-arraying.

  7. Nanoelectrode array for electrochemical analysis

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  8. Array architectures for iterative algorithms

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  9. Josephson junctions array resonators

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  10. Diagnosable structured logic array

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  11. Low Frequency Space Array

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  12. Scintillator detector array

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  13. Programmable and coherent crystallization of semiconductors

    Yu, Liyang

    2017-03-04

    The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors.

  14. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  15. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  16. Networked Sensor Arrays

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  17. Patterning of Perovskite Single Crystals

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  18. EUROGAM: A high efficiency escape suppressed spectrometer array

    Nolan, P J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of {approx} 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs.

  19. EUROGAM: A high efficiency escape suppressed spectrometer array

    Nolan, P.J.

    1992-01-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of ∼ 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs

  20. Protein Crystal Growth

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  1. Photonic crystal light source

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  2. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    Meng Xiuqing [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)]. E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Li Binghui [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Wang Xiaohua [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and technology, 7089 Weixing Road Changchun (China); Fan Xiwu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)

    2007-01-15

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays.

  3. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    Meng Xiuqing; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Li Binghui; Wang Xiaohua; Fan Xiwu

    2007-01-01

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays

  4. Cyclotron-Resonance-Maser Arrays

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  5. Submillimeter heterodyne arrays for APEX

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  6. Digital electrostatic acoustic transducer array

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  7. Digital electrostatic acoustic transducer array

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  8. Chunking of Large Multidimensional Arrays

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  9. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  10. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  11. Passive microfluidic array card and reader

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  12. SAQC: SNP Array Quality Control

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  13. Dependently typed array programs don’t go wrong

    Trojahner, K.; Grelck, C.

    2009-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  14. Dependently typed array programs don't go wrong

    Trojahner, K.; Grelck, C.

    2008-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  15. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Valley Topological Phases in Bilayer Sonic Crystals

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  17. Photonic crystal geometry for organic solar cells.

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  18. Phase instability in crystals under irradiation

    Martin, G.

    1975-01-01

    A diffusion term is introduced in the standard chemical rate model of the defect population in crystals under irradiation. For point defect generation rates larger than a critical value (g*), the uniform point defect population is shown to be unstable with respect to spatial fluctuations of the point defect concentration. g* is temperature dependent. Severala effects including the nucleation of arrays of point defect clusters, or radiation induced precipitation may occur above the instability threshold. Defect-defect interaction potentials play a crucial role in the numerical value of this threshold [fr

  19. The X'tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: Performance comparison with glued crystal elements

    Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601 (Japan); Murayama, Hideo; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-09-21

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from six sides of the crystal block. The X'tal cube is composed of a 3D crystal block with isotropic segments. Each face of the 3D crystal block is covered with a 4×4 array of multi-pixel photon counters (MPPCs). Previously, in order to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving technique to a monolithic crystal block instead of gluing segmented small crystals. A dense arrangement of multiple micro-cracks carved by the laser beam works efficiently as a scattering wall for the scintillation photons. The X'tal cube with the laser-processed block showed excellent performance with respect to crystal identification and energy resolution. In this work, for characteristics comparison between the laser-processed block and the conventional segmented array block, we made the laser-processed block and two types of segmented array blocks, one with air gaps and the other with glued segmented small crystals. All crystal blocks had 3D grids of 2 mm pitch. The 4×4 MPPC arrays were optically coupled to each surface of the crystal block. When performance was evaluated using a uniform irradiation of 511 keV, we found that the X'tal cubes with the laser-processed block could easily achieve 2 mm{sup 3} uniform crystal identification. Also, the average energy resolution of each 3D grid was 11.1±0.7%. On the other hand, the glued segmented array block had a pinched distribution and crystals could not be separated clearly. The segmented array block with air gaps had satisfactory crystal identification performance; however, the laser-processed block had higher crystal identification performance. Also, the energy resolution of the laser-processed block was better than for the segmented array blocks. In summary, we found the laser-processed X'tal cube had

  20. CMS lead tungstate crystals

    Laurent Guiraud

    2000-01-01

    These crystals are made from lead tungstate, a crystal that is as clear as glass yet with nearly four times the density. They have been produced in Russia to be used as scintillators in the electromagnetic calorimeter on the CMS experiment, part of the LHC project at CERN. When an electron, positron or photon passes through the calorimeter it will cause a cascade of particles that will then be absorbed by these scintillating crystals, allowing the particle's energy to be measured.

  1. Macromolecular crystallization in microgravity

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  2. Active Photonic Crystal Waveguides

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  3. A crystal barrel

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  4. Automation in biological crystallization.

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  5. Crystallization Formulation Lab

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  6. Microprocessor system to recover data from a self-scanning photodiode array

    Koppel, L.N.; Gadd, T.J.

