WorldWideScience

Sample records for csi photocathodes exposed

  1. Influence of bias voltage on the stability of CsI photocathodes exposed to air

    CERN Document Server

    Nitti, M A; Nappi, E; Singh, B K; Valentini, A

    2002-01-01

    We describe a possible correlation between the bias voltage applied to the substrate during the growth of CsI photocathodes and the variation of quantum efficiency (QE) after one day exposure to humid air. It was found that fresh samples are much less sensitive to humid air when a high negative bias voltage was applied during film growth. A model based on surface film interaction with water molecules is presented for the observed effect. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements have been performed to examine, respectively, the bulk structure and the surface of fresh and exposed CsI samples. Also reported are transmittance measurements for fresh and aged CsI samples in the wavelength range 190-850 nm.

  2. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2000-01-01

    Transmission electron microscopy has been employed to study the structure of polycrystalline CsI thin films and its transformation under exposure to humid air and UV irradiation. The catastrophic degradation of CsI thin film photocathode performance is shown to be associated with the film dissolving followed by its re-crystallization. This results in the formation of large lumps of CsI crystal on the substrate surface, so that the film becomes discontinuous and its performance as a photocathode is permanently degraded. No change in the surface morphology and the film crystalline structure was observed after the samples were UV irradiated.

  3. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  4. A fast position sensitive photodetector based on a CsI reflective photocathode

    International Nuclear Information System (INIS)

    Arnold, R.; Christophel, E.; Guyonnet, J.L.

    1991-01-01

    A fast detector was built for UV photon detection that depends on a CsI sensitized pad cathode. The rapidity of the detector is compared with that of a more classical chamber filled with photosensitive gases such as TEA or TMAE. Estimates of the quantum yield of the photocathode at 160 and 200 nm are given. The performances obtained make it a good photodetector candidate to be operated at high luminosity accelerators. (author) 7 refs., 19 figs

  5. Development of Large Area CsI Photocathodes for the ALICE/HMPID RICH Detector

    CERN Document Server

    Hoedlmoser, H; Schyns, E

    2005-01-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film Cesium Iodide (CsI) photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs immediately after the thin film coating process and the use of this system to investigate the properties of these photon detectors. Prior to this work and prior to the finalization of the ALICE/HMPID detector design, R&D work investigating the properties of CsI PCs had been performed at CERN and at other laboratories in order to determine possible substrates and optimized thin film coating procedures. These R&D studies were usually carried out with small samples on different substrates and with various procedures with sometimes ambiguous result...

  6. Development of large area CsI photocathodes for the Alice/Humped Rich detector

    International Nuclear Information System (INIS)

    Hoedlmoser, H.

    2005-03-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film cesium iodide photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs and the use of this system to investigate the properties of these photon detectors. Among the investigated phenomena the most important ones were: - Post deposition treatment: from R and D studies it was known, that the PC response can be increased by heating the PC after the coating process. Within this thesis it was shown that the enhancement effect is mandatory to achieve the photon conversion efficiency required by the detector design and that any difference in PC quality is due to differences in this enhancement effect. - Ageing effects: CsI PCs age under exposure to humidity due to the hygroscopicity of CsI and under high photon flux and ion bombardment inside the Multi Wire Proportional Chamber (MWPC) of the detector. All three effects have been investigated with the VUV scanner. The first effect requires a careful treatment of the CsI PCs to avoid exposure to humid air. Furthermore this effect was found to be reversible if the PC is heated. High photon fluxes are irrelevant in a Cherenkov detector dealing with single photons, however, the problem needed to be investigated to verify that the measurement process itself does not damage the PCs. The third mechanism is very important as it occurs during normal detector operation and depends only on the radiation environment of the experiment. For a dose corresponding to 20 years of operation inside ALICE an accelerated test showed a clear degradation of up to 40 % of the PC response. With the results of these studies the first 17 PCs (of 42) for the detector

  7. Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Yekaterina; MacPhee, Andrew

    2017-12-05

    A photocathode designs that leverage the grazing incidence geometry yield improvements through the introduction of recessed structures, such as cones, pyramids, pillars or cavities to the photocathode substrate surface. Improvements in yield of up to 20 times have been shown to occur in grazing incidence geometry disclosed herein due to a larger path length of the X-ray photons which better matches the secondary electron escape depth within the photocathode material. A photocathode includes a substrate having a first side and a second side, the first side configured to receive x-ray energy and the second side opposing the first side. A structured surface is associated with the second side of the substrate such that the structured surface includes a plurality of recesses from the second side of the substrate into the substrate.

  8. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  9. CSI : Alaska

    International Nuclear Information System (INIS)

    Letwin, S.

    2005-01-01

    This presentation emphasized the need for northern gas supply at a time when conventional natural gas supplies are decreasing and demand is growing. It highlighted the unique qualifications of Enbridge Inc. in creating an infrastructure to move the supply to where it is in most demand. Enbridge has substantial northern experience and has a unique approach for the construction of the Alaskan Gas Pipeline which entails cooperation, stability and innovation (CSI). Enbridge's role in the joint venture with AltaGas and Inuvialuit Petroleum was discussed along with its role in the construction of the first Canadian pipeline in 1985. The 540 mile pipeline was buried in permafrost. A large percentage of Enbridge employees are of indigenous descent. Enbridge recognizes that the amount of capital investment and the associated risk needed for the Alaska Gas Pipeline will necessitate a partnership of producers, pipeline companies, Native organizations, the State of Alaska, market participants and other interested parties. 9 figs

  10. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  11. Masked Photocathode for Photoinjector

    International Nuclear Information System (INIS)

    Qiang, Ji

    2010-01-01

    In this research note, we propose a scheme to insert a photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto the electrode, a masked electrode with small hole is used to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material very simple by rotating the photocathode behind the mask into the hole. This will significantly increase the usage lifetime of a photocathode. Furthermore, this also helps reduce the dark current or secondary electron emission from the photocathode. The hole on the mask also provides a transverse cut-off to the Gaussian laser profile which can be beneficial from the beam dynamics point of view.

  12. CSI cardiac prevent 2015

    Directory of Open Access Journals (Sweden)

    S Ramakrishnan

    2015-01-01

    Full Text Available The CSI Cardiac Prevent 2015 was held at Hotel Taj Palace, New Delhi, on September 25-27, 2015. The major challenge was to create interest among cardiologists and physicians on preventive cardiology, a neglected area. The theme of the conference was "Innovations in Heart Disease Prevention.′′ This conference included "CSI at WHF Roadmap Workshop, Inauguration Ceremony, scientific program, plenary sessions, Nursing/Dietician track, Industry Exhibition, Social Events," Great India blood pressure Survey, and CSI Smart Heart App. A total of 848 delegates/faculties attended this conference against a total of 1140 people registered for the meeting.

  13. Quantum efficiency measurement system for large area CsI photodetectors

    CERN Document Server

    Cusanno, F; Colilli, S; Crateri, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Lucentini, M; Mostarda, A; Santavenere, F; Veneroni, P; Breuer, H; Iodice, M; Urciuoli, G M; De Cataldo, G; De Leo, R; Lagamba, L; Braem, André

    2003-01-01

    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported.

  14. A Masked Photocathode in a Photoinjector

    OpenAIRE

    Qiang, Ji

    2011-01-01

    In this paper, we propose a masked photocathode inside a photoinjector for generating high brightness electron beam. Instead of mounting the photocathode onto an electrode, an electrode with small hole is used as a mask to shield the photocathode from the accelerating vacuum chamber. Using such a masked photocathode will make the replacement of photocathode material easy by rotating the photocathode behind the electrode into the hole. Furthermore, this helps reduce the dark current or seconda...

  15. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  16. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    Science.gov (United States)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  17. CSI: Immigrant Children--Clues for Teacher Education

    Science.gov (United States)

    Larke, Patricia J.

    2012-01-01

    The metaphor of the popular television shows "CSI: New York," "CSI: Miami," and "CSI: Las Vegas" (CSI stands for "crime scene investigation") is applicable to investigating issues of immigrant children in teacher preparation programs (TPP). One of the fundamental principles of CSI is to solve the crime by…

  18. Development of Large-Area Fast RICH Prototypes with Pad Readout and Solid Photocathodes

    CERN Document Server

    Berger, H; CERN. Geneva; Coluzza, C; Di Mauro, A; Ljubicic, A; Nappi, E; Margaritondo, G; Paic, G; Piuz, François; Posa, F; Ribeiro, R; Scognetti, T; Williams, T D

    1994-01-01

    In the frame of the RD26 Collaboration at CERN we have built and tested several prototypes of fast RICH detectors suitable for the construction of large systems. The detectors used a solid photocathode consisting of a 500 nm CsI layer evaporated on a conventional pad readout board of a multiwire proportional chamber (MWPC) operated with a methane/isobutane mixture at atmospheric pressure. The results indicate that such a detector may be used for long periods of time in stable operating conditions provided the gas mixture is continuously flushed through the detector. Evidence is shown for a significant loss of transmission of Cherenkov photons in the NaF radiator due to internal anisotropy of the crystal. We present the results of the performance of the photocathodes, the quantum efficiency of the CsI we have extracted from the measured Cherenkov photons, and the identification achievable in a high-density environment such as the detector ALICE planned for the heavy-ion Large Hadron Collider (LHC). The results...

  19. Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes

    Science.gov (United States)

    di Bona, A.; Sabary, F.; Valeri, S.; Michelato, P.; Sertore, D.; Suberlucq, G.

    1996-09-01

    Thin films of Cs2Te have been produced and analyzed by Auger depth profiling and x-ray photoemission spectroscopy (XPS). The formation of the photoemissive material passes through different phases, each of them has been characterized by XPS and by its total yield in the spectral region 3.5-5 eV. Copper and molybdenum substrates have been considered. While Mo behaves to all practical purposes like an ideal support for Cs2Te, strong diffusion from the substrate material into the photoemissive film has been observed on photocathodes fabricated on Cu. The ruggedness of the photocathodes has been tested by exposing them to a few hundred Langmuirs of different gases, namely O2, CO2, CO, N2, and CH4. The last three have no effect on the photocathode lifetime, while a substantial reduction of the quantum efficiency has been observed after the exposure to oxygen. The main reason for this is the formation of a thick cesium oxide layer at the surface of the photocathode. However, the oxygen pollution can be partially recovered by the combined effect of heating the photocathode at 230 °C and illuminating the poisoned material with the 4.9 eV radiation. No rejuvenation has been observed under the effect of the temperature or the radiation alone.

  20. Researches on new photocathode for RF electron gun

    CERN Document Server

    ZhaoKui; Tang Yu Xing; Zhao Kun; Wang Li; Zhang Bao Cheng; Chen J

    2000-01-01

    Semiconductor photocathode and metal photocathode have different properties. To consider the properties of both, we studied a new type of photocathode - ion implanted photocathode. Cesium ions are implanted into a metal substrate. A photocathode preparation chamber is set up to make this photocathode. A cesium ion source is attached to the common photocathode preparation chamber. In the past two years, we finished making this photocathode and did research on its properties. A series of experiments have been done with different metal substrates, implanting dosages and implanting energies, in order to get a kind of photocathode material with high quantum efficiency and good stability. An increase of quantum efficiency after implantation has been observed. A more interesting result is that the emission spectrum becomes broader.

  1. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  2. Gallium nitride photocathodes for imaging photon counters

    Science.gov (United States)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  3. Preparation of negative electron affinity gallium nitride photocathode

    Science.gov (United States)

    Qiao, Jianliang; Chang, Benkang; Qian, Yunsheng; Du, Xiaoqing; Zhang, Yijun; Wang, Xiaohui

    2010-10-01

    Negative electron affinity (NEA) Gallium Nitride (GaN) photocathode is an ideal new kind of UV photocathode. NEA GaN photocathode is widely used in such fields as high-performance ultraviolet photoelectric detector, electron beam lithography etc. The preparation of negative electron affinity gallium nitride photocathode relates to the growth technology, the cleaning method, the activation method and the evaluation of photocathode. The mainstream growth technology of GaN photocathode such as metal organic chemistry vapor phase deposits technology, molecule beam epitaxial technology and halide vapor phase epitaxial technology were discussed. The chemical cleaning method and the heat cleaning method for GaN photocathode were given in detail. After the chemical cleaning, the atom clean surface was gotten by a 700 °C heat about 20 minutes in the vacuum system. The activation of GaN photocathode can be realized with only Cs or with Cs/O alternately. Using the activation and evaluation system for NEA photocathode, the photocurrent curve during Cs activation process for GaN photocathode was gotten. The evaluation of photocathode can be done by measuring the quantum efficiency. Employing the UV spectral response measurement instrument, the spectral response and quantum efficiency of NEA GaN photocathode were measured. The measured quantum efficiency of reflection-mode NEA GaN photocathode reached up to 37% at 230 nm.

  4. Absorption of optical power in an S-20 photocathode

    CERN Document Server

    Harmer, S W

    2003-01-01

    By considering a monochromatic plane wave obliquely incident upon a planar layer of S-20 photocathode material, deposited upon a non-absorbing glass substrate, the distribution of optical power absorbed within the layer can be resolved. This is important to the question of photocathode efficiency, as the absorbed light excites photoelectrons within the photocathode which then may pass from the photocathode into the vacuum of the photomultiplier tube and be collected and multiplied. The calculation uses the measured complex permittivity of an extended red S-20 photocathode in the wavelength range, 375-900 nm. The results show that thin film effects are important within the photocathode, as they give rise to interesting power absorption profiles. This information is invaluable in predicting optimum photocathode thickness for wavelength selective applications. Electromagnetic waves that are obliquely incident upon the photocathode are also considered in both transverse electric and transverse magnetic polarizati...

  5. Gallium nitride photocathode development for imaging detectors

    Science.gov (United States)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  6. S1 photocathode image converter tubes

    International Nuclear Information System (INIS)

    Gex, F.; Bauduin, P.; Hammes, C.; Horville, P.; Fleurot, N.; Nail, M.

    1984-08-01

    The S1 photocathode was the first cathode available for practical applications; in spite of this its mechanism of photoemission has remained enigmatic. S1 semi-transparent photocathode is the only one that can be used to study the 1.06 μm neodynium laser pulses of less than 10 ps duration. This recent application and the difficulties to manufacture stable and sensitive S1 photocathode at this wavelength gave rise to new researches which aim is to have a better knowledge of this structure. We first review the recent results obtained at the Paris Observatory (research sponsored by the CEA) and report on the lifetime in the 1-μm range of the photocathodes processed four years ago. In a second part we will try to analyse the researches which have been investigated during these last ten years in different laboratories to determine the role of the main constituants (silver particles, Co oxydes) and their contributions to photoemission in order to improve the sensitivity and the stability of S1 photocathode

  7. Azithromycin analogue CSY0073 attenuates lung inflammation induced by LPS challenge

    Science.gov (United States)

    Balloy, V; Deveaux, A; Lebeaux, D; Tabary, O; le Rouzic, P; Ghigo, J M; Busson, P F; Boëlle, P Y; Guez, J Guez; Hahn, U; Clement, A; Chignard, M; Corvol, H; Burnet, M; Guillot, L

    2014-01-01

    Background and Purpose Azithromycin is a macrolide antibiotic with anti-inflammatory and immunomodulating effects. Long-term azithromycin therapy in patients with chronic lung diseases such as cystic fibrosis has been associated with increased antimicrobial resistance, emergence of hypermutable strains, ototoxicity and cardiac toxicity. The aim of this study was to assess the anti-inflammatory effects of the non-antibiotic azithromycin derivative CSY0073. Experimental Approach We compared the effects of CSY0073 with those of azithromycin in experiments on bacterial cultures, Pseudomonas aeruginosa biofilm, lung cells and mice challenged intranasally with P. aeruginosa LPS. Key Results In contrast to azithromycin, CSY0073 did not inhibit the growth of P. aeruginosa, Staphylococcus aureus or Haemophilus influenzae and had no effect on an established P. aeruginosa biofilm. Bronchoalveolar lavage (BAL) fluids and lung homogenates collected after the LPS challenge in mice showed that CSY0073 and azithromycin (200 mg·kg−1, i.p.) decreased neutrophil counts at 24 h and TNF-α, CXCL1 and CXCL2 levels in the BAL fluid after 3 h and IL-6, CXCL2 and IL-1β levels in the lung after 3 h compared with the vehicle. However, only azithromycin reduced IL-1β levels in the lung 24 h post LPS challenge. CSY0073 and azithromycin similarly diminished the production of pro-inflammatory cytokines by macrophages, but not lung epithelial cells, exposed to P. aeruginosa LPS. Conclusions and Implications Unlike azithromycin, CSY0073 had no antibacterial effects but it did have a similar anti-inflammatory profile to that of azithromycin. Hence, CSY0073 may have potential as a long-term treatment for patients with chronic lung diseases. PMID:24417187

  8. Performance of the Brookhaven photocathode rf gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1 1/2 cells driven at 2856 MHz in π-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models

  9. Field assisted photoemission by silicon photocathodes

    International Nuclear Information System (INIS)

    Aboubacar, A.; Dupont, M.; El Manouni, A.; Querrou, M.; Says, L.P.

    1991-01-01

    Silicon photocathodes with arrays of tips have been prepared using microlithographic techniques. Current emission due to field effect has been measured in the case of heavy and weakly doped boron Silicon. An Argon continuous laser has been used to produce photocurrent. An instantaneous current (600 μA) with a moderate laser power (83 mW), has been produced on weakly doped photocathodes. This current corresponds to an average quantum yield (purely photoelectric) of about 1.7%, and a local current density in the range of a few 10 6 A m -2

  10. Graphene shield enhanced photocathodes and methods for making the same

    Science.gov (United States)

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  11. Results from the average power laser experiment photocathode injector test

    International Nuclear Information System (INIS)

    Dowell, D.H.; Bethel, S.Z.; Friddell, K.D.

    1995-01-01

    Tests of the electron beam injector for the Boeing/Los Alamos Average Power Laser Experiment (APLE) have demonstrated first time operation of a photocathode RF gun accelerator at 25% duty factor. This exceeds previous photocathode operation by three orders of magnitude. The success of these tests was dependent upon the development of reliable and efficient photocathode preparation and processing. This paper describes the fabrication details for photocathodes with quantum efficiencies up to 12% which were used during electron beam operation. Measurements of photocathode lifetime as it depends upon the presence of water vapor are also presented. Observations of photocathode quantum efficiency rejuvenation and extended lifetime in the RF cavities are described. The importance of these effects upon photocathode lifetime during high average power operation are discussed. ((orig.))

  12. CSI: An Engaging Online Classroom Introduction Activity

    Science.gov (United States)

    Stephens, Geralyn E.

    2015-01-01

    All course activities should be aimed at moving students towards the learning outcomes, including class introductions. This article provides detailed instructions for implementing an online Class Session Introductions (CSI) activity that immediately engages students with their peers, the content and the instructor. The activity may be useful to…

  13. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  14. A Summary of the 2010 Photocathode Physics for Photoinjectors Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, I [Cornell University; Dowell, D [SLAC National Accelerator Laboratory; Hannon, Fay [Thomas Jefferson National Accelerator Facility; Harkay, K [Argonne National Laboratory; Garcia, C H [Thomas Jefferson National Accelerator Facility; Padmore, H [Lawrence Berkeley National Laboratory; Rao, T [Brookhaven National Laboratory; Smedley, J [Brookhaven National Laboratory

    2010-10-01

    This contribution contains a summary and some highlights from the Photocathode Physics for Photoinjectors (P3) Workshop [1]. This workshop, held at Brookhaven National Laboratory in Ocotber of 2010, was aimed at bringing the photocathode community together to discuss and explore the current state of the art in accelerator photocathodes, from both a theoretical and a materials science perspective. All types of photocathode materials were discussed, including metals, NEA and PEA semiconductors, and "designer" photocathodes with bespoke properties. Topics of the workshop included: Current status of photocathodes for accelerator applications Current fabrication methods Applications of modern materials science to the growth and analysis of cathodes Photoemission spectroscopy as a diagnostic of cathode performance Utilization of modern user facilities Photoemission theory Novel ideas in cathode development Discussion forum on future collaboration for cathode growth, analysis and testing

  15. Multialkali photocathodes grown by molecular beam epitaxy technique

    Science.gov (United States)

    Dubovoi, I. A.; Chernikov, A. S.; Prokhorov, Alexander M.; Schelev, Mikhail Y.; Ushakov, Victor N.

    1991-04-01

    A new technique of bialkali photocathodes growth by molecular beam epitaxy (MI3E) has been developed. The photocathode film was deposited onto the substrate from molecular beams produced by simultaneously operating molecular sources of Sb, Na and K. Thus suggested procedure is noticeably differed from the classical one. Growth rate was about 1 A/sec and complete cycle of photocathode fabrication was 15-20 minutes. A special ultra high vacuum (UHV) chamber for MBE of multialkali photocathodes has been designed. The chamber is a part of UHV system consisting of an analysis vessel supplied with Auger and ESCA electron spectrometer and low energy electron diffractometer (LEED), the MBE chamber itself and a chamber for cold sealing of photocathodes with device body through indium ring. The system gives a possibility to carry out investigations of multialkali photocathode physics and to produce commercial devices. Developed technique can be used for fabrication of vacuum devices including streak tubes.

  16. Imaging Hybrid Photon Detectors with a Reflective Photocathode

    CERN Document Server

    Ferenc, D

    2000-01-01

    Modern epitaxially grown photocathodes, like GaAsP, bring a very high inherent quantum efficiency, but are rather expensive due to the complicated manufacturing and mounting process. We argue that such photocathodes could be used in reflective mode, in order to avoid the risky and expensive removal of the epitaxial growth substrate. Besides that the quantum efficiency should increase considerably. In this paper we present results of the development of large imaging Hybrid Photon Detectors (HPDs), particularly designed for such reflective photocathodes.

  17. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  18. Evaluation of the photocathode laser transverse distribution

    Energy Technology Data Exchange (ETDEWEB)

    Saisa-ard, Chaipattana [DESY, Zeuthen (Germany); Chiang Mai Univ., Chiang Mai (Thailand); Krasilnikov, Mikhail; Vashchenko, Grygorii [DESY, Zeuthen (Germany)

    2016-07-01

    Many years experience of electron source developments at the photo injector test facility at DESY in Zeuthen (PITZ) show that the photocathode laser is the one of major tools to produce high brightness electron beams. The transverse distribution of the laser on the photocathode plays a significant role in the high brightness photo injector optimization. However, the imperfections in the laser beam profile according to the deviation from a radially homogeneous profile directly result in transversely distorted charged particle distributions. This includes inhomogeneous core as well as transverse halo which is due to not sharp edges around the core. The laser transverse distribution is measured at PITZ using a virtual cathode:this is a CCD camera located at the position which is optically equivalent to the photocathode position (so called virtual cathode). An algorithm is developed for the evaluation of the experimentally obtained transverse profiles. It fits a flat-top or an inhomogeneous rotational symmetric core with exponentially decaying tails to an experimental distribution. The MATLAB script with implemented algorithm is applied to a set of measured transverse laser distributions. Results of the analysis will be presented.

  19. Comparative study of GaN and GaAs photocathodes

    Science.gov (United States)

    Qiao, Jianliang; Chang, Benkang; Yang, Zhi; Tian, Si; Gao, Youtang

    2008-02-01

    Taking GaAs and GaN as representation, negative electron affinity (NEA) photocathode has many virtues, such as high quantum efficiency, low dark current, concentrated electrons energy distribution and angle distribution, adjustive long-wave threshold, great potential to extend the long-wave spectral response waveband. Therefore it plays more and more important effect in high performance image intensifiers and polarized electron sources. GaN NEA photocathode and GaAs NEA photocathode are very similar because they all belong to III-V compound. But, GaN photocathode and GaAs photocathode have many difference in such aspects as preparation process, activation manners, stability and application field etc. In this paper, using the multi-information measurement and evaluation system of photocathode, the preparation processes of native reflection-mode GaN photocathode and GaAs photocathode are studied. The different activation manners of GaN photocathode and GaAs photocathode are compared and analyzed. The spectral response and stability of the two kind of photocathode are compared also. The experiments indicate: the atomically clean degree of NEA photocathode surface and the structure of activation layer are the main factors that influence photocathode sensitivity and stability after activation. GaN photocathode and GaAs photocathode have good NEA property and large quantum yield. Compare with GaAs photocathode, GaN photocathode has high stability, and the decay of the quantum yield is comparatively slow.

  20. Ion tracking in photocathode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2002-02-01

    Full Text Available Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  1. Advances in DC photocathode electron guns

    International Nuclear Information System (INIS)

    Dunham, B. M.; Hartmann, P.; Kazimi, R.; Liu, H.; Poelker, B. M.; Price, J. S.; Rutt, P. M.; Schneider, W. J.; Sinclair, C. K.

    1999-01-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughput. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, we will review recent results and discuss implications for future photocathode guns

  2. Advances in DC photocathode electron guns

    International Nuclear Information System (INIS)

    Dunham, B.M.; Hartmann, P.; Kazimi, R.; Liu, H.; Poelker, B.M.; Price, J.S.; Rutt, P.M.; Schneider, W.J.; Sinclair, C.K.

    1999-01-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughput. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, we will review recent results and discuss implications for future photocathode guns. copyright 1999 American Institute of Physics

  3. Advances in DC photocathode electron guns

    International Nuclear Information System (INIS)

    Dunham M, Bruce; Heartmann, P.; Reza Kazimi; Hongxiu Liu; Poelker, B.M.; Price, J.S.; Rutt, P.M.; Schneider, W.J.; Sinclair K, Charles

    1998-01-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion back-bombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns

  4. New type of x-ray-wafer image intensifier with CsI-CsI/MCP photocathodes: its design and assessment

    Science.gov (United States)

    Xiang, Shiming; Zhao, Hong

    1993-04-01

    The article introduces a new type of x-ray wafer image intensifier with a double proximity focusing system, (Phi) 50 CsI-CsI/MCP photocathode, and a series of welding constructions of glass window or ceramic components with metal rings. This kind of x-ray image intensifier has been widely used in the field of medical diagnosis and industrial non-destructive detection by means of sophisticated portable x-ray diagnoscopes, featuring a number of satisfactory performances such as low x-ray dosage, miniature x-ray tube and power supply, high output brightness and good resolution, light weight, small volume, low cost, and easy operation without any condition constrained by working environment and illumination. In the paper, the authors have given a series of formulae to determine characteristic parameters of the device, i.e., the quantum detection efficiencies of both reflection mode (CsI/MCP) and transmission mode (glass window CsI/MCP) photocathode, the brightness conversion factor, and resolution. The relations of the mentioned parameters with the performances of constituent components, which include CsI photocathodes layer thickness, MCP bias angle and gain, phosphor screen conversion efficiency, and double proximity focusing distances, are also briefly analyzed. The analysis thought and methods mentioned in the paper have been successfully used for the optimal design and assessment work of our devices and shows that they have a good coincidence with experimental results.

  5. Quantum Yield of Reflection Mode Varied Doping GaN Photocathode

    OpenAIRE

    Qiao Jianliang; Li Xiangjiang; Niu Jun; Gao Youtang

    2016-01-01

    Using the NEA photocathode activation and evaluation experiment system, the varied doping GaN photocathode has been activated and evaluated. According to the diffusion and orientation drifting equation, the quantum yield formula of reflection mode varied doping NEA GaN photocathode was gotten. The factors affecting the quantum efficiency of varied doping GaN photocathode were studied. For the varied doping GaN photocathode, the quantum efficiency is mainly decided by the escape probability of...

  6. Modern theory and applications of photocathodes

    International Nuclear Information System (INIS)

    Spicer, W.E.; Herrera-Gomez, A.

    1993-08-01

    Over the last thirty years, the Spicer Three-Step model has provided a very useful description of the process of photoemission for both fundamental and practical applications. By treating photoemission in terms of three successive steps-optical absorption, electron transport, and escape across the surface this theory allows photoemission to be related to parameters of the emitter, such as the optical absorption coefficient, electron scattering mechanisms, and the height of the potential barrier at the surface. Using simple equations and established parameters, the Three-Step model predicts the performance of cathodes and provides detailed understanding of the unexpected phenomena that appear when photocathodes are pushed into new practical domains. As an example, time responses are estimated for existing cathodes, and are found to cover a range of six orders of magnitude. Further, the time response is found to be directly related to the sensitivity (i.e., quantum efficiency) of the cathode. The quantum yield systematically decreases with the time response. Thus, metals are predicted to have the shortest time response (as little as 10 -15 sec) and the smallest quantum efficiency (as little as 10 -4 electrons per photon), whereas the negative affinity photocathodes have high yield (as high as 0.6 electrons per photon) but long response times (as long as 10 -9 sec). Other applications of the Three-Step model are discussed

  7. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  8. Modern theory and applications of photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, W.E.; Herrera-Gomez, A.

    1993-08-01

    Over the last thirty years, the Spicer Three-Step model has provided a very useful description of the process of photoemission for both fundamental and practical applications. By treating photoemission in terms of three successive steps-optical absorption, electron transport, and escape across the surface this theory allows photoemission to be related to parameters of the emitter, such as the optical absorption coefficient, electron scattering mechanisms, and the height of the potential barrier at the surface. Using simple equations and established parameters, the Three-Step model predicts the performance of cathodes and provides detailed understanding of the unexpected phenomena that appear when photocathodes are pushed into new practical domains. As an example, time responses are estimated for existing cathodes, and are found to cover a range of six orders of magnitude. Further, the time response is found to be directly related to the sensitivity (i.e., quantum efficiency) of the cathode. The quantum yield systematically decreases with the time response. Thus, metals are predicted to have the shortest time response (as little as 10{sup {minus}15} sec) and the smallest quantum efficiency (as little as 10{sup {minus}4} electrons per photon), whereas the negative affinity photocathodes have high yield (as high as 0.6 electrons per photon) but long response times (as long as 10{sup {minus}9} sec). Other applications of the Three-Step model are discussed.

  9. Kinetics of alkali-based photocathode degradation

    Directory of Open Access Journals (Sweden)

    Vitaly Pavlenko

    2016-11-01

    Full Text Available We report on a kinetic model that describes the degradation of the quantum efficiency (QE of Cs3Sb and negative electron affinity (NEA GaAs photocathodes under UHV conditions. In addition to the generally accepted irreversible chemical change of a photocathode’s surface due to reactions with residual gases, such as O2, CO2, and H2O, the model incorporates an intermediate reversible physisorption step, similar to Langmuir adsorption. This intermediate step is needed to satisfactorily describe the strongly non-exponential QE degradation curves for two distinctly different classes of photocathodes –surface-activated and “bulk,” indicating that in both systems the QE degradation results from surface damage. The recovery of the QE upon improvement of vacuum conditions is also accurately predicted by this model with three parameters (rates of gas adsorption, desorption, and irreversible chemical reaction with the surface comprising metrics to better characterize the lifetime of the cathodes, instead of time-pressure exposure expressed in Langmuir units.

  10. Research on quantum efficiency of GaN wire photocathode

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Kong, Yike

    2017-02-01

    On the basis of three-dimensional continuity equation in semiconductors and finite difference method, the carrier concentration and the quantum efficiency of GaN wire photocathode as a function of incident photon energy are achieved. Results show that the quantum efficiency of the wire photocathode is largely enhanced compared with the conventional planar photocathode. The superiority of the wire photocathode is reflected in its structure with surrounding surfaces. The quantum efficiency of the wire photocathode largely depends on the wire width, surface reflectivity, surface escape probability and incident angle of light. The back interface recombination rate, however, has little influences on the quantum efficiency of the wire photocathode. The simulation results suggest that the optimal width for photoemission is 150-200 nm. Besides, the quantum efficiency increases and decreases linearly with increasing surface escape probability and surface reflectivity, respectively. With increasing ratio of wire spacing to wire height, the optimal incident angle of light is reduced. These simulations are expected to guide the preparation of a better performing GaN wire photocathode.

  11. GaN photocathodes for UV detection and imaging

    Science.gov (United States)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Martin, Adrian; Malloy, James; Ulmer, Melville P.; Wessels, Bruce

    2003-12-01

    The nitride-III semiconductors, in particular GaN (band gap energy 3.5 eV), AlN (band gap 6.2 eV) and their alloys AlxGa1-xN are attractive as UV photo-convertors with applications as photocathodes for position sensitive detector systems. These can "fill the gap" in the 150-400nm wavelength regime between alkali halide photocathodes (photocathodes (>4000Å, mutlialkali & GaAs). Currently CsTe photocathodes have fairly low efficiency (Fig. 1) in the 100nm to 300nm regime are sensitive to contamination and have no tolerance to gas exposure. We have prepared and measured a number of GaN photocathodes in opaque and semitransparent modes, achieving >50% quantum efficiency in opaque mode and ~35% in semitransparent mode (Fig. 2). The GaN photocathodes are stable over periods of >1 year and are robust enough to be re-activated many times. The cutoff wavelength is sharp, with a rapid decline in quantum efficiency at ~380-400nm. Application of GaN photocathodes in imaging devices should be feasible in the near future. Further performance improvements are also expected as GaN fabrication and processing techniques are refined.

  12. A large area CsI RICH Detector in ALICE at LHC

    CERN Document Server

    Di Bari, D; Davenport, Martyn; Di Mauro, A; Elia, D; Ghidini, B; Grimaldi, A; Martinengo, P; Monno, E; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Santiard, Jean-Claude; Stucchi, S; Tomasicchio, G; Williams, T D

    1999-01-01

    A 1m2 CsI RICH prototype has been successfully tested in a hadron beam at CERN SPS. The prototype, fully equipped with 15k electronic channels, has been used to identify particles coming from pi-Be interactions. Track reconstruction has been performed by using a telescope consisting of four gas pad chambers. A detailed description of the detector will be presented and results from the test will be discussed.List of figuresFigure 1 Expected proton and antiproton yields including jet quenching mechanism in central Pb-Pb collisions at LHC.Figure 2 Schematic view of the HMPID CsI-RICHFigure 3 Experimental layout used at the SPS/H4 test beamFigure 4 Distributions of the mean number, per ring, of pad hits (Npad), electrons (Ntot) and Cherenkov photoelectrons (Nres) as a function of the single-electron mean pulse heightFigure 5 Mean single-electron pulse height as a function of high voltage measured at the centre of each of the four photocathodesFigure 6 Evaluation of the uniformity of the chamber gain for the photo...

  13. GaN-based photocathodes with extremely high quantum efficiency

    Science.gov (United States)

    Uchiyama, Shoichi; Takagi, Yasufumi; Niigaki, Minoru; Kan, Hirofumi; Kondoh, Haruyasu

    2005-03-01

    We have fabricated phototubes with photocathodes consisting of the Mg-doped GaN films. The spectral shapes of the response and the quantum efficiency (QE) strongly depend on the Mg-doping concentration. The calibrated QE of the photocathode is maximized to be 71.9% at a photon energy of 5.4 eV by a Mg-doping concentration of 3.0×1019cm-3. Consequently, a phototube with the GaN-based photocathode is realized to demonstrate a very high QE, more than 50% and sharp cutoff characteristic over three orders of magnitude.

  14. CSI Lawyer® Windows Phone® Client Development and Data Synchronization

    OpenAIRE

    Sedha, Arvind

    2012-01-01

    CSI Helsinki Oy has ERP software called CSI Lawyer® which is intended for law and consultant companies. CSI Helsinki Oy has great demand to develop the mobile clients for CSI Lawyer® for the most common mobile platforms available at present. The purpose of this project was to develop the Windows Phone® client application called CSI Mobile® for CSI Lawyer® including backend data synchronization business logic. CSI Mobile® allows CSI Lawyer® users to manage their transactions and view tran...

  15. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  16. Influence of Al fraction on photoemission performance of AlGaN photocathode.

    Science.gov (United States)

    Hao, Guanghui; Chang, Benkang; Shi, Feng; Zhang, Junju; Zhang, Yijun; Chen, Xinlong; Jin, Muchun

    2014-06-10

    To research the photoemission performance of a transmission-mode Al(1-x)Ga(x)N photocathode, Al0.24Ga0.76N and GaN photocathodes with the same structure were activated, their spectral responses were measured using a multi-information measurement system at room temperature, and the photocathode parameters were obtained by fitting quantum efficiency curves. The results showed that both the reflective-mode and transmission-mode spectral responses of the AlGaN photocathode were lower than those of the GaN photocathode. Compared with the GaN photocathode, the short-wavelength spectral response of the Al0.24Ga0.76N photocathode was less seriously affected by lattice defects between the buffer and emission layers. The Al atom at the AlGaN photocathode surface could affect the optimal Cs adsorption position, which mainly affects the surface electron escape probability of the photocathode.

  17. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  18. Fabrication and Measurement of Low Work Function Cesiated Dispenser Photocathodes

    CERN Document Server

    Moody, Nathan A; Jensen, Kevin

    2005-01-01

    Photoinjector performance is a limiting factor in the continued development of high powered FELs and electron beam-based accelerators. Presently available photocathodes are plagued with limited efficiency and short lifetime in an RF-gun environment, due to contamination or evaporation of a photosensitive surface layer. An ideal photocathode should have high efficiency at long wavelengths, long lifetime in practical vacuum environments, and prompt emission. Cathodes with high efficiency typically have limited lifetime, and vice versa, and the needs of the photocathode are generally at odds with those of the drive laser. A potential solution is the low work function dispenser cathode, where lifetime issues are overcome by periodic in situ regeneration that restores the photosensitive surface layer, analogous to those used in the microwave power tube industry. This work reports on the fabrication techniques and performance of cesiated metal photocathodes and cesiated dispenser cathodes, with a focus on understan...

  19. Laser photo-cathode RF-gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2006-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advanced research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emittance was about 3 mm mrad at 100 pC of electron charge. The soft X-ray beam generation with the energy of 370 eV, which is in the energy region of so-called 'water window', by inverse Compton scattering has been performed by the collision between IR laser and the low emittance electron beams. (author)

  20. Advanced 3D Photocathode Modeling and Simulations Final Report

    International Nuclear Information System (INIS)

    Dimitre A Dimitrov; David L Bruhwiler

    2005-01-01

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process

  1. Improved light transitions from scintillators to new photocathode windows

    CERN Document Server

    D'Ambrosio, C; Leutz, H; Puertolas, D; Rosso, E

    1999-01-01

    Replacement of a quartz photocathode window by an YAlO/sub 3/ (YAP) window yielded improved light transitions from BGO crystals (1.78 times) and PbWO/sub 4/ crystals (1.76 times) to the photocathode. This improvement is due to the $9 higher refractive index of YAP (1.95), which matches much better the indices of BGO (2.14) and PbWO/sub 4/ (2.18) than quartz (1.47). (1 refs).

  2. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  3. The Mu2e Undoped CsI Crystal Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Atanov, N.; et al.

    2018-01-07

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  4. The Mu2e undoped CsI crystal calorimeter

    Science.gov (United States)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  5. MIMO channel capacity with full CSI at Low SNR

    KAUST Repository

    Tall, Abdoulaye

    2012-10-01

    In this paper, we characterize the ergodic capacity of Multiple Input Multiple Output (MIMO) Rayleigh fading channels with full channel state information (CSI) at both the transmitter (CSI-T) and the receiver (CSI-R) at asymptotically low signal-to-noise ratio (SNR). A simple analytical expression of the capacity is derived for any number of transmit and receive antennas. This characterization clearly shows the substantial gain in terms of capacity over the no CSI-T case and gives a good insight on the effect of the number of antennas used. In addition, an On-Off transmission scheme is proposed and is shown to be asymptotically capacity-achieving. © 2012 IEEE.

  6. Radiation damage of CsI (Tl) crystals in a long term exposure at PETRA

    International Nuclear Information System (INIS)

    Schloegl, S.; Spitzer, H.; Wittenburg, K.

    1985-02-01

    We have tested the radiation resistance of two 10 cm long CsI (Tl) crystals in the radiation environment of the PETRA e + e - storage ring. The crystals were exposed for 38 days to an average dose of 50 rad and 20 rad, respectively. The exposure lead to a continuous decrease of pulse height with a final reduction of 13 +- 1% (crystal 1 with photodiode readout at 50 rad) and 19.5 +- 2% (crystal 2 with photomultiplier readout at 20 adout at 20 rad). Most of the damage occurred in the first days of exposure. After the end of the exposure we observed a partial recovery of few percent. (orig.)

  7. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators

    International Nuclear Information System (INIS)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode

  8. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D. [eds.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode.

  9. Development of a plasma pinch photocathode

    Science.gov (United States)

    Asmus, John F.

    The need in advanced Linacs is for a high-performance (emittance, current, and life) cathode that will not poison in the only moderately good vacuums of such systems. Our approach embodies the durability of an unsensitized metal photocathode that is illuminated by a high-Z, high-density plasma pinch formed from a liquid-jet source in vacuum. The principal advantage of this pinch over a laser is both its simplicity and its ability to efficiently produce high-power vacuum ultraviolet radiation. The laser-guided gas-embedded pinch vacuum-ultraviolet source has been converted to a liquid-jet configuration in vacuum. This was undertaken for several reasons. First, the necessity of interposed high-density background gas is avoided. Second, a channel-forming guide laser beam is no longer needed. Finally, a wide variety of high-Z low cost substances are available in liquid form. For these reasons the liquid-jet approach makes sense for a rep-rate version of the pinch illuminator. Background gas absorption of hard UV is lessened. A large gas-transport system is not needed. Radiation output may be optimized through selection of the liquid's vapor pressure, surface tension, density, and composition.

  10. Activation and evaluation of GaN photocathodes

    Science.gov (United States)

    Qian, Yunsheng; Chang, Benkang; Qiao, Jiangliang; Zhang, Yijun; Fu, Rongguo; Qiu, Yafeng

    2009-09-01

    Gallium Nitride (GaN) photocathodes are potentially attractive as UV detective materials and electron sources. Based on the activation and evaluation system for GaAs photocathode, which consists of ultra-high vacuum (UHV) activation chamber, multi-information measurement system, X-ray photoelectron spectroscopy (XPS), and ultraviolet ray photoelectron spectroscopy (UPS), the control and measurement system for the activation of UV photocathodes was developed. The developed system, which consists of Xenon lamp, monochromator with scanner, signal-processing module, power control unit of Cs and O source, A/D adapter, digital I/O card, computer and software, can control the activation of GaN photocathodes and measure on-line the spectral response curves of GaN photocathodes. GaN materials on sapphire substrate were grown by Metal-Organic Chemical Vapor Deposition (MOCVD) with p-type Mg doping. The GaN materials were activated by Cs-O. The spectral response and quantum efficiency (QE) were measured and calculated. The experiment results are discussed.

  11. Novel Cs-Free GaN Photocathodes

    Science.gov (United States)

    Tripathi, Neeraj; Bell, L. D.; Nikzad, Shouleh; Tungare, Mihir; Suvarna, Puneet H.; Sandvik, Fatemeh Shahedipour

    2011-04-01

    We report on a novel GaN photocathode structure that eliminates the use of Cs for photocathode activation. Development of such a photocathode structure promises reduced cost and complexity of the device, potentially with stable operation for a longer time. Device simulation studies suggest that deposition of Si delta-doped GaN on p-GaN templates induces sharp downward energy band bending at the surface, assisting in achieving effective negative electron affinity for GaN photocathodes without the use of Cs. A series of experiments has been performed to optimize the quality of the Si delta-doped layer to minimize the emission threshold of the device. This report includes significant observations relating the dependence of device properties such as emission threshold, quantum efficiency, and surface morphology on the Si incorporation in the Si delta-doped layer. An optimum Si incorporation has been observed to provide the minimum emission threshold of 4.1 eV for the discussed Cs-free GaN photocathodes. Photoemission (PE), atomic force microscopy (AFM), and secondary-ion mass spectroscopy (SIMS) have been performed to study the effect of growth conditions on device performance.

