WorldWideScience

Sample records for crystals formation double

  1. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  2. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  3. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  4. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan; Wu, Ying; Mei, Jun

    2014-01-01

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  5. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  6. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  7. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  8. Design of Double PG Crystal Neutron Diffractometer

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Fathallah, M.

    2011-01-01

    The design of a diffractometer containing two pyrolytic graphite (PG) crystals to select monochromatic neutrons in the range of wavelengths longer than 0.26 nm is given. The first crystal is high oriented pyrolytic graphite (HOPG) set at glancing angle to reflect monochromatic neutrons with a selected wavelength. The second is a low quality PG crystal filter, set at take-off-angle such that, it transmits the selected monochromatic neutrons and rejects the higher order contaminations accompanying the first order reflection. It was shown that, 2 mm thick of PG crystal having 0.30 FWHM on mosaic spread are the optimum parameters of monochromator PG crystal. While the optimum thickness and mosaic spread of the PG crystal filter were selected to have low contamination factor of higher order reflections. The optimum parameters of the PG filter crystal were calculated using the computer package Graphite recently developed in our laboratory. Calculation shows that, 3 cm thick PG filter (20 on mosaic spread) is sufficient to almost eliminate the higher order contaminations accompanying the main monochromatic neutrons with

  9. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  10. Realisation of a novel crystal bender for a fast double crystal monochromator

    CERN Document Server

    Zaeper, R; Wollmann, R; Luetzenkirchen-Hecht, D; Frahm, R

    2001-01-01

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  11. Slit and phase grating diffraction with a double crystal diffractometer

    International Nuclear Information System (INIS)

    Treimer, Wolfgang; Hilger, Andre; Strobl, Markus

    2006-01-01

    The lateral coherence properties of a neutron beam (λ=0.5248nm) in a double crystal diffractometer (DCD) were studied by means of single slit diffraction and by diffraction by different perfect Silicon phase gratings. Perfect agreements were found for the lateral coherence length measured with the slit and for the one determined by Silicon phase gratings, however, some peculiarities are still present

  12. A Double-Crystal Monochromator for Neutron Stress Diffractometry

    Czech Academy of Sciences Publication Activity Database

    Em, V.; Balagurov, A. M.; Glazkov, V. P.; Karpov, I. D.; Mikula, Pavol; Miron, N. F.; Somenkov, V. A.; Sumin, V. V.; Šaroun, Jan; Shushunov, M. N.

    2017-01-01

    Roč. 60, č. 4 (2017), s. 526-532 ISSN 0020-4412 Institutional support: RVO:61389005 Keywords : neutron diffraction * double-crystal * monochromator Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.437, year: 2016

  13. On the equivalence between Young's double-slit and crystal double-refraction interference experiments.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric

    2017-08-01

    We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

  14. Double stage crystallization of bulk Ge20Te80 glass

    International Nuclear Information System (INIS)

    Parthasarathy, G.; Bandyopadhyay, A.K.; Gopal, E.S.R.; Subbanna, G.N.

    1984-01-01

    The growing interest of the semiconducting glasses is partly because of their interesting electrical and optical properties. These properties are usually connected with their crystallization. In many glasses, the glass-supercooled liquid transition precedes crystallization. The glass transition temperature (Tsub(g)) is found to exhibit multistage processes for a few systems. In this communication, we report the observation of a double Tsub(g) effect in bulk Ge 20 Te 80 glass and also explain the structural changes taking place in the two stages. (author)

  15. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  16. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  17. A compact double crystal monochromator for electrochemistry beamline at PLS

    CERN Document Server

    Rah, S; Kim, G H

    2001-01-01

    A compact double crystal monochromator based on 16.5'' CF flange has been designed, fabricated and installed for electrochemistry beamline at Pohang light source. The Bragg angle range of the monochromator is 7-75 deg. The mechanical design is modified from typical Boomerang design [J.A. Golovchenko et al., Rev. Sci. Instrum. 52 (1981) 509; J.P. Kirkland, Nucl. Instr. and Meth. A291 (1990) 185] to have fixed beam offset and single driving axis for spectroscopy experiments. The parallelism error of the crystals is minimized to less than 6 mu rad for the range, by using a precision single axis linear guide, Also, the number of mechanical parts in the vacuum is minimized and 1.8x10 sup - sup 9 Torr of vacuum is achieved without baking.

  18. Opal-based photonic crystal with double photonic bandgap structure

    Science.gov (United States)

    Romanov, S. G.; Yates, H. M.; Pemble, M. E.; DeLa Rue, R. M.

    2000-09-01

    The interior surfaces of one part of a piece of artificial opal have been coated with GaP so that the remaining part of the opal crystal remains empty, thus forming a photonic heterostructure. Two Bragg resonances have been observed in the optical transmission and reflectance spectra. These two resonances were found to behave differently with changes in the polarization of the incident light and the angle of propagation of the light with respect to the (111) planes of opal. Depolarization of the light was observed to occur most effectively at frequencies within the stop-bands, apparently due to the re-coupling of the propagating electromagnetic wave to a different system of eigenmodes when it crosses the interface separating two parts of the double photonic crystal.

  19. Formation of Piroxicam Polymorphism in Solution Crystallization

    DEFF Research Database (Denmark)

    Bruun Hansen, Thomas; Qu, Haiyan

    2015-01-01

    also explored, and new insights into polymorphic control are documented and discussed. The crystal landscape was mapped for cooling crystallization of piroxicam from acetone/water mixtures (0.5 K/min) and for antisolvent crystallization from acetone with water as the antisolvent. Varying cooling rates...

  20. Formation and electrical transport properties of pentacene nanorod crystal

    International Nuclear Information System (INIS)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Kuwahara, Y; Aono, M

    2010-01-01

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  1. Formation and electrical transport properties of pentacene nanorod crystal.

    Science.gov (United States)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  2. Phase formation in the Ag2O - MgO - MoO3 system and the crystal structure of new double molybdate Ag2Mg2(MoO4)3

    International Nuclear Information System (INIS)

    Tsyrenova, G.D.; Khajkina, E.G.; Khobrakova, Eh.T.; Solodovnikov, S.F.

    2001-01-01

    The phase correlations in subsolidus area of the Ag 2 O - MgO - MoO 3 system were studied, the Ag 2 MoO 4 - MgMoO 4 polythermal cross-section was investigated and its T-x diagram was constructed. X-ray diffraction and thermal analytic researches were conducted. The formation of the new double Ag 2 Mg 2 (MoO 4 ) 3 molybdates relating to the structural group Na 2 Mg 5 (MoO 4 ) 6 was established, and its structure (a=6.978(1), b=8.715(2), c=10.294(2) A, α=107.56(3) Deg, β=105.11(3) Deg, γ=103.68(3) Deg, Z=2, sp. gr. P 1-bar, R=0.038) was determined. The mixed carcass from the twin MgO 6 -octahedrons and MoO 4 -tetrahedrons, in which blankness the Ag atoms are arranged, stand out in the structure.The character of disordering in the part of Ag + is analogous to previously found one in the Ag 2 Zn 2 (MoO 4 ) 3 structure. The possible limits in the fields of homogeneity of silver-magnesium molybdate and its analogs, as well as the differences their structure from the structure of isotopic sodium-containing phases, are discussed [ru

  3. Accidental degeneracy of double Dirac cones in a phononic crystal

    KAUST Repository

    Chen, Ze-Guo; Ni, Xu; Wu, Ying; He, Cheng; Sun, Xiao-Chen; Zheng, Li-Yang; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.

  4. Accidental degeneracy of double Dirac cones in a phononic crystal

    KAUST Repository

    Chen, Ze-Guo

    2014-04-09

    Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.

  5. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  6. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  7. A fine adjustment mechanism of the second crystal in a double-crystal monochromator with a 3-PS parallel manipulator

    International Nuclear Information System (INIS)

    Cao Chongzhen; Gao, X.; Ma, P.; Yu, H.; Wang, F.; Huang, Y.; Liu, P.

    2005-01-01

    A novel fine adjustment mechanism of the second crystal in a double-crystal monochromator is put forward, which is based on a 3-PS parallel manipulator and the magnetic force. Not only is the principle of fine adjusting the pitch angle and the roll angle analyzed, but also optimization of the structure parameters of the permanent magnet, a key part of the fine adjustment mechanism. The fine adjustment mechanism with the 3-PS parallel manipulator has been applied successfully in the double-crystal monochromator of 4W1B beam line in the Beijing Synchrotron Radiation Facility (BSRF)

  8. Design and performance of the ALS double-crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.; Ryce, S.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new {open_quotes}Cowan type{close_quotes} double-crystal monochromator, based on the boomerang design used at NSLS beamline X-24A, has been developed for beamline 9.3.1 at the ALS, a windowless UHV beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline X-23 A2, maximum deviations in the intensity of monochromatic light were just 7% during scans of several hundred eV in the vicinity of the Cr K edge (6 keV) with the monochromator operating without intensity feedback. Such precision is essential because of the high brightness of the ALS radiation and the overall length of beamline 9.3.1 (26 m).

  9. Design and performance of the ALS double-crystal monochromator

    International Nuclear Information System (INIS)

    Jones, G.; Ryce, S.; Perera, R.C.C.