    1975-01-01

    A microprocessor system developed at Lawrence Livermore Laboratory has expedited the recovery of data describing the low energy x-ray spectra radiated by laser-fusion targets. An Intel microprocessor controls the digitization and scanning of the data stream of an x-ray-sensitive self-scanning photodiode array incorporated in a crystal diffraction spectrometer

  7. Diode array pumped, non-linear mirror Q-switched and mode-locked

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  8. ESPRIT And Uniform Linear Arrays

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  9. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  10. The Owens Valley Millimeter Array

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  11. Fundamentals of ultrasonic phased arrays

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  12. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. SQIF Arrays as RF Sensors (Briefing Charts)

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  14. Large scale biomimetic membrane arrays

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  15. Next Generation Microshutter Arrays Project

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  16. Fundamentals of spherical array processing

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  17. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    Nakata, M.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Jevasuwan, W.; Fukata, N. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  18. Thermotropic Ionic Liquid Crystals

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  19. Thermotropic Ionic Liquid Crystals.

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  20. Thermotropic Ionic Liquid Crystals

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  1. Photonic crystal fibers

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  2. Tactical Miniature Crystal Oscillator.

    1980-08-01

    manufactured by this process are expected to require 30 days to achieve minimum aging rates. (4) FUNDEMENTAL CRYSTAL RETRACE MEASUREMENT. An important crystal...considerable measurement time to detect differences and characterize components. Before investing considerable time in a candidate reactive element, a

  3. Crystals in the LHC

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  4. Topological features of engineered arrays of adsorbates in honeycomb lattices

    Gonzalez-Arraga, Luis A., E-mail: ludovici83@gmail.com [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); Lado, J.L. [International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal); Guinea, Francisco [IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid (Spain); School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin–orbit coupling. The combination of magnetism and spin–orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin–orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin–orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley–Hall effect.

  5. Electrically driven light emission from an array of Si nanoclusters

    Mazzitello, K I; Martin, H O; Aldao, C M; Roman, H E

    2004-01-01

    Charge transport and light emission properties of an array of silicon nanoclusters (NCs), sandwiched between a p-type and an n-type doped silicon crystal, are studied theoretically by assuming that electrons and holes enter from the opposite sides of the array in response to an applied electric field. The size of the NCs considered ranges from 16 nm down to 3.6 nm and their spatial distribution is optimized so that light emission, resulting from radiative recombinations, is peaked in the visible red around 1.8 eV. The light emission efficiency is limited by the carrier hopping times and is found to be in the range 2-0.5%, for fields ranging from 100 kV cm -1 to 500 kV cm -1 , respectively

  6. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics

    Nagata T

    2009-01-01

    Full Text Available Abstract Highly uniform and c-axis-aligned ZnO nanorod arrays were fabricated in predefined patterns by a low temperature homoepitaxial aqueous chemical method. The nucleation seed patterns were realized in polymer and in metal thin films, resulting in, all-ZnO and bottom-contacted structures, respectively. Both of them show excellent geometrical uniformity: the cross-sectional uniformity according to the scanning electron micrographs across the array is lower than 2%. The diameter of the hexagonal prism-shaped nanorods can be set in the range of 90–170 nm while their typical length achievable is 0.5–2.3 μm. The effect of the surface polarity was also examined, however, no significant difference was found between the arrays grown on Zn-terminated and on O-terminated face of the ZnO single crystal. The transmission electron microscopy observation revealed the single crystalline nature of the nanorods. The current–voltage characteristics taken on an individual nanorod contacted by a Au-coated atomic force microscope tip reflected Schottky-type behavior. The geometrical uniformity, the designable pattern, and the electrical properties make the presented nanorod arrays ideal candidates to be used in ZnO-based DC nanogenerator and in next-generation integrated piezoelectric nano-electromechanical systems (NEMS.

  7. Fabrication and characterization of nano-gas sensor arrays

    Hassan, H. S.; Kashyout, A. B.; Morsi, I.; Nasser, A. A. A.; Raafat, A.

    2015-01-01

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O 2 , H 2 and CO 2 gases as a function of temperature

  8. Copper-encapsulated vertically aligned carbon nanotube arrays.

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  9. Fabrication and characterization of nano-gas sensor arrays

    Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com [Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Researches and technological applications, New Borg El-Arab City, Alexandria (Egypt); Morsi, I., E-mail: drimanmorsi@yahoo.com; Nasser, A. A. A., E-mail: menem-1954@yahoo.com; Raafat, A., E-mail: abrs-218@yahoo.com [Arab Academy for Science and Technology, and Maritime Transport, Alexandria, 21936 (Egypt)

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  10. CMOS gate array characterization procedures

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  11. CCD and IR array controllers

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  12. Flexible eddy current coil arrays

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  13. Optically Anomalous Crystals

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  14. Progress on photonic crystals

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  15. Organic semiconductor crystals.