  12. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  13. Study of photoemission mechanism for varied doping GaN photocathode

    Science.gov (United States)

    Qiao, Jianliang; Xu, Yuan; Niu, Jun; Gao, Youtang; Chang, Benkang

    2015-10-01

    Negative electron affinity (NEA) GaN photocathode has many virtues, such as high quantum efficiency, low dark current, concentrated electrons energy distribution and angle distribution, adjustive threshold and so on. The quantum efficiency is an important parameter for the preparation and evaluation of NEA GaN photocathode. The varied doping GaN photocathode has the directional inside electric field within the material, so the higher quantum efficiency can be obtained. The varied doping NEA GaN photocathode has better photoemission performance. According to the photoemission theory of NEA GaN photocathode, the quantum efficiency formulas for uniform doping and varied doping NEA GaN photocathodes were given. In the certain condition, the quantum efficiency formula for varied doping GaN photocathode consists with the uniform doping. The activation experiment was finished for varied doping GaN photocathode. The cleaning method and technics for varied doping GaN photocathode were given in detail. To get an atom clean surface, the heat cleaning must be done after the chemical cleaning. Using the activation and evaluation system for NEA photocathode, the varied doping GaN photocathode was activated with Cs and O, and the photocurrent curve for varied doping GaN photocathode was gotten.

  14. Cold electron beams from cryocooled, alkali antimonide photocathodes

    Directory of Open Access Journals (Sweden)

    L. Cultrera

    2015-11-01

    Full Text Available In this paper we report on the generation of cold electron beams using a Cs_{3}Sb photocathode grown by codeposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long-standing speculation that the lattice temperature contributes to limiting the mean transverse energy or intrinsic emittance near the photoemission threshold, opening new frontiers in generating ultrabright beams. At 90 K, we achieve a record low intrinsic emittance of 0.2  μm (rms per mm of laser spot diameter from an ultrafast (subpicosecond photocathode with quantum efficiency greater than 7×10^{−5} using a visible laser wavelength of 690 nm.

  15. Polarized Photocathode R&D for Future Linear Collliders

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F; Brachmann, A.; Maruyama, T.; Sheppard, J.C.; /SLAC

    2009-01-23

    It is a challenge to generate full charge electrons from the electron sources without compromising polarization for the proposed ILC and CLIC. It is essential to advance polarized photocathodes to meet the requirements. SLAC has worldwide unique dedicated test facilities, Cathode Test System and dc-Gun Test Laboratory, to fully characterize polarized photocathodes. Recent systematic measurements on a strained-well InAlGaAs/AlGaAs cathode at the facilities show that 87% polarization and 0.3% QE are achieved. The QE can be increased to {approx}1.0% with atomic hydrogen cleaning. The surface charge limit at a very low current intensity and the clear dependence of the polarization on the surface charge limit are observed for the first time. On-going programs to develop photocathodes for the ILC and CLIC are briefly introduced.

  16. A Monte Carlo study of backscattering effects in the photoelectron emission from CsI into CH$_{4}$ and Ar-CH$_{4}$ mixtures

    CERN Document Server

    Escada, J; Rachinhas, P J B M; Lopes, J A M; Santos, F P; Távora, L M N; Conde, C A N; Stauffer, A D

    2007-01-01

    Monte Carlo simulation is used to investigate photoelectron backscattering effects in the emission from a CsI photocathode into CH4 and Ar-CH4 mixtures for incident monochromatic photons with energies Eph in the range 6.8 eV to 9.8 eV (182 nm to 127 nm), and photons from a continuous VUV Hg(Ar) lamp with a spectral distribution peaked at Eph = 6.7 eV (185 nm), considering reduced applied electric fields E/N in the 0.1 Td to 40 Td range. The addition of CH4 to a noble gas efficiently increases electron transmission and drift velocity, due to vibrational excitation of the molecules at low electron energies. Results are presented for the photoelectron transmission efficiencies f, where f is the fraction of the number of photoelectrons emitted from CsI which are transmitted through the gas as compared to vacuum. The dependence of f on Eph, E/N, and mixture composition is analyzed and explained in terms of electron scattering in the different gas media, and results are compared with available measurements. Electro...

  17. Quantum Yield of Reflection Mode Varied Doping GaN Photocathode

    Directory of Open Access Journals (Sweden)

    Qiao Jianliang

    2016-01-01

    Full Text Available Using the NEA photocathode activation and evaluation experiment system, the varied doping GaN photocathode has been activated and evaluated. According to the diffusion and orientation drifting equation, the quantum yield formula of reflection mode varied doping NEA GaN photocathode was gotten. The factors affecting the quantum efficiency of varied doping GaN photocathode were studied. For the varied doping GaN photocathode, the quantum efficiency is mainly decided by the escape probability of electron P, he absorption coefficient α, the electron diffuse length LD, the reflectance of cathode materials for incident light R, emission layer thickness Te and the inside electric field E. The experiment and analysis results show: With the directional inside electric field in the bulk, the varied doping NEA GaN photocathode has better photoemission performance than uniform doping photocathode.

  18. Fast Padé Transform Accelerated CSI for Hyperpolarized MRS

    DEFF Research Database (Denmark)

    Hansen, Esben Szocska Søvsø; Kim, Sun; Miller, Jack J

    2016-01-01

    The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study...... with conventional analysis methods. FPT shows improved stability and spectral resolution on truncated data compared with the fast Fourier transform and shows results that are comparable to those of the model-based fitting methods, enabling a reduction in the needed acquisition time in (13)C CSI experiments. Using...... FPT can reduce the readout length in the spectral dimension by 2-6 times in (13)C CSI compared with conventional Fourier analysis without sacrificing the spectral resolution. This increased speed is crucial for (13)C CSI because T1 relaxation considerably limits the available scan time. In addition...

  19. CsI calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Bondar, A.E.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.; Epifanov, D.A.

    2015-01-01

    The VEPP-2000 e + e − collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed

  20. A commutation strategy for IGBT-based CSI-fed parallel resonant ...

    Indian Academy of Sciences (India)

    based CSI-fed parallel resonant circuit for induction heating application. MOLAY ROY MAINAK SENGUPTA. Volume 42 Issue 2 February 2017 ... Keywords. Induction heating; current source inverter (CSI); parallel resonance; IGBT commutation ...

  1. Progress in the fabrication of GaN photocathodes

    Science.gov (United States)

    Ulmer, Melville P.; Wessels, Bruce W.; Shahedipour, Fatemeh; Korotokov, Roman Y.; Joseph, Charles L.; Nihashi, Tokuaki

    2001-06-01

    Currently, photo-cathodes hold the highest promise in the near term (next few years) of being able to detect low light level UV signals at high QE while being nearly blind to visible wavelengths. We briefly discuss the requirements for UV detection for astronomical applications, and then we describe our work on producing GaN based photo-cathodes. The p-type GaN films were grown on sapphire at Northwestern University. The films were then converted into opaque photo-cathodes inside photo-tubes at Hamamatsu. Hamamatsu tested detective quantum efficiencies (DQE) of these detectors to be as high as 30% at 200 nm. The ratio of peak DQE at 200 nm to the minimum DQE at 500 nm was measured to be about 6 X 103. We found a dramatic increase in the DQE at 200 nm versus the conductivity, with the break point being near 0.13 1/(Ohm-cm). Based on this dramatic increase, we believe that further improvement in photo-cathode quantum efficiencies can be achieved by increasing the conductivity. We have recently achieved more than an order of magnitude increase in conductivity by co-doping techniques. Improvements in the solar blindness of the devices depend both on characteristics of the film and its surface properties. A detailed discussion of decreasing the visible response and producing a sharper wave-length cutoff is beyond the scope of this work, but we briefly discuss the attributes that most likely affect the wavelength dependence of the photo-cathode response.

  2. CSI related dynamics and control issues in space robotics

    Science.gov (United States)

    Schmitz, Eric; Ramey, Madison

    1993-01-01

    The research addressed includes: (1) CSI issues in space robotics; (2) control of elastic payloads, which includes 1-DOF example, and 3-DOF harmonic drive arm with elastic beam; and (3) control of large space arms with elastic links, which includes testbed description, modeling, and experimental implementation of colocated PD and end-point tip position controllers.

  3. Enhanced columnar structure in CsI layer by substrate patterning

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G.; Drewery, J.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D. [Lawrence Berkeley Lab., CA (United States); Fujieda, I. [Xerox Palo Alto Research Center, CA (United States)

    1991-10-01

    Columnar structure in evaporated CsI layers can be controlled by patterning substrates as well as varying evaporation conditions. Mesh-patterned substrates with various dimensions were created by spin-coating polyimide on glass or amorphous silicon substrates and defining patterns with standard photolithography technique. CsI(Tl) layers 200--1000 {mu}m were evaporated. Scintillation properties of these evaporated layers, such as light yield and speed, were equivalent to those of the source materials. Spatial resolution of X-ray detectors consisting of these layers and a linear array of X-ray detectors consisting of these layers and a linear array of Si photodiodes was evaluated by exposing them to a 25{mu}m narrow beam of X-ray. The results obtained with 200{mu}m thick CsI layers coupled to a linear photodiode array with 20 dots/mm resolution showed that the spatial resolution of CsI(Tl) evaporated on patterned substrates was about 75 {mu}m FWHM, whereas that on CsI(Tl) on flat substrates was about 230 {mu}m FWHM. Micrographs taken by SEM revealed that these layers retained the well-defined columnar structure originating from substrate patterns. Adhesion and light transmission of CsI(Tl) were also improved by patterning the substrate.

  4. Development of the CsI Calorimeter Subsystem for AMEGO

    Science.gov (United States)

    Grove, J. Eric; Woolf, Richard; Johnson, W. Neil; Phlips, Bernard

    2018-01-01

    We report on the development of the thallium-doped cesium iodide (CsI:Tl) calorimeter subsystem for the All-Sky Medium-Energy Gamma-ray Observatory (AMEGO). The CsI calorimeter is one of the three main subsystems that comprise the AMEGO instrument suite; the others include the double-sided silicon strip detector (DSSD) tracker/converter and a cadmium zinc telluride (CZT) calorimeter. Similar to the LAT instrument on Fermi, the hodoscopic calorimeter consists of orthogonally layered CsI bars. Unlike the LAT, which uses PIN photodiodes, the scintillation light readout from each end of the CsI bar is done with recently developed large-area silicon photomultiplier (SiPM) arrays. We currently have an APRA program to develop the calorimeter technology for a larger, future space-based gamma-ray observatory. Under this program, we are building and testing a prototype calorimeter consisting of 24 CsI bars (16.7 mm x 16.7 mm x 100 mm) arranged in 4 layers with 6 bars per layer. The ends of each bar are read out with a 2 x 2 array of 6 mm x 6 mm SensL J series SiPMs. Signal readout and processing is done with the IDEAS SIPHRA (IDE3380) ASIC. Performance testing of this prototype will be done with laboratory sources, a beam test, and a balloon flight in conjunction with the other subsystems led by NASA GSFC. Additionally, we will test 16.7 mm x 16.7 mm x 450 mm CsI bars with SiPM readout to understand the performance of longer bars in advance of the developing the full instrument.Acknowledgement: This work was sponsored by the Chief of Naval Research (CNR) and NASA-APRA (NNH15ZDA001N-APRA).

  5. ATDM LANL FleCSI: Topology and Execution Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    FleCSI is a compile-time configurable C++ framework designed to support multi-physics application development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns that can be specialized and extended to suit the needs of a broad variety of solver and data requirements. This means that FleCSI is potentially useful to many different ECP projects. Current support includes multidimensional mesh topology, mesh geometry, and mesh adjacency information, n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures (to identify data dependencies between distributed-memory address spaces). FleCSI introduces a functional programming model with control, execution, and data abstractions that are consistent with state-of-the-art task-based runtimes such as Legion and Charm++. The model also provides support for fine-grained, data-parallel execution with backend support for runtimes such as OpenMP and C++17. The FleCSI abstraction layer provides the developer with insulation from the underlying runtimes, while allowing support for multiple runtime systems, including conventional models like asynchronous MPI. The intent is to give developers a concrete set of user-friendly programming tools that can be used now, while allowing flexibility in choosing runtime implementations and optimizations that can be applied to architectures and runtimes that arise in the future. This project is essential to the ECP Ristra Next-Generation Code project, part of ASC ATDM, because it provides a hierarchically parallel programming model that is consistent with the design of modern system architectures, but which allows for the straightforward expression of algorithmic parallelism in a portably performant manner.

  6. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    Science.gov (United States)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  7. Photoemission of graded-doping GaN photocathode

    International Nuclear Information System (INIS)

    Fu Xiao-Qian; Chang Ben-Kang; Wang Xiao-Hui; Li Biao; Du Yu-Jie; Zhang Jun-Ju

    2011-01-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×10 17 cm −3 . The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Photoemission of graded-doping GaN photocathode

    Science.gov (United States)

    Fu, Xiao-Qian; Chang, Ben-Kang; Wang, Xiao-Hui; Li, Biao; Du, Yu-Jie; Zhang, Jun-Ju

    2011-03-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×1017 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile. Project supported by the National Natural Science Foundation of China (Grant No. 60871012) and the Research Fund of Nanjing University of Science and Technology (Grant No. 2010ZYTS032).

  9. [The spectral response analysis of activated GaN photocathode].

    Science.gov (United States)

    Wang, Xiao-Hui; Chang, Ben-Kang; Zhang, Yi-Jun; Hou, Rui-Li; Xiong, Ya-Juan

    2011-10-01

    GaN photocathode has a wide applicaion in ultraviolet detection because of the outstanding performance. GaN photocathode was activated in ultrahigh vacuum (UHV) system by Cs/O, and the reflection-mode quantum efficiency (QE) was analyzed. The QE is 30%-10% corresponding to the wavelength 240-350 nm, and the QE curve is flat. The QE reaches the maximum of 30% at 240 nm. Compared with the abroad result, the QE obtained by us is still inadequate at the short wavelength The atom arrangement of GaN (0001) was studied. The atom arrangement on the surface was simulated by 3D, and in this way the adsorption of Cs on the GaN(0001) was speculated.

  10. Preparation of graphene/polymer composite photocathode for QDSSC

    Science.gov (United States)

    Wang, Qiandi; Shen, Yue; Tan, Jie; Xu, Kai; Shen, Tan; Cao, Meng; Gu, Feng; Wang, Linjun

    2013-12-01

    Graphene (rGO) was fabricated by modified Hummers method and a reducing process. Conductive polymer/graphene films were obtained by scalpel technology and used as photocathode in CdS quantum dot-sensitized solar cell (QDSSC). Polymers used in this paper were ethyl cellulose (EC), polyphenyl vinyl (PPV) and polyvinyl butyral (PVB), respectively. The obtained composite films were investigated by X-ray diffraction, Raman spectroscopy technology and scanning electron microscope (SEM). The photoelectric properties of QDSSCs were tested under AM 1.5 irradiation. Test results show that the film performance of the EC/rGO and PPV/rGO photocathode have been improved effectively. Power conversion efficiency (PCE) of the relative QDSSCs under AM 1.5 irradiation were 0.81% and 0.86%, respectively.

  11. High Brightness Injectors Based On Photocathode DC Gun

    International Nuclear Information System (INIS)

    B. Yunn

    2001-01-01

    Sample results of new injector design method based on a photocathode dc gun are presented, based on other work analytically proving the validity of the emittance compensation scheme for the case even when beam bunching is involved. We have designed several new injectors appropriate for different bunch charge ranges accordingly. Excellent beam quality produced by these injectors clearly shows that a photocathode dc gun can compete with a rf gun on an equal footing as the source of an electron beam for the bunch charge ranging up to 2 nano Coulomb (nC). This work therefore elevates a dc gun based injector to the preferred choice for many ongoing high brightness accelerator projects considering the proven operational stability and high average power capability of the dc gun

  12. Novel Plasmonic Photocathodes for Electron-Ion Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszew, Rosa Alejandra [College of William and Mary, Williamsburg, VA (United States)

    2017-06-20

    Our aim was to explore new photocathode materials and schemes to develop strategies and technologies for next generation nuclear physics accelerator capabilities, particularly for Electron Ion Colliders (EIC). We successfully implemented an experimental setup for light incidence at an acute angle onto metallic photocathodes in UHV, in order to excite surface Plasmon resonance, hence increasing light absorption by the metallic surface and tested the photoemitted current. We successfully tested the setup with a hot cathode as well as Plasmonic silver-MgO samples and obtained excellent results. We extended our studies to shorter wavelengths to help defeat the work function of the metal. We also used oblique incidence thin film deposition onto gratings to achieve optimized Plasmonic excitation leading to stronger EM field and also lower emittance. We tested and used adequate software to model our samples and simulate our experimental results. We incorporated the concept of Fano resonances applied to gratings to better interpret our experimental results.

  13. DC photogun vacuum characterization through photocathode lifetime studies

    Energy Technology Data Exchange (ETDEWEB)

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  14. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    International Nuclear Information System (INIS)

    Dowell, D.

    2009-01-01

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others

  15. Comparison of resolution characteristics between exponential-doping and uniform-doping GaN photocathodes

    Science.gov (United States)

    Wang, Hong-gang; Qian, Yun-sheng; Lu, Liu-bing; Cheng, Hong-chang; Chang, Ben-kang

    2013-08-01

    The studies of quantum efficiency, electronic energy distribution and stability are highly concerned in the application of Negative electron affinity (NEA) gallium nitride (GaN) photocathodes while the resolution of photocathodes are concerned rarely. The resolutions of some image intensifiers are smaller than computational value partly because of ignoring the resolution of photocathodes. To a certain extent, the resolutions of image intensifiers are influenced by photocathodes. Electronic transverse diffusion is the main cause of decreasing the resolution of photocathodes whereas the exponential-doping structure can reduce its influence. In this paper, the resolution characteristics of photocathodes have been studied by using the modulation transfer function (MTF) method. The MTF expressions of transmission-mode exponential-doping photocathodes have been obtained by solving the two-dimensional continuity equations. According to the MTF expressions, the resolution characteristics between exponential-doping and uniform-doping GaN photocathodes are calculated theoretically and analyzed comparatively. At the same time, the relationships between resolution and thickness of the emission layer Te, electron diffusion length LD are researched in detail. The calculated results show that, compared with the uniform-doping photocathode, the exponential-doping structure can increase the resolution of photocathode evidently. The resolution of exponential-doping GaN photocathode is improved distinctly when the spatial frequency varies from 400 to 800 lp/mm. The MTF characteristics approach gradually when f increases or decreases. Let f =600 lp/mm, the resolution increases by 20%-48% approximately. The constant built-in electric field for exponential-doping GaN photocathode can increase the resolution of photocathode. The improvement of resolution is different from decreasing Te, LD or increasing the recombination velocity of back-interface which are at the cost of reducing the

  16. Femtosecond response time measurements of a Cs2Te photocathode

    Science.gov (United States)

    Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.

  17. Chemical Shift Imaging (CSI) by precise object displacement

    OpenAIRE

    Leclerc, Sebastien; Trausch, Gregory; Cordier, Benoit; Grandclaude, Denis; Retournard, Alain; Fraissard, Jacques; Canet, Daniel

    2006-01-01

    International audience; A mechanical device (NMR lift) has been built for displacing vertically an object (typically a NMR sample tube) inside the NMR probe with an accuracy of 1 Μm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective rf field, one obtains chemical shift information along the displacement direction (one dimensional Chemical Shift Imaging – CSI). Knowing the vertical radio-frequency (rf) f...

  18. Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes

    International Nuclear Information System (INIS)

    Zhang Yi-Jun; Zou Ji-Jun; Wang Xiao-Hui; Chang Ben-Kang; Qian Yun-Sheng; Zhang Jun-Ju; Gao Pin

    2011-01-01

    In view of the important application of GaAs and GaN photocathodes in electron sources, differences in photoemission behaviour, namely the activation process and quantum yield decay, between the two typical types of III—V compound photocathodes have been investigated using a multi-information measurement system. The activation experiment shows that a surface negative electron affinity state for the GaAs photocathode can be achieved by the necessary Cs—O two-step activation and by Cs activation alone for the GaN photocathode. In addition, a quantum yield decay experiment shows that the GaN photocathode exhibits better stability and a longer lifetime in a demountable vacuum system than the GaAs photocathode. The results mean that GaN photocathodes are more promising candidates for electron source emitter use in comparison with GaAs photocathodes. (interdisciplinary physics and related areas of science and technology)

  19. Inducing circular RNA formation using the CRISPR endoribonuclease Csy4.

    Science.gov (United States)

    Borchardt, Erin K; Meganck, Rita M; Vincent, Heather A; Ball, Christopher B; Ramos, Silvia B V; Moorman, Nathaniel J; Marzluff, William F; Asokan, Aravind

    2017-05-01

    Circular RNAs (circRNAs) are highly stable, covalently closed RNAs that are regulated in a spatiotemporal manner and whose functions are largely unknown. These molecules have the potential to be incorporated into engineered systems with broad technological implications. Here we describe a switch for inducing back-splicing of an engineered circRNA that relies on the CRISPR endoribonuclease, Csy4, as an activator of circularization. The endoribonuclease activity and 3' end-stabilizing properties of Csy4 are particularly suited for this task. Coexpression of Csy4 and the circRNA switch allows for the removal of downstream competitive splice sites and stabilization of the 5' cleavage product. This subsequently results in back-splicing of the 5' cleavage product into a circRNA that can translate a reporter protein from an internal ribosomal entry site (IRES). Our platform outlines a straightforward approach toward regulating splicing and could find potential applications in synthetic biology as well as in studying the properties of different circRNAs. © 2017 Borchardt et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. The Boeing photocathode accelerator magnetic pulse compression and energy recovery experiment

    International Nuclear Information System (INIS)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-01-01

    An 18 MeV, photocathode accelerator operating at 433 MHz is being commissioned for FEL applications. The accelerator consists of a two-cell RF photocathode imjector followed by four new multicell cavities. The two cell injector has previously been operated at a micropulse repetition frequency of 27 MHz, a micropulse charge of 5 nC and 25% duty factor

  1. Uplink Contention-based CSI Feedback with Prioritized Layers for a Multi-Carrier System

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2012-01-01

    Optimized resource allocation of the Downlink (DL) in wireless systems utilizing Multi-Carrier (MC) transmission requires Channel State Information (CSI) feedback for each user/subchannel to the Base Station (BS), consuming a high amount of Uplink (UL) radio resources. To alleviate this problem, ....... Analytical and simulation results show that our proposed scheme provides an excellent trade-off between system performance and feedback overhead........ By partitioning the CSI into orthogonal layers of priority, and allocating different numbers of feedback slots to each layer, this scheme ensures that the feedback success probability is higher for the CSI with better quality, which is more likely to be used by the scheduler. Furthermore, we present a theoretical...... performance analysis of the proposed scheme, assuming Maximum CSI (Max CSI) and normalized Proportional Fair Scheduler (PFS), where a tight approximation of the achievable throughput is obtained assuming discrete Adaptive Modulation (AM) and CSI feedback which are relevant for the practical systems...

  2. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  3. High voltage switch triggered by a laser-photocathode subsystem

    Science.gov (United States)

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  4. Stable Solar-Blind Ultraviolet III-Nitride Photocathode for Astronomy Applications

    Science.gov (United States)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III- nitride materials (GaN, AlN, and their alloys) to achieve highly efficient, solar blind, and stable ultraviolet (UV) response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-nitride (in particular GaN) photocathodes have been demonstrated with very high quantum efficiency (>50%) in parts of UV spectral range; however, these photocathodes still rely on cesiation for activation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta- doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate/Cs2Te sealed tubes, photocathodes based on III-nitride materials will increase the quantum efficiency by nearly an order of magnitude and significantly enhance both fabrication yield and reliability, since they will not require cesium or other highly reactive materials for activation. This performance will enable a next-generation UV spectroscopic and imaging mission that is of high scientific priority for NASA. This photocathode uses near-surface band-structure engineering to create a permanently activated surface, with high efficiency and air-stable UV response. We will combine this III-nitride structure with our unique III-nitride processing technology to optimize the efficiency and uniformity of the photocathode. In addition, through our design, growth, and processing techniques, we will extend the application of these photocathodes into far UV for both semitransparent and

  5. A Stable, Non-Cesiated III-Nitride Photocathode for Ultraviolet Astronomy Application

    Science.gov (United States)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III-nitride (III-N) materials (GaN, AlN, and their alloys) and to achieve highly efficient, solar blind, and stable UV response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-N (in particular GaN) photocathodes have been demonstrated with very high QE (>50%) in parts of UV spectral range. Moreover, due to the wide bandgaps of III-nitride materials, photocathode response can be tailored to be intrinsically solar-blind. However, these photocathodes still rely on cesiation for activation, necessitating all-vacuum fabrication and sealed-tube operation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta-doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate sealed tubes, photocathodes based on III-N materials will yield high QE and significantly enhance both fabrication yield and reliability, since they do not require cesium or other highly reactive materials for activation. This performance will enable a ~4 meter medium class UV spectroscopic and imaging mission that is of high scientific priority for NASA. This work will build on the success of our previous APRA-funded effort. In that work, we demonstrated III-nitride photocathode operation without the use of cesium and stable response with respect to time. These accomplishments represent major improvements to the state-of-the-art for photocathode technologies. In the proposed effort, we will implement III

  6. Air-Stable Field-Enhanced III-Nitride Photocathodes

    Science.gov (United States)

    Strittmatter, Robert; Blacksberg, Jordana; Nikzad, Shouleh; Dabiran, Amir; Wowchak, Andrew; Chow, Peter

    2005-03-01

    We report on recent investigations of Si delta-doping by molecular beam epitaxy (MBE) near the surface of p-type GaN films to attain high efficiency photocathodes for use in intensified ultraviolet imagers. These delta-layers are prepared to achieve effective negative electron affinity (NEA) without the use of low work function metal coatings, such as cesium, which are suitable only in ultra-high vacuum environments. Hall measurements, secondary ion mass spectrometry (SIMS), and capacitance-voltage (C-V) depth profiling reveal highly confined delta-layers with activated carrier densities in excess of 10^14 cm-2 as close as 2 nm from the semiconductor surface. When the delta-layer is biased relative to the bulk, a large field-enhancement of the photoelectron yield is observed. In addition to UV spectroscopic quantum efficiency data, we will present total electron yield measurements for these photocathodes under electron-beam bombardment at various incident energies.

  7. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  8. Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates

    Science.gov (United States)

    Tremsin, Anton S.; Hull, Jeffrey S.; Siegmund, Oswald H. W.; McPhate, Jason B.; Vallerga, John V.; Dabiran, Amir M.; Mane, Anil; Elam, Jeff

    2013-09-01

    The optimization and performance of opaque Galium Nitride (GaN) photocathodes deposited directly on novel Microchannel Plates (MCPs) are presented in this paper. The novel borosilicate glass MCPs, which are manufactured with the help of Atomic Layer Deposition, can withstand higher temperatures enabling direct deposition of GaN films on their surfaces. The quantum efficiency of MBE-grown GaN photocathodes of various thickness and buffer layers was studied in the spectral range of ~200-400 nm for the films grown on different surface layers (such as Al2O3 or buffer AlN layer) in order to determine the optimal opaque photocathode configuration. The MCPs with the GaN photocathodes were activated with surface cesiation in order to achieve the negative Electron Affinity for the efficient photon detection. The opaque photocathodes enable substantial broadening of the spectral sensitivity range compared to the semitransparent configuration when the photocathodes are deposited on the input window. The design of currently processed sealed tube event counting detector with an opaque GaN photocathode are also described in this paper. Our experiments demonstrate that although there is still development work required the detection quantum efficiencies exceeding 20% level should be achievable in 200-400 nm range and <50% in 100-200 nm range for the event counting MCP detectors with high spatial resolution (better than 50 μm) and timing resolution of <100 ps and very low background levels of only few events cm-2 s-1.

  9. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.

    Science.gov (United States)

    Hao, Guanghui; Liu, Junle; Ke, Senlin

    2017-12-10

    In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.

  10. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Stutzman, Marcy L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chen, Yiqiao [SVT Associates, Inc., Eden Prairie, MN (United States); Moy, Aaron [SVT Associates, Inc., Eden Prairie, MN (United States)

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  11. The Status of GLAST CsI Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chekhtman, A.

    2003-09-18

    GLAST is a gamma-ray observatory for celestial sources in the energy range from 20 MeV to 300 GeV. This is NASA project with launch anticipated in 2006. The principal instrument of the GLAST mission is the Large Area Telescope (LAT), consisting of an Anti Coincidence Detector (ACD), a silicon-strip detector Tracker (TKR) and a hodoscopic CsI Calorimeter (CAL). It consists of 16 identical modules arranged in a 4 x 4 array. Each module has horizontal dimensions 38 x 38 cm{sup 2} and active thickness 8.5 radiation length. It contains 96 CsI (Tl) crystals arranged in 8 layers with 12 crystals per layer. The scintillation light is measured by PIN photodiodes mounted on both ends of each crystal. The sum of signals at the two ends of the crystal provides the energy measurement. The difference in these signals provides the position measurement along the crystal. The calorimeter was designed to meet the goals of good energy resolution (better than 10% for photon energies 100 MeV-100 GeV), position resolution of {approx} 1 mm for photon energies > 1 GeV, and a rejection factor of > 100 for charged cosmic rays, under limitations on calorimeter weight (95 kg per module) and power consumption (6 W per module). The Monte Carlo simulation and prototype beam test results confirm that proposed design meets the requirements. Calorimeter production is planned to start in 2003.

  12. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  13. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  14. Photocathode non-uniformity contribution to the energy resolution of scintillators

    International Nuclear Information System (INIS)

    Mottaghian, M.; Koohi-Fayegh, R.; Ghal-Eh, N.; Etaati, G. R.

    2010-01-01

    This paper introduces the basics of the light transport simulation in scintillators and the wavelength-dependencies in the process. The non-uniformity measurement of the photocathode surface is undertaken, showing that for the photocathode used in this study the quantum efficiency falls to about 4% of its maximum value, especially in areas far from the centre. The wavelength-and position-dependent quantum efficiency is implemented in the Monte Carlo light transport code, showing that, the contribution of the photocathode non-uniformity to the energy resolution is estimated to be around 18%, when all position-and wavelength-dependencies are included. (authors)

  15. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I. [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2016-03-28

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  16. Perception-Induced Effects of Corporate Social Irresponsibility (CSiR) for Stereotypical and Admired Firms.

    Science.gov (United States)

    Voliotis, Seraphim; Vlachos, Pavlos A; Epitropaki, Olga

    2016-01-01

    How do stakeholders react to Corporate Social Irresponsibility (CSiR)? What are the emotional mechanisms and behavioral outcomes following CSiR perception? The psychology of CSR literature has yet to address these important questions and has largely considered CSR and CSiR as the opposite poles of the same continuum. In contrast, we view CSR and CSiR as distinct constructs and theorize about the cognitive (perceptual), emotional, and behavioral effects of CSiR activity on observers (i.e., primary and secondary stakeholders) building on theories of intergroup perception. Specifically, building on the Stereotype Content Model (SCM; Fiske et al., 2002) and the BIAS map (i.e., Behaviors from Intergroup Affect and Stereotypes; Cuddy et al., 2007)-which extends the SCM by predicting behavioral responses-we make predictions on potential stakeholder reactions to CSiR focusing on two practice-relevant cases: (a) a typical for-profit firm that engages in a CSiR activity, (b) an atypical admired firm that engages in CSiR activity.

  17. The Communication Styles Inventory (CSI): A six-dimensional behavioral model of communication styles and its relation with personality

    NARCIS (Netherlands)

    de Vries, R.E.; Bakker-Pieper, A.; Konings, F.E.; Schouten, B.

    2013-01-01

    In this study, a six-dimensional model of communication styles is proposed and operationalized using the Communication Styles Inventory (CSI). The CSI distinguishes between six domain-level communicative behavior scales, Expressiveness, Preciseness, Verbal Aggressiveness, Questioningness,

  18. The Communication Styles Inventory (CSI): a six-dimensional behavioral model of communication styles and its relation with personality

    NARCIS (Netherlands)

    de Vries, R.E.; Bakker-Pieper, A.; Konings, F.E.; Schouten, B.

    2013-01-01

    In this study, a six-dimensional model of communication styles is proposed and operationalized using the Communication Styles Inventory (CSI). The CSI distinguishes between six domain-level communicative behavior scales, Expressiveness, Preciseness, Verbal Aggressiveness, Questioningness,

  19. Protected, back-illuminated silicon photocathodes or photoanodes for water splitting tandem stacks (Conference Presentation)

    Science.gov (United States)

    Vesborg, Peter C.; Bae, Dowon; Seger, Brian J.; Chorkendorff, Ib; Hansen, Ole; Pedersen, Thomas; Mei, Bastian; Frydendal, Rasmus

    2016-10-01

    Silicon is a promising contender in the race for low-bandgap absorbers for use in a solar driven monolithic water splitting cell (PEC). However, given its role as the low-bandgap material the silicon must sit behind the corresponding high-bandgap material and as such, it will be exposed to (red) light from the dry back-side - not from the wet front side, where the electrochemistry takes place.[1,2] Depending on the configuration of the selective contacts (junctions) this may lead to compromises between high absorption and low recombination.[2,3] We discuss the tradeoffs and compare modeling results to measurements. Regardless of configuration, the wet surface of the silicon is prone to passivation or corrosion and must therefore be carefully protected in service in order to remain active. We demonstrate the use of TiO2 as an effective protection layer for both photoanodes and photocathodes in acid electrolyte [4] and NiCoOx for photoanodes in alkaline electrolyte. [3] References: [1]: B. Seger et alia, Energ. Environ. Sci., 7 (8), 2397-2413 (2014), DOI:10.1039/c4ee01335b [2]: D. Bae et alia, Energ. Environ. Sci., 8 (2), 650-660 (2015), DOI: 10.1039/c4ee03723e [3]: D. Bae et alia, submitted, (2016) [4]: B. Mei et alia, J. Phys. Chem. C., 119 (27), 15019-15027 (2015), DOI: 10.1021/acs.jpcc.5b04407

  20. Pulsed laser deposition of yttrium photocathode suitable for use in radio-frequency guns

    Science.gov (United States)

    Lorusso, A.; Trovò, M.; Demidovich, A.; Cinquegrana, P.; Gontad, F.; Broitman, E.; Chiadroni, E.; Perrone, A.

    2017-12-01

    Yttrium (Y) thin film was grown by pulsed laser deposition (PLD) on a copper (Cu) polycrystalline substrate. Ex situ morphological and structural characterisations of the circular Y film of 1.2 µm thickness and 3 mm diameter have shown a very low droplet density on the film surface and a crystalline feature with a preferred orientation along the Y (100) plane. Moreover, Y thin film resulted in being very adherent to the Cu substrate and more scratch resistant than Cu bulk. A twin thin film was deposited also on a Cu backflange of a radio-frequency (RF) gun to test the suitability of the metallic thin film as photocathode. It was observed that the Y-coated photocathode was characterised by a quantum efficiency ( QE) higher than that of the Cu bulk photocathode even if the presence of space charge effects didn't allow deriving the absolute maximum value of QE of Y photocathode.

  1. Measurement of Low Workfunction Cesiated Metals for Use in Dispenser Photocathodes

    CERN Document Server

    Moody, N A; O'Shea, P G

    2005-01-01

    Photoinjector performance is a limiting factor in the continued development of high powered FELs. Presently available photocathodes have limited efficiency and short lifetime in an RF-gun environment, due to contamination or evaporation of a photosensitive surface layer. An ideal photocathode should have high efficiency at visible wavelengths, long lifetime in practical vacuum environments, and prompt emission. High efficiency cathodes typically have limited lifetime, and the needs of the photocathode are generally at odds with those of the drive laser. A potential solution is the low work function dispenser cathode, where short lifetimes are overcome by periodic in situ regeneration that restores the photosensitive surface layer, analogous to methods used in the power tube industry. This work reports on the fabrication techniques and performance of cesiated metal photocathodes and cesiated dispenser cathodes, with a focus on understanding and improving quantum efficiency and lifetime, analyzing issues of emi...

  2. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  3. Study on Quantum Efficiency Stability of Reflection-Mode GaN Negative Electronic Affinity Photocathode

    OpenAIRE

    Wei Liu; Jiangtao Fu; Guoqiang Zheng

    2014-01-01

    The aim of this study is to analyze the decaying and recovering mechanism of the quantum efficiency for reflection-mode GaN NEA photocathode. One kind of reflection-mode GaN NEA photocathode is designed and grown in the laboratory. The quantum efficiency curves are obtained immediately and six hours later after the sample is fully activated, the quantum efficiency data at different wavelengths are acquired according to the two different quantum efficiency curves, Through the analysis of exper...

  4. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory; /SLAC /Saxed Surface Science, Austin, TX

    2010-08-25

    We have developed an activation procedure by which the reactivity to CO{sub 2}, a principal cause of yield decay for GaAs photocathodes, is greatly reduced. The use of a second alkali in the activation process is responsible for the increased immunity of the activated surface. The best immunity was obtained by using a combination of Cs and Li without any loss in near bandgap yield. Optimally activated photocathodes have nearly equal quantities of both alkalis.

  5. Optical degradation of long-term, field-aged c-Si photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Parretta, A.; Bombace, M.; Graditi, G. [ENEA Centro Ricerche Portici (Italy); Schioppo, R. [ENEA Area Sperimentale di Monte Aquilone, Manfredonia (Italy)

    2005-03-31

    The optical degradation induced by long-term (about 15 years) field exposure on c-Si photovoltaic modules belonging to the large-scale Delphos ENEA PV plant, located in Manfredonia (South of Italy), was investigated by making comparative reflectance measurements on the exposed modules, after their dismounting and cleaning, and on the original, unexposed counterparts. Four types of module fabrication technologies were analyzed: Helios single-Si, Pragma single-Si, Pragma multi-Si and Ansaldo multi-Si. Siemens multi-Si modules, of recent technology and exposed for 5 years, were taken as reference. The electrical loss measured for the single PV generators of the Delphos plant, each corresponding to a particular module technology, after a monitoring period of about 10 years, resulted to range between 11-22% for the output power and 9-14% for the output current. The aging effects on the dismounted and cleaned modules appeared as the discoloration of ARC layer, particularly at the center of the cells, and as the formation of stains distributed over the cell surface, likely due to the browning of the EVA. The spectral measurements of the total hemispherical reflectance, carried out under direct light at near-normal incidence, showed that the discoloration of ARC is associated to a decrease of the reflectance in the blue region (400-500 nm), and a resulting levelling of the spectral reflectance curves. The spectrally integrated measurements of reflectance carried out at diffuse white light, on the other hand, have provided evidence of an increase of the total hemispherical reflectance for exposed modules, particularly marked for the multi-Si modules, which correlates quite well with the extent of current loss measured on the single PV generators of Delphos plant. (Author)

  6. Study on photoemission surface of varied doping GaN photocathode

    Science.gov (United States)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  7. The quantum efficiency and stability of UV and soft x-ray photocathodes

    Science.gov (United States)

    Tremsin, Anton S.; Siegmund, Oswald H. W.

    2005-08-01

    The sensitivity of many detection devices is established by the use photocathodes for the conversion of incoming photons into photoelectrons. The choice of photocathode material is determined by the spectral range where the sensitivity of the device is most important. Alkali halides are very efficient photocathodes in the ultraviolet and soft X-ray wavelength ranges and are widely used in many scientific applications. Although they are relatively stable under short exposure to atmosphere, which substantially simplifies production and handling of detection devices, it was found that their sensitivity can be substantially reduced by intense UV or X-ray irradiation (photocathode's ageing). A detailed study of alkali halide photocathodes efficiency and their ageing under intense UV and X-ray irradiation as well as some methods of increasing the stability are presented. The quantum efficiency of amorphous diamond films were shown to be slightly lower than the efficiency of some alkali halide films, but the chemical and mechanical stability and yet to be confirmed radiation hardness of diamond photocathodes make them very attractive for many UV and soft X-ray applications. Multialkalis and new materials such as GaN, AlGaN, GaAs could be used to extend the sensitivity to longer wavelengths, but require in situ processing in very high vacuum.

  8. Relay Precoder Optimization in MIMO-Relay Networks With Imperfect CSI

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2011-11-01

    In this paper, we consider robust joint designs of relay precoder and destination receive filters in a nonregenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a MIMO-relay node. The channel state information (CSI) available at the relay node is assumed to be imperfect. We consider robust designs for two models of CSI error. The first model is a stochastic error (SE) model, where the probability distribution of the CSI error is Gaussian. This model is applicable when the imperfect CSI is mainly due to errors in channel estimation. For this model, we propose robust minimum sum mean square error (SMSE), MSE-balancing, and relay transmit power minimizing precoder designs. The next model for the CSI error is a norm-bounded error (NBE) model, where the CSI error can be specified by an uncertainty set. This model is applicable when the CSI error is dominated by quantization errors. In this case, we adopt a worst-case design approach. For this model, we propose a robust precoder design that minimizes total relay transmit power under constraints on MSEs at the destination nodes. We show that the proposed robust design problems can be reformulated as convex optimization problems that can be solved efficiently using interior-point methods. We demonstrate the robust performance of the proposed design through simulations. © 2011 IEEE.

  9. The Present Development of CsI Rich Detectors for the ALICE Experiment at CERN

    CERN Document Server

    Nappi, E; Colonna, N; Di Mauro, A; Elia, D; Galantucci, L; Ghidini, B; Grimaldi, A; Goret, B; Monno, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Santiard, Jean-Claude; Tomasicchio, G; Williams, T D; Ljubicic, A; Tustonic, T; Stucchi, S

    1999-01-01

    The ALICE Collaboration plans to implement a 12m^2 array consisting of 7 proximity focussed C6F^14 liquid radiator RICH modules devoted to the particle identification in the momentum range: 1 GeV/c - 3.5 GeV/c for pions and kaons. A large area CSI-RICH prototype has been designed and built with the aim to validate the detector parameter assumptions made to predict the performance of the High Momentum Particle Identification System (HMPID) of the ALICE Experiment. The main elements of the prototype will be described with emphasis on the engineering solutions adopted. First results from the analysis of multitrack events recorded with this prototype exposed to hadron beams at the CERN SPS will be discussedList of FiguresFigure 1 General view of the ALICE lay-outFigure 2 Schematic layout of the fast CsI-RICHFigure 3 Perspective view of the HMPID layout with the seven RICH modules tilted according to their position with respect to the interaction vertex. The frame that supports the detectors is also shownFigure 4 ...

  10. Experimental study on the CsI (Tl) crystal anti-compton detector in CDEX

    International Nuclear Information System (INIS)

    Liu Shukui; Yue Qian; Tang Changjian

    2012-01-01

    CDEX (China Dark matter Experiment) Collaboration will carry out direct search for dark matter with Ultra-Low Energy Threshold High Purity germanium (ULE-HPGe) detector at CJPL (China Jinping deep underground Laboratory). Before underground research, some experiments of the CsI (Tl) crystal Anti-Compton detector have been done on the ground, including light guide choice, wrapping material choice, height uniformity of CsI (Tl) crystal, side uniformity of CsI (Tl) crystal and the test results of all the crystals. Through the preliminary work on the ground, we have got some knowledge of the anti-compton detector and prepared for the underground experiment. (authors)

  11. [Comparative study of uniform-doping and gradient-doping negative electron affinity GaN photocathodes].