    1997-01-01

    A new open-quotes Cowan typeclose quotes double-crystal monochromator, based on the boomerang design used at NSLS beamline X-24A, has been developed for beamline 9.3.1 at the ALS, a windowless UHV beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline X-23 A2, maximum deviations in the intensity of monochromatic light were just 7% during scans of several hundred eV in the vicinity of the Cr K edge (6 keV) with the monochromator operating without intensity feedback. Such precision is essential because of the high brightness of the ALS radiation and the overall length of beamline 9.3.1 (26 m)

  10. Formation of double-{Lambda} hypernuclei at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Gaitanos, T., E-mail: Theodoros.Gaitanos@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Universitaet Giessen, D-35392, Giessen (Germany); Larionov, A.B.; Lenske, H.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen, D-35392, Giessen (Germany)

    2012-05-01

    We study the formation of single- and double-{Lambda} hypernuclei in antiproton-induced reactions relevant for the forthcoming PANDA experiment at FAIR. We use the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model with relativistic mean-fields for the description of non-equilibrium dynamics and the statistical multifragmentation model (SMM) for fragment formation. This combined approach describes the dynamical properties of strangeness and fragments in low energy p{sup Macron}-induced reactions fairly well. We then focus on the formation of double-{Lambda} hypernuclei in high energy p{sup Macron}-nucleus collisions on a primary target including the complementary {Xi}-induced reactions to a secondary one, as proposed by the PANDA Collaboration. Our results show that a copious production of double-{Lambda} hyperfragments is possible at PANDA. In particular, we provide first theoretical estimations on the double-{Lambda} production cross section, which strongly rises with decreasing energy of the secondary {Xi}-beam.

  11. Circuit effects on pierce instabilities, and double-layer formation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-11-01

    The role of the Pierce instability in the formation of double layers is considered and compared with that of the Buneman instability. Pierce instabilities have been identified in a double-layer experiment, where they lead to ion trapping. Here the effects of external circuit elements are considered. In the case of immobile ions the onset criteria are unaffected, but in the unstable range the growth rate is reduced by the external impedance. Required experimental values of the circuit elements are estimated. The possible relevance to computer simulations is noted. (Authors)

  12. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  13. Fast Formation of Opal-like Columnar Colloidal Crystals

    NARCIS (Netherlands)

    van der Beek, D.; Radstake, P.B.; Petukhov, A.V.; Lekkerkerker, H.N.W.

    2007-01-01

    We demonstrate that highly polydisperse colloidal gibbsite platelets easily form an opal-like columnar crystal with striking iridescent Bragg reflections. The formation process can be accelerated by orders of magnitude under a centrifugation force of 900g without arresting the system in a disordered

  14. Lamb wave band gaps in one-dimensional radial phononic crystal plates with periodic double-sided corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2015-11-01

    In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.

  15. Active phase double crystal monochromator for JET (diagnostic system KS1)

    International Nuclear Information System (INIS)

    Andelfinger, C.; Fink, J.; Fussmann, G.; Krause, H.; Roehr, H.; Schilling, H.B.; Schumacher, U.; Becker, P.; Siegert, H.; Abel, P.; Keul, J.

    1984-03-01

    The determination of the impurity concentrations in JET plasmas by absolute radiation measurements in a wide spectral range can be done with a double crystal monochromator device in parallel mode, which is able to operate during all experimental phases of JET. The report describes the engineering design and tests for a double crystal monochromator that fulfills the conditions of parallel orientation of the two crystals during fast wavelength scan, of shielding against neutrons and gamma rays by its folded optical pathway and of sufficient spectral resolution for line profile measurements. (orig.)

  16. Crystal structure of (Al,V)4(P4O12)3, archetype of double cubic ring tetraphosphate

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Biralo, G. V.; Dimitrova, O. V.

    2012-01-01

    The crystal structure of the (Al,V) 4 (P 4 O 12 ) 3 solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH) 3 -VO 2 -NaCl-H 3 PO 4 -H 2 O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Å, sp. gr. I 4 bar 3d, Z = 4, and ρ calcd = 2.736 g/cm 3 . It is shown that the crystal structure of the parent cubic Al 4 (P 4 O 12 ) 3 modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  17. One-dimensional magnetophotonic crystals with magnetooptical double layers

    International Nuclear Information System (INIS)

    Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.

    2016-01-01

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  18. One-dimensional magnetophotonic crystals with magnetooptical double layers

    Energy Technology Data Exchange (ETDEWEB)

    Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  19. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.

    2013-05-20

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate.

  20. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  1. Europan double ridge morphometry as a test of formation models

    Science.gov (United States)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  2. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    Science.gov (United States)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  3. Application prospects of cadmium-containing crystals based on tungstates and double tungstates

    CERN Document Server

    Nagornaya, L; Apanasenko, A; Tupitsyna, I; Chernikov, V; Vostretsov, V

    2002-01-01

    Tungstate and double tungstate crystals of high scintillation efficiency and detectors based on them are applied widely in the medical imaging and radiation monitoring because of their high sensitivity to the ionizing radiation, small radiation length, high radiation hardness, low afterglow level. In this work a possibility to broaden the application field of CWO crystals have been investigated by improvement of their spectrometric quality and decreasing of their afterglow level. CWO crystals with improved characteristics have been obtained (resolution for sup 1 sup 3 sup 7 Cs <8%, afterglow <0.02% after 20 ms). A possibility is considered to use these crystals for spectrometry of thermal and resonance neutrons, which is possible due to the presence of nuclei with large cross-section for these neutrons in the crystal lattice. Compounds of a new type based on Cd, La-containing double tungstates doped with rare earth elements have been synthesized, and their luminescent characteristics have been studied. ...

  4. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  5. Nanodefect formation in LiF crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Ibragimova, Eh.M.; Kalanov, M.U.; Muminov, M.I.

    2006-01-01

    One studied the spectra of absorption and of photoluminescence, microhardness and performed X-ray structure analysis of gamma-irradiated LiF crystals in a shutdown reactor and in 60 Co source when gamma-radiation dose rate was equal to 7.65 Gy/s. In addition to formation of point and combined radiation defects one detected the presence of the gamma-irradiation induced 28 nm size nanoparticles of LiOH phase in Li sublattice. Formation of defects is shown to occur more efficiently in a shutdown reactor in contrast to 60 Co source [ru

  6. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  7. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  8. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  9. New Paradigm for Plasma Crystal Formation with weak grain interaction

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Morfill, G.E.

    2005-01-01

    New results for non-linear grain screening, non-linear ion drag and non-linear collective attractions appropriate for existing experiments are used for the first time together to explain the observed phenomena of plasma condensation. Based on the physics of collective non-linear grain attraction a paradigm for plasma crystal formation is formulated according to which plasma the crystal formation is due to localization of grains in weak non-linear collective attraction wells. Nonlinearity in screening is an important feature of new paradigm and takes into account that the grain charges are large. The physical consequence of large non-linearity is the presence of relative large attraction potential well at distances several times larger then the non-linear screening radius. Calculated location of the potential well is of the order of the observed inter-grain distances in plasma crystals and the calculated deepness of the potential well determining the temperature of phase transition is close to that observed. The calculations of the deepness of the attraction collective well and the critical value of the coupling constant are performed using an assumption that the collective attraction length is larger than the non-linear screening length. The concept of collective grain interaction in complex plasmas is considered for the case where the non-linear screening is fully determining the collective attraction well

  10. Theory of Vortex Crystal Formation in Two-Dimensional Turbulence

    Science.gov (United States)

    Jin, D. Z.

    1999-11-01

    The free relaxation of inviscid, incompressible 2D turbulence is often dominated by strong vortices (coherent patches of intense vorticity) that move chaotically and merge. However, recent experiments(K.S. Fine et al., Phys. Rev. Lett. 75), 3277 (1995). with pure electron plasmas have found that freely relaxing turbulent flows with a single sign of vorticity can spontaneously form ``vortex crystals'' -- symmetric, stable arrays of strong vortices that are immersed in a low vorticity background. In this talk we discuss how these complex equilibria can form from 2D turbulence. First, we formulate a statistical theory of the vortex crystals. We show that vortex crystals are well described as ``regional'' maximum fluid entropy (RMFE) states, which are equilibrium states reached through ergodic mixing of the background by the strong vortices.(D.Z. Jin and D.H.E. Dubin, Phys. Rev. Lett. 80), 4434 (1998). Given the dynamically conserved quantities as well as the number and the vorticity distributions of the strong vortices, the theory predicts the positions of the strong vortices and the coarse-grained vorticity distribution of the background. These predictions agree well with the observed vortex crystals. Second, we examine the formation process of the vortex crystals in more detail. In the RMFE theory, the vortex crystal equilibrium can only be predicted if the number Nc of the strong vortices in the final state is given. Here, we estimate Nc from the characteristics of the early turbulent flow. The estimate relies on the idea that vortex crystals form because the chaotic motions of the strong vortices are ``cooled'' due to mixing of the background by the vortices. When the rate of cooling is faster than the rate of pairwise mergers, the vortices fall into a crystal pattern before they can merge. We estimate the merger rate from the observed power law decay of the number of strong vortices in the early stages of the flow, and the cooling rate from the rate of mixing of

  11. Bubble formation upon crystallization of high nitrogen iron base alloys

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Sivka, E.; Skuza, Z.