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  16. Dispersive photonic crystals from the plane wave method

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  17. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  18. A composite hydrogels-based photonic crystal multi-sensor

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  19. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  20. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  1. LC-lens array with light field algorithm for 3D biomedical applications

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  2. Disorder in Protein Crystals.

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  3. Coded aperture imaging with uniformly redundant arrays

    Fenimore, E.E.; Cannon, T.M.

    1980-01-01

    A system is described which uses uniformly redundant arrays to image non-focusable radiation. The array is used in conjunction with a balanced correlation technique to provide a system with no artifacts so that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. The array is mosaicked to reduce required detector size over conventional array detectors. 15 claims

  4. Crystals in light.

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single

  5. Magnetic ions in crystals

    Stevens, K W

    2014-01-01

    There have been many demonstrations, particularly for magnetic impurity ions in crystals, that spin-Hamiltonians are able to account for a wide range of experimental results in terms of much smaller numbers of parameters. Yet they were originally derived from crystal field theory, which contains a logical flaw; electrons on the magnetic ions are distinguished from those on the ligands. Thus there is a challenge: to replace crystal field theory with one of equal or greater predictive power that is based on a surer footing. The theory developed in this book begins with a generic Hamiltonian, on

  6. Silumins alloy crystallization

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  7. Hypersonic phononic crystals.

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  8. Simulation and design of the photonic crystal microwave accelerating structure

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  9. Application of Piezocomposite Twin, Side by Side, Phased Array UT Probes for the Inspection of Stainless Steel

    Delaide, M.; Dumas, Ph

    2005-01-01

    UT probes to be used for the examination of coarse-grain structure must allow to detect and size cracks, with a high reliability level. The combination of TRL probes, with phased array and piezocomposite technologies allows to improve probes performances and inspection speed. Single element crystals are replaced by matrix arrays, allowing to deflect and skew the beams, to change the inspection depth. This paper describes the designing, the manufacturing and the characterisation of several probes

  10. The surface detector array of the Telescope Array experiment

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  11. The surface detector array of the Telescope Array experiment

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  12. Successive Standardization of Rectangular Arrays

    Richard A. Olshen

    2012-02-01

    Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.

  13. Integrated Array/Metadata Analytics

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  14. Retrieval of Mir Solar Array

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  15. Dynamics of Josephson junction arrays

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  16. Large displacement bi-directional out-of-plane Lorentz actuator array for surface manipulation

    Park, Byoungyoul; Afsharipour, Elnaz; Chrusch, Dwayne; Shafai, Cyrus; Andersen, David; Burley, Greg

    2017-01-01

    This paper presents a large displacement out-of-plane Lorentz actuator array for surface manipulation. Actuators are formed from single crystal silicon flexible serpentine springs on either side of a rigid crossbar containing a narrow contact pillar. A rigid mounting rail system was employed to enable a 5  ×  5 array, which offers scalability of the array size. Analytical and finite element models were used to optimize actuator design. Individual actuators were tested to show linear deflection response of  ±150 µ m motion, using a  ±14.7 mA current in the presence of a 0.48 T magnetic field. This actuator array is suitable for various 2D surface modification applications due to its large deformation with low current and temperature of operation, and narrow contact area to a target surface. (paper)

  17. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  18. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  19. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  20. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    2004-01-01

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light fi....... Transmission spectra calculated by FDTD method completely reflect peculiarities of modes dispersion, showing up to 80% transmission for a realistic SOI nanopillar structure....

  1. Photonic crystal borax competitive binding carbohydrate sensing motif†

    Cui, Qingzhou; Muscatello, Michelle M. Ward; Asher, Sanford A.

    2009-01-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols. PMID:19381378

  2. Photonic crystal borax competitive binding carbohydrate sensing motif.

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  3. Crystal Genetics, Inc.

    Kermani, Bahram G

    2016-07-01

    Crystal Genetics, Inc. is an early-stage genetic test company, focused on achieving the highest possible clinical-grade accuracy and comprehensiveness for detecting germline (e.g., in hereditary cancer) and somatic (e.g., in early cancer detection) mutations. Crystal's mission is to significantly improve the health status of the population, by providing high accuracy, comprehensive, flexible and affordable genetic tests, primarily in cancer. Crystal's philosophy is that when it comes to detecting mutations that are strongly correlated with life-threatening diseases, the detection accuracy of every single mutation counts: a single false-positive error could cause severe anxiety for the patient. And, more importantly, a single false-negative error could potentially cost the patient's life. Crystal's objective is to eliminate both of these error types.

  4. Diffusion in Coulomb crystals.

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  5. Bipolarons in nonmetallic crystals

    Vinetskii, V.L.; Pashitskii, E.A.; Yanchuk, V.A.