    Science.gov (United States)

    Li, Biao; Chang, Ben-Kang; Xu, Yuan; Du, Xiao-Qing; Du, Yu-Jie; Fu, Xiao-Qian; Wang, Xiao-Hui; Zhang, Jun-Ju

    2011-08-01

    High temperature annealing and Cs/O activation are external incentives, while the property of GaN material is internal factor in the preparation of negative electron affinity GaN photocathode. The similarities and differences of the performance of the two structure photocathodes are analysed based on the difference of the structure between uniform-doping and gradient-doping negative electron affinity GaN photocathodes and the changes in photocurrents in activation and the quantum yield after successfully activated of GaN photocathodes. Experiments show that: the photocurrent growth rate is slower in activation, activation time is longer and quantum efficiency is higher after successfully activated of gradient-doping GaN photocathode than those of uniform-doping photocathode respectively. The field-assisted photocathode emission model can explain the differences between the two, built-in electric field of gradient-doping structure creates additional electronic drift to the photocathode surface, and the probability of electrons to reach the photocathode surface is improved correspondingly.

  12. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Di Lemma, F.G., E-mail: fidelma.dilemma@gmail.com [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629 JB (Netherlands); Colle, J.Y., E-mail: jean-yves.colle@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Beneš, O. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Konings, R.J.M. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629 JB (Netherlands)

    2015-10-15

    The chemistry of cesium and iodine is of main importance to quantify the radioactive release in case of a nuclear reactor accident, or sabotage involving irradiated nuclear materials. We studied the interaction of CsI with different metallic fission products such as Mo and Ru. These elements can be released from nuclear fuel when exposed to oxidising conditions, as in the case of contact of overheated nuclear fuel with air (e.g. in a spent fuel cask sabotage, uncovering of a spent fuel pond, or air ingress accidents). Experiments were performed by vaporizing mixtures of the compounds in air, and analysing the produced aerosols in view of a possible gas–gas and gas–aerosol reactions between the compounds. These results were compared with the gaseous species predicted by thermochemical equilibrium calculations and experimental equilibrium vaporization tests using Knudsen Effusion Mass Spectrometry.

  13. Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures

    International Nuclear Information System (INIS)

    Chen Liang; Qian Yun-Sheng; Zhang Yi-Jun; Chang Ben-Kang

    2012-01-01

    Early research has shown that the varied doping structures of the active layer of GaAs photocathodes have been proven to have a higher quantum efficiency than uniform doping structures. On the basis of our early research on the surface photovoltage of GaAs photocathodes, and comparative research before and after activation of reflection-mode GaAs photocathodes, we further the comparative research on transmission-mode GaAs photocathodes. An exponential doping structure is the typical varied doping structure that can form a uniform electric field in the active layer. By solving the one-dimensional diffusion equation for no equilibrium minority carriers of transmission-mode GaAs photocathodes of the exponential doping structure, we can obtain the equations for the surface photovoltage (SPV) curve before activation and the spectral response curve (SRC) after activation. Through experiments and fitting calculations for the designed material, the body-material parameters can be well fitted by the SPV before activation, and proven by the fitting calculation for SRC after activation. Through the comparative research before and after activation, the average surface escape probability (SEP) can also be well fitted. This comparative research method can measure the body parameters and the value of SEP for the transmission-mode GaAs photocathode more exactly than the early method, which only measures the body parameters by SRC after activation. It can also help us to deeply study and exactly measure the parameters of the varied doping structures for transmission-mode GaAs photocathodes, and optimize the Cs-O activation technique in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Directory of Open Access Journals (Sweden)

    V. Shutthanandan

    2012-06-01

    Full Text Available Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL. Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS, atomic force microscopy, and secondary ion mass spectrometry (SIMS. In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  15. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  16. Characterization of SiCSiC Composites in Support of Environmental Degradation Modeling

    Science.gov (United States)

    Kiser, Doug; Sullivan, Roy; Bhatt, Ram; Smith, Craig; Zima, John; McCue, Terry

    2016-01-01

    SiCSiC (silicon carbide fiber reinforced silicon carbide) composites are candidate materials for various turbine engine applications because of their high specific strength and good creep and oxidation resistance at elevated temperatures. This study was performed to characterize the microstructure of a melt infiltrated (MI) SiCSiC, and to examine environmental degradation mechanisms occurring in precracked MI SiCSiC CMC specimens under tensile stresses of 30 ksi or less at 815C in dry air or argon. In addition, the oxidation of the BN interface was characterized at815C, and crack opening displacement as a function of stress measurements were made. This material characterization is being performed to obtain data to support NASA GRC modeling of SiCSiC environmental degradation. The comparison of experimentally-observed phenomena with model predictions can lead to improved understanding of material degradation mechanisms.

  17. Analyses of CsI aerosol deposition tests in WIND project with ART and VICTORIA codes

    International Nuclear Information System (INIS)

    Yuchi, Y.; Shibazaki, H.; Kudo, T.

    2000-01-01

    Deposition behavior of cesium iodide (CsI) was analyzed with ART and VICTORIA-92 codes for a test of the aerosol re-vaporization test series performed in WIND project at JAERI. In the test analyzed, CsI aerosol was injected into piping of test section where metaboric acid (HBO 2 ) was placed in advance on the floor area. It was confirmed in the present analysis that similar results on the CsI deposition were obtained between ART and VICTORIA when influences of chemical interactions were negligibly small. The analysis with VICTORIA agreed satisfactorily with the test results in analytical cases that cesium metaborate (CsBO 2 ) was injected into the test section instead of CsI to simulate the pre-existence of HBO 2 effect. (author)

  18. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating

    CERN Document Server

    Friese, J; Homolka, J; Kastenmüller, A; Maier-Komor, P; Peter, M; Zeitelhack, K; Kienle, P; Körner, H J

    1999-01-01

    Quantum efficiencies (QE) in the vacuum ultraviolet (VUV) wavelength region have been measured for solid CsI layers on various substrates. The CsI films were deposited applying electron beam evaporation. The QE measurements were performed utilizing synchrotron radiation as well as light from a deuterium lamp. A GaAsP diode with a sensitivity calibration traceable to a primary radiation standard was used for normalization. For CsI layers grown on resin-stabilized graphite films a significant enhancement of QE was observed. Substrates suitable for gas detector applications and aging properties were investigated. The procedures to prepare and reproduce high quantum efficient CsI layers are described.

  19. Corporate Social Irresponsibility (CSI): Everything you say, or not say, can be held against you

    OpenAIRE

    Jonsson, Veronica; Stéen, Josefine

    2016-01-01

    Corporate social irresponsibility (CSI), as an opposite of corporate social responsibility (CSR), refers to corporation’s failure to act responsibly. To address the actions connected to CSR and CSI, corporations need to overcome the challenges of communicating to their stakeholders and to be transparent. Stakeholders have become more skeptical regarding if the corporations are actually living up to the communicated standards. In other words, if corporations are ‘doing as they say’ and if they...

  20. Development of an automatical identification method in the CsI detectors; Develppement d`une method automatique d`identification dans les detecteurs CsI

    Energy Technology Data Exchange (ETDEWEB)

    Gourio, D. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany); Assenard, M.; Germain, M.; Reposeur, T.; Eudes, P.; Lautridou, P.; Laville, J.L.; Lebrun, C.; Rahmani, A. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    Achievement of multidetectors offers the possibility of measuring almost totally the particles produced in heavy ion reactions. Particularly, INDRA covers 90% of the solid angle and uses some 350 CsI detectors for the charged particle detection (Z {<=} 4). As the data yield from these multidetectors is huge we developed a first approach to automatically perform the identification procedure for light particle in a CsI scintillator. This is based on a pattern recognition with a final check assuring the consistency of the result

  1. Study of silicon tip photocathodes in DC and RF photo-injectors; Etude de photocathodes a pointe de silicium dans des canons continus et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Zakaria [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-02-02

    Nowadays the electron beams with a high intensity are particularly interesting in research and the applied physics. Producing such beams for which high intensity and low emittance are synonyms with efficiency, means developing new high luminosity electron sources, i.e. the photocathodes. This thesis, essentially experimental, is oriented in this way. After an introduction of Clermont-Ferrand and the LAL of Orsay experimental apparatus where the experiments took place, the chapter one presents the field emission and the photo-field emission. Then, we prove that the quantum efficiency of the photocathodes with silicon tips is higher for wavelengths near 800 nm. This fact is essential because it allows the use of lasers in the fundamental wavelength - Titan-Saphir for instance. In the chapter 2, we remind how the silicon tips are realized and how to improve surface conditions. Procedures and the surface analysis with the SEM and XPS are described. With a Nd-Yag laser, pumped with laser diode setting up with the participation of IRCOM Opticians of Limoges, the photocathode supplied 1 Ampere per pulse at a quantum efficiency of 0.25%. The description of this experiment and the results are the object of the chapter 3. The space charge outside the photocathode space prevents the electrons to go through. The Child-Langmuir formula limits the current with the DC gun at about 30 Ampere. To improve this result we have to use a photo-injector. In chapter 4 we prove that the silicon tip photocathode are compatible with RF gun requirements by PRIAM modeling and low level measure in a cold model of CANDELA RF gun. Technical department of CERN helped us to prepare this very sensitive experiment. (author)

  2. Synchronizaiton Between Laser and Electron Beam at Photocathode RF Gun

    CERN Document Server

    Sakumi, Akira; Fukasawa, Atsushi; Kumagai, Noritaka; Muroya, Yusa; Tomizawa, Hiromitsu; Ueda, T; Uesaka, Mitsuru; Urakawa, Junji; Yoshii, K

    2005-01-01

    The chemical reactions of hot, room temperature and critical water in a time-range of picosecond and sub-picosecond have been carried out by the 18 MeV S-band linac and a Mg photocathode RF gun with the irradiation of third harmonic Ti: Sapphire laser, at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo. Although this short bunch and 100 fs laser light are enough to perform the experiment of radiation chemistry in the time-range of sub-picosecond, the total time-resolution become worse by the instability of synchronization between laser and radio frequency of linac. We found that the fluctuation of room temperature causes the instability, particularly the cycle of turning on/off of the air-conditioner. It is shown that 0.3 °C (peak-to-peak) fluctuation of the laser-room temperature have approximately corresponded to the instability of 6 ps. We are trying to decrease the fluctuation of the room temperature, together with the local temperature stability of the Ti: Sapphire crysta...

  3. Flat-beam Rf photocathode sources for linear collider applications

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.

    1991-01-01

    Laser driven rf photocathodes represent a recent advance in high-brightness electron beam sources. The authors investigate here a variation on these devices, that obtained by using a ribbon laser pulse to illuminate the cathode, yielding a flat beam (σ x much-gt σ y ) which has asymmetric emittances at the cathode proportional to the beam size each transverse dimension. The flat-beam geometry mitigates space charge forces which lead to intensity dependent transverse and longitudinal emittance growth, thus limiting the beam brightness. The fundamental limit on achievable emittance and brightness is set by the transverse momentum distribution and peak current density of the photoelectrons (photon energy and cathode material dependent effects) and appears to allow, taking into account space charge and rf effects, normalized emittances ε x -5 m-rad and ε -6 m-rad, with Q = 5 nC and σ z = 1 mm. These source emittances are adequate for superconducting linear collider applications, and could preclude the use of a damping ring for the electrons in these schemes

  4. In-situ multi-information measurement system for preparing gallium nitride photocathode

    International Nuclear Information System (INIS)

    Fu Xiao-Qian; Chang Ben-Kang; Qian Yun-Sheng; Zhang Jun-Ju

    2012-01-01

    We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 °C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared. (rapid communication)

  5. Direct deposition of GaN-based photocathodes on microchannel plates

    Science.gov (United States)

    Dabiran, Amir M.; Wowchak, Andrew M.; Chow, Peter P.; Siegmund, Oswald H. W.; Hull, Jeffrey S.; Malloy, James; Tremsin, Anton S.

    2009-02-01

    Epitaxial growth of p-type GaN-based UV photocathode by RF plasma assisted molecular beam epitaxy (MBE) on sapphire, fused silica, and alumina substrates was investigated. The electrical measurements indicted the growth of highly p-type GaN films as thin as 0.1 μm on c-plane sapphire with a thin AlN nucleation layer. Polycrystalline p-type GaN was obtained for growth on fused silica and alumina. Negative electron affinity (NEA) photocathodes were fabricated by cesium activation of the p-type GaN films in vacuum. Quantum efficiency for UV detection on different substrates was then characterized. To study the integration of UV photocathodes with MCPs, direct deposition of p-type GaN films on glass MCPs were done at low growth temperatures by MBE. The detection efficiency of polycrystalline p- GaN photocathodes in reflection mode was much less than the high quality p-type GaN films on sapphire, however, it was comparable to the detection efficiency of the latter measured in the semitransparent mode. This indicates the potential for fabrication of improved photocathodes with higher gain and better spatial and temporal resolutions.

  6. In-situ multi-information measurement system for preparing gallium nitride photocathode

    Science.gov (United States)

    Fu, Xiao-Qian; Chang, Ben-Kang; Qian, Yun-Sheng; Zhang, Jun-Ju

    2012-03-01

    We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 °C. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.

  7. Ion Back-Bombardment of GaAs Photocathodes Inside DC High Voltage Electron Guns

    CERN Document Server

    Grames, Joseph M; Brittian, Joshua; Charles, Daniel; Clark, Jim; Hansknecht, John; Lynn Stutzman, Marcy; Poelker, Matthew; Surles-Law, Kenneth E

    2005-01-01

    The primary limitation for sustained high quantum efficiency operation of GaAs photocathodes inside DC high voltage electron guns is ion back-bombardment of the photocathode. This process results from ionization of residual gas within the cathode/anode gap by the extracted electron beam, which is subsequently accelerated backwards to the photocathode. The damage mechanism is believed to be either destruction of the negative electron affinity condition at the surface of the photocathode or damage to the crystal structure by implantation of the bombarding ions. This work characterizes ion formation within the anode/cathode gap for gas species typical of UHV vacuum chambers (i.e., hydrogen, carbon monoxide and methane). Calculations and simulations are performed to determine the ion trajectories and stopping distance within the photocathode material. The results of the simulations are compared with test results obtained using a 100 keV DC high voltage GaAs photoemission gun and beamline at currents up to 10 mA D...

  8. Development of a high-sensitivity UV photocathode using GaN film that works in transmission mode

    Science.gov (United States)

    Ishigami, Yoshihiro; Akiyama, Keisuke; Nagata, Takaaki; Kato, Kazumasa; Ihara, Tsuneo; Nakamura, Kimitsugu; Mizuno, Itaru; Matsuo, Tetsuji; Chino, Emiko; Kyushima, Hiroyuki

    2012-06-01

    We developed a high-sensitivity GaN photocathode that works in transmission mode. It has 40.9 % quantum efficiency at 310 nm wavelength. Conventional GaN photocathodes, both transmission mode and reflection mode, are made on a sapphire substrate using metal-organic vapor phase epitaxy (MOVPE). In reflection mode, a GaN photocathode has very high quantum efficiency (QE) of over 50 %. However, in transmission mode, the quantum efficiency of a GaN photocathode was about 25 % at 240 nm with this technique. Therefore, we developed a new GaN photocathode using a glass-bonding technique, where a GaN thin film was bonded to a glass face plate. We found out that constituting an Al- GaN layer on the light incidence side of the photocathode surface provided higher QE than a sole GaN layer type for transmission mode. We focused on the band bending of the photocathode, and analyzed QE for both transmission mode and reflection mode. We then verified the effectiveness of the AlGaN layer using the results from the analysis. The high-sensitivity UV photocathode will be used for flame detection, corona discharge observation, and other UV imaging.

  9. Progress on development of UV photocathodes for photon-counting applications at NASA GSFC

    Science.gov (United States)

    Stock, J.; Hilton, G.; Norton, T.; Woodgate, B.; Aslam, S.; Ulmer, M.

    2005-08-01

    The development of high quantum efficiency photemissive detectors is recognized as a significant advancement for astronomical missions requiring photon-counting detection. For solar-blind NUV detection, current missions (GALEX, STIS) using Cs2Te detectors are limited to ~10% DQE. Emphasis in recent years has been to develop high QE (>50%) GaN and AlGaN photocathodes (among a few others) that can then be integrated into imaging detectors suitable for future UV missions. We report on progress we have made in developing GaN photocathodes and discuss our observations related to parameters that effect efficiency and stability, including intrinsic material properties, surface preparation, and vacuum environment. We have achieved a QE in one case of 65% at 185 nm and are evaluating the stability of these high QEs. We also discuss plans for incorporating photocathodes into imaging and non-imaging sealed devices in order to demonstrate long term stability.

  10. Development of UV image intensifier tube with GaN photocathode

    Science.gov (United States)

    Mizuno, I.; Nihashi, T.; Nagai, T.; Niigaki, M.; Shimizu, Y.; Shimano, K.; Katoh, K.; Ihara, T.; Okano, K.; Matsumoto, M.; Tachino, M.

    2008-04-01

    We developed an UV image intensifier tube with a GaN photocathode in semi-transparent mode. In UV spectroscopy and low-light-level UV-imaging applications, there are strong demands for improved detectors which have higher quantum efficiency, low dark current, sharper wavelength cut-off response, and stable and robust characteristics. III-Nitrides semiconductor is one of the promising candidate materials to meet these demands. We developed a GaN photocathode which is epitaxially grown by MOCVD method. It has flat and high quantum efficiency from 200 nm to 360 nm. The cathode is incorporated into an image intensifier tube, which shows good gating performance and fine imaging resolution. With these improved performances, the UV image intensifier tube with GaN photocathode will expand its application fields to include UV spectroscopy and UV-imaging in low light.

  11. JAERI 200 kV electron gun with an NEA-GaAs photocathode

    International Nuclear Information System (INIS)

    Nishitani, Tomohiro; Minehara, Eisuke J.; Hajima, Ryoichi; Nagai, Ryoji; Sawamura, Masaru; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Yamauchi, Toshihiko

    2004-01-01

    The photocathode DC-gun with high average current, low beam emittance and long operational lifetime is considered to be indispensable for ERL-FEL. We have started the development program of a 200 keV electron gun with the NEA-GaAs photocathode for the first time in JAERI. In order to long an NEA surface lifetime, the JAERI 200 kV electron gun system consists of a 200 kV DC-gun chamber on extreme high vacuum condition and an NEA activation chamber with load-lock system. We report the goal of photocathode DC-gun R and D and the schedule of a developmental program. (author)

  12. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    Science.gov (United States)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-03-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  13. R&D proposal for LHC crystal calorimeter readout by gaseous (and liquid) detectors with photocathodes

    CERN Document Server

    Charpak, Georges; Scigocki, David; Zichichi, Antonino; Borovik-Romanov, A S; Imrie, D C; Marques, R F; Policarpo, Armando; Miné, P; Schmidt, W; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We propose to develop fast and radiation hard electromagnetic calorimetry at the LHC using BaF2 crystals (or similar scintillators) preceded by layers of low density VUV scintillators (such as KCaF3) to separate e/gamma, and by BaF2 preshower counters for a good e/pi rejection and precise position measurements. The readout of the preshower counter and of the low density VUV scintillators is done with parallel plate avalanche chambers combined with photocathodes. For the BaF2 calorimeter, gaseous ionization chambers with photocathodes are good readout candidates due to their high stability, energy resolution and radiation hardness. Another approach for the calorimeter readout could be photosensitive liquid ionization chambers, having good optical coupling with the BaF2. A systematic study of new photocathodes and new scintillators is also proposed.

  14. First operation of cesium telluride photocathodes in the TTF injector RF gun

    CERN Document Server

    Sertore, D; Flöttmann, K; Stephan, F; Zapfe, K; Michelato, P

    2000-01-01

    During the run 1998/1999 a new injector based on a laser-driven RF gun was brought in operation at the TESLA Test Facility (TTF) linac at DESY, in order to produce the beam structure and quality required either by TeV collider and SASE FEL experiments. High quantum efficiency cesium telluride photocathodes, prepared at Milano and transferred to DESY, have been successfully operated in the RF gun. A bunch charge of 50 nC, only limited by space charge effects, was achieved. The photocathodes have shown an operative lifetime of several months. A new cathode surface finishing has showed a promising decrease of the photocathode dark current. Measurements of dark current, quantum efficiency and lifetime are reported.

  15. Experimental measurement of a high resolution CMOS detector coupled to CsI scintillators under X-ray radiation

    International Nuclear Information System (INIS)

    Michail, C.; Valais, I.; Seferis, I.; Kalyvas, N.; Fountos, G.; Kandarakis, I.

    2015-01-01

    The purpose of the present study was to assess the information content of structured CsI:Tl scintillating screens, specially treated to be compatible to a CMOS digital imaging optical sensor, in terms of the information capacity (IC), based on Shannon's mathematical communication theory. IC was assessed after the experimental determination of the Modulation Transfer Function (MTF) and the Normalized Noise Power Spectrum (NNPS) in the mammography and general radiography energy range. The CMOS sensor was coupled to three columnar CsI:Tl scintillator screens obtained from the same manufacturer with thicknesses of 130, 140 and 170 μm respectively, which were placed in direct contact with the optical sensor. The MTF was measured using the slanted-edge method while NNPS was determined by 2D Fourier transforming of uniformly exposed images. Both parameters were assessed by irradiation under the mammographic W/Rh (130, 140 and 170 μm CsI screens) and the RQA-5 (140 and 170 μm CsI screens) (IEC 62220-1) beam qualities. The detector response function was linear for the exposure range under investigation. At 70 kVp, under the RQA-5 conditions IC values were found to range between 2229 and 2340 bits/mm 2 . At 28 kVp the corresponding IC values were found to range between 2262 and 2968 bits/mm 2 . The information content of CsI:Tl scintillating screens in combination to the high resolution CMOS sensor, investigated in the present study, where found optimized for use in digital mammography imaging systems. - Highlights: • Three structured CsI:Tl screens (130,140 & 170 um) were coupled to a CMOS sensor. • MTF of the CsI/CMOS was higher than GOS:Tb and CsI based digital imaging systems. • IC of CsI:Tl/CMOS was found optimized for use in digital mammography systems

  16. Amorphous NEA Silicon Photocathodes - A Robust RF Gun Electron Source. Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2009-01-01

    Amorphous silicon (a-Si) has been shown to have great promise as a negative electron affinity visible wavelength photocathode suitable for radio frequency (RF) gun systems. The specific operating wavelength can be shifted by growing it as a germanium alloy (a-Si(1-x)Ge(x)) rather than as pure silicon. This class of photoemitters has been shown to possess a high degree of immunity to charged particle flux. Such particle flux can be a significant problem in the operation of other photocathodes in RF gun systems. Its emission characteristics in the form of current per unit area, or current density, and emission angle, or beam spread are well matched for use in RF guns. Photocathodes made of a-Si can be fabricated on a variety of substrates including those most commonly employed in RF gun systems. Such photocathodes can be made for operation in either transmission or reflection mode. By growing them utilizing radio frequency plasma enhanced chemical vapor deposition, the unit cost is quite low, the quality is high and it is straightforward to grow custom size substrates and full or limited regions to confine the electron emission to the desired area. Quality emitters have been fabricated on tantalum, molybdenum, tungsten, titanium, copper, stainless steel, float glass, borosilicate glass and gallium arsenide. In addition to performing well in dedicated test chambers, a-Si photocathodes have been shown to function well in self-contained vacuum tubes. In this employment, they are subjected to a strenuous environment. Successful operation in this configuration provides additional confidence in their application to high energy linac photoinjectors and potentially as part of reliable, low cost photocathode driven RF gun systems that could become ready replacements for the diode and triode guns used on medical accelerators. Their applications in stand-alone vacuum tubes is just beginning to be explored.

  17. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  18. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode

    International Nuclear Information System (INIS)

    Jun, Niu; Zhi, Yang; Ben-Kang, Chang

    2009-01-01

    The mathematical expression of the electron diffusion and drift length L DE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reffection-mode uniform doping cathode, substituting L DE for L D , the equivalent quantum efficiency equation of the reffection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode

  19. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    Science.gov (United States)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  20. Inhibition of HIV-1 Viral Infection by an Engineered CRISPR Csy4 RNA Endoribonuclease.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    Full Text Available The bacterial defense system CRISPR (clustered regularly interspaced short palindromic repeats has been explored as a powerful tool to edit genomic elements. In this study, we test the potential of CRISPR Csy4 RNA endoribonuclease for targeting HIV-1. We fused human codon-optimized Csy4 endoribonuclease with VPR, a HIV-1 viral preintegration complex protein. An HIV-1 cell model was modified to allow quantitative detection of active virus production. We found that the trans-expressing VPR-Csy4 almost completely blocked viral infection in two target cell lines (SupT1, Ghost. In the MAGI cell assay, where the HIV-1 LTR β-galactosidase is expressed under the control of the tat gene from an integrated provirus, VPR-Csy4 significantly blocked the activity of the provirus-activated HIV-1 reporter. This proof-of-concept study demonstrates that Csy4 endoribonuclease is a promising tool that could be tailored further to target HIV-1.

  1. Visualization of a City Sustainability Index (CSI: Towards Transdisciplinary Approaches Involving Multiple Stakeholders

    Directory of Open Access Journals (Sweden)

    Koichiro Mori

    2015-09-01

    Full Text Available We have developed a visualized 3-D model of a City Sustainability Index (CSI based on our original concept of city sustainability in which a sustainable city is defined as one that maximizes socio-economic benefits while meeting constraint conditions of the environment and socio-economic equity on a permanent basis. The CSI is based on constraint and maximization indicators. Constraint indicators assess whether a city meets the necessary minimum conditions for city sustainability. Maximization indicators measure the benefits that a city generates in socio-economic aspects. When used in the policy-making process, the choice of constraint indicators should be implemented using a top-down approach. In contrast, a bottom-up approach is more suitable for defining maximization indicators because this technique involves multiple stakeholders (in a transdisciplinary approach. Using different materials of various colors, shapes, sizes, we designed and constructed the visualized physical model of the CSI to help people evaluate and compare the performance of different cities in terms of sustainability. The visualized model of the CSI can convey complicated information in a simple and straightforward manner to diverse stakeholders so that the sustainability analysis can be understood intuitively by ordinary citizens as well as experts. Thus, the CSI model helps stakeholders to develop critical thinking about city sustainability and enables policymakers to make informed decisions for sustainability through a transdisciplinary approach.

  2. Tuning the colors of c-Si solar cells by exploiting plasmonic effects

    Science.gov (United States)

    Peharz, G.; Grosschädl, B.; Prietl, C.; Waldhauser, W.; Wenzl, F. P.

    2016-09-01

    The color of a crystalline silicon (c-Si) solar cell is mainly determined by its anti-reflective coating. This is a lambda/4 coating made from a transparent dielectric material. The thickness of the anti-reflective coating is optimized for maximal photocurrent generation, resulting in the typical blue or black colors of c-Si solar cells. However, for building-integrated photovoltaic (BiPV) applications the color of the solar cells is demanded to be tunable - ideally by a cheap and flexible coating process on standard (low cost) c-Si solar cells. Such a coating can be realized by applying plasmonic coloring which is a rapidly growing technology for high-quality color filtering and rendering for different fields of application (displays, imaging,…). In this contribution, we present results of an approach for tuning the color of standard industrial c-Si solar cells that is based on coating them with metallic nano-particles. In particular, thin films (green and brownish/red. The position of the resonance peak in the reflection spectrum was found to be almost independent from the angle of incidence. This low angular sensitivity is a clear advantage compared to alternative color tuning methods, for which additional dielectric thin films are deposited on c-Si solar cells.

  3. Quality Assurance on Undoped CsI Crystals for the Mu2e Experiment

    Science.gov (United States)

    Atanov, N.; Baranov, V.; Budagov, J.; Davydov, Yu. I.; Glagolev, V.; Tereshchenko, V.; Usubov, Z.; Cervelli, F.; Di Falco, S.; Donati, S.; Morescalchi, L.; Pedreschi, E.; Pezzullo, G.; Raffaelli, F.; Spinella, F.; Colao, F.; Cordelli, M.; Corradi, G.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Happacher, F.; Martini, M.; Miscetti, S.; Ricci, M.; Saputi, A.; Sarra, I.; Echenard, B.; Hitlin, D. G.; Hu, C.; Miyashita, T.; Porter, F.; Zhang, L.; Zhu, R.-Y.; Grancagnolo, F.; Tassielli, G.; Murat, P.

    2018-02-01

    The Mu2e experiment is constructing a calorimeter consisting of 1,348 undoped CsI crystals in two disks. Each crystal has a dimension of 34 x 34 x 200 mm, and is readout by a large area silicon PMT array. A series of technical specifications was defined according to physics requirements. Preproduction CsI crystals were procured from three firms: Amcrys, Saint-Gobain and Shanghai Institute of Ceramics. We report the quality assurance on crystal's scintillation properties and their radiation hardness against ionization dose and neutrons. With a fast decay time of 30 ns and a light output of more than 100 p.e./MeV measured with a bi-alkali PMT, undoped CsI crystals provide a cost-effective solution for the Mu2e experiment.

  4. Performance Analysis of Communications under Energy Harvesting Constraints with noisy CSI

    KAUST Repository

    Znaidi, Mohamed Ridha Ali

    2016-01-06

    In energy harvesting communications, the transmitters have to adapt transmission to availability of energy harvested during the course of communication. The performance of the transmission depends on the channel conditions which vary randomly due to environmental changes. In this work, we consider the problem of power allocation taking into account the energy arrivals over time and the degree of channel state information (CSI) available at the transmitter, to maximize the throughput. Differently from previous work, the CSI at the transmitter is not perfect and may include estimation errors. We solve this problem with respect to the Energy Harvesting constraints. We determine the optimal power in the case where the channel is assumed to be perfectly known at the receiver. Also, we obtain the power policy when the transmitter has no CSI. Furthermore, we analyze the asymptotic average throughput in a system where the average recharge rate goes asymptotically to zero and when it is very high.

  5. Secrecy performance analysis of SIMO underlay cognitive radio systems with outdated CSI

    KAUST Repository

    Lei, Hongjiang

    2017-06-13

    This study investigates the secrecy outage performance of a single-input multiple-output underlay cognitive radio network (CRN) with outdated channel state information (CSI). The confidential messages are transmitted from transmitter to the destination, while a multi-antenna eavesdropper exists. The maximal ratio combining and selection combining schemes are utilised at the receivers to improve the quality of the received signal-to-noise ratio. The exact and asymptotic closed-form expressions of secrecy outage probability are derived, and simulation results are provided to verify the authors\\' proposed analytical results. The results reveal that imperfect CSI of main channels deteriorates the secrecy outage performance while that of eavesdropping and interfering channels has contrary effect, and only a unity diversity order can be obtained in underlay CRNs with imperfect CSI.

  6. Highlights on photocathodes based on thin films prepared by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    A. Lorusso

    2011-09-01

    Full Text Available We review the current status of metallic photocathodes based on thin films prepared by pulsed laser deposition (PLD and we explore ways to improve the performance of these devices. PLD seems to be a very efficient and suitable technique for producing adherent and uniform thin films. Time-resolved mass spectrometric investigations definitively suggest that the deposition of high-purity metallic thin films should be carried out in ultrahigh vacuum systems and after a deep and careful laser cleaning of the target surface. Moreover, the laser cleaning of the target surface is highly recommended not only to remove the first contaminated layers but also to improve the quality of the vacuum by reducing the partial pressure of reactive chemical species as H_{2}O, H_{2}, and O_{2} molecules. The challenge to realize high-purity Mg and Y thin films is very interesting for the photocathode R&D due to the good photoemission properties of these metals. Photocathodes based on Mg and Y thin films have been characterized by scanning electron microscopy and x-ray diffraction techniques to derive the morphological and structural features, respectively. They were also tested in a photodiode cell to deduce the photoelectron properties. The quantum efficiency of such photocathodes was systematically improved by in situ laser cleaning treatments of the surface in order to remove the contaminated layers reaching, in this way, the quantum efficiency of the corresponding bulk materials.

  7. The Dutch Central Sensitization Inventory (CSI): Factor Analysis, Discriminative Power, and Test-Retest Reliability.

    Science.gov (United States)

    Kregel, Jeroen; Vuijk, Pieter J; Descheemaeker, Filip; Keizer, Doeke; van der Noord, Robert; Nijs, Jo; Cagnie, Barbara; Meeus, Mira; van Wilgen, Paul

    2016-07-01

    A standardized assessment of central sensitization can be performed with the Central Sensitization Inventory (CSI), an English questionnaire consisting of 25 items relating to current health symptoms. The aim of this study was to translate the CSI into Dutch, to perform a factor analysis to reveal the underlying structure, examine its discriminative power, and test-retest reliability. The CSI was first translated into Dutch. A factor analysis was conducted on CSI data of a large group of chronic pain patients (n=368). The ability to discriminate between chronic pain patients (n=188) and pain-free controls (n=49) was determined and the test-retest reliability for chronic pain patients (n=36) and controls (n=45) with a time interval of 3 weeks was evaluated. The exploratory factor analysis resulted in a 4-factor model based on 20 items, representing the domains "General disability and physical symptoms" (Cronbach α=0.80), "Higher central sensitivity"(Cronbach α=0.78), "Urological and dermatological symptoms"(Cronbach α=0.60), and "Emotional distress"(Cronbach α=0.80). Furthermore, a parsimonious second-order factor model was found, where the factor "General central sensitization" was underlying the 4 first-order factors. Chronic pain patients scored significantly worse on all 4 factors. The test-retest reliability was excellent values in both chronic pain patients (ICC=0.88) and controls (ICC=0.91). The original CSI was translated into Dutch and did not reveal any problems during data acquisition. The domains represented by the 4 factors may be useful in setting up specific patient profiles and treatment targets. To conclude, the Dutch CSI revealed 4 distinguishable domains, showed good internal consistency for the total score and 3 out of 4 domains, good discriminative power, and excellent test-retest reliability.

  8. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI)

    International Nuclear Information System (INIS)

    Mori, Koichiro; Christodoulou, Aris

    2012-01-01

    The purpose of this paper is to discuss conceptual requirements for a City Sustainability Index (CSI) and to review existing major sustainability indices/indicators in terms of the requirements. The following indices are reviewed: Ecological Footprint (EF), Environmental Sustainability Index (ESI), Dashboard of Sustainability (DS), Welfare Index, Genuine Progress Indicator (GPI), Index of Sustainable Economic Welfare, City Development Index, emergy/exergy, Human Development Index (HDI), Environmental Vulnerability Index (EVI), Environmental Policy Index (EPI), Living Planet Index (LPI), Environmentally-adjusted Domestic Product (EDP), Genuine Saving (GS), and some applications of composite indices or/and multivariate indicators to local or regional context as case studies. The key conceptual requirements for an adequate CSI are: (i) to consider environmental, economic and social aspects (the triple bottom line of sustainability) from the viewpoint of strong sustainability; (ii) to capture external impacts (leakage effects) of city on other areas beyond the city boundaries particularly in terms of environmental aspects; (iii) to create indices/indicators originally for the purpose of assessing city sustainability; and (iv) to be able to assess world cities in both developed and developing countries using common axes of evaluation. Based on the review, we conclude that it is necessary to create a new CSI that enables us to assess and compare cities' sustainability performance in order to understand the global impact of cities on the environment and human life as compared with their economic contribution. In the future, the CSI will be able to provide local authorities with guidance toward sustainable paths. - Highlights: ► We derive the four key requirements for a new City Sustainability Index (CSI) system. ► First, the triple bottom line must be considered in terms of strong sustainability. ► Second, environmental leakage effects beyond city boundaries should

  9. CSI: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data.

    Science.gov (United States)

    Penfold, Christopher A; Shifaz, Ahmed; Brown, Paul E; Nicholson, Ann; Wild, David L

    2015-06-01

    Here we introduce the causal structure identification (CSI) package, a Gaussian process based approach to inferring gene regulatory networks (GRNs) from multiple time series data. The standard CSI approach infers a single GRN via joint learning from multiple time series datasets; the hierarchical approach (HCSI) infers a separate GRN for each dataset, albeit with the networks constrained to favor similar structures, allowing for the identification of context specific networks. The software is implemented in MATLAB and includes a graphical user interface (GUI) for user friendly inference. Finally the GUI can be connected to high performance computer clusters to facilitate analysis of large genomic datasets.

  10. Comparison of CsBr and KBr coated Cu photocathodes. Effects of laser irradiation and work function changes

    Energy Technology Data Exchange (ETDEWEB)

    He, Weidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); VilayurGanapathy, Subramanian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joly, Alan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chambers, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maldonado, Juan R. [Stanford Univ., CA (United States); Hess, Wayne P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-20

    Thin films (7 nm layers) of CsBr and KBr were deposited on Cu(100) to investigate photoemission properties of these potential photocathode materials. After thin film deposition and prolonged laser ultraviolet (UV) irradiation (266 nm picosecond laser) photoemission quantum efficiency increases by factors of 26 and 77 for KBr/Cu(100) and CsBr/Cu(100) photocathodes, respectively. Immediately following thin film deposition, a decrease in work function is observed, compared to bare Cu, in both cases. Quantum efficiency enhancements are attributed to the decrease in photocathode work function, due to the deposition of alkali halide thin films, and photo-induced processes, that introduce defect states into the alkali halide bandgap, induced by UV laser irradiation. It is possible that alkali metal formation occurs during UV irradiation and that this further contributes to photoemission enhancement. Our results suggest that KBr, a relatively stable alkali-halide, has potential for photocathode applications.

  11. Observation of two-photon photoemission from cesium telluride photocathodes excited by a near-infrared laser

    Science.gov (United States)

    Panuganti, H.; Piot, P.

    2017-02-01

    We explore the nonlinear photoemission in cesium telluride (Cs2Te) photocathodes where an ultrashort (˜100 fs full width at half max) 800-nm infrared laser is used as the drive-laser in lieu of the typical ˜266-nm ultraviolet laser. An important figure of merit for photocathodes, the quantum efficiency, we define here for nonlinear photoemission processes in order to compare with linear photoemission. The charge against drive-laser (infrared) energy is studied for different laser energy and intensity values and cross-compared with previously performed similar studies on copper [P. Musumeci et al., Phys. Rev. Lett. 104, 084801 (2010)], a metallic photocathode. We particularly observe two-photon photoemission in Cs2Te using the infrared laser in contrast to the anticipated three-photon process as observed for metallic photocathodes.

  12. High-Efficiency GaN-Based UV Imaging Photocathodes for Application in Harsh Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is directed toward the development of innovative high-efficiency UV photocathodes based on the wide bandgap III-nitride semiconductors for reliable...

  13. A commutation strategy for IGBT-based CSI-fed parallel resonant

    Indian Academy of Sciences (India)

    A brief study on a commutation strategy for a current source inverter (CSI)-fed parallel resonant circuit, using switches formed by IGBTs with series diodes, is presented in this paper. The dynamic behaviour of the inverter and different strategies for its reliable operation are discussed here considering parasitic inductance ...

  14. Iterative Equalization and Interference Alignment for Multiuser MIMO HetNets with Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Daniel Castanheira

    2015-01-01

    Full Text Available In this paper we consider a scenario, where several small-cells work under the same coverage area and spectrum of a macrocell. The signals stemming from the small-cell (macrocell users if not carefully dealt with will generate harmful interference into the macrocell (small-cell. To tackle this problem interference alignment and iterative equalization techniques are considered. By using IA all interference generated by the small-cell (macrocell users is aligned along a low dimensional subspace, at the macrocell (small-cells. This reduces considerably the amount of resources allocated, to enable the coexistence of the two systems. However, perfect IA requires the availability of error-free channel state information (CSI at the transmitters. Due to CSI errors one can have substantial performance degradation due to imperfect alignments. Since in this work the IA precoders are based on imperfect CSI, an efficient iterative space-frequency equalization is designed at the receiver side to cope with the residual aligned interference. The results demonstrate that iterative equalization is robust to imperfect CSI and removes efficiently the interference generated by the poorly aligned interference. Close to matched filter bound performance is achieved, with a very few number of iterations.

  15. CSI-EPT in Presence of RF-Shield for MR-Coils.

    Science.gov (United States)

    Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano

    2017-07-01

    Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.

  16. Sequential C-Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors

    DEFF Research Database (Denmark)

    Nielsen, Lone; Skrydstrup, Troels

    2008-01-01

    and the first new carbon-silicon bond. The next step is the reduction of this hydridosilane with lithium metal providing a silyl lithium reagent, which undergoes a highly diastereoselective addition to an optically active tert-butanesulfinimine, thus generating the second C-Si bond. This method allows...

  17. CSI Web Adventures: A Forensics Virtual Apprenticeship for Teaching Science and Inspiring STEM Careers

    Science.gov (United States)

    Miller, Leslie; Chang, Ching-I; Hoyt, Daniel

    2010-01-01

    CSI: The Experience, a traveling museum exhibit and a companion web adventure, was created through a grant from the National Science Foundation as a potential model for informal learning. The website was designed to enrich and complement the exhibit by modeling the forensic process. Substantive science, real-world lab techniques, and higher-level…

  18. Achievable Rates of Cognitive Radio Networks Using Multi-Layer Coding with Limited CSI

    KAUST Repository

    Sboui, Lokman

    2016-03-01

    In a Cognitive Radio (CR) framework, the channel state information (CSI) feedback to the secondary transmitter (SU Tx) can be limited or unavailable. Thus, the statistical model is adopted in order to determine the system performance using the outage concept. In this paper, we adopt a new approach using multi-layer-coding (MLC) strategy, i.e., broadcast approach, to enhance spectrum sharing over fading channels. First, we consider a scenario where the secondary transmitter has no CSI of both the link between SU Tx and the primary receiver (cross-link) and its own link. We show that using MLC improves the cognitive rate compared to the rate provided by a singlelayer- coding (SLC). In addition, we observe numerically that 2-Layer coding achieves most of the gain for Rayleigh fading. Second, we analyze a scenario where SU Tx is provided by partial CSI about its link through quantized CSI. We compute its achievable rate adopting the MLC and highlight the improvement over SLC. Finally, we study the case in which the cross-link is perfect, i.e., a cooperative primary user setting, and compare the performance with the previous cases. We present asymptotic analysis at high power regime and show that the cooperation enhances considerably the cognitive rate at high values of the secondary power budget.

  19. Distributed cognitive two-way relay beamformer designs under perfect and imperfect CSI

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2011-09-01

    In this paper, we present distributed two-way relay beamformer designs for a cognitive radio network (CRN) in which a pair of cognitive (or secondary) transceiver nodes communicate with each other assisted by a set of cognitive two-way relay nodes. The secondary nodes share the spectrum with a licensed primary user (PU) node, and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. First, we consider relay beamformer designs assuming the availability of perfect channel state information (CSI). For this case, a mean-square error (MSE)-constrained beamformer that minimizes the total relay transmit power, and an MSE-balancing beamformer with a constraint on the total relay transmit power are proposed. Next, we consider relay beamformer designs assuming that the available CSI is imperfect. For this case too, we consider the same problems as those in the case of perfect CSI, and propose beamformer designs that are robust to the errors in the CSI. We show that the proposed designs can be reformulated as convex optimization problems that can be solved efficiently. Through numerical simulations, we illustrate the performance of the proposed designs. © 2011 IEEE.

  20. Pressure dependence of structural phase transition and superconducting transition in CsI

    CERN Document Server

    Nirmala-Louis, C

    2003-01-01

    The self-consistent band structure calculation for CsI performed both in CsCl and HCP structures using the TB-LMTO method is reported. The equilibrium lattice constant, bulk modulus and the phase-transition pressure at which the compound undergoes structural phase transition from CsCl to HCP are predicted from the total-energy calculations. The band structure, density of states (DOS), electronic charge distributions, metallization and superconducting transition temperature (T sub c) of CsI are obtained as a function of pressure for both the CsCl and HCP structures. It is found that the charge transfer from s and p states to d state causes metallization and superconductivity in CsI. The highest T sub c estimated is 2.11 K and the corresponding pressure is 1.8 Mbar. This value is in agreement with the recent experimental observation. The experimental trend - ''metallization and superconductivity is rather insensitive to the crystal structure of CsI'' - is also confirmed in our work. (Abstract Copyright [2003], ...