    2000-01-01

    A study is made into the conditions of nitrogen bubble formation during crystallization of unalloyed iron, alloys of Fe-O, Fe-O-S systems, steels 1Kh13, 0Kh18N9 and a two-phase Fe-11%Cr-1%Mo-0.2%V steel. It is revealed that the amount of bubbles in a high nitrogen steel casting increases with a degree of nitrogen supersaturation and decreases with a cooling rate growth and with a rise of surfactant concentration in the metal. In sound castings a nitrogen content can be increased due to a cooling rate growth, nitrogen dilution with inert gas, an increase of nitrogen pressure during crystallization as well as due to the introduction of such surfactants as sulphur, selenium, tellurium, tin [ru

  12. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  13. Diamond double-crystal monochromator in Bragg geometry installed on BL-11XU at SPring-8

    CERN Document Server

    Marushita, M; Fukuda, T; Takahasi, M; Inami, T; Katayama, Y; Shiwaku, H; Mizuki, J

    2001-01-01

    We present here the feature of the diamond double-crystal monochromator in Bragg geometry installed on a standard undulator beamline at SPring-8. The crystal was manufactured by Sumitomo Electric Industries, Ltd., whose size was 8.6 mm (w) x3.5 mm (l) x0.35 mm (t) for the first crystal and 10 mm (w) x4.7 mm (l) x0.39 mm (t) for the second. The feature of the monochromator was tested by rocking curve measurements as a function of the total power and of the energy that impinged on the crystal. As a result, no significant increase of the full-width at half-maximum was observed up to a total power of 330 W on the first crystal. We discuss the experimental results with the comparison to the calculated FWHM with use of the beamline parameters.

  14. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  15. Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites

    International Nuclear Information System (INIS)

    Lonkar, Sunil P.; Singh, R.P.

    2009-01-01

    The effect of layered double hydroxide (LDH) nanolayers on the crystallization behavior of polypropylene (PP) was studied based on the preparation of nanocomposites by a melt intercalation method. The isothermal crystallization kinetics and subsequent melting behavior of PP/LDH hybrids were studied with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). Studies revealed that the LDH promoted heterogeneous nucleation, accelerating the crystallization of PP. The Avrami equation successfully describes the isothermal crystallization kinetics of PP/LDH hybrids and signifies heterogeneous nucleation in crystal growth of PP. The varying values of Avrami exponent (n) and half crystallization time (t 1/2 ) of PP and PP/LDH hybrids describes overall crystallization behavior. The crystallite size (D hkl ) and distribution of different crystallites in PP varied in presence of LDH. A significant increase in melting temperature is observed for PP/LDH hybrids. The POM showed that smaller and less perfect crystals were formed in nanocomposites because of molecular interaction between PP chains and LDH. The value of fold surface free energy (σ e ) of PP chains decreased with increasing LDH content. Finally, the overall results signify that LDH at nanometer level acted as nucleating agent and accelerate the overall crystallization process of PP.

  16. Intracavity doubling of CW Ti:sapphire laser to 392.5 nm using BiBO-crystal

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; Thorhauge, Morten; Tidemand-Lichtenberg, Peter

    2005-01-01

    In this work we present results obtained for intra-cavity frequency-doubling of a 785 nm CW Ti:sapphire laser utilising BiBO as the non-linear crystal. Intracavity doubling offers several advantages compared to extra-cavity doubling, such as no need to couple to an external resonance cavity...

  17. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    International Nuclear Information System (INIS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130 Te. An upper limit for neutrinoless decay half life of 2.1 x 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed. (orig.)

  18. A Unified Theory of Melting, Crystallization and Glass Formation

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Jensen, F. J.; Damgaard Kristensen, W.

    1975-01-01

    In recent years, dislocations have been involved in theories of melting, in models of the liquid state, and in calculations of the viscosity of glasses. Particularly noteworthy are the Mott-Gurney model of a liquid as a polycrystal with a grain size (i. e. a dislocation network size) of near......-atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the solid-liquid interfacial energy is proportional to the grain boundary energy for a number of elements. These developments suggest the possibility of a relatively simple picture of crystallization and glass formation. In the liquid...... state dislocations, at the saturation density, are in constant motion and the microscopic grain boundary structure that they form is constantly changing due to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free energy favors the crystalline form and grains...

  19. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    International Nuclear Information System (INIS)

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-01-01

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials

  20. High-efficiency transmision neutron polarizer for high-resolution double crystal diffractometer

    International Nuclear Information System (INIS)

    Ioffe, A.; Krist, T.; Mezei, F.; Gordeev, G.; Ibrayev, B.

    1997-01-01

    An efficient transmission geometry neutron polarizer for the high-resolution double crystal diffractometer at HMI (λ=4.8 A) is described. A polarization of about 94% was achieved and the polarized neutron beam intensity amounts to 40% of the nonpolarized beam intensity. This opens up wide possibilities for the study of magnetic small-angle scattering for extremely small momentum transfer (Q∝10 -5 A -1 ). (orig.)

  1. Radiation-shielded double crystal X-ray monochromator for JET

    International Nuclear Information System (INIS)

    Barnsley, R.; Morsi, H.W.; Rupprecht, G.; Kaellne, E.

    1989-01-01

    A double crystal X-ray monochromator for absolute wavelength and intensity measurements with very effective shielding of its detector against neutrons and hard X-rays was brought into operation at JET. Fast wavelength scans were taken of impurity line radiation in the wavelength region from about 0.1 nm to 2.3 nm, and monochromatic as well as spectral line scans, for different operational modes of JET. (author) 5 refs., 4 figs

  2. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  3. Influence of the cone angle and crystal shape on the formation of twins in InP crystals

    International Nuclear Information System (INIS)

    Li, Xiaolan; Yang, Ruixia; Yang, Fan; Sun, Tongnian; Sun, Niefeng

    2012-01-01

    We present the investigation of twinning phenomena of LEC InP crystal growth which has been carried out in our laboratory in recent years. It is observed that the yield of twin-free single crystal InP can be grown by control the cone angle and crystal shape of a gradually increased diameter. Twin formation has been correlated to many growth factors. The influence of ingot shape on the formation of twins can be looked as the conical angle dependent twin probability of InP crystals. Twin-free InP crystals can be grown by large cone angle over 75 to 90 . (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  5. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals

  6. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  7. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    Science.gov (United States)

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-06-09

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  8. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    Science.gov (United States)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  9. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  10. Formation of co-crystals: Kinetic and thermodynamic aspects

    Science.gov (United States)

    Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.

    2009-04-01

    Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.

  11. Small angle neutron scattering study of metallic alloys by a double crystal device

    International Nuclear Information System (INIS)

    Cser, L.; Kovacs, I.; Kroo, N.; Zsigmond, Gy.

    1982-06-01

    A double crystal small angle neutron scattering (SANS) device was built and a simple method for measuring the integrated SANS intensity was developed. The device and the method were tested and the possibility of future applications was demonstrated by measurements on different samples. The test measurements were performed on iron and teflon slabs of different thickness. On Fe-B metallic glasses a SANS intensity originating mainly from the multiple magnetic refraction at domain boundaries was observed. A very weak SANS intensity was found on turbine blades. The integrated SANS intensity was shown to correlate with the running time of the blades. Similar measurements were performed on artificially deformed steel samples. (author)

  12. Accuracy synthesis of T-shaped exit fixed mechanism in a double-crystal monochromator

    International Nuclear Information System (INIS)

    Wang Fengqin; Cao Chongzhen; Wang Jidai; Li Yushan; Gao Xueguan

    2007-01-01

    It is a key performance requirement for a double-crystal monochromator that the exit is fixed, and in order to improve the height accuracy of the exit in T-shaped exit fixed mechanism, the expression between the height of the exit and various original errors was put forward using geometrical analysis method. According to the independent action principle of original errors, accuracy synthesis of T-shaped exit fixed mechanism was studied by using the equal accuracy method, and the tolerance ranges of original errors were obtained. How to calculate the tolerance ranges of original errors was explained by giving an example. (authors)

  13. Double ferromagnetism in single-crystal Gd-Y-Lu alloys

    International Nuclear Information System (INIS)

    Ito, T.; Oka, M.; Legvold, S.; Beaudry, B.J.

    1984-01-01

    Magnetization, electrical resistivity, specific-heat and thermal-expansion measurements have been made on Gd-Y-Lu single crystals. Low isofield magnetization data for the a-axis sample of Gd 75 Y/sub 17.5/ Lu/sub 7.5/ exhibit two different Curie-Weiss regimes, which suggests double ferromagnetism. Electrical resistivity, specific-heat, and thermal-expansion data show two anomalies at the transition temperatures. The anomaly at 231.5 K shows a lambda-type second-order phase transition and the anomaly at 223 K shows a sharp spike first-order phase transition

  14. Photonic crystal fiber monitors for intracellular ice formation

    Science.gov (United States)

    Battinelli, Emily; Reimlinger, Mark; Wynne, Rosalind

    2012-04-01

    An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3μm core diameter, 125μm outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20μm radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1μL water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.

  15. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    International Nuclear Information System (INIS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-01-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  16. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyuan [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Shumin, E-mail: zhaosm@mail.xjtu.edu.cn [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Xia, Minggang [Department of Optical Information Science and Technology, School of Science, Xi' an Jiaotong University, 710049 (China); Laboratory of Nanostructure and Physics Properties, School of Science, Xi' an Jiaotong University, 710049 (China); He, Siyu [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Yang, Qifan [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China); Yan, Yuming [Department of Electrical Engineering and Automation, School of Electrical Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Hanqiao [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2017-02-19

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  17. Lack of Co-crystal Formation with Cyclotriphosphazenes: A ...