    1987-01-01

    The binding energy of a bipolaron in an ionic crystal increases substantially in the case of strong anisotropy of the effective masses of the free carriers of the easy plane type or easy axis type. In the second case the polaron is cigar-like in shape and the coaxial configuration of bipolarons is energetically favorable. In this case a significant gain in the binding energy and in the width of the region of existence of the bipolaron, with respect to the dielectric constant and the magnitude of the electron-phonon interaction constant, compared with an isotropic crystal, is obtained only for quasi-two-dimensional, or layered, and quasi-one-dimensional, or chainlike, crystals. This work shows that a significant gain in the binding energy can be obtained by taking into account the anisotropy of the dielectric constant of the crystal and localization of the electron wave functions in directions perpendicular to the layers and chains of atoms

  6. Liquid Crystal Colloids

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  7. Creep of crystals

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  8. X-ray detector array

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  9. Innovations in IR projector arrays

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  10. Sensitivity of Pulsar Timing Arrays

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  11. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  12. Thermotropic Ionic Liquid Crystals

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  13. Hybrid Arrays for Chemical Sensing

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  14. The OncoArray Consortium

    Amos, Christopher I; Dennis, Joe; Wang, Zhaoming

    2017-01-01

    by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy...... among centers and by ethnic background. RESULTS: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring...

  15. Phased Arrays 1985 Symposium - Proceedings

    1985-08-01

    anjl with an1 au~ U lar fy b)eanir. ( mice the 1311 0 ,0 - (a ) ,[ -40.0. -80𔃺 , -90.0 -45.0 0𔃺 45.0 90.0 ANGLE FROM BROADSIDE (DEGREES) aii ia -40,0...Electronic Scanning", RADC-TR-83-128, Dec. 1983. AL) A138808 222 m " ; . . . • " - " - . . . . -" ARRAYS OF COAXIALIY-FED MONOPOLE ELEMENTS IN A PARALLEL...Research Institute Hanscom AFB, MA 01731 Farmingdale, NY 11735 AB ST RAC U Arrays of coaxially-fed monopoles radiating into a parallel plate region

  16. Airborne electronically steerable phased array

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  17. Building a crystal palace

    2007-01-01

    The end-caps of the CMS electromagnetic calorimeter (ECAL) take shape as the first quadrant was completed on Wednesday 3 October. 1831 crystals, organised into five by five blocks named ‘supercrystals’, make up the first quadrant of Dee 1.With the 61,200-crystal barrel of its electromagnetic calorimeter (ECAL) complete, CMS is now building the endcaps, on the tenth anniversary of their initial design. Crystals for the endcaps were the last to be made, so the race is now on to have them all in place and ready for the turn-on of the LHC next year. Assembly of the first of eight quadrants began in June and crystal mounting was completed on Wednesday 3 October. Each crystal is transparent, has a volume just larger than a CERN coffee cup yet weighs a huge 1.5kg. 1831 of these lead tungstate crystals went into the first quadrant from a total 14,648 in the endcaps. The lead and tungsten account for 86% of each crystal’s weight, but as project leader Dave Cockerill expl...

  18. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  19. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  20. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Wodarz, Siggi [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hasegawa, Takashi; Ishio, Shunji [Department of Materials Science, Akita University, Akita City 010-8502 (Japan); Homma, Takayuki, E-mail: t.homma@waseda.jp [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2017-05-15

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated. - Highlights: • Ultra-fine CoPt nanodot arrays were fabricated by electrodeposition. • Crystallinity of hcp (002) was improved with uniform composition formation. • Uniform formation of hcp lattices leads to an increase in the coercivity.

  1. Collection of scintillation light from small BGO crystals

    Cherry, S.R.; Shao, Y.; Tornai, M.P.; Siegel, S.; Ricci, A.R.; Phelps, M.E.

    1995-01-01

    The authors propose to develop a high resolution positron emission tomography (PET) detector designed for animal imaging. The detector consists of a 2-D array of small bismuth germanate (BGO) crystals coupled via optical fibers to a multi-channel photomultiplier tube (MC-PMT). Though this approach offers several advantages over the conventional BGO block design, it does require that a sufficient number of scintillation photons be transported from the crystal, down the fiber and into the PMT. In this study the authors use simulations and experimental data to determine how to maximize the signal reaching the PMT. This involves investigating factors such as crystal geometry, crystal surface treatment, the use of reflectors, choice of optical fiber, coupling of crystals to the optical fiber and optical fiber properties. Their results indicate that using 2 x 2 x 10 mm BGO crystals coupled to 30 cm of clad optical fiber, roughly 50 photoelectrons are produced at the PMT photocathode for a 511 keV interaction. This is sufficient to clearly visualize the photopeak and provide adequate timing resolution for PET. Based on these encouraging results, a prototype detector will now be constructed

  2. Remedy and Recontamination Assessment Array

    2017-03-01

    instruments pre-installed from the R/V Ecos during the April 22, 2016 event. .................................................................... 38...Environmental Security Technology Certification Program IBI Index of Benthic Integrity ISMA In situ Microcosm Arrays HOC Hydrophobic Organic Compound...system was successfully designed and constructed based on the goal of providing an integrated technology for assessing the effectiveness of

  3. Solar array flight dynamic experiment

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. Multiwall carbon nanotube microcavity arrays

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  5. PHARUS : PHased ARray Universal SAR

    Paquay, M.H.A.; Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a polarimetric C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronm for PHased ARray Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 active modules (expandable to 96). A module

  6. Gamma-ray array physics

    Lister, C. J.