  1. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    Pulse radiolysis is a powerful tool for studying chemical kinetics and primary processes or reactions of radiation chemistry. In the pulse radiolysis, a short electron beam, which is almost produced by radio-frequency (RF) electron linear accelerator with energy from a few MeV to a few tens MeV, is used as an irradiative source. The electron-induced reactions or phenomena in matter are analyzed by a short-pulse analyzing light (e.g. synchronized lasers) with the time-resolved stroboscopic technique. The time resolution of pulse radiolysis is not only dependent on the electron bunch length, the analyzing light pulse width, the time jitter between the electron bunch and the analyzing light, but also determined by degradation due to the velocity difference between light and the electron in the sample because of the refractive index. In order to improve the time resolution into femtosecond time region, we have develop a new pulse radiolysis based on a concept of 'Equivalent Velocity Spectroscopy (EVS)' to avoid the degradation of the time resolution caused by the velocity difference between the light and the electron beam in sample. In EVS as shown in Fig.1, a femtosecond electron beam produced by a photocathode electron linear accelerator was used, and a synchronized femtosecond laser was used as the analyzing light source. The electron beam and the laser light were injected into sample with an angle (θ), which is determined by the refractive index (n) of the sample. The electron bunch was also rotated with a same angle to make an overlap of the electron bunch with the laser pulse. The degradation of the time resolution caused by the velocity difference between the light and the electron beam can be calculated as g(L)=L[n/c-1/(vcos θ)], where L is the optical path length and v is the velocity of the electron in sample (we can assume v=c for a few tens MeV electron beam).We can thus obtained g(L)=0 by adjusting the incident angle to cos θ=1/n. However, the rotation

  2. Rb based alkali antimonide high quantum efficiency photocathodes for bright electron beam sources and photon detection applications

    Science.gov (United States)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2017-02-01

    High quantum efficiency alkali antimonide photocathodes have been grown over both stainless steel and glass substrates using sequential evaporation of Sb, K, Rb, and Cs. Quantum efficiencies well above 25% have been measured at 400 nm. A bi-alkali Rb-K-Sb photocathode grown on a stainless steel substrate has been installed in a high voltage DC gun at Cornell University and the intrinsic electron beam emittance was measured at different photon energies.

  3. The Communication Supports Inventory-Children & Youth (CSI-CY), a new instrument based on the ICF-CY.

    Science.gov (United States)

    Rowland, Charity; Fried-Oken, Melanie; Bowser, Gayl; Granlund, Mats; Lollar, Donald; Phelps, Randall; Simeonsson, Rune J; Steiner, Sandra A M

    2016-09-01

    Two studies are presented that evaluated the Communication Supports Inventory-Children & Youth (CSI-CY), an instrument designed to facilitate the development of communication-related educational goals for students with complex communication needs (CCN). The CSI-CY incorporates a code set based on the ICF-CY. The studies were designed to determine the effect of using the CSI-CY on IEP goals for students with CCN and to evaluate consumer satisfaction. In Study 1, sixty-one educators and speech-language pathologists were randomly assigned to either (a) provide a student's current IEP (control group) or (b) complete the CSI-CY prior to preparing a student's next IEP and to submit the new IEP (experimental group). Study 2 was a field test to generate consumer satisfaction data. Study 1 showed that IEP goals submitted by participants in the experimental group referenced CSI-CY-related content significantly more frequently than did those submitted by control participants. Study 2 revealed high satisfaction with the instrument. The code set basis of the CSI-CY extends the common language of the ICF-CY to practical educational use for children with CCN across diagnostic groups. The CSI-CY is well regarded as an instrument to inform the content of communication goals related to CCN. Implications for Rehabilitation The CSI-CY will guide rehabilitation professionals to develop goals for children with complex communication impairments. The CSI-CY is a new instrument that is based on the ICF-CY for documentation of communication goals.

  4. Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production

    Science.gov (United States)

    Ma, Xinzhou; Zhang, Jingtao; Wang, Biao; Li, Qiuguo; Chu, Sheng

    2018-01-01

    Solar photoelectrochemical (PEC) hydrogen production is a promising way for solving energy and environment problems. Earth-abundant Cu2O is a potential light absorber for PEC hydrogen production. In this article, hierarchical porous Cu2O foams are prepared by thermal oxidation of the electrochemically deposited Cu foams. PEC performances of the Cu2O foams are systematically studied and discussed. Benefiting from their higher light harvesting and more efficient charge separation, the Cu2O foams demonstrate significantly enhanced photocurrents and photostability compared to their film counterparts. Moreover, by integrating g-C3N4, hierarchical Cu2O foam/g-C3N4 composites are prepared with further improved photocurrent and photostability, appearing to be potential photocathodes for solar PEC hydrogen production. This study may provide a new and useful insight for the development of Cu2O-based photocathodes for PEC hydrogen production.

  5. The optimal thickness of a transmission-mode GaN photocathode

    Science.gov (United States)

    Wang, Xiao-Hui; Shi, Feng; Guo, Hui; Hu, Cang-Lu; Cheng, Hong-Chang; Chang, Ben-Kang; Ren, Ling; Du, Yu-Jie; Zhang, Jun-Ju

    2012-08-01

    A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 104 cm·s-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.

  6. Resolution characteristics for reflection-mode exponential-doping GaN photocathode.

    Science.gov (United States)

    Wang, Honggang; Qian, Yunsheng; Du, Yujie; Xu, Yuan; Lu, Liubing; Chang, Benkang

    2014-01-20

    According to the expression for modulation transfer function obtained by solving the established 2D continuity equation, the resolution characteristics for reflection-mode exponential-doping and uniform-doping GaN photocathodes have been calculated and comparatively analyzed. These calculated results show that the exponential-doping structure can upgrade not only the resolution capability but also the quantum efficiency for a GaN photocathode. The improvement mechanism is different from the approach for high resolution applied by reducing Te and L(D) or increasing S(V), which leads to low quantum efficiency. The main contribution factor of this improvement is that the mechanism that transports electrons toward the NEA surface is facilitated by the built-in electric field formed by this exponential-doping structure, and the corresponding lateral diffusion is reduced.

  7. Advances in wide-bandgap semiconductor based photocathode devices for low light level applications

    Science.gov (United States)

    Ulmer, Melville P.; Wessels, Bruce W.; Han, Bing; Gregie, Joel; Tremsin, Anton; Siegmund, Oswald H. W.

    2003-12-01

    Our work with GaN based photocathodes shows a strong dependence on the photo-emission response versus the carrier concentration and conductivity of the films. Films with quantum efficiency (QE) as high as 56% in opaque mode and as high as 30% in transmission mode have been made. Although surface activation plays a key role, the characteristics of the films, e.g. the thickness, film structure, minority carrier diffusion length, and doping, all play a role in affecting the photo-emission QE and especially its spectral dependence. The QE of films with the various properties is discussed and the utility of using measurements of the film properties to predict the optimal performance of the resulting photocathode is demonstrated.

  8. High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode

    Science.gov (United States)

    Guo, Xiangyang; Wang, Xiaohui; Chang, Benkang; Zhang, Yijun; Gao, Pin

    2010-08-01

    A depth grade doping sample gallium nitride (GaN) photocathode was designed to obtain an extremely high quantum efficiency (QE). Two other uniform doping samples were prepared in the same procedure as contrast. The calibrated QE curves were achieved; by comparing theoretical calculated values with the experimental QE plots, the escape probability and diffusion length were fitted. The QE value of gradient doping sample is as high as 68.7% at 5.17 eV; the diffusion length of gradient doping sample is fitted to be 250 nm which is much higher than uniform doping samples. That explains why depth-grade-doping can improve the QE of GaN photocathode significantly.

  9. Study of residual gas adsorption on GaN nanowire arrays photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Sihao; Liu, Lei, E-mail: liu1133_cn@sina.com.cn; Diao, Yu; Kong, Yike

    2017-05-01

    Highlights: • H{sub 2}O is more easily to absorb on the nanowire surface. • The work function increase after residual gas adsorption. • Bandgaps of the nanowire increase slightly. • Absorption coefficient is reduced and moves to higher energy side. - Abstract: In order to find out the influences of residual gas on GaN nanowire arrays photocathode, the optoelectronic properties of adsorption system are calculated on the basis of first principles. Results suggest that the residual gas adsorption will increase the work function and introduce a dipole moment with a direction from the nanowire to the adsorbates. The surface structures are changed and electrons transfer from nanowire to gas molecule. The bandgaps are enhanced after adsorption. Besides, the peak of absorption coefficients is reduced and moves to higher energy side. It is discovered that residual gas will drastically degrade the characteristics and lifetime of GaN nanowire arrays photocathode.

  10. Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode

    DEFF Research Database (Denmark)

    Wedege, Kristina; Bae, Dowon; Dražević, Emil

    2018-01-01

    Solar redox flow batteries have attracted attention as a possible integrated technology for simultaneous conversion and storage of solar energy. In this work, we review current efforts to design aqueous solar flow batteries in terms of battery electrolyte capacity, solar conversion efficiency...... and depth of solar charge. From a materials cost and design perspective, a simple, cost-efficient, aqueous solar redox flow battery will most likely incorporate only one semiconductor, and we demonstrate here a system where a single photocathode is accurately matched to the redox couples to allow...... for a complete solar charge. The single TiO2 protected Si photocathode with a catalytic Pt layer can fully solar charge a neutral TEMPO-sulfate/ferricyanide battery with a cell voltage of 0.35 V. An unbiased solar conversion efficiency of 1.6% is obtained and this system represents a new strategy in solar RFBs...

  11. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  12. Characterization and control of the electronic properties of a NiO based dye sensitized photocathode.

    Science.gov (United States)

    Hod, Idan; Tachan, Zion; Shalom, Menny; Zaban, Arie

    2013-05-07

    One compartment tandem DSSCs are based on two photoactive electrodes which are mediated by a redox electrolyte. Electron accumulation in the photoanode (n-type DSSC) alongside hole accumulation in the photocathode (p-type DSSC) should generate high photovoltage using different parts of the solar spectrum. While impressive efficiencies are reported for n-type DSSCs, the performance of the p-type analogue is very low due to insufficient understanding and a lack of materials. Electrochemical impedance spectroscopy of the p-type DSSC reveals that hole transport within the NiO mesoporous photocathode is the performance limiting factor. Modification of the NiO electrode with molecular dipoles significantly increases the cell photovoltage but has no significant effect on the photocurrent of the p-DSSC. Consequently, the development of better hole conducting materials in conjunction with surface dipole modification can lead to high photovoltage, high photocurrent p-DSSCs and thus to efficient tandem DSSCs.

  13. JAERI 200 kV Electron Gun with an NEA-GaAs Photocathode

    CERN Document Server

    Nishitani, Tomohiro; Kikuzawa, Nobuhiro; John Minehara, Eisuke; Nagai, Ryoji; Nishimori, Nobuyuki; Sawamura, Masaru; Yamauchi, T

    2004-01-01

    The GaAs photocathode with negative electron affinity surface (NEA-GaAs) has been expected to be low emittance (<0.5 πmm・mrad) electron beam source. In order to generate low emittance electron beam required from ERL-FEL, we have started the developmental program of a 200keV electron gun with the NEA-GaAs photocathode for the first time in JAERI. An NEA surface has the problem that lifetime is limited by gun vacuum condition and by ion back bombardment between anode- and cathode-electrode. In order to long an NEA surface lifetime, the JAERI 200keV electron gun system consists of a 200kV DC-gun chamber on extreme high vacuum condition and an NEA activation chamber with load-lock system.

  14. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    Science.gov (United States)

    Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.

    2017-10-01

    The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  15. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    Directory of Open Access Journals (Sweden)

    M. Shevelev

    2017-10-01

    Full Text Available The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  16. Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method

    Directory of Open Access Journals (Sweden)

    Zihao Ding

    2017-11-01

    Full Text Available K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method have been found to have excellent quantum efficiency (QE and outstanding near-atomic surface smoothness and have been employed in the VHF gun in the Advanced Photoinjector Experiment (APEX, however, their robustness in terms of their lifetime at elevated photocathode temperature has not yet been investigated. In this paper, the relationship between the lifetime of the K-Cs-Sb photocathode and the photocathode temperature has been investigated. The origin of the significant QE degradation at photocathode temperatures over 70 °C has been identified as the loss of cesium atoms from the K-Cs-Sb photocathode, based on the in situ x-ray analysis on the photocathode film during the decay process. The findings from this work will not only further the understanding of the behavior of K-Cs-Sb photocathodes at elevated temperature and help develop more temperature-robust cathodes, but also will become an important guide to the design and operation of the future high-field rf guns employing the use of such photocathodes.

  17. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    International Nuclear Information System (INIS)

    Krantz, Claude

    2009-01-01

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  18. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  19. Effect of surface cleaning on spectral response for InGaAs photocathodes.

    Science.gov (United States)

    Jin, Muchun; Zhang, Yijun; Chen, Xinlong; Hao, Guanghui; Chang, Benkang; Shi, Feng

    2015-12-20

    Photocathode surface treatment aims to obtain high sensitivity, where the key point is to acquire an atomically clean surface. Various surface cleaning methods for removing contamination from InGaAs photocathode surfaces were investigated. The atomic compositions of InGaAs photocathode structures and surfaces were measured by x-ray photoelectron spectroscopy and Ar ion sputtering. After surface cleaning, the InGaAs surface is arsenoxide-free, however, a small amount of Ga2O3 and In2O3 still can be found. The 1:1 mixed solution of hydrochloric acid to deionized water followed by thermal annealing at 525°C has been demonstrated to be the best choice in dealing with the surface oxides. After the Cs/O activation, a surface model was proposed where the oxides on the surface will lead to a positive electron affinity, adversely affecting low-energy electrons escaping to the vacuum, which is reflected by the photocurrent curves and the spectral response curves.

  20. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  1. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  2. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  3. A surfeit of science: The "CSI effect" and the media appropriation of the public understanding of science.

    Science.gov (United States)

    Cole, Simon A

    2015-02-01

    Over the past decade, popular media has promulgated claims that the television program CSI and its spinoffs and imitators have had a pernicious effect on the public understanding of forensic science, the so-called "CSI effect." This paper analyzes those media claims by documenting the ways in which the media claims that CSI "distorts" an imagined "reality." It shows that the media appropriated the analytic stance usually adopted by science advocates, portraying the CSI effect as a social problem in science communication. This appropriation was idiosyncratic in that it posited, as a social problem, a "surfeit" of knowledge and positive imagery about science, rather than the more familiar "deficits." In addition, the media simultaneously appropriated both "traditional" and "critical" PUS discourses. Despite this apparent contradiction, the paper concludes that, in both discourses, the media and its expert informants insist upon their hegemony over "the public" to articulate the "reality" of forensic science. © The Author(s) 2013.

  4. Multifractal property of Chinese stock market in the CSI 800 index based on MF-DFA approach

    Science.gov (United States)

    Zhu, Huijian; Zhang, Weiguo

    2018-01-01

    CSI 800 index consists of CSI 500 index and CSI 300 index, aiming to reflect the performance of stocks with large, mid and small size of China A share market. In this paper we analyze the multifractal structure of Chinese stock market in the CSI 800 index based on the multifractal detrended fluctuation analysis (MF-DFA) method. We find that the fluctuation of the closing logarithmic returns have multifractal properties, the shape and width of multifractal spectrum are depended on the weighing order q. More interestingly, we observe a bigger market crash in June-August 2015 than the one in 2008 based on the local Hurst exponents. The result provides important information for further study on dynamic mechanism of return fluctuation and whether it would trigger a new financial crisis.

  5. Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin

    International Nuclear Information System (INIS)

    Liu, J.; Soma, A.K.; Yamashita, M.

    2016-01-01

    A light yield of 20.4 ± 0.8 photoelectrons/keV was achieved with an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin. This is by far the largest yield in the world achieved with CsI crystals. An energy threshold that is several times lower than the current dark matter experiments utilizing CsI(Tl) crystals may be achievable using this technique. Together with novel CsI crystal purification methods, the technique may be used to improve the sensitivities of dark matter and coherent elastic neutrino-nucleus scattering experiments. Also measured were the scintillation light decay constants of the undoped CsI crystal at both room temperature and 77 Kelvin. The results are consistent with those in the literature.

  6. Coverage probability of cellular networks using interference alignment under imperfect CSI

    Directory of Open Access Journals (Sweden)

    Raoul F. Guiazon

    2016-11-01

    Full Text Available Interference alignment (IA is well understood to approach the capacity of interference channels, and believed to be crucial in cellular networks in which the ability to control and exploit interference is key. However, the achievable performance of IA in cellular networks depends on the quality of channel state information (CSI and how effective IA is in practical settings is not known. This paper studies the use of IA to mitigate inter-cell interference of cellular networks under imperfect CSI conditions. Our analysis is based on stochastic geometry where the structure of the base station (BS locations is considered by a Poisson point process (PPP. Our main contribution is the coverage probability of the network and simulation results confirm the accuracy.

  7. Outage Performance of Decode-and-Forward in Two-Way Relaying with Outdated CSI

    KAUST Repository

    Hyadi, Amal

    2015-01-07

    In this paper, we analyze the outage behavior of decode-and-forward relaying in the context of selective two-way cooperative systems. First, a new relay selection metric is proposed to take into consideration both transmission rates and instantaneous link conditions between cooperating nodes. Afterwards, the outage probability of the proposed system is derived for Nakagami-m fading channels in the case when perfect channel state information is available and then extended to the more realistic scenario where the available channel state information (CSI) is outdated due to fast fading. New expressions for the outage probability are obtained, and the impact of imperfect CSI on the performance is evaluated. Illustrative numerical results, Monte Carlo simulations, and comparisons with similar approaches are presented to assess the accuracy of our analytical derivations and confirm the performance gain of the proposed scheme.

  8. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c......-Si). The TiO2 films were deposited by thermal atomic layer deposition (ALD) at temperatures in the range of 80-300  ̊C using titanium tetrachloride (TiCl4) as Ti precursor and water as the oxidant. The influence of TiO2 thickness (5, 10, 20 nm), presence of additional tunneling interlayer (SiO2 or Al2O3...

  9. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  10. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    International Nuclear Information System (INIS)

    Naruse, Shoji; Furuya, Seiichi; Ide, Mariko

    1992-01-01

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  11. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  12. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    2016-01-01

    This work, for the first time, investigates an Impedance Spectroscopy (IS) based method for detecting potential-induced degradation (PID) in crystalline silicon photovoltaic (c-Si PV) panels. The method has been experimentally tested on a set of panels that were confirmed to be affected by PID...... by using traditional current-voltage (I-V) characterization methods, as well as electroluminescence (EL) imaging. The results confirm the effectiveness of the new approach to detect PID in PV panels....

  13. Making space for criminalistics: Hans Gross and fin-de-siècle CSI

    OpenAIRE

    Burney, Ian; Pemberton, Neil

    2013-01-01

    This article explores the articulation of a novel forensic object?the ?crime scene??and its corresponding expert?the investigating officer. Through a detailed engagement with the work of the late nineteenth-century Austrian jurist and criminalist Hans Gross, it analyses the dynamic and reflexive nature of this model of ?CSI?, emphasising the material, physical, psychological and instrumental means through which the crime scene as a delineated space, and its investigator as a disciplined agent...

  14. 49th Annual Convention of the Computer Society of India CSI

    CERN Document Server

    Govardhan, A; Raju, K; Mandal, J

    2015-01-01

    Volume 1 contains 73 papers presented at CSI 2014: Emerging ICT for Bridging the Future: Proceedings of the 49th Annual Convention of Computer Society of India. The convention was held during 12-14, December, 2014 at Hyderabad, Telangana, India. This volume contains papers mainly focused on Fuzzy Systems, Image Processing, Software Engineering, Cyber Security and Digital Forensic, E-Commerce, Big Data, Cloud Computing and ICT applications.

  15. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    International Nuclear Information System (INIS)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-01-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO x ) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO x films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO x films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO x films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO x has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO x in the field of high-efficiency silicon wafer solar cells.

  16. A First-Principles Comparison of CsI and Xe Under Shock Compression

    Science.gov (United States)

    Diamond, M. R.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Cesium iodide and xenon, isoelectronic (same number of electrons per atom) moderately high-Z compounds, are known to exhibit similar behaviors at high pressure, notably in their cold-compression equations of state[1, 2] and band gap closure pressures[3-6]. With such drastically different chemical bonding properties under ambient conditions, this salt and noble gas serve as a quintessential analog pair for high pressure science. In addition to practical benefit of understanding analogs for experimental extrapolations, investigating these materials under extreme conditions helps build a fundamental understanding of the relationship between thermodynamics and condensed matter. To better investigate those high pressure states which are at high temperature, as well as to allow for comparison to shock experiments, we have used density functional theory (DFT) calculations combined with molecular dynamics (MD) simulations to calculate high temperature/density pressures, internal energies, and band gaps along the Hugoniots (shock equations of state) of CsI and Xe up to 10,000 K. Since CsI is a solid at ambient conditions, we used its ambient density as its starting density for the Hugoniot calculation. For the starting density of Xe, we chose both its zero-pressure zero-temperature value and a value equal to the molar density of CsI, to construct two separate Hugoniots.

  17. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Science.gov (United States)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  18. Minimax robust power split in AF relays based on uncertain long-term CSI

    KAUST Repository

    Nisar, Muhammad Danish

    2011-09-01

    An optimal power control among source and relay nodes in presence of channel state information (CSI) is vital for an efficient amplify and forward (AF) based cooperative communication system. In this work, we study the optimal power split (power control) between the source and relay node in presence of an uncertainty in the CSI. The prime contribution is to solve the problem based on an uncertain long-term knowledge of both the first and second hop CSI (requiring less frequent updates), and under an aggregate network-level power constraint. We employ the minimax optimization methodology to arrive at the minimax robust optimal power split, that offers the best possible guarantee on the end-to-end signal to noise ratio (SNR). The derived closed form analytical expressions admit simple intuitive interpretations and are easy to implement in real-world AF relaying systems. Numerical results confirm the advantages of incorporating the presence of uncertainty into the optimization problem, and demonstrate the usefulness of the proposed minimax robust optimal power split. © 2011 IEEE.

  19. On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-02-07

    In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.

  20. Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane

    Science.gov (United States)

    Sang, Tian; Wang, Rui; Li, Junlang; Zhou, Jianyu; Wang, Yueke

    2018-04-01

    Approaching total absorption of graphene strips at near infrared using a crystalline-silicon (c-Si) subwavelength periodic membrane (SPM) is presented. The absorption in graphene strips in a c-Si SPM is enhanced by a resonant tip, which is resulted from the coupling between the guided mode and the radiation mode through symmetry breaking of the structure at near-normal incidence. The enhancement of the electric field intensity is increased 1939 times and the group velocity of light is decreased to 3.55 ×10-4c at resonance, and 99.3% absorption in graphene strips can be achieved by critical coupling at the incident angle of 2°. High absorption of the graphene strips can be maintained as the etching thickness, the strip width, and the period are altered. When this type of c-Si SPM with graphene strips is used in refractive index sensors, it shows excellent sensing properties due to its stable near-unity absorption.

  1. Mo3S4 Clusters as an Effective H2 Evolution Catalyst on Protected Si Photocathodes

    DEFF Research Database (Denmark)

    Seger, Brian; Herbst, Konrad; Pedersen, Thomas

    2014-01-01

    This work shows how a molecular Mo3S4 cluster bonded to a photoelectrode surface via a phosphonate ligand can be a highly effective co-catalyst in photocathodic hydrogen evolution systems. Using a TiO2 protected n+p Si photocathode, H2 evolution occurs with an onset of +0.33 V vs. RHE in an acid...

  2. An Experimental Study of the Quantum Efficiency and Topology of Copper Photocathode Due to Plasma Cleaning and Etching

    CERN Document Server

    Palmer, Denni T; Kirby, Robert

    2005-01-01

    We have developed an experimental research program to the study of the photoemission properties of copper photocathodes as a function of various plasma cleaning/etching parameters. The quantum efficiency, QE, and topology, Ra and Rpp, of Copper Photocathodes, , will be monitored while undergoing plasma cleaning/etching process. We will monitor the QE as a function of time for the various test coupons while we optimize the various plasma processing parameters. In addition, surface topology, will be studied to determine the suitability of the cleaning/etching process to produce an acceptable photoemitter. We propose to use two metrics in the evaluation of the plasma cleaning process as an acceptable cleaning method for metallic photocathodes, Quantum Efficiency versus Wavelength and Surface roughness: Ra and Rpp represent the Average Roughness and Peak to Peak Roughness parameters, respectively.

  3. Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)

    2015-11-16

    Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs for an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current

  4. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  5. Hot Hole Collection and Photoelectrochemical CO2Reduction with Plasmonic Au/p-GaN Photocathodes.

    Science.gov (United States)

    DuChene, Joseph S; Tagliabue, Giulia; Welch, Alex J; Cheng, Wen-Hui; Atwater, Harry A

    2018-03-15

    Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO 2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H 2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.

  6. A polarized photoluminescence study of strained layer GaAs photocathodes

    International Nuclear Information System (INIS)

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to ∼0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, ∼78 K and ∼12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16±.21 eV, b = -2.00±.05 eV and d = -4.87±.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data

  7. Degradation of Alkali-Based Photocathodes from Exposure to Residual Gases: A First-Principles Study

    International Nuclear Information System (INIS)

    Wang, Gaoxue; Batista, Enrique R.

    2017-01-01

    Photocathodes are a key component in the production of electron beams in systems such as X-ray free-electron lasers and X-ray energy-recovery linacs. Alkali-based materials display high quantum efficiency (QE), however, their QE undergoes degradation faster than metal photocathodes even in the high vacuum conditions where they operate. The high reactivity of alkali-based surfaces points to surface reactions with residual gases as one of the most important factors for the degradation of QE. In order to advance the understanding on the degradation of the QE, we investigated the surface reactivity of common residual gas molecules (e.g., O 2 , CO 2 , CO, H 2 O, N 2 , and H 2 ) on one of the best-known alkali-based photocathode materials, cesium antimonide (Cs 3 Sb), using first-principles calculations based on density functional theory. Furthermore, the reaction sites, adsorption energy, and effect in the local electronic structure upon reaction of these molecules on (001), (110), and (111) surfaces of Cs 3 Sb were computed and analyzed. The adsorption energy of these molecules on Cs3Sb follows the trend of O 2 (-4.5 eV) > CO 2 (-1.9 eV) > H 2 O (-1.0 eV) > CO (-0.8 eV) > N 2 (-0.3 eV) ≈ H 2 (-0.2 eV), which agrees with experimental data on the effect of these gases on the degradation of QE. The interaction strength is determined by the charge transfer from the surfaces to the molecules. The adsorption and dissociation of O containing molecules modify the surface chemistry such as the composition, structure, charge distribution, surface dipole, and work function of Cs 3 Sb, resulting in the degradation of QE with exposure to O 2 , CO 2 , H 2 O, and CO.

  8. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  9. Influence of the p-type doping concentration on reflection-mode GaN photocathode

    Science.gov (United States)

    Wang, Xiaohui; Chang, Benkang; Ren, Ling; Gao, Pin

    2011-02-01

    Four different p-type doping GaN photocathodes are activated by Cs/O, and the quantum efficiency (QE) curves are obtained. According to the QE equation, the curves are fitted. Both the QE curves and the fitting results show that the optimal p-type doping concentration is at 1017 cm-3. The electron diffusion length and surface-electron escape probability can be balanced well at 1017 cm-3. To a certain degree, thick emission layer is conducive to improving the QE, which is more obvious with the long wavelength.

  10. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  11. Analysis and experiments of a waveguide post's influence on photocathode RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Qian Houjun [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)], E-mail: qhj@mails.thu.edu.cn; Tang Chuanxiang; Zheng Shuxin; Tong Dechun; Chen Huaibi; Huang Wenhui; Guan Xin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2008-12-01

    Several BNL/KEK/SHI type photocathode RF guns have been fabricated for high-quality electron beams in Accelerator Laboratory of Tsinghua University. This paper describes how the characteristics of a waveguide post can be chosen to correct for a mismatch in power coupling without affecting the pi-mode resonant frequency and the balance of fields between the two cells. Microwave circuit theories are used to analyze how to select the proper location and depth of the waveguide post. The tolerance on the post positioning is evaluated based on gun field quality requirements. MAFIA simulations and RF experiments have been done to confirm the theoretical analysis.

  12. ACCELERATING STRUCTURE: Ultra-low emittance X-band photocathode RF gun

    Science.gov (United States)

    Tang, Chuan-Xiang; Liu, Xiao-Han

    2009-06-01

    In this paper, we present the simulation results of a 1.6 cell X-band photocathode RF gun for ultra-low emittance electron beams. It will work at 9.3 GHz. The emittance, bunch length, electron energy and energy spread at the gun exit are optimized at bunch charge of 1pC using PARMELA. Electron bunches with emittance about 0.1 mm · mrad and bunch length less than 100 fs can be obtained from this gun. A PITZ type coupler is adopted in this gun and an initial simulation by MAFIA is also given in this paper.

  13. Quantum yield measurements of photocathodes illuminated by pulsed ultraviolet laser radiation

    International Nuclear Information System (INIS)

    Young, A.T.; Chen, P.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.; Watson, J.M.

    1991-05-01

    The electron quantum yields from polycrystalline lanthanum hexaboride and barium irradiated by near ultraviolet laser excitation have been determined. These measurements show that the quantum yields from these materials are dependent on the processing and previous history of the photocathode material. For lanthanum hexaboride, a yield of 7 x 10 -6 with 337 nm irradiation has been achieved. For barium, a yield of 1 x 10 -6 has been measured with excitation at 308 nm. These results are discussed and future plans are outlined. 4 refs., 4 figs

  14. Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution

    DEFF Research Database (Denmark)

    Seger, Brian; Pedersen, Thomas; Laursen, Anders Bo

    2013-01-01

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO2 layer on top of a thin Ti metal layer may be used to protect an n+p Si photocathode...... photocurrent (H2 evolution) was also significantly enhanced by the antireflective properties of the TiO2 layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe2+/Fe3+ redox couple was used to help elucidate details of the band diagram....

  15. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  16. Physical Properties of C-Si Alloys in C2/m Structure

    Science.gov (United States)

    Wang, Qian-Kun; Chai, Chang-Chun; Fan, Qing-Yang; Yang, Yin-Tang

    2017-08-01

    Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys (C 12 Si 4, C 8 Si 8, and C 4 Si 12 ) in a monoclinic structure (C2/m) are investigated. The calculated results such as lattice parameters, elastic constants, bulk modulus, and shear modulus of C 16 and Si 16 in C2/m structure are in good accord with previous work. The elastic constants show that C 16, Si 16, and their alloys in C2/m structure are mechanically stable. The calculated results of universal anisotropy index, compression and shear anisotropy percent factors indicate that C-Si alloys present elastic anisotropy, and C 8 Si 8 shows a greater anisotropy. The Poisson’s ratio and the B/G value show that C 8 Si 8 is ductile material and other four C-Si alloys are brittle materials. In addition, Debye temperature and average sound velocity are predicted utilizing elastic modulus and density of C-Si alloys. The band structure and the partial density of states imply that C 16 and Si 16 are indirect band gap semiconductors, while C 12 Si 4, C 8 Si 8, and C 4 Si 12 are semi-metallic alloys. Supported by the Natural Science Foundation of China under Grant No. 61474089, Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics under Grant No. 2015-0214. YY.K

  17. Exposing diversity

    DEFF Research Database (Denmark)

    Nørtoft, Kamilla; Nordentoft, Helle Merete

    Health care is dominated by many different models and normative theories for the ways in which healthcare related meetings with patients and clients ideally speaking should take place. However, there seems to be a dialectic tension between these normative theories and situated embodied practices....... A prominent research theme in health care studies is, therefore, to explicate the gap between theory and practice. The question this paper addresses is how a learning environment can be designed to bridge this theory-practice gap, expose the differences in situated interactions and qualify health...... focus on their own professional discipline and its tasks 2) stimulates collaborative learning when they discuss their different interpretations of the ethnographic video narratives and achieve a deeper understanding of each other’s work and their clients’ lifeworlds, which might lead to a better...

  18. Examination of the "CSI Effect" on Perceptions of Scientific and Testimonial Evidence in a Hong Kong Chinese Sample.

    Science.gov (United States)

    Hui, Cora Y T; Lo, T Wing

    2017-05-01

    Television is a powerful medium through which to convey information and messages to the public. The recent proliferation of forensic science and criminal justice information throughout all forms of media, coupled with raised expectations toward forensic evidence, has led some to suspect that a "CSI effect" ( Crime Scene Investigation effect) is taking place. The present study contributes to the literature addressing the CSI effect in two ways. First, it examines whether the CSI effect exists in the Chinese population of Hong Kong. Second, using a mock-jury paradigm, it empirically examines a more integrative perspective of the CSI effect. It was found that, although the amount of media coverage involving forensic evidence does influence participants' perception of legal evidence to some degree, such a perception does not affect participants' legal decision making. Viewers of forensic dramas were not more likely to convict the defendant when forensic evidence was presented and not less likely to convict when only testimonial evidence was presented. The only significant predictor of the defendant's culpability when scientific evidence was presented was participants' ratings of the reliability of scientific evidence. Results from the present study lend no support to the existence of the CSI effect in Hong Kong.

  19. On the low SNR capacity of log-normal turbulence channels with full CSI

    KAUST Repository

    Benkhelifa, Fatma

    2014-09-01

    In this paper, we characterize the low signal-To-noise ratio (SNR) capacity of wireless links undergoing the log-normal turbulence when the channel state information (CSI) is perfectly known at both the transmitter and the receiver. We derive a closed form asymptotic expression of the capacity and we show that it scales essentially as λ SNR where λ is the water-filling level satisfying the power constraint. An asymptotically closed-form expression of λ is also provided. Using this framework, we also propose an on-off power control scheme which is capacity-achieving in the low SNR regime.

  20. Energy-Efficient Power Allocation of Cognitive Radio Systems without CSI at the Transmitter

    KAUST Repository

    Sboui, Lokman

    2015-01-07

    Two major issues are facing today’s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produce 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, we aim to determine the optimal energy efficient power allocation of CR when the channel state information at the transmitter CSI-T is not available.

  1. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    ar X iv :0 90 2. 40 59 v1 [ as tr o- ph .H E ] 2 4 Fe b 20 09 Radio Supernovae : Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor...FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Radio Supernovae : Circum-Stellar Investigation (C.S.I...of Supernova Progenitor Stars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  2. The optimal thickness of a transmission-mode GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Shi Feng; Guo Hui; Hu Cang-Lu; Cheng Hong-Chang; Chang Ben-Kang; Ren Ling; Du Yu-Jie; Zhang Jun-Ju

    2012-01-01

    A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 10 17 cm −3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 10 4 cm·s −1 , and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Wet etching of AlGaN/GaN photocathode grown by MOCVD

    Science.gov (United States)

    Hao, Guanghui; Chang, Benkang; Cheng, Hongchang

    2013-08-01

    The AlGaN/GaN with thin GaN surface was grown by metalorganic chemical vapor deposition (MOCVD). And one of two AlGaN/GaN photocathode samples was etched by molten KOH about 40s, and its reflectivity and transmittance are tested. The thickness of AlGaN and GaN layers are fitted by the matrix formula for thin film optics, and the GaN thickness of them are 7nm and 2.5nm respectively. And etch speed of GaN are got in molten KOH at about 400°C. Then the etched and original AlGaN/GaN photocathode samples are activated by Cs/O in the same way. The spectral response and the result of simulation show that the cut-off wavelength of the etched AlGaN/GaN deviate to the short-wave. And the quantum efficiency decline with the GaN thickness decrease.

  4. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  5. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst

    Science.gov (United States)

    Morales-Guio, Carlos G.; Tilley, S. David; Vrubel, Heron; Grätzel, Michael; Hu, Xile

    2014-01-01

    Concerns over climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral energy technologies. A promising clean solution is photoelectrochemical water splitting to produce hydrogen using abundant solar energy. Here we present a simple and scalable technique for the deposition of amorphous molybdenum sulphide films as hydrogen evolution catalyst onto protected copper(I) oxide films. The efficient extraction of excited electrons by the conformal catalyst film leads to photocurrents of up to -5.7mAcm-2 at 0V versus the reversible hydrogen electrode (pH 1.0) under simulated AM 1.5 solar illumination. Furthermore, the photocathode exhibits enhanced stability under acidic environments, whereas photocathodes with platinum nanoparticles as catalyst deactivate more rapidly under identical conditions. The work demonstrates the potential of earth-abundant light-harvesting material and catalysts for solar hydrogen production.

  6. Single-side electron multipacting at the photocathode in rf guns

    Directory of Open Access Journals (Sweden)

    Jang-Hui Han

    2008-01-01

    Full Text Available Multiple electron impacting (multipacting can take place in rf fields when the rf components are composed of materials with a secondary electron yield greater than one. In rf gun cavities, multipacting may change the properties of the vacuum components or even damage them. First systematic measurements of the multipacting occurring in a photocathode rf gun were made at the Fermilab/NICADD Photoinjector Laboratory in 2000. The multipacting properties were found to depend on the cathode material and the solenoid field configuration. In this study, we measure the multipacting properties in more detail and model the secondary electron generation for numerical simulation. Measurements and simulations for the photoinjectors at Fermilab and DESY are compared. The multipacting takes place at the photocathode in rf guns and is categorized as single-side multipacting. In a low rf field, the electrons emitted from the cathode area do not leave the gun cavity within one rf cycle and have an opportunity to travel back and hit the cathode. The solenoid field distribution in the vicinity of the cathode changes the probability of electron bombardment of the cathode and makes a major contribution to the multipacting behavior.

  7. Enhanced Photocatalytic Hydrogen Production By Surface Modification of p-Gap Photocathodes

    DEFF Research Database (Denmark)

    Malizia, Mauro; Seger, Brian; Chorkendorff, Ib

    2014-01-01

    electrons towards the surface of the photoelectrode with the hydrogen evolution reaction occurring at more positive potential compared to the bare p-GaP under the same operating conditions. The observed open-circuit voltage for the modified photocathodes is +0.70 V RHE, representing an increase of more than...... maximum photocurrent density of about 12.5 mA/cm2. The best solar cells made of GaP show an open-circuit voltage of approximately 1.5 V and a maximum photocurrent density close to 2 mA/cm2. p-GaP utilized as a photocathode for hydrogen evolution shows significantly lower open-circuit voltage (+0.35 V RHE...... into hydrogen and oxygen (1.23 V) without external applied bias. It is therefore desirable that the photon absorbers utilized in such device provide the highest photovoltage possible together with a significant current density. GaP is a semiconductor material having 2.25 eV indirect bandgap and a theoretical...

  8. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  9. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL

    CERN Document Server

    Siggins, T; Bohn, C L; Bullard, D; Douglas, D; Grippo, A; Gubeli, J; Krafft, G A; Yunn, B

    2001-01-01

    The performance of the 320 kV DC photocathode gun has met the design specifications for the 1 kW IR Demo FEL at Jefferson Lab. This gun has shown the ability to deliver high average current beam with outstanding lifetimes. The GaAs photocathode has delivered 135 pC per bunch, at a bunch repetition rate of 37.425 MHz, corresponding to 5 mA average CW current. In a recent cathode lifetime measurement, 20 h of CW beam was delivered with an average current of 3.1 mA and 211 C of total charge from a 0.283 cm sup 2 illuminated spot. The cathode showed a 1/e lifetime of 58 h and a 1/e extracted charge lifetime of 618 C. We have achieved quantum efficiencies of 5% from a GaAs wafer that has been in service for 13 months delivering in excess 2400 C with only three activation cycles.

  10. Effect of gold photocathode contamination on a flat spectral response X-ray diode

    Science.gov (United States)

    Wang, Kun-lun; Zhang, Si-qun; Zhou, Shao-tong; Huang, Xian-bin; Ren, Xiao-dong; Dan, Jia-kun; Xu, Qiang

    2018-03-01

    A detector with an approximately flat spectral response is important for diagnosing intense thermal X-ray flux. A flat-spectral-response X-ray diode (FSR-XRD) utilizes a gold photocathode X-ray diode and a specially configured gold filter to give rise to a nearly flat spectral response in the photon energy range of 100-4000 eV. It has been observed that the spectral responses of several FSR-XRDs changed after a few shots of z-pinch experiments on the Primary Test Stand facility. This paper presents an analysis of the changes by fitting the spectral responses of the gold photocathodes using a model with a free parameter which characterizes the thickness of the contamination. The spectral responses of FSR-XRDs were calibrated with synchrotron radiation, and several cleaning methods were tested with the calibration. Considering the results of model and cleaning, it may be anticipated that contamination was the major reason of the response changing. Contamination worsened the flatness of the spectral response of the FSR-XRD and decreased the averaged response, hence it is important to avoid contamination. Current results indicate a requirement of further study of the contamination.

  11. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.

    Science.gov (United States)

    Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon

    2017-12-21

    Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm -2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.

  12. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.

    Science.gov (United States)

    Masudy-Panah, Saeid; Siavash Moakhar, Roozbeh; Chua, Chin Sheng; Kushwaha, Ajay; Dalapati, Goutam Kumar

    2017-08-23

    Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold-palladium (Au-Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm 2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained photocurrent of ∼90% for 20 min. The influence of chemical composition on the photocathode performance and stability has been discussed in detail. In addition, O-rich CuO photocathodes deposited with Au-Pd nanostructures have shown enhanced photoelectrochemical performance. Linear scan voltammetry characteristic shows ∼25% enhancement in photocurrent after Au-Pd deposition and reaches ∼4 mA/cm 2 at "0" V v/s RHE. Hydrogen evolution rate significantly depends on the elemental composition of CuO and metal nanostructure. The present work has demonstrated a stable photocathode with high photocurrent for visible-light-driven water splitting and hydrogen production.

  13. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  14. Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability

    Science.gov (United States)

    Huang, Guanping; Mao, Jie; Fan, Ronglei; Yin, Zhihao; Wu, Xi; Jie, Jiansheng; Kang, Zhenhui; Shen, Mingrong

    2018-01-01

    Many earth-abundant transition metal dichalcogenides (TMDs) have been employed as catalysts for H2 evolution reaction (HER); however, their impactful integration onto photocathodes for photoelectrochemical (PEC) HER is less developed. In this study, we directly sputtered a MoSe2 catalyst onto an n+p-Si photocathode for efficient and stable PEC-HER. An onset potential of 0.4 V vs. RHE, a saturated photocurrent of 29.3 mA/cm2, a fill factor of 0.32, and an energy conversion efficiency of 3.8% were obtained under 100 mA/cm2 Xe lamp illumination. Such superior PEC properties were ascribed to the nearly vertically standing two dimensional MoSe2 rough surface layer and the sharp interface between Si and MoSe2 with small charge transfer resistance. The balance between the reflectivity of the electrode surface and the absorptivity of MoSe2 was also discussed. In addition, the MoSe2 layer can protect the n+p-Si photocathode with a 120 h stability due to its initial growth on Si with high flatness and compactness. This study provides a path to the effective and scalable growth of TMDs onto the Si photocathode aiming for high efficiency and stability.

  15. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution.