    African Journals Online (AJOL)

    NICOLAAS

    Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, .... issues with solubility of the phosphazenes used. ... The temperature of the crystal was ... from methanol that incorporated water into the structure did .... The crystal structures of9–12were originally determined at room.

  18. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca₃OsO₆

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hai Luke, E-mail: FENG.Hai@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Shi, Youguo [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Guo, Yanfeng; Li, Jun [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sato, Akira [Materials Analysis Station, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sun, Ying [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Wang, Xia; Yu, Shan [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sathish, Clastin I. [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2013-05-01

    Single crystals of the osmium-containing compound Ca₃OsO₆ have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca₃OsO₆ atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K. - Graphical Abstract: Schematic image of crystal structure of Ca₃OsO₆ as determined by X-ray diffraction, where the gray and black octahedrons are occupied by Ca and Os, respectively. Top inset reveals an optic image of a typical Ca₃OsO₆ single crystal. Highlights: • Single crystals of Ca₃OsO₆ have been successfully grown under high-pressure. • Ca₃OsO₆ crystalizes into an ordered double-perovskite structure. • The Ca₃OsO₆ undergoes an antiferromagnetic transition at 50 K.

  19. Test results of a diamond double-crystal monochromator at the advanced photon source

    International Nuclear Information System (INIS)

    Fernandez, P.B.; Graber, T.; Krasnicki, S.; Lee, W.; Mills, D.M.; Rogers, C.S.; Assoufid, L.

    1997-01-01

    We have tested the first diamond double-crystal monochromator at the Advanced Photon Source (APS). The monochromator consisted of two synthetic type 1b (111) diamond plates in symmetric Bragg geometry. We tested two pairs of single-crystal plates: the first pair was 6 mm by 5 mm by 0.25 mm and 6 mm by 5 mm by 0.37 mm; the second set was 7 mm by 5.5 mm by 0.44 mm. The monochromator first crystal was indirectly cooled by edge contact with a water-cooled copper holder. We studied the performance of the monochromator under the high-power x-ray beam delivered by the APS undulator A. We found no indication of thermal distortions or strains even at the highest incident power (280 watts) and power density (123W/mm 2 at normal incidence). The calculated maximum power and power density absorbed by the first crystal were 37 watts and 4.3W/mm 2 , respectively. We also compared the maximum intensity delivered by the diamond monochromator and by a silicon (111) cryogenically cooled monochromator. For energies in the range of 6 to 10 keV, the flux through the diamond monochromator was about a factor of two less than through the silicon monochromator, in good agreement with calculations. We conclude that water-cooled diamond monochromators can handle the high-power beams from the undulator beamlines at the APS. As single-crystal diamond plates of larger size and better quality become available, the use of diamond monochromators will become a very attractive option. copyright 1997 American Institute of Physics

  20. The formation of crystals in glasses containing rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses

  1. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  2. Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.

    Science.gov (United States)

    Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter

    2017-09-01

    We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.

  3. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  4. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    Science.gov (United States)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  5. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Abu-Lebdeh, Yaser A., E-mail: yaser.abu-lebdeh@nrc.gc.ca [Energy, Mining and Environment Portfolio and Automotive and Surface Transportation Portfolio, National Research Council of Canada, Ottawa, ON (Canada)

    2015-08-18

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C{sub 4}H{sub 9}){sub 4}-NPF{sub 6}, (10 molar %) with succinonitrile, SCN, (N≡C−CH{sub 2}−CH{sub 2}−C≡N), [SCN-10%TBA-PF{sub 6}]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10{sup -5} S/cm in the plastic crystal phase (15°C) and ~ 3 × 10{sup -3} S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  6. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    International Nuclear Information System (INIS)

    Abouimrane, Ali; Belharouak, Ilias; Abu-Lebdeh, Yaser A.

    2015-01-01

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C 4 H 9 ) 4 -NPF 6 , (10 molar %) with succinonitrile, SCN, (N≡C−CH 2 −CH 2 −C≡N), [SCN-10%TBA-PF 6 ]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10 -5 S/cm in the plastic crystal phase (15°C) and ~ 3 × 10 -3 S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  7. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr

    Science.gov (United States)

    Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.

  8. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  9. Formation of a Ξ-hypernucleus and transitions to double-Λ states

    International Nuclear Information System (INIS)

    Ikeda, Kiyomi; Takahashi, Miho; Fukuda, Tomokazu; Motoba, Toshio; Yamamoto, Yasuo.

    1993-06-01

    A scenario is given for the formation of Ξ - states and the transitions to states with double-Λ in anticipation of observations, especially in the KEK-E224 experiment. First, the production cross sections of Ξ - hypernuclear states by (K - , K + ) reactions are calculated within the framework of the distorted-wave impulse approximation. Next, the transition rates from Ξ - hypernuclear states to possible double-Λ states are obtained, which are closely related to single- and double-Λ emissions after the Ξ - p→ΛΛ conversion in nuclei. (author)

  10. Stone Formation and Fragmentation in Forgotten Ureteral Double J Stent

    Directory of Open Access Journals (Sweden)

    Okan Bas

    2014-02-01

    Full Text Available Aim: Nowadays, ureteral stents play an essential role in various endourological and open surgical procedures and common procedures performed in daily urological practice. However, stents can cause significant complications such as migration, infection, fragmentation, stone formation and encrustation, especially when forgotten for a long period. Objectives: We present our experience in endoscopic management of forgotten ureteral stents with a brief review of current literature. Case presentation: A total of 2 patients with forgotten ureteral stents were treated with endourological approaches in our department. Indwelling durations were 18 months and 36 months. After treatment both patients were stone and stent free. Conclusion: An endourological approach is effective for stent and stone removal after a single anesthesia session with minimal morbidity and short hospital stay. However, therapeutic strategy is also determined by the technology available. The best treatment would be the prevention of this complication by providing detailed patient education.

  11. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  12. Lack of Co-crystal Formation with Cyclotriphosphazenes: A ...

    African Journals Online (AJOL)

    NICOLAAS

    systematic study due to the ease of synthesis of a variety of sub- stituted derivatives from hexachlorocyclotriphosphazene,. (NPCl2)3.2a,4c,8 Despite this, there have been few systematic crystal engineering studies on cyclotriphosphazenes.9 Chandrasekhar et al.9a used cyclotriphosphazenes and the principles of direc-.

  13. Double crystal X-ray analysis of phosphorus precipitation in supersaturated Si-P solid solutions

    International Nuclear Information System (INIS)

    Servidori, M.; Zini, Q.; Dal Monte, C.

    1983-01-01

    The physical nature of the electrically inactive phosphorus in silicon is investigated by double crystal X-ray diffraction measurements. This analysis is performed on laser annealed supersaturated samples, doped by ion implantation up to 5 x 10 21 cm -3 . After isothermal heat treatments, these solid solutions show marked reductions in the electrically active phosphorus concentration. In particular, 850 0 C heatings give rise to a carrier concentration which corresponds to the phosphorus solubility in equilibrium with the inactive dopant. This dopant is characterized by means of lattice strain measurements: they are found consistent with the presence of perfectly coherent cubic SiP precipitates. This result is in agreement with the one obtained in preceeding works by electrical measurements and transmission electron microscopy observations and contradicts the hypothesis that the excess dopant atoms are, at least in part, charged point defects (E-centres). (author)

  14. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.

  15. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    Science.gov (United States)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K.

  16. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    International Nuclear Information System (INIS)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-01-01

    Single crystals of the osmium-containing compound Ca 3 OsO 6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca 3 OsO 6 were characterized as an ordered double-perovskite structure of space group P2 1 /n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K. - Graphical Abstract: Schematic image of crystal structure of Ca 3 OsO 6 as determined by X-ray diffraction, where the gray and black octahedrons are occupied by Ca and Os, respectively. Top inset reveals an optic image of a typical Ca 3 OsO 6 single crystal. Highlights: ► Single crystals of Ca 3 OsO 6 have been successfully grown under high-pressure. ► Ca 3 OsO 6 crystalizes into an ordered double-perovskite structure. ► The Ca 3 OsO 6 undergoes an antiferromagnetic transition at 50 K

  17. Crystal structural, magnetic and electrical transport properties of CeKFeMoO6 double perovskite

    International Nuclear Information System (INIS)

    Huo Guoyan; Ren Minghui; Wang Xiaoqing; Zhang Hongrui; Shi Pengfei

    2010-01-01

    The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO 6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P2 1 /n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from C p -T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μ B /f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, -0.88 and -0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.

  18. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  19. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  20. Does electrical double layer formation lead to salt exclusion or to uptake?

    NARCIS (Netherlands)

    Lyklema, J.

    2005-01-01

    When electric double layers are formed, cases have been reported where this formation nvolves expulsion of electrolyte into the solution and cases in which electrolyte is absorbed from the solution. Both situations are experimentally and theoretically documented, but they cannot be simultaneously

  1. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  2. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  3. Double-barrelled wet colostomy formation after pelvic exenteration for locally advanced or recurrent rectal cancer.