    1999-01-01

    In this contribution I am going to discuss the development of large arrays of Compton Suppressed, High Purity Germanium (HpGe) detectors and the physics that has been, that is being, and that will be done with them. These arrays and their science have dominated low-energy nuclear structure research for the last twenty years and will continue to do so in the foreseeable future. John Sharpey Schafer played a visionary role in convincing a skeptical world that the development of these arrays would lead to a path of enlightenment. The extent to which he succeeded can be seen both through the world-wide propagation of ever more sophisticated devices, and through the world-wide propagation of his students. I, personally, would not be working in research if it were not for Johns inspirational leadership. I am eternally grateful to him. Many excellent reviews of array physics have been made in the past which can provide detailed background reading. The review by Paul Nolan, another ex-Sharpey Schafer student, is particularly comprehensive and clear

  7. Directivity of basic linear arrays

    Bach, Henning

    1970-01-01

    For a linear uniform array ofnelements, an expression is derived for the directivity as a function of the spacing and the phase constants. The cases of isotropic elements, collinear short dipoles, and parallel short dipoles are included. The formula obtained is discussed in some detail and contour...

  8. Micromolding for ceramic microneedle arrays

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  9. Optically Controlled Phased Array Antenna

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  10. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm 3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  11. The Mu2e undoped CsI crystal calorimeter

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  12. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  13. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  14. Propagative selection of tilted array patterns in directional solidification

    Song, Younggil; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Karma, Alain

    2018-05-01

    We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing everywhere, selected independently of the initial conditions, except in a small region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the fundamental nature of this process. The models also account for more complex spacing modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single crystals or textured polycrystals for advanced materials.

  15. Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    Halavanau, A. [Northern Illinois U.; Qiang, G. [Tsinghua U., Beijing, Dept. Eng. Phys.; Ha, G. [POSTECH; Wisniewski, E. [Argonne (main); Piot, P. [NIU, DeKalb; Power, J. G. [Argonne (main); Gai, W. [Argonne (main)

    2017-07-24

    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.

  16. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  17. All-dielectric rod antenna array for terahertz communications

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  18. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-01-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm"3 size) with "2"2Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  19. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    Wang, Zhonghai [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Sun, Xishan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Lou, Kai [Department of Electrical and Computer Engineering, Rice University, Houston, Tx (United States); Meier, Joseph [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Zhou, Rong; Yang, Chaowen [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Zhu, Xiaorong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Shao, Yiping [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States)

    2016-04-21

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm{sup 3} size) with {sup 22}Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  20. Improvements in 130Te double beta decay search with cryogenic TeO2 array detectors

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Caspani, P.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    Single crystal TeO 2 bolometers have been used since 5 years ago to search for neutrinoless DBD of 130 Te. During the last year, our group has been studying and preparing the first array of 4 crystals, 340 g each, opening this technique to new frontiers in rare events' physics. The results and perspectives of this second generation cryogenic detectors are here reported and discussed, with particular emphasis on the peculiarities which make them feasible for a consistent upgrading of our previous result in DBD search. (orig.)

  1. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    González, A.J.; Conde, P.; Iborra, A.; Aguilar, A.; Bellido, P.; García-Olcina, R.; Hernández, L.; Moliner, L.; Rigla, J.P.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Torres, J.; Vidal, L.F.; Benlloch, J.M.

    2015-01-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured

  2. DNA electrophoresis through microlithographic arrays

    Sevick, E.M.; Williams, D.R.M.

    1996-01-01

    Electrophoresis is one of the most widely used techniques in biochemistry and genetics for size-separating charged molecular chains such as DNA or synthetic polyelectrolytes. The separation is achieved by driving the chains through a gel with an external electric field. As a result of the field and the obstacles that the medium provides, the chains have different mobilities and are physically separated after a given process time. The macroscopically observed mobility scales inversely with chain size: small molecules move through the medium quickly while larger molecules move more slowly. However, electrophoresis remains a tool that has yet to be optimised for most efficient size separation of polyelectrolytes, particularly large polyelectrolytes, e.g. DNA in excess of 30-50 kbp. Microlithographic arrays etched with an ordered pattern of obstacles provide an attractive alternative to gel media and provide wider avenues for size separation of polyelectrolytes and promote a better understanding of the separation process. Its advantages over gels are (1) the ordered array is durable and can be re-used, (2) the array morphology is ordered and can be standardized for specific separation, and (3) calibration with a marker polyelectrolyte is not required as the array is reproduced to high precision. Most importantly, the array geometry can be graduated along the chip so as to expand the size-dependent regime over larger chain lengths and postpone saturation. In order to predict the effect of obstacles upon the chain-length dependence in mobility and hence, size separation, we study the dynamics of single chains using theory and simulation. We present recent work describing: 1) the release kinetics of a single DNA molecule hooked around a point, frictionless obstacle and in both weak and strong field limits, 2) the mobility of a chain impinging upon point obstacles in an ordered array of obstacles, demonstrating the wide range of interactions possible between the chain and

  3. Optical properties of anisotropic 3D nanoparticles arrays

    Santiago, E. Y.; Esquivel-Sirvent, R.