    Science.gov (United States)

    Majidnia, Zohreh; Fulazzaky, Mohamad Ali

    2017-04-15

    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L -1 on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L -1 . The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Environmental Disclosure of Electric Power Companies Listed in the Corporate Sustainability Index (CSI

    Directory of Open Access Journals (Sweden)

    Clésia Ana Gubiani

    2012-12-01

    Full Text Available The study aimed to verify the level of disclosure of environmental information in the administration reports of the energy companies listed in the Corporate Sustainability Index (CSI. A descriptive and quantitative research was done, using the content analysis technique on the administration reports from 2006 to 2008. The sample consisted of 11 electric power companies listed in the CSI. For quantitative analysis of the disclosure index, the data collection instrument was based on the study of Rover, Murcia and Borba (2008, which proposes eight environmental categories and 36 subcategories. For the whole analysis of the data were elaborated networks of the items disclosed in each company, using the software UNICET ®. The survey results showed that there is satisfactory disclosure in the categories of environmental policies and education, training and research environment. However, it was found that there is need for greater disclosure of categories of products impacts and processes in the environment, power polices and financial environmental information. It was concluded that the information disclosed in the administration reports of the companies surveyed about the environmental information do not respect the principle of full disclosure.

  17. Novel Control Strategy for VSI and CSI Active Filters and Comparing These Two Types of Filters

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab

    2014-10-01

    Full Text Available Recently to eliminate the harmonics and improve the power factor of the power networks, much attention has been attracted to active filters. The advantages of these filters are lower volume and their better compensating characteristics than the passive filters. In conventional sliding mode controllers, the source current waveform is fluctuated in near to zero values. In this paper, using a new sliding technique, lower Total Harmonic Distortion (THD in source current is obtained and the current waveform is improved. As well as, two novel control strategies for two types of active filters, VSI and CSI is proposed and then these two types of filters are compared to reduce THD value of source current.The proposed controlled strategies are simulated by MATLAB/Simulink. The Simulation results confirm that the proposed strategies reduce the THD of source current more than other strategies, and active filter based on CSI has a better performance than active filter based on VSI with a dead time area (for avoiding short circuit of the source in high powers.

  18. Downlink Linear Precoders Based on Statistical CSI for Multicell MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Ebrahim Baktash

    2017-01-01

    Full Text Available With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more vital than ever. This paper investigates the linear precoder design for downlink multicell multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM systems, where base stations (BSs coordinate to reduce the interference across space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding schemes that require statistical channel state information (CSI only. We apply the random matrix theory to approximate the ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels, we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such as frequency selectivity, channel tap correlations, and intercarrier interference (ICI are rigorously represented. We find the local optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes with networked MIMO and precoders based on instantaneous full CSI.

  19. [The CSI effect and its impact on the perceptions of forensic science experts' work].

    Science.gov (United States)

    Stojer, Joanna

    2011-01-01

    The issue that has been analyzed in this work is the potential effect of crime films and TV series on people's perceptions of forensic medicine and science, and especially on the forming of expectations towards forensic science experts. This syndrome is being called the "CSI effect" after the popular franchise Crime Scene Investigation (CSI). Questionnaire surveys that have been conducted included "experts": 50 experts in various specialities, 77 prosecutors, 119 judges, 64 lay judges, 161 police staff and 80 members of general public. In-depth interviews have been conducted with 20 police staff, and also a focus group has been carried out with 15 law students. In the opinion of the respondents, people's perceptions and expectations of forensic science--as it can be observed during criminal trials--are largely inflated by the entertainment media. Among the surveyed persons, the category that declares watching crime series most rarely, is forensic science experts. Around half of the surveyed experts pointed out to excessive expectations towards they work instigated by TV crime series. The most common expectations towards forensic medicine experts are: immediate conclusiveness of post mortem examinations (going as far as indicating the cause of death at the crime scene), precision of death time estimation and a routine use of sophisticated methods known from TV.

  20. Opportunistic Energy-Aware Amplify-and-Forward Cooperative Systems with Imperfect CSI

    KAUST Repository

    Amin, Osama

    2015-07-29

    Recently, much attention has been paid to the green design of wireless communication systems using energy efficiency (EE) metrics that should capture all energy consumption sources to deliver the required data. In this paper, we design an energyefficient relay assisted communication system based on estimated channel state information (CSI). It employs amplify-andforward relaying and switches between different communication schemes, which are known as direct-transmission, two-hop and cooperative-transmission schemes, using the estimated CSI in order to maximize the EE. Two estimation strategies are assumed, namely disintegrated channel estimation and cascaded channel estimation. To formulate an accurate EE metric for the proposed opportunistic amplify-and-forward system, the channel estimation cost is reflected on the EE metric by including its impact in the signal-to-noise ratio term and in the energy consumption during the channels estimation phase. Based on the formulated EE metric, we propose an adaptive power allocation algorithm to maximize the EE of the proposed opportunistic amplify-andforward system with channel estimation. Furthermore, we study the impact of the estimation parameters on the proposed system via simulation examples.

  1. USING A 100 KV DC LOAD LOCK PHOTOGUN TO MEASURE PHOTOCATHODE LIFETIME OF HIGH POLARIZATION STRAINED SUPERLATTICE GAAS/GAASP AT BEAM INTENSITY >1 MILLIAMP

    International Nuclear Information System (INIS)

    Joseph Grames; Benard Poelker; Philip Adderley; Joshua Brittian; James Clark; John Hansknecht; Danny Machie; Marcy Stutzman; Kenneth Surles-law; Riad Suleiman

    2007-01-01

    A new GaAs DC high voltage load lock photogun has been constructed at Jefferson Laboratory (JLab), with improved vacuum and photocathode preparation capabilities. As reported previously, this gun was used to study photocathode lifetime with bulk GaAs at DC beam currents between 1 and 10 mA. In this submission, lifetime measurements were performed using high polarization strained-superlattice GaAs photocathode material at beam currents up to 1 mA, with near bandgap light from a fiber based drive laser having picosecond optical pulses and RF time structure

  2. Nitride Conversion: A Novel Approach to c-Si Solar Cell Metallization

    Science.gov (United States)

    Hook, David Henry

    Metallization of commercial-grade c-Si solar cells is currently accomplished by screen-printing fine lines of a Ag/PbO-glass paste amalgam (Ag-frit) onto the insulating SiNx antireflective coating (ARC) that lies atop the shallow n-type emitter layer of the cell. Upon annealing, the glass etches SiNx and permits the crystallization of Ag near the electrically-active emitter interface, thus contacting the cell. While entirely functional, the contact interface produced by Ag-frit metallization is non-ideal, and Ag metal itself is expensive; its use adds to overall solar cell costs. The following work explores the use of Ti-containing alloys as metallization media for c-Si solar cells. There is a -176 kJ [mol N]--1 free energy change associated with the conversion of Si3N4 to TiN. By combining Ti with a low-melting point metal, this reaction can take place at temperatures as low as 750°C in the bulk. Combinations of Ti with Cu, Sn, Ag, and Pb ternary and binary systems are investigated. On unmetallized, c-Si textured solar cells it is shown that 900 nm of stoichiometric Ti6Sn 5 is capable of converting the SiNx ARC to TiN and Ti5Si3, both of which are conducting materials with electrically low-barriers to contact with n-type Si. Alongside electron microscopy, specific contact resistivity (rho c) measurements are used to determine the interfacial quality of TiN/Ti5Si3 contacts to n-Si. Circular transmission line model (CTLM) measurements are utilized for the characterization of reacted Ag0.05Cu0.69Ti0.26, Sn0.35 Ag0.27Ti0.38, and Ti6Sn5 contacts. rhoc values as low as 26 muOcm 2 are measured for reacted Ti6Sn5-SiN x on conventional c-Si solar cells. This value is approximately 2-3 orders of magnitude lower than rhoc of contacts produced by traditional Ag-frit metallization. Viable 1x1 cm, Ti6Sn5-metallized solar cells on 5x5 cm substrates were fabricated through a collaboration with the Georgia Institute of Technology (GA Tech). Front-side metallization was performed

  3. Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y., E-mail: jin@hep.phys.s.u-tokyo.ac.jp [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Borshchev, O.V. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation); Epifanov, D.A. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Ponomarenko, S.A.; Surin, N.M. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation)

    2016-07-11

    A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes (Hamamatsu APD S8664-55 and S8664-1010) has been studied for the upgrade of the end cap electromagnetic calorimeter of Belle II detector. An essential increase of the light output was achieved with wavelength shifters based on nanostructured organosilicon luminophores. - Highlights: • A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes has been studied. • The equivalent noise charge and equivalent noise energy of the counter have been measured. • An essential increase of the light output was achieved with wavelength shifters.

  4. Study on the effect of deposition rate and concentration of Eu on the fluorescent lifetime of CsI: Tl thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yijun; Guo, Lina [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Liu, Shuang, E-mail: shuangliu@uestc.edu.cn [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Wang, Qianfeng; Zhang, Shangjian; Liu, Yong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Zhong, Zhiyong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 610054 (China)

    2017-06-21

    Although there are many new scintillators being developed recently, CsI: Tl is still very efficient among them. The fluorescent lifetime is a very important parameter of CsI: Tl thin film and two series of experiments have been conducted to learn about it. Our experiments, however, have demonstrated that the deposition rate and the codoping of Eu{sup 2+} will significantly influence its fluorescent lifetime. In order to increase the efficiency of the imaging system, we intend to obtain a higher fluorescent lifetime for CsI: Tl thin film by controlling these two conditions. - Highlights: • We used vacuum vapor deposition method to grow the high-quality thin films. • The relationship between the deposition rate and the fluorescent lifetime of CsI: Tl thin film was tested. • Concentration of Eu on fluorescent lifetime of the CsI: Tl thin film was studied.

  5. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    Science.gov (United States)

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  6. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  7. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    Science.gov (United States)

    Wang, Xiao-Hui; Gao, Pin; Wang, Hong-Gang; Li, Biao; Chang, Ben-Kang

    2013-02-01

    GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination.

  8. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1–3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  10. A new two-step tuning procedure for a photocathode gun

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K.K.; Krishnagopal, S.

    2008-01-01

    An important aspect of the development of multi-cell RF accelerating structures is tuning the resonant frequency f of the operating mode, field balance e b , and waveguide to cavity coupling coefficient β to the desired values. Earlier theoretical analyses have not been able to predict all three parameters simultaneously for a coupled-cavity system. We have developed a generalized circuit analysis to predict f, e b , and β of a coupled structure, based on the RF properties of the individual, uncoupled, cells. This has been used to develop a simplified two-step tuning procedure to tune a BNL/SLAC/UCLA type 1.6 cell S-band photocathode gun by varying RF properties of individual half and full cells, which are easily measurable. This procedure has been validated by tuning two true-to-scale prototypes made of aluminum and ETP copper to the desired values of the RF parameters

  11. Measurements of intrinsic emittance dependence on rf field for copper photocathodes

    Directory of Open Access Journals (Sweden)

    Eduard Prat

    2015-06-01

    Full Text Available Radio-frequency (rf photoinjectors are used to generate high-brightness electron beams for a wide range of applications. Because of their outstanding beam quality, they are particularly well-suited as sources for X-ray free-electron lasers (FELs. The beam emittance, which is significantly influenced by the intrinsic emittance of the cathode, is fundamental for FELs, since it has a strong impact on the lasing performance and it defines the length and cost of the facility. In this paper we present measurements of the intrinsic emittance as a function of the rf field for a copper photocathode. Our measurements match with the theoretical expectations, showing that the intrinsic emittance can be reduced by decreasing the rf field at the cathode. We obtained normalized intrinsic emittances down to 350  nm/mm, the lowest values ever measured in a rf photoinjector.

  12. Charge Transfer Characterization of ALD-Grown TiO2Protective Layers in Silicon Photocathodes.

    Science.gov (United States)

    Ros, Carles; Andreu, Teresa; Hernández-Alonso, María Dolores; Penelas-Pérez, Germán; Arbiol, Jordi; Morante, Joan R

    2017-05-31

    A critical parameter for the implementation of standard high-efficiency photovoltaic absorber materials for photoelectrochemical water splitting is its proper protection from chemical corrosion while remaining transparent and highly conductive. Atomic layer deposited (ALD) TiO 2 layers fulfill material requirements while conformally protecting the underlying photoabsorber. Nanoscale conductivity of ALD TiO 2 protective layers on silicon-based photocathodes has been analyzed, proving that the conduction path is through the columnar crystalline structure of TiO 2 . Deposition temperature has been explored from 100 to 300 °C, and a temperature threshold is found to be mandatory for an efficient charge transfer, as a consequence of layer crystallization between 100 and 200 °C. Completely crystallized TiO 2 is demonstrated to be mandatory for long-term stability, as seen in the 300 h continuous operation test.

  13. Biopolymer-activated graphitic carbon nitride towards a sustainable photocathode material.

    Science.gov (United States)

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500 °C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation.

  14. Measurements of Transverse Emittance for RF Photocathode Gun at the PAL

    CERN Document Server

    Park Jang Ho; Park, Sung-Ju; Soo Ko In; Wang, Xijie; Woon Parc, Yong; Xiang, Dao

    2005-01-01

    A BNL GUN-IV type RF photo-cathode gun is under fabrication for use in the FIR (Far Infra-Red) facility being built at the Pohang Accelerator Laboratory (PAL). Performance test of the gun will include the measurement of transverse emittance profile along the longitudinal direction. Successful measurement of the emittance profile will provide powerful tool for the commissioning of the 4GLS (4th generation light source) injectors based on the emittance compensation principle. We are going to achieve this withthe use of pepper-pot based emittance meters that can be moved along the longitudinal direction. In this article, we present design considerations on the emittance meter with the resolution of 1 mm mrad.

  15. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    Science.gov (United States)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  16. Measurements of the Argonne Wakefield Accelerator's low charge, 4 MeV RF photocathode witness beam

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    The Argonne Wakefield Accelerator's (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance Was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 Mev was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nc. All results of the measurements to date are presented here

  17. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    Science.gov (United States)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  18. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    Science.gov (United States)

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  19. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  20. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  1. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  2. Novel Robust Optimization and Power Allocation of Time Reversal-MIMO-UWB Systems in an Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2013-03-01

    Full Text Available Time Reversal (TR technique is an attractive solution for a scenario where the transmission system employs low complexity receivers with multiple antennas at both transmitter and receiver sides. The TR technique can be combined with a high data rate MIMO-UWB system as TR-MIMO-UWB system. In spite of TR's good performance in MIMO-UWB systems, it suffers from performance degradation in an imperfect Channel State Information (CSI case. In this paper, at first a robust TR pre-filter is designed together with a MMSE equalizer in TR-MIMO-UWB system where is robust against channel imperfection conditions. We show that the robust pre-filter optimization technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI, where temporal focusing of the TR technique is kept, especially for high SNR values. Then, in order to improve the system performance more than ever, a power loading scheme is developed by minimizing the average symbol error rate in an imperfect CSI. Numerical and simulation results are presented to confirm the performance advantage attained by the proposed robust optimization and power loading in an imperfect CSI scenario.

  3. Growth and scintillation properties of pure CsI crystals grown by micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Totsuka, D.; Yanagida, T.; Fujimoto, Y.; Pejchal, Jan; Yokota, Y.; Yoshikawa, A.

    2012-01-01

    Roč. 34, č. 7 (2012), s. 1087-1091 ISSN 0925- 3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : growth from melt, * micro-pulling-down * pure CsI * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012

  4. SVD-Aided Beamforming and Power Allocation Algorithm for Multiuser Turbo-BLAST System Uplink with Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Xiaomin Chen

    2012-01-01

    Full Text Available The SVD-aided joint transmitter and receiver design for the uplink of CDMA-based synchronous multiuser Turbo-BLAST systems is proposed in the presence of channel state information (CSI imperfection. At the transmitter, the beamforming and power allocation schemes are developed to maximize the capacity of the desired user. At the receiver, a suboptimal decorrelating scheme is first proposed to mitigate the multiuser interference (MUI and decouple the detection of different users with imperfect CSI, and then the iterative detecting algorithm that takes the channel estimation error into account is designed to cancel the coantenna interference (CAI and enhance the bit error rate (BER results further. Simulation results show that the proposed uplink CDMA-based multiuser Turbo-BLAST model is effective, the detection from every user is completely independent to each other after decorrelating, and the system performance can be enhanced by the proposed beamforming and power allocation schemes. Furthermore, BER performance can be enhanced by the modified iterative detection. The effect of CSI imperfection is evaluated, which is proved to be a useful tool to assess the system performance with imperfect CSI.

  5. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode

    Science.gov (United States)

    Hou, Yanping; Gan, Yuanyuan; Yu, Zebin; Chen, Xixi; Qian, Lun; Zhang, Boge; Huang, Lirong; Huang, Jun

    2017-12-01

    In this study, a single-chamber bio-photoelectrochemical system (BPES), integrating advantages of bioelectrochemical system and photocatalysis process, is developed using a g-C3N4/BiOBr heterojunction photocathode for methyl orange (MO) degradation and simultaneous energy recovery. Photocatalytic activities of g-C3N4/BiOBr, g-C3N4 and BiOBr are characterized by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra; and electrochemical activities of photocathodes are examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Results show that with an applied voltage of 0.8 V and under simulated solar irradiation, MO decolorization with g-C3N4/BiOBr photocathode reaches 97.8% within 4 h, higher than those with g-C3N4 (85.3%) and BiOBr (87.3%) photocathodes. Likewise, higher hydrogen production rate (143.8 L m-3d-1) is observed using g-C3N4/BiOBr photocathode; while values for g-C3N4 and BiOBr photocathodes are 124.3 L m-3d-1 and 117.1 L m-3d-1, respectively. PL and EIS reveal that superior performance of g-C3N4/BiOBr photocathode can be attributed to more efficient separation of photogenerated electron-hole pairs, lower resistance and better charge transfer. Synergistic effect occurs among biological, electrochemical and photocatalytic processes in illuminated BPES for MO removal. Photocathode optimization and system stability evaluation are conducted. This study demonstrates that the BPES holds great potential for efficient refractory organics degradation and energy production.

  6. Electron guns at the Budker Institute of Nuclear Physics SB RAS: prospects for the use of photocathodes with nanosecond and subpicosecond laser drivers

    Science.gov (United States)

    Vinokurov, N. A.; Barnyakov, A. M.; Volkov, V. N.; Kolobanov, E. I.; Kuznetsov, G. I.; Kurkin, G. Ya; Levichev, A. E.; Logachev, P. V.; Nikiforov, D. A.; Petrov, V. M.; Starostenko, D. A.; Tribendis, A. G.

    2017-10-01

    The problem of producing high-current electron beams with relatively small lateral sizes and small velocity spread is more than a hundred years old. The continuous improvement of near-ultraviolet electromagnetic radiation sources (lasers with harmonics generators) allows significantly improving the parameters of existing electron guns. This paper discusses some problems in the development of electron guns with photocathodes and considers possible ways of using laser photocathodes in the electron guns designed at the Budker INP SB RAS.

  7. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    Science.gov (United States)

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  8. CSI Index Of Customer's Satisfaction Applied In The Area Of Public Transport

    Science.gov (United States)

    Poliaková, Adela

    2015-06-01

    In Western countries, the new visions are applied in quality control for an integrated public transport system. Public transport puts the customer at the centre of our decision making in achieving customer satisfaction with provided service. Sustainable surveys are kept among customers. A lot of companies are collecting huge databases containing over 30,000 voices of customers, which demonstrates the current satisfaction levels across the public transport service. Customer satisfaction with a provided service is a difficult task. In this service, the quality criteria are not clearly defined, and it is therefore difficult to define customer satisfaction. The paper introduces a possibility of CSI index application in conditions of the Slovak Republic transport area.

  9. A high speed digitizing photomultiplier tube base for the KTeV CsI calorimeter

    International Nuclear Information System (INIS)

    Whitmore, J.

    1994-11-01

    A circuit has been designed to digitize PMT signals over an 18-bit dynamic range with 8-bits of resolution. The crucial element of the circuit is the custom charge integrating and encoding (QIE) ASIC. This chip is designed to operate at rates up to 53 MHz, and, in conjunction with an 8-bit FADC, generates 12-bit floating point output. Bench tests of a 17-bit version of the digital base demonstrated excellent noise performance, linearity and pedestal and gain stability. Twenty-five channels of digitizing PMT bases have been built and used for readout of a CsI array in a test beam at CERN. Performance of these devices in a beam environment is discussed

  10. Two-way CSI-assisted AF relaying with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2015-09-11

    In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-andforward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-toend signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-m fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance. © 2015 IEEE.

  11. CSI Index Of Customer’s Satisfaction Applied In The Area Of Public Transport

    Directory of Open Access Journals (Sweden)

    Poliaková Adela

    2015-06-01

    Full Text Available In Western countries, the new visions are applied in quality control for an integrated public transport system. Public transport puts the customer at the centre of our decision making in achieving customer satisfaction with provided service. Sustainable surveys are kept among customers. A lot of companies are collecting huge databases containing over 30,000 voices of customers, which demonstrates the current satisfaction levels across the public transport service. Customer satisfaction with a provided service is a difficult task. In this service, the quality criteria are not clearly defined, and it is therefore difficult to define customer satisfaction. The paper introduces a possibility of CSI index application in conditions of the Slovak Republic transport area.

  12. 3D Imaging of Dielectric Objects Buried under a Rough Surface by Using CSI

    Directory of Open Access Journals (Sweden)

    Evrim Tetik

    2015-01-01

    Full Text Available A 3D scalar electromagnetic imaging of dielectric objects buried under a rough surface is presented. The problem has been treated as a 3D scalar problem for computational simplicity as a first step to the 3D vector problem. The complexity of the background in which the object is buried is simplified by obtaining Green’s function of its background, which consists of two homogeneous half-spaces, and a rough interface between them, by using Buried Object Approach (BOA. Green’s function of the two-part space with planar interface is obtained to be used in the process. Reconstruction of the location, shape, and constitutive parameters of the objects is achieved by Contrast Source Inversion (CSI method with conjugate gradient. The scattered field data that is used in the inverse problem is obtained via both Method of Moments (MoM and Comsol Multiphysics pressure acoustics model.

  13. CSI: Dognapping workshop : an outreach experiment designed to produce students that are hooked on science.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Gorman, Anna K.; Pratt, Harry D., III; Hernandez-Sanchez, Bernadette A.; Lambert, Timothy N.; Ottley, Leigh Anna M.; Baros, Christina Marie

    2008-04-01

    The CSI: Dognapping Workshop is a culmination of the more than 65 Sandian staff and intern volunteers dedication to exciting and encouraging the next generation of scientific leaders. This 2 hour workshop used a 'theatrical play' and 'hands on' activities that was fun, exciting and challenging for 3rd-5th graders while meeting science curriculum standards. In addition, new pedagogical methods were developed in order to introduce nanotechnology to the public. Survey analysis indicated that the workshop had an overall improvement and positive impact on helping the students to understand concepts from materials science and chemistry as well as increased our interaction with the K-5 community. Anecdotal analyses showed that this simple exercise will have far reaching impact with the results necessary to maintain the United States as the scientific leader in the world. This experience led to the initiation of over 100 Official Junior Scientists.

  14. Miroirs multicouches C/SI a incidence normale pour la region spectrale 25-40 nanometres

    Science.gov (United States)

    Grigonis, Marius

    Nous avons propose la nouvelle combinaison de materiaux, C/Si, pour la fabrication de miroirs multicouches a incidence normale dans la region spectrale 25-40 nm. Les resultats experimentaux montrent que cette combinaison possede une reflectivite d'environ ~25% dans la region spectrale 25-33 nm et une reflectivite d'environ ~23% dans la region spectrale 33-40 nm. Ces valeurs de reflectivite sont les plus grandes obtenues jusqu'a maintenant dans la region spectrale 25-40 nm. Les miroirs multicouches ont ete par la suite caracterises par microscopie electronique a transmission, par diverses techniques de diffraction des rayons X et par spectroscopies d'electrons AES et ESCA. La resistance des miroirs aux temperatures elevees a ete egalement etudiee. Les resultats fournis par les methodes de caracterisation indiquent que cette combinaison possede des caracteristiques tres prometteuses pour son application comme miroir pour les rayons X mous.

  15. On the secrecy capacity of the broadcast wiretap channel with limited CSI feedback

    KAUST Repository

    Hyadi, Amal

    2016-10-27

    In this paper, we investigate the problem of secure broadcasting over block-fading channels with limited channel knowledge at the transmitter. More particularly, we analyze the effect of having imperfect channel state information (CSI) via a finite rate feedback on the throughput of a broadcast channel where the transmission is intended for multiple legitimate receivers in the presence of an eavesdropper. First, we partially characterize the ergodic secrecy capacity of the system when the source broadcasts the same information to all the receivers, i.e., common message transmission. Then, we look at the independent messages case, where the transmitter broadcasts multiple independent messages to the legitimate receivers. For this case, we present lower and upper bounds on the ergodic secrecy sum-capacity. In both scenarios, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback links becomes large, hence, fully characterizing the secrecy capacity in this case.

  16. Active strut placement using integer programming for the CSI Revolutionary Model

    Science.gov (United States)

    Padula, Sharon L.; Sandridge, Chris A.

    1992-01-01

    A method for determining the most effective locations for active struts on large space structures is developed and tested on the NASA CSI Evolutionary Model. Depending on the choice of weighting factors, the method can be used to maximize the maximum modal damping ratio or decay rate, or to maximize a mission-oriented measure of performance. Placement of 8, 16, and 32 active struts out of 1507 candidate truss elements is demonstrated. Preliminary estimates of damping enhancement are reported pending refined structural models and dynamic test results. The method can handle complicated FEM models wih a large number of truss elements and many target modes. It can treat each mode equally or it can emphasize the importance of selected modes. The method can eliminate some combinations of actuator locations based on topological constraints.

  17. Measurements of the radiolytic oxidation of aqueous CsI using a sparging apparatus

    International Nuclear Information System (INIS)

    Ashmore, C.B.; Brown, D.; Sims, H.E.; Gwyther, J.R.

    1996-01-01

    Radiolytic oxidation is considered to be the main mechanism for the formation of I 2 from aqueous CsI in containment of a water cooled reactor after a LOCA. Despite the amount of study over the last 60 years on the radiation chemistry of iodine there has been no consistent set of experiments spanning a wide enough range of conditions to verify models with confidence. This paper describes results from a set of experiments carried out in order to remedy this deficiency. In this work the rate of evolution of I 2 from sparged irradiated CsI solution labeled with 131 I was measured on-line over a range of conditions. This work involved the measurement of the effects of pH, temperature, O 2 concentration, I - concentration, phosphate concentration, dose-rate and impurities on the rate of evolution of I 2 . The range of conditions was chosen in order to span as closely as possible conditions expected in a LOCA but also to help to elucidate some of the mechanisms especially at high pH. pH was found to be a very important factor influencing iodine volatility, over the temperature range studied the extent of oxidation reduced with temperature but this was compensated for by the decrease in partition coefficient. Oxygen concentration was more important in solutions not containing phosphate. The fractional oxidation was not particularly dependent on iodide concentration but G I2 was very dependent on [I - ]. There was no effect of added impurities, Fe, Mn, Mo or organics although in separate work silver was found to have a very important effect. During attempts to interpret the data it was found that it was necessary to include the iodine atom as a volatile species with a partition coefficient of 1.9 taken from thermodynamic data. The modelling work is described in a separate paper. (author) 15 figs., 1 tab., 19 refs

  18. FY16 ASC ATDM L2 Milestone: PARTISN Research and FleCSI Updates

    Energy Technology Data Exchange (ETDEWEB)

    Womeldorff, Geoffrey Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Payne, Joshua Estes [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    These are slides for a presentation on PARTISN Research and FleCSI Updates. The following topics are covered: SNAP vs PARTISN, Background Research, Production Code (structural design and changes, kernel design and implementation, lessons learned), NuT IMC Proxy, FleCSI Update (design and lessons learned). It can all be summarized in the following manner: Kokkos was shown to be effective in FY15 in implementing a C++ version of SNAP's kernel. This same methodology was applied to a production IC code, PARTISN. This was a much more complex endeavour than in FY15 for many reasons; a C++ kernel embedded in Fortran, overloading Fortran memory allocations, general language interoperability, and a fully fleshed out production code versus a simplified proxy code. Lessons learned are Legion. In no particular order: Interoperability between Fortran and C++ was really not that hard, and a useful engineering effort. Tracking down all necessary memory allocations for a kernel in a production code is pretty hard. Modifying a production code to work for more than a handful of use cases is also pretty hard. Figuring out the toolchain that will allow a successful implementation of design decisions is quite hard, if making use of "bleeding edge" design choices. In terms of performance, production code concurrency architecture can be a virtual showstopper; being too complex to easily rewrite and test in a short period of time, or depending on tool features which do not exist yet. Ultimately, while the tools used in this work were not successful in speeding up the production code, they helped to identify how work would be done, and provide requirements to tools.

  19. CSI-ISC--Concepts for smooth integration of health care information system components into established processes of patient care.

    Science.gov (United States)

    Garde, S; Wolff, A C; Kutscha, U; Wetter, T; Knaup, P

    2006-01-01

    The introduction of information system components (ISCs) usually leads to a change in existing processes, e.g. processes of patient care. These processes might become even more complex and variable than before. An early participation of end users and a better understanding of human factors during design and introduction of ISCs are key factors for a successful introduction of ISCs in health care. Nonetheless no specialized methods have been developed until now to systematically support the integration of ISCs in existing processes of patient care while taking into account these requirements. In this paper, therefore, we introduce a procedure model to implement Concepts for Smooth Integration of ISCs (CSI-ISC). Established theories from economics and social sciences have been applied in our model, among them the stress-strain-concept, the contrastive task analysis (KABA), and the phase model for the management of information systems. CSI-ISC is based on the fact that while introducing new information system components, users experience additional workload. One essential aim during the introduction process therefore should be to systematically identify, prioritize and ameliorate workloads that are being imposed on human beings by information technology in health care. To support this, CSI-ISC consists of a static part (workload framework) and a dynamic part (guideline for the introduction of information system components into existing processes of patient care). The application of CSI-ISC offers the potential to minimize additional workload caused by information system components systematically. CSI-ISC rationalizes decisions and supports the integration of the information system component into existing processes of patient care.

  20. Radicals and ions controlling by adjusting the antenna-substrate distance in a-Si:H deposition using a planar ICP for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.P., E-mail: haipzhou@uestc.edu.cn [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, M. [Key Laboratory of Information Materials of Sichuan Province & School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu, 610041 (China); Xu, L.X.; Wei, D.Y. [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xiang, Y. [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Xiao, S.Q. [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122 (China)

    2017-02-28

    Highlights: • A planar ICP was used to grow a-Si:H films for c-Si surface passivation. • The direct- and remote-plasma was compared for high-quality c-Si surface passivation. • The remote ICP with controlled plasma species and ion bombardments is preferable for the surface passivation of c-Si. - Abstract: Being a key issue in the research and fabrication of silicon heterojunction (SHJ) solar cells, crystalline silicon (c-Si) surface passivation is theoretically and technologically intricate due to its complicate dependence on plasma characteristics, material properties, and plasma-material interactions. Here amorphous silicon (a-Si:H) grown by a planar inductively coupled plasma (ICP) reactor working under different antenna-substrate distances of d was used for the surface passivation of low-resistivity p-type c-Si. It is found that the microstructures (i.e., the crystallinity, Si-H bonding configuration etc.) and passivation function on c-Si of the deposited a-Si:H were profoundly influenced by the parameter of d, which primarily determines the types of growing precursors of SiH{sub n}/H contributing to the film growth and the interaction between the plasma and growing surface. c-Si surface passivation is analyzed in terms of the d-dependent a-Si:H properties and plasma characteristics. The controlling of radical types and ion bombardment on the growing surface through adjusting parameter d is emphasized.

  1. Hydrogen and electricity production in a light-assisted microbial photoelectrochemical cell with CaFe2O4 photocathode

    Science.gov (United States)

    Chen, Qing-Yun; Zhang, Kai; Liu, Jian-Shan; Wang, Yun-Hai

    2017-04-01

    A microbial photoelectrochemical cell (MPEC) was designed with a p-type CaFe2O4 semiconductor as the photoelectrode for simultaneous hydrogen and electricity production under light illumination. The CaFe2O4 photoelectrode was synthesized by the sol-gel method and well characterized by x-ray diffraction, field emission scanning electron microscope, and UV-Vis-NIR spectrophotometer. The linear sweep voltammogram of the CaFe2O4 photoelectrode presented the cathodic photocurrent output. For the MPEC, with an external resistance of 2000 Ω, the maximum power density of 143 mW was obtained. Furthermore, with an external resistance of 100 Ω, the maximum hydrogen production rate of 6.7 μL·cm-2 could be achieved. The MPEC with CaFe2O4 photocathode was compared to MPEC with other photocathodes as well as photocatalytic water splitting technology.

  2. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Maxson, Jared, E-mail: jmm586@cornell.edu; Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-08

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, hν≤E{sub g}+E{sub a}. These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4−4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ∼10{sup −4}. The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  3. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    Science.gov (United States)

    Maxson, Jared; Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan

    2015-06-01

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, h ν≤Eg+Ea . These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4 -4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ˜10-4 . The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  4. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    Science.gov (United States)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-01-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380

  5. Progress in CsI-wire chamber imaging photomultipliers and single electron counters

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Dagendorf, V.; Pansky, A.; Vartsky, D.

    1990-10-01

    Electrons photoproduced by UV-photons on a CsI photocathode, or deposited by ionizing particles and ultrasoft x- rays in low-pressure gas media, are efficiently detected in low pressure multistep avalanche electron multipliers. A solid photocathode avalanche chamber (SPAC) imaging photomultiplier was coupled to a Xe-filled gas scintillation detector. Its performance when exposed to 60 KeV x rays is presented. The stability of the CsI photocathode is discussed in detail. The latest experimental results from primary ionization cluster counting of charged particles and ultrasoft x-rays are presented. UV laser-induced ionization and Monte-Carlo simulations are used to study the processes involved. (author)

  6. A thin film P-type gallium nitride photocathode: Prospect for a high performance electron emitter

    Science.gov (United States)

    Machuca, Francisco Javier, Jr.

    The study of the electronic structure of gallium nitride (GaN) surfaces is undertaken in order to evaluate a wide band gap photocathode as a high performance electron source. In considering detailed studies targeting the starting surface of GaN (0001) and the nature of the activation layers using Cs only and Cs/O, an efficient and robust emitter is proposed. Achieving clean surfaces is a major and challenging requirement for the study of any semiconductor surface. The use of synchrotron radiation (SR) to probe the electronic structure of the GaN (0001) surface that has undergone wet chemical cleaning sequences followed by heating is described. The refractive properties of GaN allow a simple and non-destructive surface preparation to be successful in removing C and O contaminants, involving chemical cleaning followed by thermal desorption. The electron affinity for the clean surface measured is 3.3 +/- 0.2 eV using SRPES. The maximum reduction achieved in the electron affinity is approximately 3.0 +/- 0.2 eV by depositing ¾ ML of cesium at room temperature. In addition, the threshold for photoemission emission in spectral yield curves is at the band gap energy of GaN (3.4eV), demonstrating the NEA activation of GaN with Cs alone. The chemistry of the traditional co-deposited cesium and oxygen (Cs/0) adlayer commonly used with small band gap III-V's is also investigated. These are the first studies reporting a molecular form of oxygen incorporated in the thin NEA activation layers and the charge state is found to determine the net dipole strength leading to the maximum yield obtainable with the Cs/O activation. Last, a comparative study is performed between Cs/0 activated GaN (0001) and GaAs (100) investigating the decay in the quantum yield using low photon density. The quantum efficiency (QE) from the GaN (0001) photocathode remains constant within a few percent over a 10 hour period at ≥20% QE and decays by less than a factor of 2 over the subsequent 7 hours

  7. Measurements of the radiolytic oxidation of aqueous CsI using a sparging apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, C.B.; Brown, D.; Sims, H.E. [AEA Technology, Harwell (United Kingdom); Gwyther, J.R. [NE plc Berkeley Technology Centre, Berkeley (United Kingdom)

    1996-12-01

    Radiolytic oxidation is considered to be the main mechanism for the formation of I{sub 2} from aqueous CsI in containment of a water cooled reactor after a LOCA. Despite the amount of study over the last 60 years on the radiation chemistry of iodine there has been no consistent set of experiments spanning a wide enough range of conditions to verify models with confidence. This paper describes results from a set of experiments carried out in order to remedy this deficiency. In this work the rate of evolution of I{sub 2} from sparged irradiated CsI solution labeled with {sup 131}I was measured on-line over a range of conditions. This work involved the measurement of the effects of pH, temperature, O{sub 2} concentration, I{sup -} concentration, phosphate concentration, dose-rate and impurities on the rate of evolution of I{sub 2}. The range of conditions was chosen in order to span as closely as possible conditions expected in a LOCA but also to help to elucidate some of the mechanisms especially at high pH. pH was found to be a very important factor influencing iodine volatility, over the temperature range studied the extent of oxidation reduced with temperature but this was compensated for by the decrease in partition coefficient. Oxygen concentration was more important in solutions not containing phosphate. The fractional oxidation was not particularly dependent on iodide concentration but G{sub I2} was very dependent on [I{sup -}]. There was no effect of added impurities, Fe, Mn, Mo or organics although in separate work silver was found to have a very important effect. During attempts to interpret the data it was found that it was necessary to include the iodine atom as a volatile species with a partition coefficient of 1.9 taken from thermodynamic data. The modelling work is described in a separate paper. (author) 15 figs., 1 tab., 19 refs.

  8. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Yamada, T.; Noguchi, T. [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  9. Use of the Central Sensitization Inventory (CSI) as a treatment outcome measure for patients with chronic spinal pain disorder in a functional restoration program.

    Science.gov (United States)

    Neblett, Randy; Hartzell, Meredith M; Williams, Mark; Bevers, Kelley R; Mayer, Tom G; Gatchel, Robert J

    2017-12-01

    The Central Sensitization Inventory (CSI) is a valid and reliable patient-reported instrument designed to identify patients whose presenting symptoms may be related to central sensitization (CS). Part A of the CSI measures a full array of 25 somatic and emotional symptoms associated with CS, and Part B asks if patients have previously been diagnosed with one or more specific central sensitivity syndromes (CSSs) and related disorders. The CSI has previously been validated in a group of patients with chronic pain who were screened by a trained psychiatrist for specific CSS diagnoses. It is currently unknown if the CSI can be a useful treatment-outcome assessment tool for patients with chronic spinal pain disorder (CSPD) who are not screened for comorbid CSSs. It is known, however, that previous studies have identified CS-related symptoms, and comorbid CSSs, in subsets of patients with CSPDs. Studies have also shown that CS-related symptoms can be influenced by cognitive and psychosocial factors, including abuse history in both childhood and adulthood, sleep disturbance, catastrophic and fear-avoidant cognitions, and symptoms of depression and anxiety. This study aimed to evaluate CSI scores, and their associations with other clinically relevant psychosocial variables, in a cohort of patients with CSPD who entered and completed a functional restoration program. A retrospective study of prospectively collected data from a cohort study of patients with CSPD, who completed the CSI at admission to, and discharge from, an interdisciplinary function restoration program (FRP) was carried out. A cohort of 763 patients with CSPD comprised the study sample. Clinical interviews evaluated mood disorders and abuse history. A series of self-reported measures evaluated comorbid psychosocial symptoms, including pain intensity, pain-related anxiety, depressive symptoms, somatization symptoms, perceived disability, and sleep disturbance, at FRP admission and discharge. Patients were

  10. Adaptación del Inventario de Estrategias de Afrontamiento (CSI a la población penitenciaria de Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rodríguez-Díaz

    2014-01-01

    Full Text Available El objetivo del estudio es adaptar el CSI - Inventario de Estrategias de Afrontamiento - al contexto penitenciario. La muestra - 261 penados, 97% varones (n=253 - del Sistema Postpenitenciario y Atención a Liberados (DSPAL del Estado Jalisco, México. Los instrumentos utilizados: Ficha Penitenciaria de Historia de Vida y el Inventario CSI. Los resultados refieren una estructura de primer orden casi idéntica a la obtenida para la población general, con niveles de consistencia interna satisfactorios, al mismo tiempo que la interpretación de segundo orden no confirma la estructura de segundo y tercer orden. Se discuten las implicaciones de los resultados para intervención penitenciaria.

  11. Impact of I/Q imbalance on the performance of two-way CSI-assisted AF relaying

    KAUST Repository

    Qi, Jian

    2013-04-01

    In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of in-phase and quadrature-phase (I/Q) imbalance. A compensation approach for the I/Q imbalance is proposed, which employs the received signals together with their conjugations to detect the desired signal. We also derive the average symbol error probability of the considered half-duplex two-way dual-hop CSI-assisted AF relaying networks with and without compensation for I/Q imbalance in Rayleigh fading channels. Numerical results are provided and show that the proposed compensation method mitigates the impact of I/Q imbalance to a certain extent. © 2013 IEEE.

  12. CSI efekt a jeho vliv na vnímání forenzní biologie

    OpenAIRE

    Míková, Zuzana

    2016-01-01

    1 Abstract This bachelor thesis tries to give an outline on how the TV projects into our everyday life. There are many crime TV series that we can watch. These programmes unfortunately give a distorted view of the forensic and investigative work performed in crime laboratories, as they show a great number of inaccurate or altogether false information. This thesis shows some cases of the 'CSI effect', which emerged after crime series got increasingly popular both in the Czech Republic and abro...

  13. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A cesium bromide photocathode excited by 405 nm radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J. R.; Cheng, Y. T.; Pease, Fabian W.; Hesselink, L. [Electrical Engineering Department, Stanford University, Stanford, California 94305 (United States); Pianetta, P. [SLAC National Accelerator Center, Menlo Park, CA 94025 (United States)

    2014-07-14

    In several applications, such as electron beam lithography and X-ray differential phase contrast imaging, there is a need for a free electron source with a current density at least 10 A/cm{sup 2} yet can be shaped with a resolution down to 20 nm and pulsed. Additional requirements are that the source must operate in a practical demountable vacuum (>1e-9 Torr) and be reasonably compact. In prior work, a photocathode comprising a film of CsBr on metal film on a sapphire substrate met the requirements except it was bulky because it required a beam (>10 W/cm{sup 2}) of 257 nm radiation. Here, we describe an approach using a 405 nm laser which is far less bulky. The 405 nm laser, however, is not energetic enough to create color centers in CsBr films. The key to our approach is to bombard the CsBr film with a flood beam of about 1 keV electrons prior to operation. Photoelectron efficiencies in the range of 100–1000 nA/mW were demonstrated with lifetimes exceeding 50 h between electron bombardments. We suspect that the electron bombardment creates intraband color centers whence electrons can be excited by the 405 nm photons into the conduction band and thence into the vacuum.

  15. Results From Cs Activated GaN Photocathode Development for MCP Detector Systems at GSFC

    Science.gov (United States)

    Norton, Tim; Woodgate, Bruce; Stock, Joe; Hilton, George; Ulmer, Mel; Aslam, Shahid; Vispute, R. D.

    2003-01-01

    We describe the development of high quantum efficiency W photocathodes for use in large area two dimensional microchannel plate based detector arrays to enable new W space astronomy missions. Future W missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AIGaN, ZnMgO, Sic and diamond. We have currently obtained QE values > 40 % at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO, a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.

  16. Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC

    Science.gov (United States)

    Norton, Timothy J.; Woodgate, Bruce E.; Stock, Joseph; Hilton, George; Ulmer, Melville P.; Aslam, Shahid; Vispute, R. D.

    2003-12-01

    We describe the development of high quantum efficiency UV photocathodes for use in large area two dimensional microchannel plated based, detector arrays to enable new UV space astronomy missions. Future UV missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AlGaN, ZnMgO, SiC and diamond. We have currently obtained QE values > 40% at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.