    Science.gov (United States)

    Bloemendaal, A L A; Kraus, R; Buchs, N C; Hamdy, F C; Hompes, R; Cogswell, L; Guy, R J

    2016-11-01

    In advanced pelvic cancer it may be necessary to perform a total pelvic exenteration. In such cases urinary tract reconstruction is usually achieved with the creation of an ileal conduit with a urinary stoma on the right side of the patient's abdomen and an end colostomy separately on the left. The potential morbidity from a second stoma may be avoided by the use of a double-barrelled wet colostomy (DBWC), as a single stoma. Another advantage is the possibility of using a vertical rectus abdominis muscle flap for perineal reconstruction. All patients undergoing formation of a DBWC were included. A DBWC was formed in 10 patients. One patient underwent formation of a double-barrelled wet ileostomy. In this technical note we present our early experience in 11 cases and a video of DBWC formation in a male patient. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  4. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  5. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available Hemozoin (Hz is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM. Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE and phosphatidylcholine (uPC, with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

  6. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  7. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  8. Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal

    Science.gov (United States)

    Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang

    2018-05-01

    We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.

  9. Crystal structures of the double perovskites Ba2Sr1-x Ca x WO6

    International Nuclear Information System (INIS)

    Fu, W.T.; Akerboom, S.; IJdo, D.J.W.

    2007-01-01

    Structures of the double perovskites Ba 2 Sr 1- x Ca x WO 6 have been studied by the profile analysis of X-ray diffraction data. The end members, Ba 2 SrWO 6 and Ba 2 CaWO 6 , have the space group I2/m (tilt system a 0 b - b - ) and Fm3-barm (tilt system a 0 a 0 a 0 ), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a - a - a - ) instead of the tetragonal I4/m phase (tilt system a 0 a 0 c - ). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba 2 MM'O 6 -type double perovskites, and disagrees with a recent proposal that the formation of the π-bonding, e.g., d 0 -ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba 2 Sr 1- x Ca x WO 6 . Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively

  10. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  11. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  12. Analysis of ripple formation in single crystal spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab de Metallurgie Physique; Corrigan, D.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  13. Double crystal monochromator controlled by integrated computing on BL07A in New SUBARU, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Masato, E-mail: okui@kohzu.co.jp [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); Yato, Naoki; Watanabe, Akinobu; Lin, Baiming; Murayama, Norio [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Fukushima, Sei, E-mail: FUKUSHIMA.Sei@nims.go.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); National Institute for Material Sciences (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan)

    2016-07-27

    The BL07A beamline in New SUBARU, University of Hyogo, has been used for many studies of new materials. A new double crystal monochromator controlled by integrated computing was designed and installed in the beamline in 2014. In this report we will discuss the unique features of this new monochromator, MKZ-7NS. This monochromator was not designed exclusively for use in BL07A; on the contrary, it was designed to be installed at low cost in various beamlines to facilitate the industrial applications of medium-scale synchrotron radiation facilities. Thus, the design of the monochromator utilized common packages that can satisfy the wide variety of specifications required at different synchrotron radiation facilities. This monochromator can be easily optimized for any beamline due to the fact that a few control parameters can be suitably customized. The beam offset can be fixed precisely even if one of the two slave axes is omitted. This design reduces the convolution of mechanical errors. Moreover, the monochromator’s control mechanism is very compact, making it possible to reduce the size of the vacuum chamber can be made smaller.

  14. Photorefractive grating formation in piezoelectric La3Ga5SiO14:Pr3+ crystals

    DEFF Research Database (Denmark)

    Dam-Hansen, C.; Johansen, P.M.; Fridkin, V.M.

    1996-01-01

    Photorefractive grating formation and erasure in piezoelectric crystals of La3Ga5SiO14:Pr3+ are presented. The specific photoconductivity and the photorefractive sensitivity are determined. The polarization dependence of the grating formation due to the bulk photovoltaic effect is shown and compa......Photorefractive grating formation and erasure in piezoelectric crystals of La3Ga5SiO14:Pr3+ are presented. The specific photoconductivity and the photorefractive sensitivity are determined. The polarization dependence of the grating formation due to the bulk photovoltaic effect is shown...... and compared favorably with the theoretical expression. This photorefractive material provides a possibility for separate investigations of the charge migration processes responsible for the photorefractive effect. (C) 1996 American Institute of Physics....

  15. Matrix Gla Protein is Involved in Crystal Formation in Kidney of Hyperoxaluric Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Lu

    2013-02-01

    Full Text Available Background: Matrix Gla protein (MGP is a molecular determinant regulating vascular calcification of the extracellular matrix. However, it is still unclear how MGP may be invovled in crystal formation in the kidney of hyperoxaluric rats. Methods: Male Sprague-Dawley rats were divided into the hyperoxaluric group and control group. Hyperoxaluric rats were administrated by 0.75% ethylene glycol (EG for up to 8 weeks. Renal MGP expression was detected by the standard avidin-biotin complex (ABC method. Renal crystal deposition was observed by a polarizing microscope. Total RNA and protein from the rat kidney tissue were extracted. The levels of MGP mRNA and protein expression were analyzed by the real-time polymerase chain reaction (RT-PCR and Western blot. Results: Hyperoxaluria was induced successfully in rats. The MGP was polarly distributed, on the apical membrane of renal tubular epithelial cells, and was found in the ascending thick limbs of Henle's loop (cTAL and the distal convoluted tubule (DCT in hyperoxaluric rats, its expression however, was present in the medullary collecting duct (MCD in stone-forming rats. Crystals with multilaminated structure formed in the injurious renal tubules with lack of MGP expression.MGP mRNA expression was significantly upregulated by the crystals' stimulations. Conclusion: Our results suggested that the MGP was involved in crystals formation by the continuous expression, distributing it polarly in the renal tubular cells and binding directly to the crystals.

  16. A variational study of the self-trapped magnetic polaron formation in double-exchange model

    International Nuclear Information System (INIS)

    Liu Tao; Feng Mang; Wang Kelin

    2005-01-01

    We study the formation of self-trapped magnetic polaron (STMP) in an antiferro/ferromagnetic double-exchange model semi-analytically by variational solutions. It is shown that the Jahn-Teller effect is not essential to the STMP formation and the STMP forms in the antiferromagnetic material within the region of the order of the lattice constant. We also confirm that no ground state STMP exists in the ferromagnetic background, but the ground state bound MP could appear due to the impurity potential

  17. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    Science.gov (United States)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features

  18. Synthesis, Single Crystal Growth, and Properties of Cobalt Deficient Double Perovskite EuBaCo2−xO6−δ (x = 0–0.1

    Directory of Open Access Journals (Sweden)

    S. V. Telegin

    2017-01-01

    Full Text Available The cobalt deficient double perovskites EuBaCo2−xO6−δ with x=0–0.1 were obtained both as powders and as single crystal. Formation of cobalt vacancies in their crystal lattice was shown to be accompanied by the formation of oxygen ones. Chemical lattice strain caused by this cooperative disordering of cobalt and oxygen sublattices was found to be isotropic contrary to that caused by the formation of oxygen vacancies only. Cobalt deficiency was also shown to lead to lowering overall conductivity and Seebeck coefficient of EuBaCo2−xO6−δ double perovskites as a result of simultaneous decrease of charge carriers’ concentration and their mobility as well as number of sites available for electrons and holes transfer. Strong anisotropy of the overall conductivity of the single crystal double perovskites EuBaCo2−xO6−δ was found and explained on the basis of preferential location of oxygen vacancies in the rare-earth-oxygen- (REO- planes.

  19. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    International Nuclear Information System (INIS)

    Li Junjie; Zhu Dunwan; Yin Jianwei; Liu Yuxi; Yao Fanglian; Yao Kangde

    2010-01-01

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca 2+ ] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca 2+ ]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio ≤ 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  20. Crystallization and preliminary X-ray analysis of formate oxidase, an enzyme of the glucose–methanol–choline oxidoreductase family

    International Nuclear Information System (INIS)

    Maeda, Yoshifumi; Doubayashi, Daiju; Ootake, Takumi; Oki, Masaya; Mikami, Bunzo; Uchida, Hiroyuki

    2010-01-01

    Formate oxidase from A. oryzae RIB40 was crystallized and diffraction data were collected to a resolution of 2.4 Å. Formate oxidase (FOD), which catalyzes the oxidation of formate to yield carbon dioxide and hydrogen peroxide, belongs to the glucose–methanol–choline oxidoreductase (GMCO) family. FOD from Aspergillus oryzae RIB40, which has a modified FAD as a cofactor, was crystallized at 293 K by the hanging-drop vapour-diffusion method. The crystal was orthorhombic and belonged to space group C222 1 . Diffraction data were collected from a single crystal to 2.4 Å resolution

  1. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    Science.gov (United States)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  2. Influence of UV Photo-Transfer on Post Irradiated Double Sulphate Poly-Crystals By Gamma And X-rays

    International Nuclear Information System (INIS)

    El-kolaly, M.A.