    2017-07-01

    The optical properties of 3D periodic arrays of spheroidal Au nanoparticles are calculated using a Bruggeman effective medium approximation. The optical response of the supra-crystal depends on the volume fraction of the nanoparticles and their aspect or size ratio (major/minor axis). All the nanoparticles have the same orientation, and this defines an anisotropic dielectric function of the crystal. As a function of the filling fraction, while keeping the size ratio fixed, the maximum in the extinction spectra along the major and minor axes does not show a significant change. However, for a fixed filling fraction, varying the aspect ratio of the particles induces a shift of several hundred of nanometers in the maximum of the extinction spectra along the major axis and almost no changes along the minor axis. Depending on the aspect ratio and the filling fraction, we show that the supra-crystal has three regimes with different values of an effective plasma frequency. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  4. The Use of Calixarene Thin Films in the Sensor Array for VOCs Detection and Olfactory Navigation

    Alan F. Holloway

    2010-02-01

    Full Text Available This work is dedicated to the development of a sensor array for detection of volatile organic chemicals (VOCs in pre-explosive concentrations as well as for olfactory robotic navigation in the frame of two EU projects. A QCM (quartz crystal microbalance sensor array was built utilising quartz crystals spun-coated with thin films of different amphiphilic calixarene molecules to provide a base for pattern recognition of different volatile organic chemicals (VOCs. Commercial Metal-oxide semiconductor (MOS sensors were also used in the same array for the benefit of comparison. The sensor array was tested with a range of organic vapours, such as hydrocarbons, alcohols, ketones, aromatics, etc, in concentrations below LEL and up to UEL (standing for lower and upper explosion limit, respectively; the sensor array proved to be capable of identification and concentration evaluation of a range of VOCs. Comparison of QCM and MOS sensors responses to VOCs in the LEL-UEL range showed the advantage of the former. In addition, the sensor array was tested on the vapours of camphor from cinnamon oil in order to prove the concept of using the "scent marks" for robotic navigation. The results showed that the response signature of QCM coated with calixarenes to camphor is very much different from those of any other VOCs used. Adsorption and de-sorption rates of camphor are also much slower comparing to VOCs due to a high viscosity of the compound. Our experiments demonstrated the suitability of calixarene sensor array for the task and justified the use of camphor as a "scent mark" for olfactory navigation.

  5. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    Pishko, Michael V

    2006-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  6. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    Pishko, Michael V

    2007-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  7. Leakage analysis of crossbar memristor arrays

    Zidan, Mohammed A.; Salem, Ahmed Sultan; Fahmy, Hossam Aly Hassan; Salama, Khaled N.

    2014-01-01

    the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  8. Statistical monitoring of linear antenna arrays

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  9. Photovoltaic array: Power conditioner interface characteristics

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  10. Time crystals: a review

    Sacha, Krzysztof; Zakrzewski, Jakub

    2018-01-01

    Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals—the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek’s idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.

  11. Thermodynamics of Crystals

    Navrotsky, Alexandra

    Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.

  12. Photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  13. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    Hani Albetran; Victor Vega; Victor M. Prida; It-Meng Low

    2018-01-01

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase...

  14. All-optical image processing with nonlinear liquid crystals

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  15. Leakage analysis of crossbar memristor arrays

    Zidan, Mohammed A.

    2014-07-01

    Crossbar memristor arrays provide a promising high density alternative for the current memory and storage technologies. These arrays suffer from parasitic current components that significantly increase the power consumption, and could ruin the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  16. Method to fabricate hollow microneedle arrays

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  17. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  18. Antenna Arrays and Automotive Applications

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  19. Adaptive ground implemented phase array

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  20. Invasive tightly coupled processor arrays

    LARI, VAHID

    2016-01-01

    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  1. High voltage load resistor array

    Lehmann, Monty Ray [Smithfield, VA

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  2. The electronics of the INDRA 4π detection array

    Pouthas, J.; Bertaut, A.; Bourgault, P.; Martina, L.; Olivier, L.; Piquet, B.; Plagnol, E.; Raine, B.; Saint-Laurent, F.; Spitaels, C.