  17. Development of UV-photocathodes using GaN film on Si substrate

    Science.gov (United States)

    Fuke, S.; Sumiya, M.; Nihashi, T.; Hagino, M.; Matsumoto, M.; Kamo, Y.; Sato, M.; Ohtsuka, K.

    2008-02-01

    We developed GaN photocathodes for detecting ultraviolet radiation by using Mg-doped GaN. Crack-free, 200 nm thick GaN:Mg layers were grown by metal organic chemical vapor phase epitaxy (MOVPE) on a GaN template having a structure of undoped GaN/(AlN/GaN) multilayers on Si (111) substrate. The Mg concentration was varied in the range from 7×10 18 to 7×10 19 cm -3. The grown film was mounted in a phototube to operate in reflection mode; i.e. the light was incident from the photoemission side. The photoemission surface was activated by sequential adsorption of cesium and oxygen to reduce electron affinity, ensuring efficient electron emission. Photoemission spectrum was measured in the range of 200-600 nm. We found that the quantum efficiency of photoemission was affected by the crystallinity of GaN:Mg, depending on the concentration of Mg dopant and the growth pressure of GaN:Mg top photoemissive layer. The lower Mg concentration and higher growth pressure resulted in higher quantum efficiency. The obtained maximum quantum efficiency was 45% at 200 nm (6.2 eV) and 25% at 350 nm (3.54 eV). The elimination ratio between visible and UV light was 4 decades and the slope of cutoff was 10 nm per decade.

  18. Improved performance of GaAs photocathodes using effective activation technique

    Science.gov (United States)

    Zhang, Yijun; Zhang, Jingzhi; Feng, Cheng; Cheng, Hongchang; Zhang, Xiang; Qian, Yunsheng

    2017-09-01

    To achieve negative-electron-affinity state, the atomically clean surface of GaAs-based photocathode is usually activated by cesium and oxygen in the ultrahigh vacuum environment. In view of the required computer-control of evaporation flow rates, the solid oxygen dispenser instead of gaseous oxygen is urgently needed just as the regular cesium dispenser. Accordingly, the solid cesium and oxygen dispensers were applied to activate epitaxial GaAs cathode samples. Two types of solid oxygen dispensers composed of barium peroxide powder and silver oxide powder respectively are employed to improve cathode photoemission performance. The experimental results show that the barium peroxidebased oxygen dispenser can release more oxygen and bring in higher activation photocurrent and spectral response than the silver oxide-based one. The unsatisfactory feature is that the silver oxide-based oxygen dispenser released effectual oxygen gas more slowly than the barium peroxide-based oxygen dispenser. Therefore, an effective activation technique was proposed to ameliorate this unfavorable phenomenon for the silver oxide-based dispenser, which can bring out the desired symmetry of photocurrent curve shape during the Cs/O alternate activation process. The improved activation technique would provide guidance for the optimization of activation craft.

  19. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, J.; Sakai, F.; Okada, Y.; Yorozu, M.; Yanagida, T.; Endo, A.

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  20. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  1. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    Science.gov (United States)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  2. Preliminary Study for an RF photocathode based electron injector for awake project

    CERN Document Server

    Mete, Oznur; Burt, Graeme; Chattopadhyay, Swapan

    2014-01-01

    AWAKE project, a proton driven plasma wakefield acceleration (PDPWA) experiment is approved by CERN. The PDPWA scheme consists of a seeding laser, a drive beam to establish the accelerating wakefields within the plasma cell; and a witness beam to be accelerated. The drive beam protons will be provided by the CERN's Super Proton Synchrotron (SPS). The plasma ionisation will be performed by a seeding laser and the drive beam protons to produce the accelerating wakefields. After establishing the wakefields, witness beam, namely, electron beam from a dedicated source should be injected into the plasma cell. The primary goal of this experiment is to demonstrate acceleration of a 5-15$\\,$MeV single bunch electron beam up to 1$\\,$GeV in a 10$\\,$m of plasma. This paper explores the possibility of an RF photocathode as the electron source for this PDPWA scheme based on the existing PHIN photo-injector at CERN. The modifications to the existing design, preliminary beam dynamics simulations in order to provide the requi...

  3. A graded catalytic-protective layer for an efficient and stable water-splitting photocathode

    Science.gov (United States)

    Gu, Jing; Aguiar, Jeffery A.; Ferrere, Suzanne; Steirer, K. Xerxes; Yan, Yong; Xiao, Chuanxiao; Young, James L.; Al-Jassim, Mowafak; Neale, Nathan R.; Turner, John A.

    2017-01-01

    Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water-splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. Here we show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity (current density of 11 mA cm-2 at 0 V versus the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolution reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2. Our findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.

  4. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte.

    Science.gov (United States)

    Garner, Logan E; Steirer, K Xerxes; Young, James L; Anderson, Nicholas C; Miller, Elisa M; Tinkham, Jonathan S; Deutsch, Todd G; Sellinger, Alan; Turner, John A; Neale, Nathan R

    2017-02-22

    Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m -2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm -2 within -0.5 V of the reversible hydrogen electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxide effects on photoemission from high current GaAs photocathodes

    International Nuclear Information System (INIS)

    Garwin, E.L.; Kirby, R.E.; Sinclair, C.K.; Roder, A.

    1981-03-01

    During four years of on line operation of the SLAC polarized electron gun (PEGGY) and polarized LEED (PLEED) system, we have observed and characterized the failure modes of the GaAs (100) photocathodes (PC's) used in these systems. Several modes are observed. Gradual decreases in electron polarization and intensity are attributed to the physisorption of CO 2 on the PC's during running at LN 2 temperatures. Such PC's can be rejuvenated by warming to 90K, i.e., above the CO 2 desorption temperature. These PC's recover 90% of their original intensity. A second well-characterized failure mode results from overheating the PC during in-situ heat cleaning prior to activation. In this mode, As is preferentially evaporated from the GaAs, leaving a Ga 2 O 3 layer on the surface. This effect has been studied by AES sputter profiling which indicates that the substantial thickness of the oxide layer blocks photoemission. These PC's may only be recovered by chemically removing the oxide layer. A third mode which is not as well characterized appears for thin Ga oxide layers. Properties of these PC's include reduced emission and the presence of a cutoff bias level. Such PC's are also not recoverable in-situ

  6. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  7. Status of SPring-8 Photocathode Rf Gun for Future Light Sources

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2005-01-01

    We have been studying photocathode single-cell pillbox rf gun for future light sources since 1996. We achieved a rmaximum field gradient of 187 MV/m with chemical-etching processed cavity. We have been developed stable and highly qualified UV-laser source for the rf gun intensively last 3 years. The UV-laser pulse (10 Hz) energy is up to 850 uJ/pulse. The energy stability (rms) of laser has been improved down to 0.2~0.3 % at the fundamental and 0.7~1.3% at the third harmonic generation. This stability is held for two months continuously. In this improvement, we just passively stabilized the system in a humidity-controlled clean room. On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from the rf gun. We prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. With a deformable mirror, we obtained an emittance of1.6

  8. Highly Selective Self-Powered Sensing Platform for p-Nitrophenol Detection Constructed with a Photocathode-Based Photocatalytic Fuel Cell.

    Science.gov (United States)

    Yan, Kai; Yang, Yaohua; Zhu, Yuhan; Zhang, Jingdong

    2017-09-05

    A photocathode-based photocatalytic fuel cell (PFC) was fabricated and proposed as a self-powered sensor for p-nitrophenol (p-NP) detection. The PFC was comprised of a photocathode and an anode in separated chambers, which could generate suitable power output under photoirradiation to drive the sensing process. In this device, p-type PbS quantum dots-modified glass carbon electrode (GCE) served as the photocathode for the reduction of p-NP under photoirradiation while graphene-modified GCE was employed as the anode for the oxidation of ascorbic acid. In order to improve the selectivity of the PFC sensor, p-NP binding molecularly imprinted polymer (MIP) was introduced on the photocathode. Under optimal conditions, the open circuit voltage of the constructed PFC sensor was found to sensitively respond to p-NP in a wide concentration range from 0.05 μM to 20 μM. The proposed sensor exhibited high selectivity, good reproducibility, and stability, demonstrating the successful combination of MIP with photocathode in construction of high-performance PFC self-powered sensors for pollutant monitoring.

  9. Minimax robust relay selection based on uncertain long-term CSI

    KAUST Repository

    Nisar, Muhammad Danish

    2014-02-01

    Cooperative communications via multiple relay nodes is known to provide the benefits of increase diversity and coverage. Simultaneous transmission via multiple relays, however, requires strong coordination between nodes either in terms of slot-based transmission or distributed space-time (ST) code implementation. Dynamically selecting a single best relay out of multiple relays and then using it alone for cooperative transmission alleviates the need for this strong coordination while still reaping the benefits of increased diversity and coverage. In this paper, we consider the design of relay selection (RS) under an imperfect knowledge of long-term channel state information (CSI) at the relay nodes, and we pursue minimax optimization to arrive at a robust RS approach that promises the best guarantee on the worst-case end-to-end signal-to-noise ratio (SNR). We provide some intuitive examples and extensive simulation results, not only in terms of worst-case SNR performance but also in terms of average bit-error-rate (BER) performance, to demonstrate the benefits of the proposed minimax robust RS scheme. © 2013 IEEE.

  10. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    Science.gov (United States)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  11. Characterization of a-FeSi2/c-Si heterojunctions for photovoltaic applications

    International Nuclear Information System (INIS)

    Antwis, L; Gwilliam, R; Smith, A; Jeynes, C; Homewood, K

    2012-01-01

    Amorphous iron disilicide (a-FeSi 2 ) shows potential as a photovoltaic material due to its bandgap of ∼0.9 eV and high absorption coefficient. We present a detailed characterization of a-FeSi 2 , with particular emphasis on the electrical properties of a-FeSi 2 /c-Si heterostructures, under both dark and illuminated conditions. The samples were prepared on quartz and silicon substrates using RF co-sputtering of an iron/silicon target. Optical transmission spectroscopy was used to confirm the bandgap of the samples. Van der Pauw measurements and current–voltage analysis techniques were used to determine the carrier type and conduction mechanisms of the samples. The results show that a-FeSi 2 forms a rectifying p–n heterojunction on p-type crystalline silicon. The silicide is characterized by very high carrier concentrations, resulting in the depletion region being almost entirely formed within the silicon substrate. Initial J–V results suggest carrier recombination within the silicide to be the dominant contribution to the conduction across the junction, with photovoltaic effects having been observed under AM1.5 conditions. (paper)

  12. PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices.

    Science.gov (United States)

    Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng

    2016-10-10

    The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment.

  13. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.

  14. Making space for criminalistics: Hans Gross and fin-de-siècle CSI.

    Science.gov (United States)

    Burney, Ian; Pemberton, Neil

    2013-03-01

    This article explores the articulation of a novel forensic object-the 'crime scene'-and its corresponding expert-the investigating officer. Through a detailed engagement with the work of the late nineteenth-century Austrian jurist and criminalist Hans Gross, it analyses the dynamic and reflexive nature of this model of 'CSI', emphasising the material, physical, psychological and instrumental means through which the crime scene as a delineated space, and its investigator as a disciplined agent operating within it, jointly came into being. It has a further, historiographic, aim: to move away from the commonplace emphasis in histories of forensics on fin-de-siècle criminology and toward its comparatively under-explored contemporary, criminalistics. In so doing, it opens up new ways of thinking about the crime scene as a defining feature of our present-day forensic culture that recognise its historical contingency and the complex processes at work in its creation and development. Copyright © 2012. Published by Elsevier Ltd.

  15. Integrated active and passive control design methodology for the LaRC CSI evolutionary model

    Science.gov (United States)

    Voth, Christopher T.; Richards, Kenneth E., Jr.; Schmitz, Eric; Gehling, Russel N.; Morgenthaler, Daniel R.

    1994-01-01

    A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.

  16. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    López, G., E-mail: gema.lopez@upc.edu; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    Highlights: • We use laser doping technique to create highly-doped regions. • Dielectric layers are used as both passivating layer and dopant source. • The high quality of the junctions makes laser doping technique using dielectric layers as dopant source suitable for solar cells applications. - Abstract: In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiC{sub x}/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al{sub 2}O{sub 3}) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J–V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  17. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Science.gov (United States)

    López, G.; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiCx/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J-V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  18. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai

    2012-01-01

    Hydrogen generation through photoelectrochemical (PEC) water splitting using solar light as an energy resource is believed to be a clean and efficient way to overcome the global energy and environmental problems. Extensive research effort has been focused on n-type metal oxide semiconductors as photoanodes, whereas studies of p-type metal oxide semiconductors as photocathodes where hydrogen is generated are scarce. In this paper, highly efficient and stable copper oxide composite photocathode materials were successfully fabricated by a facile two-step electrochemical strategy, which consists of electrodeposition of a Cu film on an ITO glass substrate followed by anodization of the Cu film under a suitable current density and then calcination to form a Cu 2O/CuO composite. The synthesized Cu 2O/CuO composite was composed of a thin layer of Cu 2O with a thin film of CuO on its top as a protecting coating. The rational control of chemical composition and crystalline orientation of the composite materials was easily achieved by varying the electrochemical parameters, including electrodeposition potential and anodization current density, to achieve an enhanced PEC performance. The best photocathode material among all materials prepared was the Cu 2O/CuO composite with Cu 2O in (220) orientation, which showed a highly stable photocurrent of -1.54 mA cm -2 at a potential of 0 V vs reversible hydrogen electrode at a mild pH under illumination of AM 1.5G. This photocurrent density was more than 2 times that generated by the bare Cu 2O electrode (-0.65 mAcm -2) and the stability was considerably enhanced to 74.4% from 30.1% on the bare Cu 2O electrode. The results of this study showed that the top layer of CuO in the Cu 2O/CuO composite not only minimized the Cu 2O photocorrosion but also served as a recombination inhibitor for the photogenerated electrons and holes from Cu 2O, which collectively explained much enhanced stability and PEC activity of the Cu 2O/CuO composite

  19. Experimental measurements and theoretical model of the cryogenic performance of bialkali photocathode and characterization with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Huamu Xie

    2016-10-01

    Full Text Available High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE cathode materials, while superconducting rf (SRF electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures. We recorded an 80% reduction of the QE upon cooling the K_{2}CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL’s 704 MHz SRF gun. We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level is the main reason for this reduction. We developed an analytical model of the process, based on Spicer’s three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE’s temperature dependence. We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation

  20. Design of the fundamental power coupler and photocathode inserts for the 112MHz superconducting electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2011-07-25

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be the testing cavity for various photocathodes. In this paper, we present the design of the cathode stalks and a Fundamental Power Coupler (FPC) designated to the future experiments. Two types of cathode stalks are discussed. Special shape of the stalk is applied in order to minimize the RF power loss. The location of cathode plane is also optimized to enable the extraction of low emittance beam. The coaxial waveguide structure FPC has the properties of tunable coupling factor and small interference to the electron beam output. The optimization of the coupling factor and the location of the FPC are discussed in detail. Based on the transmission line theory, we designed a half wavelength cathode stalk which significantly brings down the voltage drop between the cavity and the stalk from more than 5.6 kV to 0.1 kV. The transverse field distribution on cathode has been optimized by carefully choosing the position of cathode stalk inside the cavity. Moreover, in order to decrease the RF power loss, a variable diameter design of cathode stalk has been applied. Compared to the uniform shape of stalk, this design gives us much smaller power losses in important locations. Besides that, we also proposed a fundamental power coupler based on the designed beam parameters for the future proof-of-principle CEC experiment. This FPC should give a strong enough coupling which has the Q external range from 1.5e7 to 2.6e8.

  1. Design of a high repetition rate S-band photocathode gun

    International Nuclear Information System (INIS)

    Han Janghui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-01-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported. - Highlights: → We design an S-band gun for low emittance beam generation and high repetition rate operation. → The RF design and thermal analysis of the gun cavity and coupler are studied. → An FEL injector is designed by using this gun and the beam dynamics simulation is shown. → A cold test with a prototype gun for confirmation of the RF design is reported.

  2. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Díez-García, María Isabel; Gómez, Roberto

    2016-08-24

    Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies

  3. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-07-15

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and {sup 131}I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical

  4. Buildings exposed to fire

    International Nuclear Information System (INIS)

    1987-01-01

    The 24 lectures presented to the colloquium cover the following subject fields: (1) Behaviour of structural components exposed to fire; (2) Behaviour of building materials exposed to fire; (3) Thermal processes; (4) Safety related, theoretical studies. (PW) [de

  5. Study of the interface in n{sup +}{mu}c-Si/p-type c-Si heterojunctions: role of the fluorine chemistry in the interface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Grimaldi, A.; Sacchetti, A.; Capezzuto, P.; Ambrico, M.; Bruno, G.; Roca, Francesco

    2003-03-03

    Investigation of n-p heterojunction solar cells obtained by depositing a n-type thin silicon films either amorphous or microcrystalline on p-type c-Si is carried out. The study is focused on the improvement of the c-Si surface and emitter layer/c-Si substrate interface. The peculiarity is the use of SiF{sub 4}-based plasmas for the in situ dry cleaning and passivation of the c-Si surface and for the PECVD deposition of the emitter layer that can be either amorphous (a-Si:H,F) or microcrystalline ({mu}c-Si). The use of SiF{sub 4} instead of the conventional SiH{sub 4} results in a lower hydrogen content in the film and in a reduction of the interaction of the c-Si surface with hydrogen atoms. Furthermore, the dependence of the heterojunction solar cell photovoltaic parameters on the insertion of an intrinsic buffer layer between the n-type thin silicon layer and the p-type c-Si substrate is discussed.

  6. Transfer and breakup reactions in 16O + CsI at 16.4 MeV/n

    Directory of Open Access Journals (Sweden)

    M.J. Murphy

    1983-01-01

    Full Text Available A streamer-chamber particle-telescope system has been used to observe ejectile charge, energy, and associated charged particle multiplicity in the reaction of 16O + CsI at 16.4 MeV/n. The measurement provides relative probabilities for transfer and projectile breakup as a function of ejectile charge, and spectra for the heavy ejectiles from transfer and breakup events. The results show that the interaction energy of 16.4 MeV/n is near the threshold for breakup reactions in heavy-ion collisions.

  7. The possibly important role played by Ga2O3 during the activation of GaN photocathode

    International Nuclear Information System (INIS)

    Fu, Xiaoqian; Wang, Honggang; Zhang, Junju; Li, Zhiming; Cui, Shiyao; Zhang, Lejuan

    2015-01-01

    Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga 2 O 3 is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga 2 O 3 after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga 2 O 3 , the surface processing results, and electron affinity variations during Cs and Cs/O 2 deposition on GaN of other groups, it is suggested that before the adsorption of Cs, Ga 2 O 3 is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga 2 O 3 -Cs is suggested, and the experimental effects are explained and discussed

  8. The possibly important role played by Ga2O3 during the activation of GaN photocathode

    Science.gov (United States)

    Fu, Xiaoqian; Wang, Honggang; Zhang, Junju; Li, Zhiming; Cui, Shiyao; Zhang, Lejuan

    2015-08-01

    Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga2O3 is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga2O3 after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga2O3, the surface processing results, and electron affinity variations during Cs and Cs/O2 deposition on GaN of other groups, it is suggested that before the adsorption of Cs, Ga2O3 is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga2O3-Cs is suggested, and the experimental effects are explained and discussed.

  9. Development status of a test stand for semiconductor photocathodes with 60 keV spin-polarized beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kurichijanil, Neeraj; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Heichelt, Dominic; Kaiser, Andreas; Roesch, Heidi; Wagner, Markus [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    A test facility for Photo-Cathode Activation, Test and Cleaning using atomic-Hydrogen (Photo-CATCH) is being constructed at TU Darmstadt's Institute for Nuclear Physics (IKP) which houses the Superconducting Darmstadt Linear Accelerator (S-DALINAC). In order to improve the performance of the SDALINAC's photoelectron source based on GaAs, systematic studies in terms of quantum efficiency (QE), cathode rejuvenation, lifetimes and polarization (P) have to be conducted on different photocathode types. These factors strongly depend on handling of the cathode, the vacuum condition in the chambers, cathode surface cleaning as well as preservation of stoichiometry, negative electron affinity (NEA) activation of the cathode and the type and structure of the semiconductor material. With Photo-CATCH, experiments such as atomic-hydrogen cleaning, multi-alkali and oxidant NEA activation of the cathode and tests of QE, P and lifetimes can be performed in an improved vacuum. Additionally, experiments with polarized-electron beams of up to 60 keV are foreseen.

  10. Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes

    Science.gov (United States)

    Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan

    2018-01-01

    A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.

  11. High quantum efficiency ultraviolet/blue AlGaN /InGaN photocathodes grown by molecular-beam epitaxy

    Science.gov (United States)

    Leopold, D. J.; Buckley, J. H.; Rebillot, P.

    2005-08-01

    Enormous technological breakthroughs have been made in optoelectronic devices through the use of advanced heteroepitaxial-semiconductor crystal-growth techniques. This technology is being extended toward enhanced ultraviolet/blue single-photon detection through the design and fabrication of atomically tailored heteroepitaxial GaAlN /GaInN photocathode device structures. The AlGaN /InGaN system is ideal because the band gap can be tailored over an energy range from 0.8 to 6.2 eV and epitaxial thin-film layers can be grown directly on optically transparent sapphire substrates. Although a single p-type GaN layer activated with cesium can produce reasonably high quantum efficiency in the ultraviolet wave band, a more complex design is necessary to achieve high levels extending into the blue region. In the present work, band-gap engineering concepts have been utilized to design heterostructure photocathodes. The increased level of sophistication offered by this approach has been exploited in an attempt to precisely control photoelectron transport to the photocathode surface. Thin heterostructure layers designed for transmission-mode detection were fabricated by molecular-beam epitaxy. A quantum efficiency of 40% at 250 nm was achieved using a thin, compositionally graded GaN /InGaN layer, epitaxially grown on a sapphire substrate. Further improvements are anticipated through continued optimization, defect reduction, and more complex photocathode designs.

  12. Formation of a p-n heterojunction on GaP photocathodes for H-2 production providing an open-circuit voltage of 710 mV

    DEFF Research Database (Denmark)

    Malizia, Mauro; Seger, Brian; Chorkendorff, Ib

    2014-01-01

    Photocatalytic water splitting for the sustainable production of hydrogen using a two-photon tandem device requires careful optimization of the semiconductors used as photon absorbers. In this work we show how the open-circuit voltage of photocathodes for the hydrogen evolution reaction based on p...

  13. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production

    Science.gov (United States)

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-03-01

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  14. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    Energy Technology Data Exchange (ETDEWEB)

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  15. DISCOVERY OF SiCSi IN IRC+10216: A MISSING LINK BETWEEN GAS AND DUST CARRIERS OF Si–C BONDS

    Energy Technology Data Exchange (ETDEWEB)

    Cernicharo, J.; Agúndez, M.; Prieto, L. Velilla; Quintana-Lacaci, G. [Group of Molecular Astrophysics, ICMM, CSIC, C/Sor Juana Inés de La Cruz N3, E-28049, Madrid (Spain); McCarthy, M. C.; Gottlieb, C. A.; Drumel, M. A. Martin-; Patel, N. A.; Reilly, N. J.; Young, K. H. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Baraban, J. H. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Changala, P. B. [JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); Guélin, M. [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, F-38406 St-Martin d’Hères (France); Kahane, C. [Universit Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Stanton, J. F. [Institute for Theoretical Chemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712 (United States); Thorwirth, S. [I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2015-06-10

    We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30 m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC{sub 2}. As expected from chemical equilibrium calculations, SiCSi and SiC{sub 2} are the most abundant species harboring a Si−C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.

  16. Theoretical prediction of new C-Si alloys in {\\boldsymbol{C}}2/{\\boldsymbol{m}}-20 structure

    Science.gov (United States)

    Xu, Xiangyang; Chai, Changchun; Fan, Qingyang; Yang, Yintang

    2017-04-01

    We study structural, mechanical, and electronic properties of C20, Si20 and their alloys (C16Si4, C12Si8, C8Si12, and C4 {{Si}}16) in C2/m structure by using density functional theory (DFT) based on first-principles calculations. The obtained elastic constants and the phonon spectra reveal mechanical and dynamic stability. The calculated formation enthalpy shows that the C-Si alloys might exist at a specified high temperature scale. The ratio of B/G and Poisson’s ratio indicate that these C-Si alloys in C2/m-20 structure are all brittle. The elastic anisotropic properties derived by bulk modulus and shear modulus show slight anisotropy. In addition, the band structures and density of states are also depicted, which reveal that C20, C16Si4, and Si20 are indirect band gap semiconductors, while C8Si12 and C4Si16 are semi-metallic alloys. Notably, a direct band gap semiconductor (C12Si8) is obtained by doping two indirect band gap semiconductors (C20 and Si20). Project supported by the National Natural Science Foundation of China (Grant No. 61474089) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).

  17. Surface chemical analysis and ab initio investigations of CsI coated C fiber cathodes for high power microwave sources

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.

    2010-02-01

    CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eVcoabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.

  18. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, K.F.

    1980-01-08

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found. (FS)

  19. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    CERN Document Server

    Pompili, Riccardo; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Cianchi, A; Croia, M; Di Giovenale, D; Ferrario, M; Filippi, F; Gallo, A; Gatti, G; Giorgianni, F; Giribono, A; Li, W; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Di Pirro, G; Romeo, S; Scifo, J; Shpakov, V; Vaccarezza, C; Villa, F

    2017-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  20. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu,Q.

    2008-10-01

    The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent

  1. Tuning the Photoelectrocatalytic Hydrogen Evolution of Pt-Decorated Silicon Photocathodes by the Temperature and Time of Electroless Pt Deposition.

    Science.gov (United States)

    Fabre, Bruno; Li, Gaozeng; Gouttefangeas, Francis; Joanny, Loic; Loget, Gabriel

    2016-11-15

    The electroless deposition of Pt nanoparticles (NPs) on hydrogen-terminated silicon (H-Si) surfaces is studied as a function of the temperature and the immersion time. It is demonstrated that isolated Pt structures can be produced at all investigated temperatures (between 22 and 75 °C) for short deposition times, typically within 1-10 min if the temperature is 45 °C or less than 5 min at 75 °C. For longer times, dendritic metal structures start to grow, ultimately leading to highly rough interconnected Pt networks. Upon increasing the temperature from 22 to 75 °C and for an immersion time of 5 min, the average size of the observed Pt NPs monotonously increases from 120 to 250 nm, and their number density calculated using scanning electron microscopy decreases from (4.5 ± 1.0) × 10 8 to (2.0 ± 0.5) × 10 8 Pt NPs cm -2 . The impact of both the morphology and the distribution of the Pt NPs on the photoelectrocatalytic activity of the resulting metallized photocathodes is then analyzed. Pt deposited at 45 °C for 5 min yields photocathodes with the best electrocatalytic activity for the hydrogen evolution reaction. Under illumination at 33 mW cm -2 , this optimized photoelectrode shows a fill factor of 45%, an efficiency (η) of 9.7%, and a short-circuit current density (|J sc |) at 0 V versus a reversible hydrogen electrode of 15.5 mA cm -2 .

  2. The Chemistry Scoring Index (CSI: A Hazard-Based Scoring and Ranking Tool for Chemicals and Products Used in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Tim Verslycke

    2014-06-01

    Full Text Available A large portfolio of chemicals and products is needed to meet the wide range of performance requirements of the oil and gas industry. The oil and gas industry is under increased scrutiny from regulators, environmental groups, the public, and other stakeholders for use of their chemicals. In response, industry is increasingly incorporating “greener” products and practices but is struggling to define and quantify what exactly constitutes “green” in the absence of a universally accepted definition. We recently developed the Chemistry Scoring Index (CSI which is ultimately intended to be a globally implementable tool that comprehensively scores and ranks hazards to human health, safety, and the environment for products used in oil and gas operations. CSI scores are assigned to products designed for the same use (e.g., surfactants, catalysts on the basis of product composition as well as intrinsic hazard properties and data availability for each product component. As such, products with a lower CSI score within a product use group are considered to have a lower intrinsic hazard compared to other products within the same use group. The CSI provides a powerful tool to evaluate relative product hazards; to review and assess product portfolios; and to aid in the formulation of products.

  3. Impact of one-dimensional photonic crystal back reflector in thin-film c-Si solar cells on efficiency

    Science.gov (United States)

    Jalali, Tahmineh

    2018-05-01

    In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.

  4. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    International Nuclear Information System (INIS)

    Chaudhari, V.A.; Solanki, C.S.

    2009-01-01

    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of un optimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

  5. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  6. Spectroscopic imaging of the human liver using 3D CSI. Optimization and application in patients with metastatic uvea melanoma

    International Nuclear Information System (INIS)

    Beer, M.; Winkelmann, V.; Stenzel, M.; Hahn, D.; Koestler, H.; Becker, J.C.; Broecker, E.B.; Terheyden, P.; Universitaetsklinikum Schleswig-Holstein, Kiel

    2009-01-01

    Purpose: 31 P MR spectroscopy (MRS) allows the noninvasive assessment of metabolic alterations in tumors. Due to physical as well as technical limitations, mostly large and single voxels are used. We used a spatially resolved 31P MRS technique to characterize metabolic abnormalities inside and adjacent to liver metastases of patients with uvea melanoma. Materials and Methods: Optimization of 3D chemical shift imaging (3D CSI) was performed in healthy volunteers (n = 19; voxel size 25 ml). Patients (n = 8) with liver metastases were then examined. Cross sectional imaging was available for all patients. Results: Compared to healthy volunteers, the PME/PDE ratios of patients with liver metastasis were significantly higher (0.56 ± 0.30 vs. 0.39 ± 0.21; p 31 P MRS opens new possibilities for therapeutic monitoring. (orig.)

  7. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua

    2012-10-01

    In this correspondence, considering dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying over Nakagami- m fading channels, the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) is derived. In particular, when the fading shape factors m1 and m2 at consecutive hops take non-integer values, the bivariate H-function and G -function are exploited to obtain an exact analytical expression for the CDF. The obtained CDF is then applied to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  8. Energetic resolution study on pure and CsBr doped CsI under gamma excitations and alpha particles

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Hamada, Margarida Mizue

    2009-01-01

    Pure and doped CsI crystals were grown using the Bridgman technique. Bromine was the doping element which was studied in the range of 1.5x10 -1 M to 10 -2 M. The distribution of the doping element at crystalline volume was determined by neutron activation. Concerning gamma radiation response it was carried out measurements to evaluate the developed scintillators in the energy range of 350 keV to 1330 keV. For alpha particles measurements an 241 Am source was used with 5.54 MeV energy. The resolution of 3.7% was obtained for the CsI:Br 10 -2 M crystal, when excited with alpha particles from an 241 Am source. For CsI:Br 10 -1 M crystal 9.1% resolution was obtained when excited with gamma radiation from 22 Na source, with 1275 keV energy. (author)

  9. High Performance of Manganese Porphyrin Sensitized p-Type CuFe2O4 Photocathode for Solar Water Splitting to Produce Hydrogen in a Tandem Photoelectrochemical Cell

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available A novel composite composed of (5, 10, 15, 20-tetraphenyl porphinato manganese sensitized p-type CuFe2O4 was developed for constructing the photocathode of a tandem photoelectrochemical (PEC cell. The prepared material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS and UV-vis diffuse reflectance spectroscopy (DRS. Light-driven water splitting to produce hydrogen can be achieved through the PEC cell, and the results show that H2 and O2 can be collected separately at low applied bias. This work demonstrates that manganese porphyrin sensitized CuFe2O4 is an effective hybrid material for building the photocathode of a PEC cell for solar water splitting to produce H2.

  10. Design of a high charge (10 - 100 nC) and short pulse (2 - 5 ps) rf photocathode gun for wakefield acceleration

    International Nuclear Information System (INIS)

    Gai, W.

    1998-01-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed

  11. Designing Efficient Solar-Driven Hydrogen Evolution Photocathodes Using Semitransparent MoQxCly(Q = S, Se) Catalysts on Si Micropyramids

    KAUST Repository

    Ding, Qi

    2015-09-21

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Silicon micropyramids with n+pp+ junctions are demonstrated to be efficient absorbers for integrated solar-driven hydrogen production systems enabling significant improvements in both photocurrent and onset potential. When conformally coated with MoSxCly, a catalyst that has excellent catalytic activity and high optical transparency, the highest photocurrent density for Si-based photocathodes with earth-abundant catalysts is achieved.

  12. Simultaneous enhancement of photovoltage and charge transfer in Cu{sub 2}O-based photocathode using buffer and protective layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changli; Delaunay, Jean-Jacques, E-mail: jean@mech.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hisatomi, Takashi; Watanabe, Osamu; Domen, Kazunari [Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakabayashi, Mamiko; Shibata, Naoya [Institute of Engineering Innovation, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-07-18

    Coating n-type buffer and protective layers on Cu{sub 2}O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu{sub 2}O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu{sub 2}O are examined. It is found that a Ga{sub 2}O{sub 3} buffer layer can form a buried junction with Cu{sub 2}O, which inhibits Cu{sub 2}O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO{sub 2} thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  13. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    Science.gov (United States)

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  14. Effect of annealing process on the heterostructure CuO/Cu2O as a highly efficient photocathode for photoelectrochemical water reduction

    Science.gov (United States)

    Du, Fan; Chen, Qing-Yun; Wang, Yun-Hai

    2017-05-01

    CuO/Cu2O photocathodes were successfully prepared via simply annealing the electrodeposited Cu2O on fluoride doped tin oxide (FTO) substrate. They were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-vis absorption spectra and X-ray photoelectron spectroscopy (XPS). The results showed that the heterojunction of CuO/Cu2O was formed during the annealing process and presented the nature of p-type semiconductor. The photocurrent density and photoelectrochemical (PEC) stability of the p-type heterostructure CuO/Cu2O photocathode was improved greatly compared with the pure Cu2O, which was greatly affected by annealing time and temperature. The highest photo current density of -0.451 mA/cm2 and highest stability was obtained via annealing at 650 °C for 15 min (at -0.3 V vs. Ag/AgCl), which gave a remarkable improvement than the as-deposited Cu2O (-0.08 mA/cm2). This suggested that the CuO/Cu2O heterojunction facilitated the electron-hole pair separation and improved the photocathode's current and stability.

  15. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    Science.gov (United States)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  16. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.; Soetens, F.

    2005-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  17. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.H.H.; Soetens, F.

    2006-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  18. Security-Reliability Analysis of Noma-Based Multi-Hop Relay Networks in Presence of an Active Eavesdropper with Imperfect Eavesdropping CSI

    Directory of Open Access Journals (Sweden)

    Tran Tin Phu

    2017-01-01

    Full Text Available In this paper, we evaluate system performances of a multi-hop relay protocol with presence of an active eavesdropper. In the proposed protocol, a source attempts to transmit its data to a destination with assistance of multiple intermediate relays. From the eavesdropping Channel State Information (CSI estimated, the source and relays adjust their transmit power so that the eavesdropper cannot overhear the transmitted data. Moreover, to enhance throughput for the proposed system, Non-Orthogonal Multiple Access (NOMA technique with a simple power allocation is also proposed. We derive exact closed-form expressions of the Outage Probability (OP and throughput for the data transmission over Rayleigh fading channel. In addition, when the CSI estimation is imperfect, Intercept Probability (IP at the eavesdropper is derived. Finally, Monte Carlo simulations are presented to verify the theoretical derivations.

  19. The effect of γ-ray irradiation on the adsorption properties and chemical stability of AMP/SiO2 towards Cs(I) in HNO3 solution

    International Nuclear Information System (INIS)

    Xiaoxia Zhang; Yan Wu; Yuezhou Wei; Guangxi University, Nanning

    2016-01-01

    Silica based ammonium molybdophosphate (AMP/SiO 2 ) adsorbent was used to remove Cs(I) from HNO 3 solution. The adsorbent with different absorbed dose (0-300 kGy) was characteristed by X-ray power diffraction. The adsorption data against different γ-ray absorbed doses were analyzed by the Langmuir isotherm. The adsorption capacity decreased slightly from 23.22 to 22.37 mg/g with the increase of the absorbed dose. The breakthrough properties of Cs(I) were conducted using column packed with AMP/SiO 2 before and after irradiation. The chemical stability of AMP/SiO 2 at 300 kGy absorbed dose in 3 mol/L (M) HNO 3 was excellent. (author)

  20. Mitigating the effect of series capacitance unbalance on the voltage reduction capability of an auxiliary CSI used as switching ripple active filter

    OpenAIRE

    Papadopoulos, Savvas; Klumpner, Christian; Rashed, Mohamed; Wheeler, Patrick

    2016-01-01

    The use of series connected capacitors for high voltage applications has been proven to be beneficial for voltage stress reduction across power semiconductors. In a 3-phase grid any asymmetry in the value of the series capacitance may lead to significant variations in the voltage seen across the low voltage converter. This paper investigates the effects of an unbalanced set of series connected capacitors used to reduce the voltage stress across a three phase current source inverter (CSI) used...

  1. On-line induced absorption measurement on PbWO.sub.4./sub., YAlO.sub.3./sub.:Ce and CsI scintillating crystals

    Czech Academy of Sciences Publication Activity Database

    Šulc, M.; Nikl, Martin; Vognar, M.; Blažek, K.; Nejezchleb, K.; Boháček, Pavel; Nitsch, Karel; Kobayashi, M.; Usuki, Y.; Shen, D.

    2004-01-01

    Roč. 38, - (2004), s. 393-396 ISSN 1350-4487 R&D Projects: GA ČR(CZ) GA202/01/0753 Grant - others:NATO SfP (XX) 973510-Scintillators Institutional research plan: CEZ:AV0Z1010914 Keywords : radiation damage * PbWO 4 scintillator * YAlO 3 :Ce * CsI Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.664, year: 2004

  2. Solar Hydrogen Production Using Molecular Catalysts Immobilized on Gallium Phosphide (111)A and (111)B Polymer-Modified Photocathodes.

    Science.gov (United States)

    Beiler, Anna M; Khusnutdinova, Diana; Jacob, Samuel I; Moore, Gary F

    2016-04-20

    We report the immobilization of hydrogen-producing cobaloxime catalysts onto p-type gallium phosphide (111)A and (111)B substrates via coordination to a surface-grafted polyvinylimidazole brush. Successful grafting of the polymeric interface and subsequent assembly of cobalt-containing catalysts are confirmed using grazing angle attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Photoelectrochemical testing in aqueous conditions at neutral pH shows that cobaloxime modification of either crystal face yields a similar enhancement of photoperformance, achieving a greater than 4-fold increase in current density and associated rates of hydrogen production as compared to results obtained using unfunctionalized electrodes tested under otherwise identical conditions. Under simulated solar illumination (100 mW cm(-2)), the catalyst-modified photocathodes achieve a current density ≈ 1 mA cm(-2) when polarized at 0 V vs the reversible hydrogen electrode reference and show near-unity Faradaic efficiency for hydrogen production as determined by gas chromatography analysis of the headspace. This work illustrates the modularity and versatility of the catalyst-polymer-semiconductor approach for directly coupling light harvesting to fuel production and the ability to export this chemistry across distinct crystal face orientations.

  3. CoSe2Embedded in C3N4: An Efficient Photocathode for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Basu, Mrinmoyee; Zhang, Zhi-Wei; Chen, Chih-Jung; Lu, Tzu-Hsiang; Hu, Shu-Fen; Liu, Ru-Shi

    2016-10-12

    An efficient H 2 evolution catalyst is developed by grafting CoSe 2 nanorods into C 3 N 4 nanosheets. The as-obtained C 3 N 4 -CoSe 2 heterostructure can show excellent performance in H 2 evolution with outstanding durability. To generate phatocathode for photoelectrochemical water splitting CoSe 2 grafted in C 3 N 4 was decorated on the top of p-Si microwires (MWs). p-Si/C 3 N 4 -CoSe 2 heterostructure can work as an efficient photocathode material for solar H 2 production in PEC water splitting. In 0.5 M H 2 SO 4 , p-Si/C 3 N 4 -CoSe 2 can afford photocurrent density -4.89 mA/cm 2 at "0" V vs RHE and it can efficiently work for 3.5 h under visible light. Superior activity of C 3 N 4 -CoSe 2 compared to CoSe 2 toward H 2 evolution is explained with the help of impedance spectroscopy.

  4. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  5. Measurements of the Argonne Wakefield Accelerator close-quote s low charge, 4 MeV RF photocathode witness beam

    International Nuclear Information System (INIS)

    Power, J.; Chojnacki, E.; Conde, M.; Gai, W.; Konecny, R.; Schoessow, P.; Simpson, J.

    1997-01-01

    The Argonne Wakefield Accelerator close-quote s (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 MeV was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nC. All results of the measurements to date are presented here. copyright 1997 American Institute of Physics

  6. In situ optical absorption spectroscopy of annealing behaviours of quench-deposited films in the binary system CsI- PbI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S; Amaya, K; Saito, T [Research Centre for Development of the Far-Infrared Region, Fukui University, Bunkyo, Fukui (Japan)

    2003-02-19

    We have investigated annealing behaviours of quench-deposited films of the binary CsI-PbI{sub 2} system by in situ optical absorption spectroscopy. Various films composed of multiple crystalline phases of CsPbI{sub 3} and/or Cs{sub 4}PbI{sub 6} as well as of CsI and/or PbI{sub 2} are obtained, depending on the mixing ratio of the CsI and PbI{sub 2}. It is difficult to prepare films purely composed of a single CsPbI{sub 3} or Cs{sub 4}PbI{sub 6} phase alone. However, it is possible to obtain films where crystallites of either CsPbI{sub 3} or Cs{sub 4}PbI{sub 6} coexist with the CsI phase. Using such films, we measure the fundamental optical absorption spectrum of CsPbI{sub 3} and Cs{sub 4}PbI{sub 6} for the first time. Cs{sub 4}PbI{sub 6} exhibits stronger oscillator-like absorption compared to CsPbI{sub 3}, due to the localized nature of both the Pb 6s and 6p states.

  7. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    Energy Technology Data Exchange (ETDEWEB)

    Nohtomi, Akihiro, E-mail: nohtomi@hs.med.kyushu-u.ac.jp [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shinsho, Kiyomitsu [Graduate School of Human Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, Arakawa-ku, Tokyo 116-8551 (Japan); Wakabayashi, Genichiro [Atomic Energy Research Institute, Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8502 (Japan); Koba, Yusuke [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko [Department of Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ohga, Saiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-10-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  8. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita; Shinsho, Kiyomitsu; Wakabayashi, Genichiro; Koba, Yusuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji

    2016-01-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  9. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.Y., E-mail: ljywlj@hit.edu.cn [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China); Yuan, H.M.; Oliullah, Md.; Wang, F. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Y., E-mail: songpengkevin@126.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China)

    2016-09-15

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J{sub sc}), and open-circuit voltage (V{sub oc}) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J{sub sc} and V{sub oc} of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  10. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    International Nuclear Information System (INIS)

    Song, P.; Liu, J.Y.; Yuan, H.M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-01-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J sc ), and open-circuit voltage (V oc ) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J sc and V oc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  11. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  12. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    Science.gov (United States)

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

  13. Forecasting Return Volatility of the CSI 300 Index Using the Stochastic Volatility Model with Continuous Volatility and Jumps

    Directory of Open Access Journals (Sweden)

    Xu Gong

    2014-01-01

    Full Text Available The logarithmic realized volatility is divided into the logarithmic continuous sample path variation and the logarithmic discontinuous jump variation on the basis of the SV-RV model in this paper, which constructs the stochastic volatility model with continuous volatility (SV-CJ model. Then, we use high-frequency transaction data for five minutes of the CSI 300 stock index as the study sample, which, respectively, make parameter estimation on the SV, SV-RV, and SV-CJ model. We also comparatively analyze these three models' prediction accuracy by using the loss functions and SPA test. The results indicate that the prior logarithmic realized volatility and the logarithmic continuous sample path variation can be used to predict the future return volatility in China's stock market, while the logarithmic discontinuous jump variation is poor at its prediction accuracy. Besides, the SV-CJ model has an obvious advantage over the SV and SV-RV model as to the prediction accuracy of the return volatility, and it is more suitable for the research concerning the problems of financial practice such as the financial risk management.