    2000-01-01

    Solid state thermoluminescence (TL) dosimetry has for many years been the pre-eminent method for quantifying ionizing radiation dose. In this work, thermoluminescence characteristics of the double sulphate (Li Cs So 4 ) poly-crystals have been studied after exposure to different doses from X and gamma radiation. The glue curves showed TL response of three peaks at 75,125,250 degree. The structure of the glue peaks due to X-rays is quite different from that due to gamma rays. UV exposure yields a regeneration of the TL peaks for the post irradiated samples for X or gamma radiation with some changes in the peaks structure especially the third peak. For the post X-ray irradiated crystals, the area under the third glow peak (III) increased linearly with the integrated time of UV exposures till about 30 min. after which no changes were observed; while , for the post gamma-irradiated crystals two linear regions were observed

  3. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    Science.gov (United States)

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  4. Double and triple crystal diffraction investigation on ion implanted and electron beam annealed silicon

    International Nuclear Information System (INIS)

    Servidori, M.; Cembali, F.; Winter, U.; Zaumseil, P.; Richter, H.

    1985-01-01

    Double (DCD) and triple crystal (TCD) diffractometry was used to investigate radiation damage produced in silicon by silicon bombardment and its evolution after electron beam annealing. The implantation processes were carried out at 60 keV energy and at doses of 0.5, 1, 5, 10, 50, 100, and 200 x 10 13 ions/cm 2 . As to the annealing treatments, an electron gun was used, operating in the ranges 7.5 to 24 W/cm 2 and 2 to 20 seconds. DCD rocking curves were analyzed by means of the dynamical theory of X-ray diffraction. The formalism introduced by Taupin was used to simulate the experimental intensity profiles. From the resulting best fits, the lattice strain vs. depth profiles were obtained, indicating an increase of the damage with dose for the as-implanted samples up to 1 x 10 14 cm -2 dose, whereas amorphous layers are produced for the higher doses. After annealing, lowering of the residual strain was observed to be directly proportional to the implanted dose. In particular, a complete recovery of the damage occurred for the 0.5 and 1 x 10 13 cm -2 samples. The results obtained by the fitting procedure were substantially independent from the power densities and times used during electron beam irradiation. TCD as a very sensitive method to investigate lattice defects after implantation was used to obtain information about the crystallographic perfection of the surface layer. The absence of diffuse scattering indicates that the annealed layers do not contain microdefects within the detection limits. (author)

  5. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  6. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  7. Crystallization behavior of nanocomposites based on poly(L-lactide) and layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller

    Science.gov (United States)

    Schoenhals, Andreas; Leng, Jing; Wurm, Andreas; Schick, Christoph

    Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller) . In most cases a separation of both contributions is not possible without further assumptions. Here polymer nanocomposite based on poly(L-lactide) and layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA its crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated without any assumption. Two different systems with a different degree of exfoliation were prepared and discussed in detail.

  8. Massive Formation of Equiaxed Crystals by Avalanches of Mushy Zone Segments

    Science.gov (United States)

    Ludwig, A.; Stefan-Kharicha, M.; Kharicha, A.; Wu, M.

    2017-06-01

    It is well known that the growth and motion of equiaxed crystals govern important microstructural features, especially in larger castings such as heavy ingots. To determine the origin of the equiaxed crystals, heterogeneous nucleation, and/or fragmentation of dendrite arms from columnar regions are often discussed. In the present study, we demonstrate that under certain conditions relatively large areas of mushy regions slide downward and form spectacular crystal avalanches. These avalanches crumble into thousands of dendritic fragments, whereby the larger fragments immediately sediment and the smaller proceed to behave as equiaxed crystals. Traces of such crystal avalanches can be seen by conspicuous equiaxed layers in the lower part of the casting. From the arguments in the discussion, it is believed that such a phenomenon may occur in alloys which reveal an upward solutal buoyancy in the interdendritic mush. This would include certain steels and other alloys such as Cu-Al, Pb-Sn, or Ni-Al-alloys. Moreover, the occurrence of crystal avalanches contribute to the formation of V-segregations.

  9. Crystal nucleus formation on the cathode under conditions of supersaturation of melt by lower valent forms

    International Nuclear Information System (INIS)

    Kaliev, K.A.; Aksent'ev, A.G.; Baraboshkin, A.N.

    1979-01-01

    Nucleation on the cathode of sodium-tungsten bronzes forom the Na 2 WO 4 -WO 3 melt, containing 40 mol.% WO 3 is studied. It has been found that in the initial period the cathode deposition of sodium-tungsten bronze is preceeded by the formation of tungsten soluble lower reduced forms, the concentration of which can considerably exceed the equilibrium one because of excessive overstress of oxide bronze crystal nucleation. The polarization of cathode and change of its potential at the crystal nucleation of sodium-tungsten bronze and switching-off of the electrolysis current has been studied

  10. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  11. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  12. Formation of large (≃100 μm ice crystals near the tropical tropopause

    Directory of Open Access Journals (Sweden)

    M. J. Alexander

    2008-03-01

    Full Text Available Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (≃100 μm length, thin (aspect ratios of ≃6:1 or larger hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01 L−1. These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to ≃3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%. If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008 then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv. On the other hand, if the crystal aspect ratios are quite a bit larger (≃10:1, then H2O concentrations toward the low end of the measurement range (≃2–2.5 ppmv would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm s−1 to loft the crystals in the tropopause region. These calculations would seem

  13. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  14. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.

    Science.gov (United States)

    Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia

    2015-02-04

    Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.

  15. F-center and self-trapped exciton formation in strongly excited alkali halide crystals

    International Nuclear Information System (INIS)

    Kravchenko, V.A.; Yakovlev, V.Yu.

    1988-01-01

    Method of luminescent and absorption spectroscopy with time resolution was used to study the effect of density of electron pulse excitation (t p =10 -8 s, P=(10 5 -10 8 ) WXcm -2 ) on efficiency of η ε two-halide autolocalized exciton (TALE) and F-centers (η F ) formation in CsI, CsBr, KBr, KI alkali halide crystals. It was established that for all studied systems the elevation of P power of electron beam (EB) from 10 5 up to 5X10 7 WXcm -2 resulted to sufficient decrease of production efficiency and yield of TALE luminescence. In the case when F-centers of colour are induced predominantly by pulsed irradiation in crystals, F-center yield is independent of P. If F-centers and TALE are produced in comparable amounts (CsBr crystals, T=80 K), η ε decrease with P growth is accompanied by η F growth

  16. Self-organization processes and nanocluster formation in crystal lattices by low-energy ion irradiation

    International Nuclear Information System (INIS)

    Tereshko, I.; Abidzina, V.; Tereshko, A.; Glushchenko, V.; Elkin, I.

    2007-01-01

    The goal of this paper is to study self-organization processes that cause nanostructural evolution in nonlinear crystal media. The subjects of the investigation were nonlinear homogeneous and heterogeneous atom chains. The method of computer simulation was used to investigate the interaction between low-energy ions and crystal lattices. It was based on the conception of three-dimensional lattice as a nonlinear atom chain system. We showed that that in homogeneous atom chains critical energy needed for self-organization processes development is less than for nonlinear atom chain with already embedded clusters. The possibility of nanostructure formation was studied by a molecular dynamics method of nonlinear oscillations in atomic oscillator systems of crystal lattices after their low-energy ion irradiation. (authors)

  17. A unique growth mechanism of donut-shaped Mg–Al layered double hydroxides crystals revealed by AFM and STEM–EDX

    NARCIS (Netherlands)

    Budhysutanto, W.N.; Van Den Bruele, F.J.; Rossenaar, B.D.; Van Agterveld, D.; Van Enckevort, W.J.P.; Kramer, H.J.M.

    2010-01-01

    Donut-like crystals of Mg–Al layered double hydroxides (LDH) are synthesized using a hydrothermal method with microwave heating. This morphology provides enlargement of the specific surface area of the {h k 0} faces, needed for adsorption application. The growth mechanism for donut-shaped crystals

  18. Kinetics of the electric double layer formation modelled by the finite difference method

    Science.gov (United States)

    Valent, Ivan

    2017-11-01

    Dynamics of the elctric double layer formation in 100 mM NaCl solution for sudden potentail steps of 10 and 20 mV was simulated using the Poisson-Nernst-Planck theory and VLUGR2 solver for partial differential equations. The used approach was verified by comparing the obtained steady-state solution with the available exact solution. The simulations allowed for detailed analysis of the relaxation processes of the individual ions and the electric potential. Some computational aspects of the problem were discussed.

  19. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    Science.gov (United States)

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  20. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  1. Formation of Coulomb crystal in presence of attractive overlapping Debye sphere potential

    International Nuclear Information System (INIS)

    Baruah, Swati; Das, Nilakshi

    2011-01-01

    The role of attractive overlapping Debye sphere (ODS) potential on dust crystal formation has been investigated by using molecular dynamics code. A comparative study on plasma crystal formation has been made between Yukawa and coupled Yukawa-ODS potential by calculating pair-correlation function, for different values of Coulomb coupling parameter Γ and screening parameter κ. From our study, it is seen that the attractive ODS potential becomes dominant beyond a critical radius than that of the Yukawa potential. This leads to the fact that the effect due to combined Yukawa-ODS potential depends more sensitively on κ. From the comparison of the results for Yukawa and ODS potential with experimental results, it is observed that a close agreement is obtained for attractive ODS potential.

  2. Direct observation of two-step crystallization in nanoparticle superlattice formation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  3. Formation of H a - hydrogen centers upon additive coloration of alkaline-earth fluoride crystals

    Science.gov (United States)

    Radzhabov, E. A.; Egranov, A. V.; Shendrik, R. Yu.