    1995-01-01

    The INDRA multidetector is composed of 96 ionization chambers, 196 silicon detectors, 324 CsI(Tl) scintillators and 12 NE102/NE115 phoswich detectors. The associated electronics is presented. The signal treatment is performed through specifically designed modules, most of which are in the new VXIbus standard. The large dynamic range required for the silicon detectors is reached by means of a low noise amplifier providing a unipolar signal which is charge integrated and converted on two dynamic ranges. The trigger system relies on a new working mode called 'asynchronous mode' and performs event selections based on multiplicity functions which are built up from subgroups of detectors. The performances of the data acquisition and the graphical software packages are also presented. (author)

  3. The electronics of the INDRA 4{pi} detection array

    Pouthas, J.; Bertaut, A.; Bourgault, P.; Martina, L.; Olivier, L.; Piquet, B.; Plagnol, E.; Raine, B.; Saint-Laurent, F.; Spitaels, C. [and others

    1995-12-31

    The INDRA multidetector is composed of 96 ionization chambers, 196 silicon detectors, 324 CsI(Tl) scintillators and 12 NE102/NE115 phoswich detectors. The associated electronics is presented. The signal treatment is performed through specifically designed modules, most of which are in the new VXIbus standard. The large dynamic range required for the silicon detectors is reached by means of a low noise amplifier providing a unipolar signal which is charge integrated and converted on two dynamic ranges. The trigger system relies on a new working mode called `asynchronous mode` and performs event selections based on multiplicity functions which are built up from subgroups of detectors. The performances of the data acquisition and the graphical software packages are also presented. (author). 22 refs. Submitted to Nuclear Instruments and Methods (NL).

  4. Cavity syncronisation of underdamped Josephson junction arrays

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  5. Maximum gain of Yagi-Uda arrays

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.

    1971-01-01

    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....

  6. Microneedle array electrode for human EEG recording.

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  7. Calibration strategies for the Cherenkov Telescope Array

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  8. Principles of Adaptive Array Processing

    2006-09-01

    ACE with and without tapering (homogeneous case). These analytical results are less suited to predict the detection performance of a real system ...Nickel: Adaptive Beamforming for Phased Array Radars. Proc. Int. Radar Symposium IRS’98 (Munich, Sept. 1998), DGON and VDE /ITG, pp. 897-906.(Reprint also...strategies for airborne radar. Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, 1998, IEEE Cat.Nr. 0-7803-5148-7/98, pp. 1327-1331. [17

  9. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Blending of phased array data

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  11. LOFAR, the low frequency array

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  12. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.

  13. Multiplex detection of tumor markers with photonic suspension array

    Zhao Yuanjin; Zhao Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Pei Xiaoping [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Hu Jing; Zhao Wenju [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Chen Baoan [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Gu Zhongze [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Dushu Lake Higher Education Town, Suzhou 215123 (China)], E-mail: gu@seu.edu.cn

    2009-02-02

    A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, {alpha}-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL{sup -1}, 1.0-500 ng mL{sup -1}, 1.0-500 U mL{sup -1} and 3.0-500 U mL{sup -1} with limits of detection of 0.68 ng mL{sup -1}, 0.95 ng mL{sup -1}, 0.99 U mL{sup -1} and 2.30 U mL{sup -1} at 3{sigma}, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.

  14. Double Dirac cones in phononic crystals

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  15. Collective electronic excitations in C60 crystals

    Wu, X.; Ulloa, S.E.

    1994-01-01

    We present a theoretical study of the electronic excitations in fullerene crystals by calculating the density-density correlation function in a fully nonlocal linear response theory. Our results indicate that the collective features associates with the π→π * transitions show strong anisotropic properties, with peaks changing by as much as 0.7 eV in different directions. Meanwhile, the calculated mode dispersion exhibits rather weak wave-number dependence along a given direction, in general agreement with experimental results. The oscillator strength also shows anisotropic behavior, with significant weight redistribution for different directions. We also analyze this system in terms of a classical point-dipole array model, and show that this simple model approximates well the quantum results

  16. Double Dirac cones in phononic crystals

    Li, Yan; Wu, Ying; Mei, Jun

    2014-01-01

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  17. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  18. Hydrothermally grown zeolite crystals

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  19. Poet Lake Crystal Approval

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  20. Liquid crystal display

    Takami, K.

    1981-01-01

    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  1. Soap Bubbles and Crystals

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  2. Agile Photonic Crystals

    2011-01-03

    75, pp. 3253-3256, Oct. 1995. [24] F. Benabid, J. C. Knight, and P. S. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal...B. Mizaikoff, “Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

  3. The Crystal Set

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  4. WORKSHOP: Scintillating crystals

    Anon.

    1992-12-15

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry.

  5. The CMS crystal calorimeter

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  6. Positrons in ionic crystals

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  7. WORKSHOP: Scintillating crystals

    Anon.