  14. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  15. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  16. Contrast source inversion (CSI) method to cross-hole radio-imaging (RIM) data - Part 2: A complex synthetic example and a case study

    Science.gov (United States)

    Li, Yongxing; Smith, Richard S.

    2018-03-01

    We present two examples of using the contrast source inversion (CSI) method to invert synthetic radio-imaging (RIM) data and field data. The synthetic model has two isolated conductors (one perfect conductor and one moderate conductor) embedded in a layered background. After inversion, we can identify the two conductors on the inverted image. The shape of the perfect conductor is better resolved than the shape of the moderate conductor. The inverted conductivity values of the two conductors are approximately the same, which demonstrates that the conductivity values cannot be correctly interpreted from the CSI results. The boundaries and the tilts of the upper and the lower conductive layers on the background can also be inferred from the results, but the centre parts of conductive layers in the inversion results are more conductive than the parts close to the boreholes. We used the straight-ray tomographic imaging method and the CSI method to invert the RIM field data collected using the FARA system between two boreholes in a mining area in Sudbury, Canada. The RIM data include the amplitude and the phase data collected using three frequencies: 312.5 kHz, 625 kHz and 1250 kHz. The data close to the ground surface have high amplitude values and complicated phase fluctuations, which are inferred to be contaminated by the reflected or refracted electromagnetic (EM) fields from the ground surface, and are removed for all frequencies. Higher-frequency EM waves attenuate more quickly in the subsurface environment, and the locations where the measurements are dominated by noise are also removed. When the data are interpreted with the straight-ray method, the images differ substantially for different frequencies. In addition, there are some unexpected features in the images, which are difficult to interpret. Compared with the straight-ray imaging results, the inversion results with the CSI method are more consistent for different frequencies. On the basis of what we learnt

  17. Enhancing the Performances of P3HT:PCBM-MoS3-Based H2-Evolving Photocathodes with Interfacial Layers.

    Science.gov (United States)

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-08-05

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner because they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photoelectrochemical cells, we combined a noble-metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al/Ti interfacial layers led to an increase of the photocurrent by up to 8 mA cm(-2) at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the H2 evolution reaction onset potential, a value close to the open-circuit potential of the P3HT:PCBM solar cell. A 50-nm-thick C60 layer also works as an interfacial layer, with a current density reaching 1 mA cm(-2) at the RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a nonphotoactive electrode with an identical catalyst as the dark electrode, respectively. They provide different information especially for differentiation of the roles of the photogenerating layer and catalyst. The best results were obtained with the Al/Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64% and 2.05%, respectively.

  18. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma

    2017-03-02

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node and harvests the energy the signals transmitted from the source. The harvested energy is partially used to forward signals from the source to the destination, and the remaining energy is stored for other usages. The SWIPT in relay-assisted communication is interesting as long as the relay stores energy from the source and the destination receives successfully the data from the source. In this context, we propose to investigate the source and relay precoders that characterize the relationship between the achievable stored energy at the relay and the achievable sourceto- destination rate, namely the rate-stored energy (R-E) tradeo region. First, we consider the ideal scheme where there is the simultaneous operation of the EH and ID receivers at the relay. Then, we consider practical schemes such as the power splitting (PS) and the time switching (TS) that separate the operation of EH and information decoding (ID) receivers over power domain or time domain, respectively. Moreover, we study the case of imperfect channel state information (CSI) at the relay and the destination and characterize its impact on the achievable R-E region. Through the simulation results, we show the eect of the position of the relay and the channel uncertainty on the achievable R-E regions of all the schemes when the used energy at the relay is constant or variable. We also show that, although it provides an outer bound on the achievable rate-energy region in one-hop MIMO systems, the ideal scheme provides only an upper bound on the maximum achievable end-to-end rate and not an outer bound on the R-E region.

  19. Moments Based Framework for Performance Analysis of One-Way/Two-Way CSI-Assisted AF Relaying

    KAUST Repository

    Xia, Minghua

    2012-09-01

    When analyzing system performance of conventional one-way relaying or advanced two-way relaying, these two techniques are always dealt with separately and, thus, their performance cannot be compared efficiently. Moreover, for ease of mathematical tractability, channels considered in such studies are generally assumed to be subject to Rayleigh fading or to be Nakagami-$m$ channels with integer fading parameters, which is impractical in typical urban environments. In this paper, we propose a unified moments-based framework for general performance analysis of channel-state-information (CSI) assisted amplify-and-forward (AF) relaying systems. The framework is applicable to both one-way and two-way relaying over arbitrary Nakagami-$m$ fading channels, and it includes previously reported results as special cases. Specifically, the mathematical framework is firstly developed under the umbrella of the weighted harmonic mean of two Gamma-distributed variables in conjunction with the theory of Pad\\\\\\'e approximants. Then, general expressions for the received signal-to-noise ratios of the users in one-way/two-way relaying systems and the corresponding moments, moment generation function, and cumulative density function are established. Subsequently, the mathematical framework is applied to analyze, compare, and gain insights into system performance of one-way and two-way relaying techniques, in terms of outage probability, average symbol error probability, and achievable data rate. All analytical results are corroborated by simulation results as well as previously reported results whenever available, and they are shown to be efficient tools to evaluate and compare system performance of one-way and two-way relaying.

  20. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  1. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    Science.gov (United States)

    Kagaya, M.; Katagiri, H.; Enomoto, R.; Hanafusa, R.; Hosokawa, M.; Itoh, Y.; Muraishi, H.; Nakayama, K.; Satoh, K.; Takeda, T.; Tanaka, M. M.; Uchida, T.; Watanabe, T.; Yanagita, S.; Yoshida, T.; Umehara, K.

    2015-12-01

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m2 radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  2. The possibly important role played by Ga{sub 2}O{sub 3} during the activation of GaN photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaoqian, E-mail: ise-fuxq@ujn.edu.cn, E-mail: 214808748@qq.com [School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan, Jinan 250022 (China); Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Honggang; Zhang, Junju [Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Zhiming; Cui, Shiyao; Zhang, Lejuan [School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan, Jinan 250022 (China)

    2015-08-14

    Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga{sub 2}O{sub 3} is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga{sub 2}O{sub 3} after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga{sub 2}O{sub 3}, the surface processing results, and electron affinity variations during Cs and Cs/O{sub 2} deposition on GaN of other groups, it is suggested that before the adsorption of Cs, Ga{sub 2}O{sub 3} is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga{sub 2}O{sub 3}-Cs is suggested, and the experimental effects are explained and discussed.

  3. 3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient photocathodic protection for 304 stainless steel

    Science.gov (United States)

    Sun, Wenxia; Wei, Na; Cui, Hongzhi; Lin, Yuan; Wang, Xinzhen; Tian, Jian; Li, Jian; Wen, Jing

    2018-03-01

    A well-designed heterostructure engineered ZnIn2S4 nanosheet/TiO2 nanowire arrays photoanode is investigated for photocathodic protection. The ZnIn2S4 nanosheets are distributed uniformly on the surface of the TiO2 nanowire by a hydrothermal method. The stem-and-leaf-like ZnIn2S4 nanosheet/TiO2 nanowire arrays exhibit excellent photoelectrochemical properties, owing to the energy band structure and large surface area. A maximum photocurrent density of 2 mA cm-2 is achieved for the ZnIn2S4 nanosheet/TiO2 nanowire composite film for a 6 h reaction time under white illumination. Moreover, the potential of the 304 stainless steel coupled with the composite film immediately shifts negatively to -1.17 V (vs. SCE), which is significantly lower than the corrosion potential (-0.201 V vs. SCE). Thus, the composite film offers a superior photocathodic protection for stainless steel against corrosion by a NaCl solution. This study provides a promising approach for the design and synthesis of composite films with enhanced photoelectrochemical performance.

  4. A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor.

    Science.gov (United States)

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-12-15

    Due to the intrinsic hole oxidation reaction occurred on the photoanode surface, currently developed photoelectrochemical biosensors suffer from the interference from coexisting reductive species (acting as electron donor) and a novel design strategy of photoelectrode for photoelectrochemical detection is urgently required. In this paper, a self-operating photocathode based on CdS quantum dots sensitized three-dimensional (3D) nanoporous NiO was designed and created, which showed highly selective and reversible response to dissolved oxygen (acting as electron acceptor) in the electrolyte solution. Using glucose oxidase (GOD) as a biocatalyst, a novel photoelectrochemical sensor for glucose was developed. The commonly encountered interferents such as H2O2, ascorbic acid (AA), cysteine (Cys), dopamine (DA), etc., almost had no effect for the cathodic photocurrent of the 3D NiO/CdS electrode, though these substances were proved to greatly influence the photocurrent of photoanodes, which indicated greatly improved selectivity of the method. The method was applied to detect glucose in real samples including serum and glucose injections with satisfactory results. This study could provide a new train of thought on designing of self-operating photocathode in photoelectrochemical sensing, promoting the application of semiconductor nanomaterials in photoelectrochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Monte-Carlo simulations of secondary electron emission from CsI, induced by 1-10 keV X-rays and electrons

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Breskin, A.; Chechik, R.

    1992-05-01

    A model for electron transport and emission in CsI is proposed. It is based on theoretically calculated microscopic cross-sections for electron interaction with the nuclear and the electronic components of the solid. A Monte Carlo program based on this model was developed to simulate secondary electron emission induced by X-rays and electrons in the energy range of 1 to 10 keV. The calculated secondary emission yields agree with existing experimental data. The model provides all necessary characteristics for the design of radiation detectors based on secondary electron emission. It can be expanded to higher incident energies and other alkali halides. (author)

  6. Exposing the faults

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1989-01-01

    UK NIREX, the body with responsibility for finding an acceptable strategy for deposition of radioactive waste has given the impression throughout its recent public consultation that the problem of nuclear waste is one of public and political acceptability, rather than one of a technical nature. However the results of the consultation process show that it has no mandate from the British public to develop a single, national, deep repository for the burial of radioactive waste. There is considerable opposition to this method of managing radioactive waste and suspicion of the claims by NIREX concerning the supposed integrity and safety of this deep burial option. This report gives substance to those suspicions and details the significant areas of uncertainty in the concept of effective geological containment of hazardous radioactive elements, which remain dangerous for tens of thousands of years. Because the science of geology is essentially retrospective rather than predictive, NIREX's plans for a single, national, deep 'repository' depend heavily upon a wide range of assumptions about the geological and hydrogeological regimes in certain areas of the UK. This report demonstrates that these assumptions are based on a limited understanding of UK geology and on unvalidated and simplistic theoretical models of geological processes, the performance of which can never be directly tested over the long time-scales involved. NIREX's proposals offer no guarantees for the safe and effective containment of radioactivity. They are deeply flawed. This report exposes the faults. (author)

  7. The exposed breast

    International Nuclear Information System (INIS)

    Ingman, Wendy

    2014-01-01

    The skin and lungs are two tissues that are frequently bombarded with cancer-initiating factors, such as ultraviolet rays from the sun and smoke and pollutants in the air we breathe. Yet breast cancer is the most common type of cancer in Australian women, affecting one in eight before the age of 85. It is more common than skin melanoma and lung cancer. Why, then, does the breast so commonly get cancer when it is not a tissue that is particularly exposed to the environmental agents that increase cancer risk in other major organs? Is there something unique about this tissue that makes it particularly susceptible? The breast undergoes cellular changes over the course of the monthly menstrual cycle, and and these changes affect cancer susceptibility. Rising levels of the hormones oestrogen and progesterone occur immediately after the egg is released from the ovary, and these hormones cause the breast cells to divide and change to accommodate further development if pregnancy occurs. If the woman becomes pregnant, the cells in the breast continue to develop and become the milk-producing structures required to feed a newborn baby. But if pregnancy does not occur there is a drop in progesterone, which triggers the death of the newly developed breast cells. This occurs at the same time women have their period. Then the cycle starts again, and continues every month until menopause, unless the woman becomes pregnant.

  8. To Think and Watch the Evil: The Turn of the Screw as Cultural Reference in Television from Dark Shadows to C.S.I.

    Directory of Open Access Journals (Sweden)

    Anna Viola Sborgi

    2012-07-01

    Full Text Available Since its first publication, Henry James’s The Turn of the Screw (1898 has always haunted the imagination of artists (Benjamin Britten, Jack Clayton, Amenábar and has been widely used as a source for television narratives (Dan Curtis, US TV version starring Colin Firth, Tim Fywell. In serial productions, James’s story has been the object of extensive quotation and allusion, from the 1960 gothic soap opera Dark Shadows to the C.S.I. episode Turn of the Screw (Season 4, Episode 21. A milestone in literary history, the story now embodies a set of cultural references conveying different, complex meanings, which can only be disclosed in the light of contemporary forms of representing reality. The novella appeals to two apparently opposite tendencies in contemporary television: the morbid display of the real (C.S.I. and the quest for the supernatural (Buffy The Vampire Slayer, among others. A line can be traced from Dark Shadows, the show that pioneered the genre, to contemporary horror soaps about vampires and supernatural phenomena. This paper shows the ways in which James’ sophisticated novella makes its way through popular culture, and how its constant ambiguous, dilemmatic interplay between reality and imagination can be related to the double-sided drive of the contemporary public towards hyper-reality and the supernatural.

  9. Law & Order, CSI, and NCIS: The Association Between Exposure to Crime Drama Franchises, Rape Myth Acceptance, and Sexual Consent Negotiation Among College Students.

    Science.gov (United States)

    Hust, Stacey J T; Marett, Emily Garrigues; Lei, Ming; Ren, Chunbo; Ran, Weina

    2015-01-01

    Previous research has identified that exposure to the crime drama genre lowers rape myth acceptance and increases sexual assault prevention behaviors such as bystander intervention. However, recent content analyses have revealed marked differences in the portrayal of sexual violence within the top three crime drama franchises. Using a survey of 313 college freshmen, this study explores the influence of exposure to the three most popular crime drama franchises: Law & Order, CSI, and NCIS. Findings indicate that exposure to the Law & Order franchise is associated with decreased rape myth acceptance and increased intentions to adhere to expressions of sexual consent and refuse unwanted sexual activity; whereas exposure to the CSI franchise is associated with decreased intentions to seek consent and decreased intentions to adhere to expressions of sexual consent. Exposure to the NCIS franchise was associated with decreased intentions to refuse unwanted sexual activity. These results indicate that exposure to the specific content of each crime drama franchise may have differential results on sexual consent negotiation behaviors.

  10. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  11. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  12. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  13. CSI-Chocolate Science Investigation and the Case of the Recipe Rip-Off: Using an Extended Problem-Based Scenario to Enhance High School Students' Science Engagement

    Science.gov (United States)

    Marle, Peter D.; Decker, Lisa; Taylor, Victoria; Fitzpatrick, Kathleen; Khaliqi, David; Owens, Janel E.; Henry, Renee M.

    2014-01-01

    This paper discusses a K-12/university collaboration in which students participated in a four-day scenario-based summer STEM (science, technology, engineering, and mathematics) camp aimed at making difficult scientific concepts salient. This scenario, Jumpstart STEM-CSI: Chocolate Science Investigation (JSCSI), used open- and guided-inquiry…

  14. Analysis of Laser Injection Condition and Electrical Properties in Local BSF for Laser Fired Contact c-Si Solar Cell Applications.

    Science.gov (United States)

    Park, Cheolmin; Choi, Gyuho; Balaji, Nagarajan; Ju, Minkyu; Lee, Youn-Jung; Lee, Haeseok; Yi, Junsin

    2018-07-01

    A crystalline silicon (c-Si) local-back-contact (LBC) solar cell for which a laser-condition-optimized surface-recombination velocity (SRV), a contact resistance (Rc), and local back surface fields (LBSFs) were utilized is reported. The effect of the laser condition on the rear-side electrical properties of the laser-fired LBC solar cell was studied. The Nd:YAG-laser (1064-nm wavelength) power and frequency were varied to obtain LBSF values with a lower contact resistance. A 10-kHz laser power of 44 mW resulted in an Rc of 0.125 ohms with an LBSF thickness of 2.09 μm and a higher open-circuit voltage (VOC) of 642 mV.

  15. CONTAIN code calculations of the effects on the source term of CsI to I2 conversion due to severe hydrogen burns

    International Nuclear Information System (INIS)

    Valdez, G.D.

    1986-10-01

    Preliminary experiments have been conducted at Sandia National Laboratories simulating degraded-core accidents. One notable result of these preliminary tests is the observation of the conversion of cesium iodide (CsI) to its elemental form (I 2 ) following a hydrogen burn. To evaluate some of the implications of the iodide conversion for the source term, computational simulations of the Surry TML and TMLB' accident sequences using experimental data on near-stoichiometric burns were conducted with the CONTAIN code. CONTAIN is the NRC's general-purpose computer code for modeling containment response to a severe accident. The results provide qualitative insights on a few of the more important sensitivities of the source term to the form of radioactive iodine in containment, and can be used to guide further experimental and theoretical developments in assessing the consequences of iodide conversion

  16. The effect of different exposed facets on the photoelectrocatalytic degradation of o-chlorophenol using p-type Cu2O crystals

    International Nuclear Information System (INIS)

    Sang, Wenjing; Zhang, Gong; Lan, Huachun; An, Xiaoqiang; Liu, Huijuan

    2017-01-01

    Although it is known that the efficacy of photoelectrocatalysts is enhanced by increasing the amount of high energy surface exposed, the development of a universal synthesis method with both superior activity and simplicity is needed for scalable applications. We herein controllably fabricated cuprous oxide (Cu 2 O) micro crystals with different morphologies, evolving from cubes, cuboctahedra, truncated octahedra and finally to octahedra on indium tin oxide (ITO) glass substrates, by a facile electrochemical deposition method. The structures of facet-engineered Cu 2 O samples and the underlying mechanism for the morphology evolution were investigated. The separation of photogenerated hole-electron pairs on Cu 2 O crystals with different exposed facets was characterized by measuring the photocurrent densities with chopped illumination, which increased with the increased concentrations of PVP: the octahedral Cu 2 O crystals, with the highest proportion of {111} facets exposed, exhibited the lowest electro-hole recombination in contrast to the cubes, cuboctahedra, and truncated octahedra, respectively. The photoelectrocatalytic degradation efficiency of the o-chlorophenol (2-CP) pollutant under sunlight irradiation with Cu 2 O-coated photocathode was further investigated to reveal the effect of different exposed facets. Due to the increased number of surface active sites available for degradation reactions, the octahedral Cu 2 O microcrystals presented higher photoelectrocatalytic activity compared to other shapes. Active oxygen species detected by electron spin-resonance (ESR) spectrometry implied that abundant superoxide radicals (O 2 ●− ) were the dominant active radicals in the degradation.

  17. SU-E-T-369: Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in CSI of Pediatric Patients

    Energy Technology Data Exchange (ETDEWEB)

    Seco, J; Giantsoudi, D; Eaton, BR; Adams, JA; Paganetti, H; MacDonald, S [Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To investigate the trade-off between vertebral column sparing and thecal-sac target coverage in craniospinal irradiation (CSI) of pediatric patients treated with passive-scattering (PS) and intensity modulated (IMPT) proton therapy. Methods: We selected 2 pediatric patients treated with PS CSI for medulloblastoma. Spinal irradiation was re-planned with IMPT. For all cases, we assumed prescription dose of 23.4 Gy(RBE), with the spinal canal receiving at least 95% of 23.4 Gy(RBE). PS planning was performed using the commercial system XiO. IMPT planning was done using the Astroid planning system. Beam arrangements consisted of (a) PS posterior-anterior (PA) field, PS-PA, (b) IMPT PA field, IMPT-PA, and (c) two posterior oblique IMPT fields, IMPT2 (-35°, 35°). Dose distributions were re-calculated using TOPAS Monte Carlo, along with LET distributions, to investigate LET variations within the target and vertebra anatomy. Variable RBE-weighed dose distributions were also calculated based on a dose and LET-dependent biophysical model. Dosimetric data were compared among the plans for the target volume, spinal cord and adjacent critical organs (thecal-sac and cauda equina). Results: IMPT2 resulted in better sparing of the posterior vertebral column (entrance region posterior to thecal-sac), where planned dose was approximately 6–8Gy(RBE). For IMPT-PA and PS-PA the MC-calculated dose to the posterior vertebral column was, on average, 20Gy and 18Gy respectively. For IMPT2 higher mean-LET (5keV/µm/(g/cm3)) values were observed in anterior vertebral column (beyond the thecal-sac) relative to IMPT-PA and PS-PA, where mean-LET was 3.5keV/µm/(g/cm3) and 2.5keV/µm/(g/cm3) respectively. The higher LET region observed for both IMPT plans was in the distal end of treatment fields, where dose delivered was less 5Gy(RBE). Conclusion: The two-oblique proton beams IMPT2 best spared the spinal column, while reducing the dose to the posterior spinal column from 18–20 to 6

  18. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    Energy Technology Data Exchange (ETDEWEB)

    Haenel, Marc

    2010-07-15

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs{sub 2}Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  19. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    International Nuclear Information System (INIS)

    Haenel, Marc

    2010-06-01

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs 2 Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  20. The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and RbI, CsI, and DTAB aqueous solutions at 303.15 K.

    Science.gov (United States)

    Singh, Man; Chand, Hema; Gupta, K C

    2005-06-01

    Density (rho), apparent molar volume (V(phi)), and viscosity (eta) of 0.0010 to 0.0018% (w/v) of bovine serum albumin (BSA), egg albumin, and lysozyme in 0.0002, 0.0004, and 0.0008 M aqueous RbI and CsI, and (dodecyl)(trimethyl)ammonium bromide (DTAB) solutions were obtained. The experimental data were regressed against composition, and constants are used to elucidate the conformational changes in protein molecules. With salt concentration, the density of proteins is found to decrease, and the order of the effect of additives on density is observed as CsI > RbI > DTAB. The trend of apparent molar volume of proteins is found as BSA > egg-albumin > lysozyme for three additives. In general, eta values of BSA remain higher for all compositions of RbI than that of egg-albumin for CsI and DTAB. These orders of the data indicate the strength of intermolecular forces between proteins and salts, and are helpful for understanding the denaturation of proteins.

  1. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  2. GeS2-In2S3-CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

    Science.gov (United States)

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-11-01

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2-25In2S3-10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm3+, Er3+, and Dy3+ ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions.

  3. Electrical transport mechanisms in p{sup +} a-SiC:H/n c-Si heterojunctions: Dark J-V-T characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cleef, M.W.M. van; Philippens, M.W.H.; Rubinelli, F.A.; Schropp, R.E.I. [Utrecht Univ. (Netherlands); Kolter, M. [Forschungzentrum Juelich (Germany)

    1996-12-31

    In the present paper the authors show results of dark current-voltage measurements performed on p{sup +} a-SiC:H/n c-Si heterojunction diodes at various temperatures (100--400K). They investigated the voltage derivative of these J-V curves in order to distinguish possible current transport mechanisms. It was found that for low temperatures (<300K), the current is determined by recombination of carriers in the crystalline silicon, whereas at high temperature (>300K), by a tunneling mechanism. At room temperature, both mechanisms contribute to the current. By using an equivalent circuit model and detailed numerical simulations the authors have interpreted their experimental characteristics. The simulations done at room temperature, show that at low forward bias voltage the current is controlled by recombination in the crystalline silicon and that at high forward bias voltage by a combination of multi-step tunneling and a-SiC:H series resistance. For interface state densities equal to or higher than 10{sup 12} cm{sup {minus}2}, the recombination was found to be dominated by the states at the amorphous-crystalline silicon interface.

  4. Promotion by Cs(I) and poisoning by T1(I) of the Cu/ZnO catalysts for methanol synthesis and the water gas shift reaction

    International Nuclear Information System (INIS)

    Bybell, D.G.; Deutsch, P.P.; Herman, R.G.; Himelfarb, P.B.; Nunan, J.C.; Young, C.W.; Bogdan, C.E.; Simmons, C.W.; Klier, K.

    1986-01-01

    In the present work, the effects of univalent thallium, the solution chemistry of which is in many respects identical to that of the heavy alkali Rb and Cs ions (6), utilized as a dopant in the Cu/ZnO catalyst has been investigated. However, it is noted that the high temperature chemistry of T1(I) is more complex than that of the alkali ions in that the counter ions of the T1(I) ion decompose more easily than those of the alkali ions and that T1(I) can be oxidized to T1(III) under certain conditions. They present evidence that the effects of the T1(I) dopant on the Cu/ZnO catalysts, in surface concentrations comparable to those of the most effective Cs(I) promoter, on both methanol synthesis and the WGS reaction, are diametrically opposite to those of the alkali metal ions. In deed, the T1(I) ions behave rather as nearly inert additives for the WGS reaction, as a mild poison for methanol synthesis in the absence of H 2 O or CO 2 in the synthesis gas, and as a severe poison for methanol synthesis in a ternary H 2 O/CO/H 2 synthesis gas. The analysis of the results indicates that the hydrogen activating sites are poisoned by the thallium ions

  5. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples

    International Nuclear Information System (INIS)

    Baccouche, S.; Al-Azmi, D.; Karunakara, N.; Trabelsi, A.

    2012-01-01

    Gamma-ray measurements in terrestrial/environmental samples require the use of high efficient detectors because of the low level of the radionuclide activity concentrations in the samples; thus scintillators are suitable for this purpose. Two scintillation detectors were studied in this work; CsI(Tl) and NaI(Tl) with identical size for measurement of terrestrial samples for performance study. This work describes a Monte Carlo method for making the full-energy efficiency calibration curves for both detectors using gamma-ray energies associated with the decay of naturally occurring radionuclides 137 Cs (661 keV), 40 K (1460 keV), 238 U ( 214 Bi, 1764 keV) and 232 Th ( 208 Tl, 2614 keV), which are found in terrestrial samples. The magnitude of the coincidence summing effect occurring for the 2614 keV emission of 208 Tl is assessed by simulation. The method provides an efficient tool to make the full-energy efficiency calibration curve for scintillation detectors for any samples geometry and volume in order to determine accurate activity concentrations in terrestrial samples. - Highlights: ► CsI (Tl) and NaI (Tl) detectors were studied for the measurement of terrestrial samples. ► Monte Carlo method was used for efficiency calibration using natural gamma emitting terrestrial radionuclides. ► The coincidence summing effect occurring for the 2614 keV emission of 208 Tl is assessed by simulation.

  6. Sisters Hope - the exposed self

    DEFF Research Database (Denmark)

    Lawaetz, Anna; Hallberg, Gry Worre

    can we create a ‘learning space’ or a ‘research lab’, where the participants are inspired to approach their project in a new way with the outset in bodily and somatic experiences within the space? And how can we understand and distinguish what we understand to be the exposed self and the poetic self…......’ and the establishment of fictional spaces outside the institutional art context. In the Unfolding Academia-context Sisters Hope investigates new forms of research and (re)presentation through the creation of interactive and affective learning-spaces. At Collective Futures Sisters Hope explored questions such as: How...

  7. Surface Texture-Induced Enhancement of Optical and Photoelectrochemical Activity of Cu2ZnSnS4 Photocathodes

    Science.gov (United States)

    Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan

    2017-08-01

    The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.

  8. Enhancing the performances of P3HT:PCBM – MoS3 based H2-evolving photocathodes with interfacial layers

    Science.gov (United States)

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Cornut, Renaud; Artero, Vincent; Jousselme, Bruno

    2015-01-01

    Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner, as they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photo-electrochemical cells, we combined a noble metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly-(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al\\Ti interfacial layers led to an increase of the photocurrent up to 8 mA cm−2 at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the HER onset potential, a value close to the open circuit potential of the P3HT:PCBM solar cell. A 50 nm thick C60 layer also works as interfacial layer, with current density reaching 1 mA cm−2 at RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a non-photoactive electrode with identical catalyst as dark electrode, respectively. They provide different information especially for the differentiation of the role of the photogenerating layer and the role of the catalyst. Best results were obtained with the Al\\Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64 % and 2.05 % respectively. PMID:26151685

  9. Adaptive shaping system for both spatial and temporal profiles of a highly stabilized UV laser light source for a photocathode RF gun

    Science.gov (United States)

    Tomizawa, H.; Dewa, H.; Taniuchi, T.; Mizuno, A.; Asaka, T.; Yanagida, K.; Suzuki, S.; Kobayashi, T.; Hanaki, H.; Matsui, F.

    2006-02-01

    We have been developing a stable and highly qualified ultraviolet (UV) laser pulse as a light source of an RF gun for an injector candidate of future light sources. Our gun cavity is a single-cell pillbox, and the copper inner wall is used as a photocathode. The chirped pulse amplification (CPA) Ti:sapphire laser system is operated at a repetition rate of 10 Hz. At the third harmonic generation (central wavelength—263 nm), the laser pulse energy after a 45 cm silica rod is up to 850 μJ/pulse. In its present status, the laser's pulse energy stability has been improved down to 0.2˜0.3% at the fundamental, and 0.7-1.4% (rms; 10 pps; 33,818 shots) at the third harmonic generation, respectively. This stability has been held for 1 month continuously, 24 h a day. The improvements we had passively implemented were to stabilize the laser system as well as the environmental conditions. We introduced a humidity-control system kept at 50-60% in a clean room to reduce damage to the optics. In addition, we prepared a deformable mirror for spatial shaping and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying both the adaptive optics to automatic optimization of the electron beam bunch to produce lower emittance with the feedback routine. Before the improvements, the electron beam produced from a cathode suffered inhomogeneous distribution caused by the quantum efficiency effect, and some pulse distortions caused by its response time. However, we can now freely form any arbitrary electron beam distribution on the surface of the cathode.

  10. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later

  11. MRI and 2D-CSI MR spectroscopy of the brain in the evaluation of patients with acute onset of neuropsychiatric systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Sundgren, P.C.; Jennings, J.; Gebarski, S.; Pang, Y.; Maly, P.; Attwood, J.T.; McCune, W.J.; Nan, B.

    2005-01-01

    MRI and 2D-CSI spectroscopy were performed in eight patients with systemic lupus erythematosus who presented with acute onset of neuropsychiatric lupus (NP-SLE), and in seven normal controls to evaluate for differences in metabolic peaks and metabolic ratios between the two groups. Also, the interval change of the metabolic peaks and their ratios during treatment in the NP-SLE patient group was evaluated. Metabolic peaks for N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and lactate/lipids (LL) and their ratios (NAA/Cr, NAA/Cho, Cho/Cr, LL/Cr) were determined at initial presentation and 3 and 6 months later. In the eight lupus patients compared to the seven normal controls, NAA/Cho ratios were lower at presentation (1.05 vs 1.25; p = 0.004) and decreased even further at the three month follow-up (0.92 vs 1.05; p = 0.008). In contrast, both Cho/Cr (1.42 vs 1.26; p = 0.026) and LL/Cr ratios (0.26 vs 0.19; p = 0.002) were higher in the lupus patients at presentation compared to the controls and did not significantly change at three and six months follow-up. The NAA/Cr ratios were lower in the lupus patients compared to the controls at presentation but the difference was not statistically significant. However, the mean NAA/Cr significantly decreased from the initial examination to the three month follow-up (1.42 vs 1.32; p = 0.049) but did not significantly change from the three to the six month follow-up examinations. The NAA/Cr, Cho/Cr, and NAA/Cho ratios varied significantly (p < 0.05, p < 0.05, p < 0.05, respectively) between the 17 different locations measured in the brain in all eight patients and seven controls. Both the NAA/Cr ratios and the Cho/Cr ratios were also significantly lower in the gray matter than in the white matter (p < 0.0001) in both patients and controls, whereas the LL/Cr and NAA/Cho ratios were not significantly different. In conclusion, 2D-CSI MR spectroscopy may be useful in the early detection of metabolic CNS changes in NP

  12. Parametric study of the sorption of Cs(I) and Sr(II) on mixture of bentonite and magnetite using SCM + IEXM

    International Nuclear Information System (INIS)

    Filipska, H.; Stamberg, K.

    2005-01-01

    Full text of publication follows: The behaviour and subsequent fate of released radionuclides in bentonite barrier surrounding the degraded canister is influenced mainly by sorption. We studied sorption processes in such system experimentally and we modelled and simulated them using surface-complexation (SCM) and ion exchange (IExM) models. Our experimental system consisted of: (1) synthetic granitic water with a given ionic strength (0.1 or 0.01 NaNO 3 ), (2) radionuclides studied (10 -6 mol/l CsCl or SrCl 2 .6H 2 O spiked with 137 Cs or 85 Sr), (3) bentonite pre-treated with the aim to remove carbonates, and magnetite as a representative of corrosion products of steel canister. The alkali-metric and acidimetric titrations under exclusion of CO 2 and the percentage of sorption as a function of pH under oxic conditions at room temperature for bentonite, magnetite and their mixtures under different conditions were determined. The resulting data were modelled and appropriate mathematical description was found: SCM non-electrostatic so called Chemical Model (CEM) for the description of sorption on edge sites and ion exchange model (IExM) for sorption on layer sites. Component Additivity Approach (CA) composed of weighted combination of models describing sorption on bentonite and magnetite was verified. In the course of evaluation procedures, the protonation constants, total concentrations of edge sites and layer sites, cation exchange constants and sorption constants for present Cs and Sr forms were obtained by fitting corresponding experimental data. Consequently, CEM+IExM models and the calculated model parameters were used for predictive (simulation) calculations and parametric study of the sorption of Cs(I) and Sr(II) on bentonite, magnetite and their mixtures. The parametric study covered the influence of pH, solid to liquid ratio, bentonite to magnetite ratio, initial concentrations of Cs and Sr, pCO 2 and ionic strength on the values of selectivity coefficients

  13. Advances in treating exposed fractures

    Directory of Open Access Journals (Sweden)

    Pedro Nogueira Giglio

    2015-04-01

    Full Text Available The management of exposed fractures has been discussed since ancient times and remains of great interest to present-day orthopedics and traumatology. These injuries are still a challenge. Infection and nonunion are feared complications. Aspects of the diagnosis, classification and initial management are discussed here. Early administration of antibiotics, surgical cleaning and meticulous debridement are essential. The systemic conditions of patients with multiple trauma and the local conditions of the limb affected need to be taken into consideration. Early skeletal stabilization is necessary. Definitive fixation should be considered when possible and provisional fixation methods should be used when necessary. Early closure should be the aim, and flaps can be used for this purpose.

  14. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Idealized data are derived for the tensile strength of quenched and tempered prestressing steel and of quenched and self-tempered reinforcing bars for fire safety design. 0.2% stresses are derived as a function of the maximum temperature and in addition, 2.0% stresses are provided. A strain of 2.......0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire....... The COLD condition is relevant for analyses of residual load bearing capacity of a structure after a fire exposure. It is also relevant for analyses of concrete structures exposed to fully developed fire courses. The reason is that compression zones of concrete are always the weakest in the cooling phase...

  15. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  16. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    International Nuclear Information System (INIS)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs

  17. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  18. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Baccouche, S., E-mail: souad.baccouche@cnstn.rnrt.tn [UR-MDTN, National Center for Nuclear Sciences and Technology, Technopole Sidi Thabet, 2020 Sidi Thabet (Tunisia); Al-Azmi, D., E-mail: ds.alazmi@paaet.edu.kw [Department of Applied Sciences, College of Technological Studies, Public Authority for Applied Education and Training, Shuwaikh, P.O. Box 42325, Code 70654 (Kuwait); Karunakara, N., E-mail: karunakara_n@yahoo.com [University Science Instrumentation Centre, Mangalore University, Mangalagangotri 574199 (India); Trabelsi, A., E-mail: adel.trabelsi@fst.rnu.tn [UR-MDTN, National Center for Nuclear Sciences and Technology, Technopole Sidi Thabet, 2020 Sidi Thabet (Tunisia); UR-UPNHE, Faculty of Sciences of Tunis, El-Manar University, 2092 Tunis (Tunisia)

    2012-01-15

    Gamma-ray measurements in terrestrial/environmental samples require the use of high efficient detectors because of the low level of the radionuclide activity concentrations in the samples; thus scintillators are suitable for this purpose. Two scintillation detectors were studied in this work; CsI(Tl) and NaI(Tl) with identical size for measurement of terrestrial samples for performance study. This work describes a Monte Carlo method for making the full-energy efficiency calibration curves for both detectors using gamma-ray energies associated with the decay of naturally occurring radionuclides {sup 137}Cs (661 keV), {sup 40}K (1460 keV), {sup 238}U ({sup 214}Bi, 1764 keV) and {sup 232}Th ({sup 208}Tl, 2614 keV), which are found in terrestrial samples. The magnitude of the coincidence summing effect occurring for the 2614 keV emission of {sup 208}Tl is assessed by simulation. The method provides an efficient tool to make the full-energy efficiency calibration curve for scintillation detectors for any samples geometry and volume in order to determine accurate activity concentrations in terrestrial samples. - Highlights: Black-Right-Pointing-Pointer CsI (Tl) and NaI (Tl) detectors were studied for the measurement of terrestrial samples. Black-Right-Pointing-Pointer Monte Carlo method was used for efficiency calibration using natural gamma emitting terrestrial radionuclides. Black-Right-Pointing-Pointer The coincidence summing effect occurring for the 2614 keV emission of {sup 208}Tl is assessed by simulation.

  19. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.

    Science.gov (United States)

    Jiang, Feng; Gunawan; Harada, Takashi; Kuang, Yongbo; Minegishi, Tsutomu; Domen, Kazunari; Ikeda, Shigeru

    2015-10-28

    An electrodeposited Cu2ZnSnS4 (CZTS) compact thin film modified with an In2S3/CdS double layer and Pt deposits (Pt/In2S3/CdS/CZTS) was used as a photocathode for water splitting of hydrogen production under simulated sunlight (AM 1.5G) radiation. Compared to platinized electrodes based on a bare CZTS film (Pt/CZTS) and a CZTS film modified with a CdS single layer (Pt/CdS/CZTS), the Pt/In2S3/CdS/CZTS electrode exhibited a significantly high cathodic photocurrent. Moreover, the coverage of the In2S3 layer was found to be effective for stabilization against degradation induced by photocorrosion of the CdS layer. Bias-free water splitting with a power conversion efficiency of 0.28% was achieved by using a simple two-electrode cell consisting of the Pt/In2S3/CdS/CZTS photocathode and a BiVO4 photoanode.

  20. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs in Tunisia and Algeria

    Directory of Open Access Journals (Sweden)

    Djamel Athmania

    2014-05-01

    Full Text Available Digital Elevation Models (DEMs including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available for nearly the entire earth’s surface. DEMs that are usually subject to errors need to be evaluated using reference elevation data of higher accuracy. This work was performed to assess the vertical accuracy of the ASTER GDEM version 2, (ASTER GDEM2, the Consultative Group on International Agriculture Research-Consortium for Spatial Information (CGIAR-CSI SRTM version 4.1 (SRTM v4.1 and the systematic subsample GMTED2010, at their original spatial resolution, using Global Navigation Satellite Systems (GNSS validation points. Two test sites, the Anaguid Saharan platform in southern Tunisia and the Tebessa basin in north eastern Algeria, were chosen for accuracy assessment of the above mentioned DEMs, based on geostatistical and statistical measurements. Within the geostatistical approach, empirical variograms of each DEM were compared with those of the GPS validation points. Statistical measures were computed from the elevation differences between the DEM pixel value and the corresponding GPS point. For each DEM, a Root Mean Square Error (RMSE was determined for model validation. In addition, statistical tools such as frequency histograms and Q-Q plots were used to evaluate error distributions in each DEM. The results indicate that the vertical accuracy of SRTM model is much higher than ASTER GDEM2 and GMTED2010 for both sites. In Anaguid test site, the vertical accuracy of SRTM is estimated 3.6 m (in terms of RMSE 5.3 m and 4.5 m for the ASTERGDEM2 and GMTED2010 DEMs, respectively. In Tebessa test site, the overall vertical accuracy shows a RMSE of 9.8 m, 8.3 m and 9.6 m for ASTER GDEM 2, SRTM and GMTED2010 DEM, respectively. This work is the first study to report the

  1. CSI ook in de Plantenwereld

    NARCIS (Netherlands)

    Bonants, P.J.M.; Lee, van der T.A.J.

    2011-01-01

    In de land- en tuinbouw heeft de ontwikkeling van (moleculaire) detectiemethoden van plantenpathogenen de laatste jaren een hoge vlucht genomen. Inmiddels worden deze methoden al grootschalig toegepast in de praktijk. Werd in het begin alleen conventionele polymerase chain reaction (PCR) ingezet

  2. Analog floating-point BiCMOS sampling chip and architecture of the BaBar CsI calorimeter front-end electronics system at the SLAC B-Factory

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.M.; Freytag, D.R. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center

    1996-06-01

    The design and implementation of an analog floating-point sampling integrated circuit for the BaBar detector at the SLAC B-Factory is described. The CARE (Custom Auto-Range Encoding) circuit is part of an 18-bit dynamic range sampling system with a 4-MHz waveform digitization rate for the CsI calorimeter. The architecture and methodology of the system are described. The CARE integrated circuit receives dual-range (gain of 1 and 32) 13-bit signals from the 18-bit range preamplifiers mounted directly on the CsI crystals and converts the input at a rate of 4 MHz to an auto-range floating-point format with a 10-bit analog mantissa and 2 digital range bits (for 4 ranges). Additional functions integrated on the chip are averaging and selection circuitry for signals originating from two independent diodes per crystal and range-selection overwrite circuitry. The circuit will be mounted within the detector structure and thus low power dissipation is essential. The circuit has been fabricated in a 1.2 {micro}m BiCMOS process with polysilicon-to-polysilicon capacitors and polysilicon resistors. Measurement results are presented. One complete CARE channel dissipates 25 mW.

  3. Leukemias in the progeny of exposed parents

    International Nuclear Information System (INIS)

    Kosenko, M.M.; Gudkova, N.V.

    1996-01-01

    The purpose of this study was to assess the incidence of leukemias among the progeny of exposed parents. The parents were exposed as a result of discharge of radioactive waste from the Mayak atomic plant into the Techa river in the Southern Urals. The doses per parents gonads, ranging from 0.035 to 1.27 Sv, were due to external exposure in 1950-1956 and to incorporation of Cs-137. Nine cases with leukemia and four with lympohoma were recorded in 13.500 antenatally exposed subjects and descendants of exposed parents over the period of 1950 to 1988. The leukemia morbidity index for the progeny of exposed parents was 2.51, which virtually not statistically differ from that in control group. Refs. 7, figs. 3, tabs. 3

  4. 3 EXPOSE Missions - overview and lessons learned

    Science.gov (United States)

    Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.