    2017-06-01

    The mechanism of coloration of alkaline-earth fluoride crystals CaF2, SrF2, and BaF2 in calcium vapors in an autoclave with a cold zone is studied. It was found that the pressure in the autoclave upon constant evacuation by a vacuum pump within the temperature range of 500-800°C increases due to evaporation of metal calcium. In addition to the optical-absorption bands of color centers in the additively colored undoped crystals or to the bands of divalent ions in the crystals doped with rare-earth Sm, Yb, and Tm elements, there appear intense bands in the vacuum ultraviolet region at 7.7, 7.0, and 6.025 eV in CaF2, SrF2, and BaF2, respectively. These bands belong to the Ha - hydrogen centers. The formation of hydrogen centers is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of the additively colored crystals. Grinding of the outer edges of the colored crystals leads to a decrease in the hydrogen absorption-band intensity with depth to complete disappearance. The rate of hydrogen penetration inside the crystal is lower than the corresponding rate of color centers (anion vacancies) by a factor of tens. The visible color density of the outer regions of the hydrogen-containing crystals is several times lower than that of the inner region due to the competition between the color centers and hydrogen centers.

  4. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  5. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  6. Formation of classical crystals of dipolar particles in a helical geometry

    DEFF Research Database (Denmark)

    K. Pedersen, J.; V. Fedorov, D.; S. Jensen, A.

    2014-01-01

    We consider crystal formation of particles with dipole-dipole interactions that are confined to move in a one-dimensional helical geometry with their dipole moments oriented along the symmetry axis of the confining helix. The stable classical lowest energy configurations are found to be chain......-to-tail attraction in the system. The speed of sound propagates along the chains. It is independent of the number of chains although depending on geometry....

  7. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  8. Formation of 1,2-diaminomaleicdinitrile crystals in radiolized solid hydrogen cyanide

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Aliev, Z.G.; Kiryukhin, D.P.; Atovmyan, L.O.; Barkalov, I.M.

    1994-01-01

    A study was made on possibility of formation of 1,2-diaminomaleicdinitrile and mechanism of its occurrence in space environment. It was shown in experiments, that 1,2-diaminomaleicdinitrile crystals formed in solid HCN matrix, decomposed radiolytically at 77 K by 60 Co γ-rays with dose of 800 kGy during its sublimation T ≤ 260 K along with conjugated polymer of -C=N-C=N- type. It is shown that radiolysis of solid hydrocyanic acid results to formation of 1,2-diaminomaleicdinitrile with radiation yield G > 2. 11 refs., 1 fig., 1 tab

  9. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    Science.gov (United States)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  10. Dynamical theoretical model of the high-resolution double-crystal x-ray diffractometry of imperfect single crystals with microdefects

    International Nuclear Information System (INIS)

    Molodkin, V. B.; Olikhovskii, S. I.; Kislovskii, E. N.; Vladimirova, T. P.; Skakunova, E. S.; Seredenko, R. F.; Sheludchenko, B. V.

    2008-01-01

    The dynamical diffraction model has been developed for the quantitative description of rocking curves (RCs) measured in the Bragg diffraction geometry from single crystals containing homogeneously distributed microdefects of several types and with arbitrary sizes. The analytical expressions for coherent and diffuse RC components, which take self-consistently multiple-scattering effects into account and depend explicitly on microdefect characteristics (radius, concentration, strength, etc.), have been derived with taking into account the instrumental factors. The developed model has been applied to determine the characteristics of oxygen precipitates and dislocation loops in silicon crystals grown by Czochralsky and float-zone methods using RCs measured by the high-resolution double-crystal x-ray diffractometer. It has been shown, particularly, that completely dynamical consideration of Huang as well as Stockes-Wilson diffuse scattering (DS) in both diffuse RC component and coefficient of extinction of coherent RC component due to DS, together with taking asymmetry and thermal DS effects into account, provides the possibility to distinguish contributions into RC from defects of different types, which have equal or commensurable effective radii

  11. Formation of anorthosite on the Moon through magma ocean fractional crystallization

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Arai

    2017-03-01

    Full Text Available Lunar anorthosite is a major rock of the lunar highlands, which formed as a result of plagioclase-floatation in the lunar magma ocean (LMO. Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite (mode of plagioclase >95 vol.% is a key to reveal the early magmatic evolution of the terrestrial planets. To form the pure lunar anorthosite, plagioclase should have separated from the magma ocean with low crystal fraction. Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma (φ is higher than ca. 40–60 vol.%, which inhibit the formation of pure anorthosite. In contrast, when φ is small, the magma ocean is highly turbulent, and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt. To determine the necessary conditions in which anorthosite forms from the LMO, this study adopted the energy criterion formulated by Solomatov. The composition of melt, temperature, and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt. When plagioclase starts to crystallize, the Mg# of melt becomes 0.59 at 1291 °C. The density of the melt is smaller than that of plagioclase for P > 2.1 kbar (ca. 50 km deep, and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase (1.8–3 cm. This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize. When the Mg# of melt becomes 0.54 at 1263 °C, the density of melt becomes larger than that of plagioclase even for 0 kbar. When the Mg# of melt decreases down to 0.46 at 1218 °C, the critical diameter of plagioclase to separate from the melt becomes 1.5–2.5 cm, which is nearly equal to the typical plagioclase of the lunar anorthosite. This suggests that plagioclase could separate from the

  12. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    Energy Technology Data Exchange (ETDEWEB)

    Li Junjie [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China); Zhu Dunwan [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300072 (China); Yin Jianwei; Liu Yuxi [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Fanglian, E-mail: yaofanglian@tju.edu.cn [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Kangde [Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China)

    2010-07-20

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca{sup 2+}] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca{sup 2+}]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio {<=} 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  13. Test of a high-heat-load double-crystal diamond monochromator at the advanced photon source

    International Nuclear Information System (INIS)

    Fernandez, P.B.; Graber, T.; Lee, W.-K.; Mills, D.M.; Rogers, C.S.; Assoufid, L.

    1997-01-01

    We have tested the first diamond double-crystal monochromator at the advanced photon source (APS). The monochromator consisted of two synthetic type 1b (111) diamond plates in symmetric Bragg geometry. The single-crystal plates were 6 mm x 5 mm x 0.25 mm and 6 mm x 5 mm x 0.37 mm and showed a combination of mosaic spread/strain of the order of 2-4 arcsec over a central 1.4 mm-wide strip. The monochromator first crystal was indirectly cooled by edge contact with a water-cooled copper holder. We studied the performance of the monochromator under the high-power X-ray beam delivered by the APS undulator A. By changing the undulator gap, we varied the power incident on the first crystal and found no indication of thermal distortions or strains even at the highest incident power (200 W) and power density (108 W/mm 2 in normal incidence). The calculated maximum power and power density absorbed by the first crystal were 14.5 W and 2.4 W/mm 2 , respectively. We also compared the maximum intensity delivered by this monochromator and by a silicon (111) cryogenically cooled monochromator. For energies in the range 6-10 keV, the flux through the diamond monochromator was about a factor of two less than through the silicon monochromator, in good agreement with calculations. We conclude that water-cooled diamond monochromators can handle the high-power beams from the undulator beamlines at the APS. As single-crystal diamond plates of larger size and better quality become available, the use of diamond monochromators will become a very attractive option. (orig.)

  14. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Belev, George; Bassey, Bassey; Lewis, Rob; Aulakh, Gurpreet; Chapman, Dean

    2014-01-01

    A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline. The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties

  15. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  16. Periodically poled self-frequency-doubling green laser fabricated from Nd:Mg:LiNbO₃ single crystal.

    Science.gov (United States)

    Wang, Dong Zhou; Sun, De Hui; Kang, Xue Liang; Sang, Yuan Hua; Yan, Bo Xia; Liu, Hong; Bi, Yong

    2015-07-13

    Although a breakthrough in the fabrication of green laser diodes has occurred, the high costs associated with the difficulty of manufacture still present a great obstacle for its practical application. Another approach for producing a green laser, by combining a laser device and a nonlinear crystal, entails the fabrication of complex structures and exhibits unstable performance due to interface contact defects, thus limiting its application. In this work, we report the fabrication by domain engineering of high quality periodically poled LiNbO₃, co-doped with Nd³⁺ and Mg²⁺, which combines a laser medium and a high efficiency second harmonic conversion crystal into a single system that is designed to overcome the above problems. An 80 mW self-frequency doubling green laser was constructed for the first time from a periodically poled Nd:Mg:LiNbO₃ crystal of 16 mm in length. This crystal can be used for developing compact, stable, highly efficient mini-solid-state-lasers, which promise to have many applications in portable laser-based spectroscopy, photo-communications, terahertz wave generation, and laser displays.

  17. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    Science.gov (United States)

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  18. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.