    1992-01-01

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry

  8. Thermoelectricity in liquid crystals

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  9. Chemistry of microporous crystals

    Inui, Tomoyuki; Namba, Seitaro; Tatsumi, Takashi

    1991-01-01

    This volume contains three papers which are in INIS scope, entitled respectively: 129 Xe-NMR study of the crystallization of SAPO-37, NMR studies of cation localization in zeolites, developments in x-ray and neutron diffraction methods for zeolites. (H.W.). refs.; figs.; tabs

  10. Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts

    Böttcher, Bettina; Gräber, Peter; Boekema, Egbert J.; Lücken, Uwe

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified. Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  11. ELECTRON CRYOMICROSCOPY OF 2-DIMENSIONAL CRYSTALS OF THE H+-ATPASE FROM CHLOROPLASTS

    BOTTCHER, B; GRABER, P; BOEKEMA, EJ; LUCKEN, U

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified, Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  12. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor.

    Chen, Cheng; Zhu, Yihua; Bao, Hua; Shen, Jianhua; Jiang, Hongliang; Peng, Liming; Yang, Xiaoling; Li, Chunzhong; Chen, Guorong

    2011-05-21

    An ethanol-assisted method is utilized to generate a robust gelated crystalline colloidal array (GCCA) photonic crystal sensor. The functionalized sensor efficiently diffracts the visible light and responds to various stimuli involving solvent, pH, cation, and compressive strain; the related color change can be easily distinguished by the naked eye. © The Royal Society of Chemistry 2011

  13. Quality Assurance on Undoped CsI Crystals for the Mu2e Experiment

    Atanov, N.; Baranov, V.; Budagov, J.; Davydov, Yu. I.; Glagolev, V.; Tereshchenko, V.; Usubov, Z.; Cervelli, F.; Di Falco, S.; Donati, S.; Morescalchi, L.; Pedreschi, E.; Pezzullo, G.; Raffaelli, F.; Spinella, F.; Colao, F.; Cordelli, M.; Corradi, G.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Happacher, F.; Martini, M.; Miscetti, S.; Ricci, M.; Saputi, A.; Sarra, I.; Echenard, B.; Hitlin, D. G.; Hu, C.; Miyashita, T.; Porter, F.; Zhang, L.; Zhu, R.-Y.; Grancagnolo, F.; Tassielli, G.; Murat, P.

    2018-02-01

    The Mu2e experiment is constructing a calorimeter consisting of 1,348 undoped CsI crystals in two disks. Each crystal has a dimension of 34 x 34 x 200 mm, and is readout by a large area silicon PMT array. A series of technical specifications was defined according to physics requirements. Preproduction CsI crystals were procured from three firms: Amcrys, Saint-Gobain and Shanghai Institute of Ceramics. We report the quality assurance on crystal's scintillation properties and their radiation hardness against ionization dose and neutrons. With a fast decay time of 30 ns and a light output of more than 100 p.e./MeV measured with a bi-alkali PMT, undoped CsI crystals provide a cost-effective solution for the Mu2e experiment.

  14. Microbial Diagnostic Array Workstation (MDAW: a web server for diagnostic array data storage, sharing and analysis

    Chang Yung-Fu

    2008-09-01

    Full Text Available Abstract Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.

  15. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  16. A novel method to design sparse linear arrays for ultrasonic phased array.

    Yang, Ping; Chen, Bin; Shi, Ke-Ren

    2006-12-22

    In ultrasonic phased array testing, a sparse array can increase the resolution by enlarging the aperture without adding system complexity. Designing a sparse array involves choosing the best or a better configuration from a large number of candidate arrays. We firstly designed sparse arrays by using a genetic algorithm, but found that the arrays have poor performance and poor consistency. So, a method based on the Minimum Redundancy Linear Array was then adopted. Some elements are determined by the minimum-redundancy array firstly in order to ensure spatial resolution and then a genetic algorithm is used to optimize the remaining elements. Sparse arrays designed by this method have much better performance and consistency compared to the arrays designed only by a genetic algorithm. Both simulation and experiment confirm the effectiveness.

  17. Acoustic array systems theory, implementation, and application

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  18. The hyperion particle-γ detector array

    Hughes, R.O.; Burke, J.T.; Casperson, R.J.; Ota, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Fisher, S.; Parker, J. [Science, Technology and Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Beausang, C.W. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Dag, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Humby, P. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Department of Physics, University of Surrey, Surrey GU27XH (United Kingdom); Koglin, J. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McCleskey, E.; McIntosh, A.B.; Saastamoinen, A. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Tamashiro, A.S. [Department of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331 (United States); Wilson, E. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Wu, T.C. [Department of Physics and Astronomy, University of Utah, Salt Lake City UT 84112-0830 (United States)

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  19. Electrical properties of molecular crystals

    Barraud, A.

    1968-01-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [fr

  20. Plasmonic photonic crystals realized through DNA-programmable assembly.

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.