    2011-10-01

    The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook

  5. Eryptosis in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Dorado, Itzel-Citlalli [Biochemistry Department, Centro de Investigación y Estudios Avanzados IPN, México, DF (Mexico); Hernández, Gerardo [Section of Methodology of Science, Centro de Investigación y Estudios Avanzados IPN, México, DF (Mexico); Quintanar-Escorza, Martha-Angelica [Faculty of Medicine, UJED, Durango, DGO (Mexico); Maldonado-Vega, María [CIATEC, León, GTO (Mexico); Rosas-Flores, Margarita [Biochemistry Department, Centro de Investigación y Estudios Avanzados IPN, México, DF (Mexico); Calderón-Salinas, José-Víctor, E-mail: jcalder@cinvestav.mx [Biochemistry Department, Centro de Investigación y Estudios Avanzados IPN, México, DF (Mexico)

    2014-12-01

    Eryptosis is a physiological phenomenon in which old and damaged erythrocytes are removed from circulation. Erythrocytes incubated with lead have exhibited major eryptosis. In the present work we found evidence of high levels of eryptosis in lead exposed workers possibly via oxidation. Blood samples were taken from 40 male workers exposed to lead (mean blood lead concentration 64.8 μg/dl) and non-exposed workers (4.2 μg/dl). The exposure to lead produced an intoxication characterized by 88.3% less δ-aminolevulinic acid dehydratase (δALAD) activity in lead exposed workers with respect to non-lead exposed workers. An increment of oxidation in lead exposed workers was characterized by 2.4 times higher thiobarbituric acid-reactive substance (TBARS) concentration and 32.8% lower reduced/oxidized glutathione (GSH/GSSG) ratio. Oxidative stress in erythrocytes of lead exposed workers is expressed in 192% higher free calcium concentration [Ca{sup 2+}]{sub i} and 1.6 times higher μ-calpain activity with respect to non-lead exposed workers. The adenosine triphosphate (ATP) concentration was not significantly different between the two worker groups. No externalization of phosphatidylserine (PS) was found in non-lead exposed workers (< 0.1%), but lead exposed workers showed 2.82% externalization. Lead intoxication induces eryptosis possibly through a molecular pathway that includes oxidation, depletion of reduced glutathione (GSH), increment of [Ca{sup 2+}], μ-calpain activation and externalization of PS in erythrocytes. Identifying molecular signals that induce eryptosis in lead intoxication is necessary to understand its physiopathology and chronic complications. - Graphical abstract: Fig. 1. (A) Blood lead concentration (PbB) and (B) phosphatidylserine externalization on erythrocyte membranes of non-lead exposed (□) and lead exposed workers (■). Values are mean ± SD. *Significantly different (P < 0.001). - Highlights: • Erythrocytes of lead exposed workers

  6. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  7. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  8. The properties degradation of exposed GFRP roof

    Science.gov (United States)

    Zainudin, Mohammad; Diharjo, Kuncoro; Kaavessina, Mujtahid; Setyanto, Djoko

    2018-02-01

    There is much consideration of roof selection as a protector of a building against the outside weather, such as lightweight, strong stiff, corrosion resistant and guarantee for the availability of products. Based on these considerations, glass fiber reinforced polymer (GFRP) roof is a roof which can fulfill the requirement. The objective of this research is to investigate the degradation of physical and mechanical properties of GFRP roof exposed in outside weather. This GFRP roof composite was produced using a sheet molding compound (SMC) supplied by PT Intec Persada, Tangerang, Indonesia. There are two kinds GFRP roofs evaluated in this research that are GFRP roof exposed within 7 years and new GFRP roof that has not been exposed. The GFRP roofs were cut manually for preparing the specimens for hardness test, tensile test, SEM and FTIR test. The results show that the GFRP roof exposed within 7 years had the degradation of properties compared to the new GFRP roof. The exposed GFRP roof had lower strength and hardness compared to the new GFRP roof. The SEM observation indicates that exposed GFRP roof had the debonding of fiber on the surface, and in contrast, there are no debonding of fiber in the new GFRP roof surface. It can be recommended that the exposed GFRP roof may be repaired to enhance its performance and can re-increase its properties using the coating.

  9. Advanced Code for Photocathode Design

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Jensen, Kevin [Naval Research Lab. (NRL), Washington, DC (United States); Montgomery, Eric [Univ. of Maryland, College Park, MD (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2015-12-15

    The Phase I activity demonstrated that PhotoQE could be upgraded and modified to allow input using a graphical user interface. Specific calls to platform-dependent (e.g. IMSL) function calls were removed, and Fortran77 components were rewritten for Fortran95 compliance. The subroutines, specifically the common block structures and shared data parameters, were reworked to allow the GUI to update material parameter data, and the system was targeted for desktop personal computer operation. The new structures overcomes the previous rigid and unmodifiable library structures by implementing new, materials library data sets and repositioning the library values to external files. Material data may originate from published literature or experimental measurements. Further optimization and restructuring would allow custom and specific emission models for beam codes that rely on parameterized photoemission algorithms. These would be based on simplified and parametric representations updated and extended from previous versions (e.g., Modified Fowler-Dubridge, Modified Three-Step, etc.).

  10. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  11. Helping Children Exposed to Domestic Violence

    Science.gov (United States)

    ... rebellious or oppositional behavior Declining grades Social withdrawal Depression or anxiety Loss of interest in school, friends or other things they enjoyed in the past Children and adolescents exposed to domestic violence should be evaluated by ...

  12. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  13. The astrobiological mission EXPOSE-R on board of the International Space Station

    Science.gov (United States)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan

    2015-01-01

    EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.

  14. De una sociología de la mediación a una pragmática de las vinculaciones. Retrospectiva de un recorrido sociológico dentro del CSI

    Directory of Open Access Journals (Sweden)

    Antoine Hennion

    2017-08-01

    Full Text Available Este artículo enfoca sobre un retorno reflexivo en mi propia trayectoria en el CSI. Mi propósito no es fijar la historia sino releerla desde las preocupaciones presentes. Desde su fundación por L. Karpik en 1967, el CSI abogó por tomar seriamente las realidades que estaba investigando (derecho, ciencia y tecnología, negocios, cultura. Bajo el título de un posible “retorno al objeto” en sociología, discuto convergencias y diferencias en el trabajo de campo emprendido, por un lado, sobre la ciencia y tecnología (STS, y por el otro sobre la cultura: por ejemplo, el uso de términos como traducción o mediación, o la relación diferente con la sociología crítica de Bourdieu, que no tuvo el mismo impacto en cada campo. Luego considero la emergencia de los enfoques pragmatistas en Francia en los años noventa y la gran variedad de concepciones a las que dieron lugar, en particular a través de debates con grupos cercanos como el GSPM y el CEMS en la EHESS de Paris, sobre el estatuto de los objetos, y examinando la influencia de las teorías de la acción provenientes de Estados Unidos. Apoyándome en esta genealogía, muestro cómo las aseveraciones del pragmatismo han informado mi propio trabajo con los aficionados y las vinculaciones, y discute en definitiva la importancia para la sociología de volverse más sensible respecto a los objetos de los que se ocupa.

  15. Rabies vaccination status among occupationally exposed humans ...

    African Journals Online (AJOL)

    Rabies virus, a bullet-shaped enveloped negative sense single stranded RNA virus, often carries death sentence once clinical manifestations commenced in humans and animals. Pre- and post-exposure vaccinations against the virus have long been in existence to protect humans, especially occupationally exposed such ...

  16. Flexural buckling of fire exposed aluminium columns

    NARCIS (Netherlands)

    Maljaars, J.; Twilt, L.; Soetens, F.

    2009-01-01

    In order to study buckling of fire exposed aluminium columns, a finite element model is developed. The results of this model are verified with experiments. Based on a parametric study with the finite element model, it is concluded that the simple calculation model for flexural buckling of fire

  17. Reproductive Characteristics of Abyssinian Jennies Exposed to ...

    African Journals Online (AJOL)

    The aim of the study was to describe the intraspecies and interspecies sexual interactions and reproductive features Abyssinian type jennies exposed to jackasses and stallions. Twenty post-pubertal jennies, 3 jackasses and 4 stallions were used in the study. Jennies were divided in to two groups of ten each (stallion group ...

  18. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  19. [How to expose fraudulent expert witnesses].

    Science.gov (United States)

    Wimmer, W

    1990-01-01

    In our courtrooms you can meet, up to this day, experts of dubious qualities if not mere shams and deceivers. They are found in all sciences, but also in pseudo-sciences as paramedicine and parapsychology. In any case such expert pretenders must be exposed by the judge to prevent dangerous miscarriage of justice. Examples are given how to unmask the fraudulent rascals.

  20. Uniform Protection for Multi-exposed Targets

    DEFF Research Database (Denmark)

    Vigo, Roberto; Nielson, Flemming; Nielson, Hanne Riis

    2014-01-01

    the Quality Calculus that computes the combinations of data required to reach a program point and relates them to a notion of cost. In this way, we can compare the security deployed on different paths that expose the same resource. The analysis is formalised in terms of flow logic, and is implemented...... as an optimisation problem encoded into Satisfiability Modulo Theories, allowing us to deal with complex cost structures. The usefulness of the approach is demonstrated on the study of password recovery systems....

  1. Effects of Pesticides on Occupationally Exposed Humans

    OpenAIRE

    Piperakis, Stylianos M.; Kontogianni, Konstantina; Piperakis, Michael M.; Marcos, Ricardo; Tsilimigaki, Smaragdi

    2006-01-01

    Pesticides are known to contain numerous genotoxic compounds; however, genotoxicity biomonitoring studies of workers occupationally exposed to pesticides have produced variable results. In this study, we employed the Comet assay to examine DNA damage in peripheral blood lymphocytes (PBLs) from 64 greenhouse workers from Almería in south-eastern Spain in comparison to PBLs from 50 men from the same area but not engaged in any agricultural work. The results indicated that there were no differen...

  2. O índice de sustentabilidade empresarial (ISE e os impactos no endividamento e na percepção de risco The corporate sustainability index (CSI and the impacts on indebtedness and risk perception

    Directory of Open Access Journals (Sweden)

    Evimael Alves Teixeira

    2011-04-01

    Full Text Available Este estudo investigou se a forma de financiamento das empresas é afetada pela participação das firmas no Índice de Sustentabilidade Empresarial (ISE. Como objetivo complementar, foi analisada a relação entre o ISE e o risco. A fundamentação partiu da teoria da sinalização que apresenta possíveis soluções para mitigar problemas de adverse selection causados pela assimetria de informações e usada no caso de haver necessidade de tomada de decisões sobre investimentos em ambientes de incerteza. Foi utilizado um Experimento Natural, a partir de uma amostra de 378 empresas, divididas em dois grupos: um de tratamento e outro de controle, com dados em painel e duplo efeito fixo. Os resultados encontrados indicam, estatisticamente, que empresas que sinalizaram Responsabilidade Social Corporativa (RSC tiveram uma relação negativa com o endividamento e o risco, quando comparadas com aquelas que não sinalizam. Esses resultados ajudam a entender a relevância dos índices de sustentabilidade como um canal de informação crível do comprometimento da empresa com a RSC.This study investigated whether the way firms fund themselves is affected by their participation in the Corporate Sustainability Index (CSI. As a complementary objective, we analyzed the relationship between the CSI and risk, based on signaling theory, which presents possible solutions to mitigate adverse selection problems caused by asymmetric information, used when there is a need to make decisions about investments in uncertain settings. We used a natural experiment based on a sample of 378 firms, divided into a treatment and a control group, with panel data and double fixed effect. The results indicate that the signaling of corporate social responsibility (CSR was negatively related to indebtedness and risk when compared with firms that did not engage in such signaling. These results shed light on the relevance of sustainability indexes as a credible way for firms to

  3. Genetic Alterations in Pesticide Exposed Bolivian Farmers

    Science.gov (United States)

    Jørs, Erik; Gonzáles, Ana Rosa; Ascarrunz, Maria Eugenia; Tirado, Noemi; Takahashi, Catharina; Lafuente, Erika; Dos Santos, Raquel A; Bailon, Natalia; Cervantes, Rafael; O, Huici; Bælum, Jesper; Lander., Flemming

    2007-01-01

    Background Pesticides are of concern in Bolivia because of increasing use. Frequent intoxications have been demonstrated due to use of very toxic pesticides, insufficient control of distribution and sale and little knowledge among farmers of protective measures and hygienic procedures. Method Questionnaires were applied and blood tests taken from 81 volunteers from La Paz County, of whom 48 were pesticide exposed farmers and 33 non-exposed controls. Sixty males and 21 females participated with a mean age of 37.3 years (range 17–76). Data of exposure and possible genetic damage were collected and evaluated by well known statistical methods, controlling for relevant confounders. To measure genetic damage chromosomal aberrations and the comet assay analysis were performed. Results Pesticide exposed farmers had a higher degree of genetic damage compared to the control group. The number of chromosomal aberrations increased with the intensity of pesticide exposure. Females had a lower number of chromosomal aberrations than males, and people living at altitudes above 2500 metres seemed to exhibit more DNA damage measured by the comet assay. Conclusions Bolivian farmers showed signs of genotoxic damage, probably related to exposure to pesticides. Due to the potentially negative long term health effects of genetic damage on reproduction and the development of cancer, preventive measures are recommended. Effective control with imports and sales, banning of the most toxic pesticides, education and information are possible measures, which could help preventing the negative effects of pesticides on human health and the environment. PMID:19662224

  4. Studies on persons exposed to plutonium

    International Nuclear Information System (INIS)

    Voelz, G.L.; Stebbings, J.H.; Hempelmann, L.H.; Haxton, L.K.; York, D.A.

    1978-01-01

    The results of four studies of persons exposed, or potentially exposed, to plutonium are summarized. The studies are: a five-year update on clinical examinations and health experience of 26 Manhattan District workers heavily exposed at Los Alamos in 1944 to 1945; a 30-year mortality follow-up of 224 white male workers with plutonium body burdens of 10 nCi or more; a review of cancer mortality rates between 1950 and 1969 among Los Alamos County, New Mexico, male residents, all of whom have worked in or have lived within a few kilometers of a major plutonium plant and other nuclear facilities; and a review of cancer incidence rates between 1969 and 1974 in male residents of Los Alamos County. No excess of mortality due to any cause was observed in the 224 male subjects with the highest plutonium exposures at Los Alamos. Clinical examinations of the Manhattan District workers, whose average age in 1976 was 56 years, show them to be active persons with diseases that are not unusual for their ages. The two deaths in this group over the past 30 years have not been due to cancer. Mortality and incidence data indicate no excess of lung cancer in Los Alamos County males

  5. Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation

    Science.gov (United States)

    Schuldis, D.; Richter, A.; Benick, J.; Saint-Cast, P.; Hermle, M.; Glunz, S. W.

    2014-12-01

    This work presents a detailed study of c-Si/Al2O3 interfaces of ultrathin Al2O3 layers deposited with atomic layer deposition (ALD), and capped with SiNx layers deposited with plasma-enhanced chemical vapor deposition. A special focus was the characterization of the fixed charge density of these dielectric stacks and the interface defect density as a function of the Al2O3 layer thickness for different ALD Al2O3 deposition processes (plasma-assisted ALD and thermal ALD) and different thermal post-deposition treatments. Based on theoretical calculations with the extended Shockley-Read-Hall model for surface recombination, these interface properties were found to explain well the experimentally determined surface recombination. Thus, these interface properties provide fundamental insights into to the passivation mechanisms of these Al2O3/SiNx stacks, a stack system highly relevant, particularly for high efficiency silicon solar cells. Based on these findings, it was also possible to improve the surface passivation quality of stacks with thermal ALD Al2O3 by oxidizing the c-Si surface prior to the Al2O3 deposition.

  6. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  7. Towards harmonized qualifications for radiation exposed personnel

    International Nuclear Information System (INIS)

    Briso, Hugo A.

    2008-01-01

    The accelerated process of globalization affecting mankind doesn't exclude safety matters. Indeed, some trans national corporations are increasingly offering specialized engineering services such as industrial radiography or well lodging. As well, a growing scientific exchange involves the mobility of nuclear researchers in different areas, for instance radiochemistry, nuclear medicine and radiotherapy. Such a breakdown in the technological frontiers must necessarily be reflected by the regulatory solutions. Particularly, diverse levels of theoretical-practical training for radiation exposed personnel coexist in the Latin-American Region, being an especially sensitive problem for radiation protection matters. The spectrum goes from post-graduate courses required for radiation protection officers in some countries, while in others only basic recommendations are required for the operating personnel. Another scheme consists of medium level course for the operating personnel, while radiation protection officers don't have special requirements. Many educational private institutions teach non standardized courses which only give broad concepts of radiation protection. On the other hand, usually nothing is said about the operational training, or else its certification is entrusted to the employer itself. In some countries multiple Regulatory Authorities apply dissimilar criteria to assess safety matters, including the evaluation of workers applications. The necessary regional integration makes indispensable to establish common standards for granting authorizations. Having similar or homogeneous requirements for the universe of radiation exposed personnel, i.e. source operators, radiation protection officers, qualified experts and technical support people would be easier for the Regulatory Authorities to have common methodologies of evaluation for the applicants. An IAEA supported technical cooperation project related to this paper seeks to establish standardized

  8. Ocular disorders among workers exposed to mercury.

    Science.gov (United States)

    Gabal, M S; Raslan, O A

    1995-01-01

    Mercury vapor exposed workers may show ocular changes, as well as other systems affection. A sample of 84 workers in preparing mercury fulminate were examined for conjunctival corneal and lenticular manifestation of long duration exposure, together with mercury urinary output. Lens changes were found in 50% of the involved workers while keratopathy as recorded in 34.5% of them. No statistically significant association was found between the occurrence of eye lesions and levels of urinary elimination of mercury. These results suggest local absorption of this element is most probably the underlying cause of ocular affection.

  9. Analyses of Concrete Structures Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian

    The text book contains the data and methods necessary for fire safety design of concrete constructions. The methods relate to standard fire as well as to any time of any other fire course.Material data are presented for concretes exposed to fire, and calculation methods are given for the ultimate...... bending capacity of beams and slabs, the ultimate shear capacity of beams, for the instability of columns and walls and for the deflection of prestressed and non-prestressed beams, slabs, walls and columns.All methods have been derived and compared to tests by Kristian Hertz....

  10. Protection of man: the exposed individual

    Energy Technology Data Exchange (ETDEWEB)

    Bohnstedt, A.; Knebel, J.U. [Programme Nuclear Safety Research, Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Breustedt, B. [Institute for Radiation Research, Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-07-01

    Present methods for quantifying radiation exposure rely on a standardized reference man (75 kg) with defined average anatomical and physiological data. But individual person actually exposed differs from this idealized standard man. Therefore the focus of investigations at the Institute for Radiation Research (Institut fuer Strahlenforschung, ISF) which was founded at Karlsruhe Institute of Technology (Karlsruher Institut fuer Technologie, KIT) in 2009 is based on the vision to place the exposed individual with its anatomical and physiological particularities, under consideration of age, gender, body height, body shape and environment, in the centre of an individual-related quantification of the external and internal radiation exposure. Research work at the ISF is aiming at quantifying radiation exposure by improved determination of doses essentially caused by external radiation fields and the intake of radionuclides into the body. The three main topics of the institute are - external dosimetry (e.g. using a (voxel) model of the hand to simulate skin dose distribution); - internal dosimetry (e.g. body size related efficiency calibration of in-vivo counting equipment); - numerical methods/modeling (e.g. development of a mathematical/voxel-hybrid model of the human body). (authors)

  11. Occupational health care of radiation exposed workers

    International Nuclear Information System (INIS)

    Abdul Rahim Rahman Hamzah

    1995-01-01

    The medical problems encountered by the earlier pioneer workers in radiation at the turn of the century are well known. In the 1928, the ICRP (International Committee for Radiological Protection) was instituted and the ALARA principle of radiation protection was evolved. Occupational health care is about maintaining the health and safety of workers in their workplaces. This involves using medical, nursing and engineering practices to achieve its objectives. In certain occupations, including those where workers are exposed to ionising radiation, some of these principles are enshrined in the legislation and would require statutory compliance. Occupational health care of radiation workers seek to prevent ill health arising from exposure to radiation by consolidating the benefits of exposures control and dosimetry. This is via health surveillance for spillages, contamination and exposures to unsealed sources of radiation. It is unlikely that can plan and hope to cater for a Chernobyl type of disaster. However, for the multitude of workers in industry exposed to radiation, control models are available. These are from the more in industrialize countries with a nuclear based energy industry, and where radioactive gadgetry are used in places ranging from factories and farms to construction sites. These models involve statutory requirements on the standard of work practices, assessment of fitness to work and the monitoring of both the worker and the workplace. A similar framework of activity is present in Malaysia. This will be further enhanced with the development of her general health and safety at work legislation. (author)

  12. Erythrocyte survival in sheep exposed to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.S.; Calabrese, E.J.; Labato, F.J.

    1981-07-01

    Erythrocyte survival studies in the Dorset ewe using chromium 51 were performed. The purpose of the study was to determine if ozone exposure produces decreased cell survival which may be the result of premature erythrocyte aging. This strain of sheep has an erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity that is very low, being comparable to human A-variants with G6PD deficiency. Ozone exposure may produce hemolytic effects in G6PD deficients more readily than in erythrocytes with normal activity. A decrease in hematocrit was observed in the ozone exposed groups. With respect to red cell destruction, ozone does not appear to act immediately, but rather there appears to be a delayed effect. At 0.25 ppM ozone, the group reached the 50% remaining level an average of 1 day sooner than the control group. There was no significant difference between control and exposed groups at the 0.50 ppM and 0.70 ppM levels. Also, the results demonstrate a net decrease in hematocrit which is greater for 0.25 ppM ozone than any other exposure level. (RJC)

  13. To be a worker (exposed?) or not to be a worker (exposed?) that is the question

    International Nuclear Information System (INIS)

    Ammerich, M.

    2008-01-01

    The notion of personnel is detailed in this article in order to know exactly what personnel is considered as exposed and what radiation doses are under this term. The regulatory texts are studied in different articles of the French law and show that different kind of exposed personnel are considered. The definitions are varying with the notion of risk, of radiation doses and the work itself. This article asks for a better and more precise definition that will help the actors of radiation protection. (N.C.)

  14. Brain damage among the prenatally exposed

    International Nuclear Information System (INIS)

    Otake, Masanori; Schull, W.J.; Yoshimaru, Hiroshi.

    1991-01-01

    Significant effects on the developing brain of exposure to ionizing radiation are seen among those individuals exposed in the 8th through the 25th week after fertilization. These effects, particularly in the most sensitive period, 8-15 weeks after fertilization, manifest themselves as an increased frequency of severe mental retardation (SMR), a diminution in IQ score and in school performance, and an increase in the occurrence of seizures. Of 30 SMR cases, 18 (60%) had small heads. About 10% of the individuals with small head sizes observed among the in utero clinical sample were mentally retarded. When all of the cases of mental retardation are included in the analysis, a linear dose-response model fits the data adequately and no evidence of a threshold emerges; however, if the two probable nonradiation-related cases of Down's syndrome are excluded from the 19 SMR cases exposed 8-15 weeks after fertilization, the evidence of a threshold is stronger. The 95% lower bound of the threshold based on the new dosimetry system appears to be in the range of 0.12-0.23 Gy. In the 16-25 week period, the 95% lower bound of the threshold is 0.21 Gy both with and without inclusion of two probable nonradiation-related retarded cases. In a regression analysis of IQ scores and school performance data, a greater linearity is suggested with the new dosimetry (DS86) than with the old (T65DR), but the mean IQ score and the mean school performance of those exposed in utero to doses under 0.10 Gy are similar, and not statistically different from the means in the control group. The risk ratios for unprovoked seizures, following exposure during the 8th through the 15th week after fertilization, are 4.4 (90% confidence interval: 0.5-40.9) after 0.10-0.49 Gy and 24.9 (4.1-191.6) after 0.50 Gy or more when the mentally retarded are included and 4.4 (0.5-40.9) and 14.5 (0.4-199.6), respectively, when they are excluded. (author)

  15. 46 CFR 177.960 - Guards for exposed hazards.

    Science.gov (United States)

    2010-10-01

    ... TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.960 Guards for exposed hazards. An exposed hazard, such as gears or rotating machinery, must be properly protected by a cover, guard, or rail. ...

  16. 46 CFR 116.960 - Guards for exposed hazards.

    Science.gov (United States)

    2010-10-01

    ... THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS CONSTRUCTION AND ARRANGEMENT Rails and Guards § 116.960 Guards for exposed hazards. An exposed hazard, such as gears or...

  17. Clinical investigation of proximate exposed group, 1

    International Nuclear Information System (INIS)

    Ito, Chikako; Hasegawa, Kazuyo; Kato, Masafumi; Kumasawa, Toshihiko

    1984-01-01

    In order to investigate effects of the A-bombing on prevalence of diabetes mellitus, follow-up studies were made on 5907 A-bomb survivors who received glucose tolerance test (GTT) during 20 years between 1963 and 1983. The A-bomb survivors were divided into the group A (1899 men and 1165 women exposed within 1.9 km from the hypocenter) and the group B (1725 men and 1118 women exposed 3.0 km or farther from it). Among non-obese survivors, 21.9% and 21.8% were being treated for diabetes mellitus or were evaluated as having diabetic type on GTT in the group A and the group B, respectively; while this was seen in 52.1% of obese survivors in the group A and 49.9% in the group B. There was no difference between the groups. In non-obese survivors, the annual development rate from the normal type to the diabetic type was 0.89% in the group A and 0.65% in the group B; the annual development rate from the borderline type to the diabetic type was 5.73% in the group A and 5.49% in the group B, showing no differences between the groups. The annual development rate from the normal or borderline type to the diabetic type was two times or higher in obese survivors than in non-obese survivors irrespective of exposure status. Regarding the number of diabetic survivors who became non-diabetic type in spite of having no treatment, and prevalence of diabetic complications, no difference was seen between the groups. These results suggest that the A-bombing has scarcely influenced the prevalence of diabetes mellitus and clinical course. (Namekawa, K.)

  18. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  19. Exposing the Myths, Defining the Future

    International Nuclear Information System (INIS)

    Slavov, S.

    2013-01-01

    With this official statement, the WEC calls for policymakers and industry leaders to ''get real'' as the World Energy Council as a global energy body exposes the myths by informing the energy debate and defines a path to a more sustainable energy future. The World Energy Council urged stakeholders to take urgent and incisive actions, to develop and transform the global energy system. Failure to do so could put aspirations on the triple challenge of WEC Energy Trilemma defined by affordability, accessibility and environmental sustainability at serious risk. Through its multi-year in-depth global studies and issue-mapping the WEC has found that challenges that energy sector is facing today are much more crucial than previously envisaged. The WEC's analysis has exposed a number of myths which influence our understanding of important aspects of the global energy landscape. If not challenged, these misconceptions will lead us down a path of complacency and missed opportunities. Much has, and still is, being done to secure energy future, but the WEC' s studies reveal that current pathways fall short of delivering on global aspirations of energy access, energy security and environmental improvements. If we are to derive the full economic and social benefits from energy resources, then we must take incisive and urgent action to modify our steps to energy solutions. The usual business approaches are not effective, the business as usual is not longer a solution. The focus has moved from large universal solutions to an appreciation of regional and national contexts and sharply differentiated consumer expectations.(author)

  20. Ophthalmological study in workers exposed to PVD's VS. No workers exposed to PVD's

    International Nuclear Information System (INIS)

    Castillejo Puertas, F. M.; Brun Jaen, A.

    2013-01-01

    Of images based on GPUs Ophthalmological study of the working population of CA The Cabril-ENRESA, within the framework of the Health Surveillance, one of the instruments used by the Occupational, to control and monitor the impact of working conditions on the health of the working population, this particular study, exposed or not at particular risk factor (PVD's).

  1. Behavioral changes in fish exposed to phytoestrogens

    International Nuclear Information System (INIS)

    Clotfelter, Ethan D.; Rodriguez, Alison C.

    2006-01-01

    We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, β-sitosterol, and the positive control 17β-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17β-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes. - Environmentally relevant concentrations of phytoestrogens reduce aggressive behavior in fish

  2. Effects of pesticides on occupationally exposed humans.

    Science.gov (United States)

    Piperakis, Stylianos M; Kontogianni, Konstantina; Piperakis, Michael M; Tsilimigaki, Smaragdi

    2006-09-25

    Pesticides are known to contain numerous genotoxic compounds; however, genotoxicity biomonitoring studies of workers occupationally exposed to pesticides have produced variable results. In this study, we employed the Comet assay to examine DNA damage in peripheral blood lymphocytes (PBLs) from 64 greenhouse workers from Almería in south-eastern Spain in comparison to PBLs from 50 men from the same area but not engaged in any agricultural work. The results indicated that there were no differences in the basal levels of DNA damage in the two study groups. In addition, exposure of PBL from the workers and controls to hydrogen peroxide or gamma-irradiation led to similar levels of DNA damage; the subsequent repair of the induced DNA damage was also similar for both study populations. Smoking had no impact on any of the responses. The results of this study indicate that the greenhouse workers had no detectable increase in DNA damage or alteration in the cellular response to DNA damage compared to our control population.

  3. Effects of Pesticides on Occupationally Exposed Humans

    Directory of Open Access Journals (Sweden)

    Stylianos M. Piperakis

    2006-01-01

    Full Text Available Pesticides are known to contain numerous genotoxic compounds; however, genotoxicity biomonitoring studies of workers occupationally exposed to pesticides have produced variable results. In this study, we employed the Comet assay to examine DNA damage in peripheral blood lymphocytes (PBLs from 64 greenhouse workers from Almería in south-eastern Spain in comparison to PBLs from 50 men from the same area but not engaged in any agricultural work. The results indicated that there were no differences in the basal levels of DNA damage in the two study groups. In addition, exposure of PBL from the workers and controls to hydrogen peroxide or γ-irradiation led to similar levels of DNA damage; the subsequent repair of the induced DNA damage was also similar for both study populations. Smoking had no impact on any of the responses. The results of this study indicate that the greenhouse workers had no detectable increase in DNA damage or alteration in the cellular response to DNA damage compared to our control population.

  4. Neurotoxicity of Acrylamide in Exposed Workers

    Directory of Open Access Journals (Sweden)

    Mariano Malaguarnera

    2013-08-01

    Full Text Available Acrylamide (ACR is a water-soluble chemical used in different industrial and laboratory processes. ACR monomer is neurotoxic in humans and laboratory animals. Subchronic exposure to this chemical causes neuropathies, hands and feet numbness, gait abnormalities, muscle weakness, ataxia, skin and in some cases, cerebellar alterations. ACR neurotoxicity involves mostly the peripheral but also the central nervous system, because of damage to the nerve terminal through membrane fusion mechanisms and tubulovescicular alterations. Nevertheless, the exact action mechanism is not completely elucidated. In this paper we have reviewed the current literature on its neurotoxicity connected to work-related ACR exposure. We have analyzed not only the different pathogenetic hypotheses focusing on possible neuropathological targets, but also the critical behavior of ACR poisoning. In addition we have evaluated the ACR-exposed workers case studies. Despite all the amount of work which have being carried out on this topic more studies are necessary to fully understand the pathogenetic mechanisms, in order to propose suitable therapies.

  5. Degradation of HEPA filters exposed to DMSO

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Larsen, G. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cmf HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased form 1.15 inches to 2,85 inches, and the efficiency for 0.3 {mu}m dioctyl sebacate (DOS) aerosols decreased form 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cmf air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3 {mu}m particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater.

  6. Degradation of HEPA filters exposed to DMSO

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.; LeMay, J.

    1994-01-01

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cfm HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased from 1.15 inches to 2.85 inches, and the efficiency for 0.3 μm dioctyl sebacate (DOS) aerosols decreased from 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cfm air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3μm particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater

  7. Educator Sexual Misconduct: Exposing or Causing Learners to Be Exposed to Child Pornography or Pornography

    Directory of Open Access Journals (Sweden)

    Susan Coetzee

    2016-02-01

    Full Text Available he law recognises that non-contact sexual offences can cause harm and several offences were created to regulate non-contact sexual child abuse offences. Several of these offences deal with the exposure or causing exposure of children to child pornography or pornography. Sexual grooming of children and the “Exposure or display of or causing exposure or display of child pornography or pornography to children” are criminalised in sections 18(2 and 19 of the Criminal Law (Sexual Offences and Related Matters Amendment Act 32 of 2007. And offences in relation to exposing children to disturbing, harmful and age-inappropriate materials are criminalised in sections 24A(2 and (4 of the Films and Publications Act 65 of 1996. In this article the author considered the content of the offences of “Exposure or display of or causing exposure or display of child pornography or pornography to children” in relation to the other offences dealing with exposure of children to child pornography or pornography. Benchmarked against these criminal offences the author then conceptualised exposing learners, or causing the exposure of learners to child pornography or pornography as forms of educator misconduct. The seriousness that should be attached to these forms of misconduct was considered in light of the various criminal offences. The review of the criminal offences and the forms of educator misconduct brought the ineffectiveness of current forms of serious educator misconduct to the fore. There is no form of serious misconduct that covers the transgression of educators who expose learners to child pornography or pornography that can be classified as “XX”. In conclusion a suggestion is made with regard to how a new form of serious misconduct could be worded so as to cover this gap, eg An educator must be dismissed if he or she is found guilty of – (g exposing a learner to or causing exposure of a learner to material classified as “Refused” or

  8. [Oxidative Stress Level of Vanadium-exposed Workers].

    Science.gov (United States)

    Wei, Teng-da; Li, Shun-pin; Liu, Yun-xing; Tan, Chun-ping; Li, Juan; Zhang, Zu-hui; Lan, Ya-jia; Zhang, Qin

    2015-11-01

    To determine the oxidative stress level in peripheral blood of vanadium-exposed workers, as an indication of population health effect of vanadium on human neurobehavioral system. 86 vanadium-exposed workers and 65 non-exposed workers were recruited by cluster sampling. A questionnaire was administered to collect demographic and occupational exposure information. Serum activity of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS) and malonaldehyde (MDA) contents were detected by kit assay. The differences in oxidative stress level between vanadium-exposed and non-exposed workers were compared. Vanadium-exposed workers had higher levels of MDA contents than the controls. The total superoxide dismutase(T-SOD) activity in vanadium-exposed workers was significantly lower than that in the controls, which was associated with lowered levels of manganese superoxide dismutase (Mn-SOD) activity. No changes in serum levels of cupro-zinc superoxide dismutase (CuZn-SOD) was found in vanadium-exposed workers. No difference in iNOS activity was found between vanadium-exposed workers and controls. Vanadium exposure increases free radical production in serum and reduces antioxidant capacity. But the relationship between vanadium exposure and iNOS damage remains uncertain.

  9. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.

    Science.gov (United States)

    Martinez de la Hoz, Julibeth M; Leung, Kevin; Balbuena, Perla B

    2013-12-26

    Ab initio molecular dynamics simulations are used to identify mechanisms of reduction of ethylene carbonate on Si surfaces at various degrees of lithiation, where the low-coordinated surface Si atoms are saturated with O, OH, or H functional groups. The lowest Si content surfaces are represented by quasi-amorphous LiSi4 and LiSi2; intermediate lithiation is given by LiSi crystalline facets, and the highest Li content is studied through Li13Si4 surfaces. It is found that ethylene carbonate (EC) reduction mechanisms depend significantly on the degree of lithiation of the surface. On LiSi surfaces EC is reduced according to two different two-electron mechanisms (one simultaneous and one sequential), which are independent of specific surface functionalization or nature of exposed facets. On the less lithiated surfaces, the simultaneous two-electron reduction is found more frequently. In that mechanism, the EC reduction is initiated by the formation of a C-Si bond that allows adsorption of the intact molecule to the surface and is followed by electron transfer and ring-opening. Strongly lithiated Li13Si4 surfaces are found to be highly reactive. Reduction of adsorbed EC molecules occurs via a four-electron mechanism yielding as reduction products CO(2-) and O(C2H4)O(2-). Direct transfer of two electrons to EC molecules in liquid phase is also possible, resulting in the presence of O(C2H4)OCO(2-) anions in the liquid phase.

  10. Response of exposed bark and exposed lichen to an urban area

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, A.M.J. [Polytechnic Institute of Coimbra, Oliveira do Hospital (Portugal). Oliveira do Hospital College of Technology and Management; Freitas, M.C.; Canha, N. [URSN, Sacavem (Portugal). Inst. Tecnologico e Nuclear (ITN); Verburg, T.G.; Wolterbeek, H.T. [Technical Univ. of Delft (Netherlands). Dept. of Radiation, Radionuclides and Reactors

    2011-07-01

    The aim of this study is to understand emission sources of chemical elements using biomonitoring as a tool. The selected lichen and bark were respectively Parmotrema bangii and Criptomeria japonica, sampled in the pollution-free atmosphere of Azores (Sao Miguel island), Portugal, and were exposed in the courtyards of 22 basic schools of Lisbon. The exposure was from January to May 2008 and from June to October 2008 (designated through the text as winter and summer respectively). The chemical element concentrations were determined by INAA. Conductivity of the lichen samples was measured. Factor analysis (MCTTFA) was applied to winter/summer bark/lichen exposed datasets. Arsenic emission sources, soil with anthropogenic contamination, a Se source, traffic, industry, and a sea contribution, were identified. In lichens, a physiological source based on the conductivity values was found. The spatial study showed contribution of sources to specific school positioning. Conductivity values were high in summer in locations as international Lisbon airport and downtown. Lisbon is spatially influenced by marine air mass transportation. It is concluded that one air sampler in Lisbon might be enough to define the emission sources under which they are influenced. (orig.)

  11. Neurodevelopmental status of HIV-exposed but uninfected children ...

    African Journals Online (AJOL)

    Neurodevelopmental status of HIV-exposed but uninfected children: A pilot study. P Springer, B Laughton, M Tomlinson, J Harvey, M Esser. Abstract. Introduction. HIV affects children both directly and indirectly, with evidence of increased infectious mortality and morbidity in the HIV-exposed but uninfected (HEU) infant.

  12. The Psychobiology of Children Exposed to Marital Violence

    Science.gov (United States)

    Saltzman, Kasey M.; Holden, George W.; Holahan, Charles J.

    2005-01-01

    We examined the psychological and physiological functioning of a community sample of children exposed to marital violence, comparing them to a clinical comparison group without marital violence exposure. Results replicated past findings of elevated levels of trauma symptomatology in this population. Further, children exposed to marital violence…

  13. Psychopharmacologic treatment of children prenatally exposed to drugs of abuse.

    Science.gov (United States)

    Hulvershorn, Leslie A; Schroeder, Kristen M; Wink, Logan K; Erickson, Craig A; McDougle, Christopher J

    2015-05-01

    This pilot study compared the pharmacologic treatment history and clinical outcomes observed in pediatric outpatients with psychiatric disorders exposed to drugs of abuse in utero to those of an age-matched, sex-matched and psychiatric disorder-matched, non-drug-exposed group. In this matched cohort study, medical records of children treated at an academic, child and adolescent psychiatry outpatient clinic were reviewed. Children with caregiver-reported history of prenatal drug exposure were compared with a non-drug-exposed control group being cared for by the same providers. Patients were rated with the Clinical Global Impressions-Severity scale (CGI-S) throughout treatment. The changes in pre-treatment and post-treatment CGI-S scores and the total number of medication trials were determined between groups. The drug-exposed group (n = 30) had a higher total number of lifetime medication trials compared with the non-drug-exposed group (n = 28) and were taking significantly more total medications, at their final assessment. Unlike the non-drug-exposed group, the drug-exposed group demonstrated a lack of clinical improvement. These results suggest that in utero drug-exposed children may be more treatment-refractory to or experience greater side effects from the pharmacologic treatment of psychiatric disorders than controls, although we cannot determine if early environment or drugs exposure drives these findings. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Animal Cruelty by Children Exposed to Domestic Violence

    Science.gov (United States)

    Currie, Cheryl L.

    2006-01-01

    Objective: The first objective of this study was to determine if children exposed to domestic violence were significantly more likely to be cruel to animals than children not exposed to violence. The second was to determine if there were significant age and gender differences between children who were and were not cruel to animals. Method: A…

  15. 9 CFR 78.23 - Brucellosis exposed bison.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed bison. 78.23... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Bison Because of Brucellosis § 78.23 Brucellosis exposed bison...

  16. 9 CFR 78.8 - Brucellosis exposed cattle.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed cattle. 78.8... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.8 Brucellosis exposed cattle...

  17. 9 CFR 78.32 - Brucellosis exposed swine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Brucellosis exposed swine. 78.32... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BRUCELLOSIS Restrictions on Interstate Movement of Swine Because of Brucellosis § 78.32 Brucellosis exposed swine. (a...

  18. Self-reported hearing performance in workers exposed to solvents

    Directory of Open Access Journals (Sweden)

    Adrian Fuente

    2013-02-01

    Full Text Available OBJECTIVE: To compare hearing performance relating to the peripheral and central auditory system between solvent-exposed and non-exposed workers. METHODS: Forty-eight workers exposed to a mixture of solvents and 48 non-exposed control subjects of matched age, gender and educational level were selected to participate in the study. The evaluation procedures included: pure-tone audiometry (500 - 8,000 Hz, to investigate the peripheral auditory system; the Random Gap Detection test, to assess the central auditory system; and the Amsterdam Inventory for Auditory Disability and Handicap, to investigate subjects' self-reported hearing performance in daily-life activities. A Student t test and analyses of covariance (ANCOVA were computed to determine possible significant differences between solvent-exposed and non-exposed subjects for the hearing level, Random Gap Detection test and Amsterdam Inventory for Auditory Disability and Handicap. Pearson correlations among the three measures were also calculated. RESULTS: Solvent-exposed subjects exhibited significantly poorer hearing thresholds for the right ear than non-exposed subjects. Also, solvent-exposed subjects exhibited poorer results for the Random Gap Detection test and self-reported poorer listening performance than non-exposed subjects. Results of the Amsterdam Inventory for Auditory Disability and Handicap were significantly correlated with the binaural average of subject pure-tone thresholds and Random Gap Detection test performance. CONCLUSIONS: Solvent exposure is associated with poorer hearing performance in daily life activities that relate to the function of the peripheral and central auditory system.

  19. Cancer mortality among atomic bomb survivors exposed as children.

    Science.gov (United States)

    Goto, Hitomi; Watanabe, Tomoyuki; Miyao, Masaru; Fukuda, Hiromi; Sato, Yuzo; Oshida, Yoshiharu

    2012-05-01

    To compare cancer mortality among A-bomb survivors exposed as children with cancer mortality among an unexposed control group (the entire population of Japan, JPCG). The subjects were the Hiroshima and Nagasaki A-bomb survivor groups (0-14 years of age in 1945) reported in life span study report 12 (follow-up years were from 1950 to 1990), and a control group consisting of the JPCG. We estimated the expected number of deaths due to all causes and cancers of various causes among the exposed survivors who died in the follow-up interval, if they had died with the same mortality as the JPCG (0-14 years of age in 1945). We calculated the standardized mortality ratio (SMR) of A-bomb survivors in comparison with the JPCG. SMRs were significantly higher in exposed boys overall for all deaths, all cancers, leukemia, and liver cancer, and for exposed girls overall for all cancers, solid cancers, liver cancer, and breast cancer. In boys, SMRs were significantly higher for all deaths and liver cancer even in those exposed to very low doses, and for all cancers, solid cancers, and liver cancer in those exposed to low doses. In girls, SMRs were significantly higher for liver cancer and uterine cancer in those exposed to low doses, and for leukemia, solid cancers, stomach cancer, and breast cancer in those exposed to high doses. We calculated the SMRs for the A-bomb survivors versus JPCG in childhood and compared them with a true non-exposed group. A notable result was that SMRs in boys exposed to low doses were significantly higher for solid cancer.

  20. A UV sensitive integrated micromegas with timepix readout

    NARCIS (Netherlands)

    Melai, J.; Breskin, Amos; Cortesi, Marco; Bilevych, Y.; Bilevych, Yevgen; Fransen, Martin; van der Graaf, Harry; Visschers, Jan; Blanco Carballo, V.M.; Salm, Cora; Schmitz, Jurriaan

    2010-01-01

    This article presents a detector system consisting of three components, a CMOS imaging array, a gaseous-detector structure with a Micromegas layout, and a UV-photon sensitive CsI reflective photocathode. All three elements have been monolithically integrated using simple post-processing steps. The