    Science.gov (United States)

    Ngo, Ich-Long; Dang, Trung-Dung; Byon, Chan; Joo, Sang Woo

    2015-03-01

    In this study, droplet formations in microfluidic double T-junctions (MFDTD) are investigated based on a two-dimensional numerical model with volume of fluid method. Parametric ranges for generating alternating droplet formation (ADF) are identified. A physical background responsible for the ADF is suggested by analyzing the dynamical stability of flow system. Since the phase discrepancy between dispersed flows is mainly caused by non-symmetrical breaking of merging droplet, merging regime becomes the alternating regime at appropriate conditions. In addition, the effects of channel geometries on droplet formation are studied in terms of relative channel width. The predicted results show that the ADF region is shifted toward lower capillary numbers when channel width ratio is less than unity. The alternating droplet size increases with the increase of channel width ratio. When this ratio reaches unity, alternating droplets can be formed at very high water fraction (wf = 0.8). The droplet formation in MFDTD depends significantly on the viscosity ratio, and the droplet size in ADF decreases with the increase of the viscosity ratio. The understanding of underlying physics of the ADF phenomenon is useful for many applications, including nanoparticle synthesis with different concentrations, hydrogel bead generation, and cell transplantation in biomedical therapy.

  19. Successful Management of Repetitive Urinary Obstruction and Anuria Caused by Double J Stent Calculi Formation after Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Zongyao Hao

    2014-01-01

    Full Text Available This report firstly describes an extremely rare case of repetitive double J stent calculi formation after renal transplantation caused by the antihyperparathyroidism (HPT drug calcitriol. In 2012, a woman initially presented to our hospital for anuria with lower abdominal pain. She was diagnosed with allograft hydronephrosis and double J stents obstruction by calculi formation after transplantation and treated with triplicate stents replacements in another hospital without clinical manifestations improvements. Through detailed exploration of medical history, we conclude that the abnormal calculi formation is due to the calcitriol (1,25-dihydroxyvitamin D3 administration, a drug which can increase renal tubular reabsorption of calcium for treating posttransplant HPT bone disease. After discontinuing calcitriol, the patient was stone-free and had a good recovery without severe complications during the 9-month follow-up. Our novel findings may provide an important clue and approach to managing formidable repetitive double J stent calculi formation in the clinical trial.

  20. Influence of chromium ions on the color center formation in crystals with garnet structure

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Zharikov, E.V.; Laptev, V.V.

    1985-01-01

    The in fluence of chromium ions on the color center formation in crystals of yttrium-aluminium garnet, gadolinium-gallium garnet, gadolinium-scandium-gallium garnet, and yttrium-scandium-gallium garnet is studied. In addition to basic activator ions these crystals were coactivated also by chromium ions with two wide bands of fundamental absorption within the range of pump tube radiation with maximas close to 450 and 650 nm. The color centers for γ-irradiated samples were observed at 300 K by measuring the adsorption spectra within the 300-800 nm range. Temperature of destruction of the charge trapping sites was determined by the method of thermoluminescence measuring in the 100-500 K temperature range. Detection of recombination center luminescence was accomplished within the 200-1600 nm wavelength range. Chromium ions are found to hinder the formation of color centers as a result of γ-irradiation at room and higher temperatures within the wavelength range over 300 nm; i.e. Cr 3+ ions increase radiation resistance of all the investigated crystals

  1. Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females.

    Science.gov (United States)

    Mehrotra, S; McKim, K S

    2006-11-24

    Using an antibody against the phosphorylated form of His2Av (gamma-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to gamma-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs. In the absence of two SC proteins, C(3)G and C(2)M, the number of DSBs in oocytes is significantly reduced. This is consistent with the appearance of SC protein staining prior to gamma-His2Av foci. However, SC formation is incomplete or absent in the neighboring nurse cells, and gamma-His2Av foci appear with the same kinetics as in oocytes and do not depend on SC proteins. Thus, competence for DSB formation in nurse cells occurs with a specific timing that is independent of the SC, whereas in the oocytes, some SC proteins may have a regulatory role to counteract the effects of a negative regulator of DSB formation. The SC is not sufficient for DSB formation, however, since DSBs were absent from the heterochromatin even though SC formation occurs in these regions. All gamma-His2Av foci disappear before the end of prophase, presumably as repair is completed and crossovers are formed. However, oocytes in early prophase exhibit a slower response to X-ray-induced DSBs compared to those in the late pachytene stage. Assuming all DSBs appear as gamma-His2Av foci, there is at least a 3:1 ratio of noncrossover to crossover products. From a comparison of the frequency of gamma-His2Av foci and crossovers, it appears that Drosophila females have only a weak mechanism to ensure a crossover in the presence of a low number of DSBs.

  2. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  3. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    Science.gov (United States)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  4. Formation of 1,2-diaminomaleodinitrile crystals in radiolyzed solid hydrocyanic acid

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Aliev, Z.G.; Kiryukhin, D.P.; Atovmyan, L.O.; Barkalov, I.M.

    1994-01-01

    Hydrocyanic molecules, HCN, are widely found in various extraterrestrial objects and have come to be regarded as the building blocks of chemical evolution, because they convert directly to more complex organic compounds, such as amino acids, nucleotides, and proteins. While observing the low-temperature conversion of radiolyzed solid HCN, the authors noted the formation of an amorphous polymer and the nucleation and growth of needle shaped crystals. The crystals were studied by X-ray diffraction methods and believed to be formed by 1,2-diaminomaleodinitrile, a tetramer of HCN, arising by recombination of aminocyanocarbene diradicals. Cobalt 60 was used as the radiation source, preirradiating with a 800 kGy dose a solid HCN sample at 77K

  5. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    International Nuclear Information System (INIS)

    Tornow, W.; Corse, W.; Crimi, S.; Fox, J.

    2010-01-01

    Two cylindrical LiTaO 3 crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z + and z - cut crystal faces, neutrons were produced via the 2 H(d,n) 3 He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D 2 + ) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10 4 neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  6. Single crystal fibers growth of double lithium, lanthanium molybdate and adjustment of a micro-pulling down furnace for high vacuum setup

    International Nuclear Information System (INIS)

    Silva, Fernando Rodrigues da

    2013-01-01

    In this work we investigated crystal growth procedures aiming the development of single crystal fiber (SCF) for laser applications. For quality optimization in the fabrication of fluorides SCF a new growth chamber for a micro-pulling down furnace (μ-PD) was constructed targeting the fibers fabrication with strict atmosphere control (high vacuum, gas flux and static atmospheres). Simultaneously, the SCF growth process of rare earth double molybdates was studied. The growth of pure and Nd 3+ -doped SCF of LiLa(MoO 4 ) 2 (LLM) was studied in the range of 0,5 - 10mol% doping. The designed furnace growth chamber with controlled atmosphere was successfully constructed and tested under different conditions. Specially, it was tested with the growth of LiF SFC under CF 4 atmosphere showing the expected results. Transparent and homogeneous SCF of Nd:LLM were grown. In the pure fibers was observed facets formation, however, these defects were minimized after tuning of the growth parameters and additionally with the fibers doping. X-ray analysis showed the crystallization of a single phase (space group I4 1 /a); the optical coherence tomography showed the presence of scattering centers only in regions were some growth stability occurred due to the manual process control. The measured Nd 3+ distribution showed uniform incorporation, indicative of a segregation coefficient close to unity in LLM. The potential laser gain of the system was determined using a numerical solution of the rate equations system for the 805nm, CW pumping regime, showing the maximum laser emission gain at 1.064 μm for a Nd 3+ -doping of 5mol%. (author)

  7. Formation of double layers: shocklike solutions of an mKdV-equation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Chanteur, G.

    1985-10-01

    Small amplitude double layers (DLs) in a plasma with a suitable electron distribution may be identified with shocklike solutions of a modified Korteweg-deVries (mKdV) equation. A thought experiment for the formation of such DLs is specified to clarify the physical constraints and to demonstrate the emergence of a DL from an initial disturbance. A scattering formulation of the mKdV initial value problem may be diagonalised to give a pair of Schroedinger equations with a scattering potential satisfying the ordinary KdV equation. The initial value problem can then be treated using Khruslov's generalisation of the inverse scattering method which allows a difference in the asymptotic values of the potential. A necessary and sufficient condition for the emergence of a shocklike soliton (wave) train and of a finite number of isolated solitons may also be determined from the scattering properties of the initial potential. With 26 refs and 5 figures. (Author)

  8. The cone phase of liquid crystals: Triangular lattice of double-tilt ...

    Indian Academy of Sciences (India)

    (figure 3) and analyse the mechanism which stabilizes it. Liquid crystals are soft ... There is no change in the smectic layer spacing along .... with the case of blue phases of cubic symmetry where the pitch of the helix provides a natural length ...

  9. Transmission spectrum of a double quantum-dot-nanocavity system in photonic crystals

    International Nuclear Information System (INIS)

    Qian Jun; Jin Shiqi; Gong Shangqing; Qian Yong; Feng Xunli

    2008-01-01

    We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure

  10. CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du Burck, F.; Hrabina, Jan; Candela, Y.; Wallerand, J. P.; Acef, O.

    2013-01-01

    Roč. 311, 15 January (2013), s. 239-244 ISSN 0030-4018 R&D Projects: GA ČR GPP102/11/P820 Institutional support: RVO:68081731 Keywords : IR laser * second harmonic generation * waveguide and bulk crystals * periodically poled lithium niobate * 1029 nm wavelength Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.542, year: 2013

  11. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.ed [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Corse, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crimi, S. [Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458 (United States); Fox, J. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2010-12-21

    Two cylindrical LiTaO{sub 3} crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z{sup +} and z{sup -} cut crystal faces, neutrons were produced via the {sup 2}H(d,n){sup 3}He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D{sub 2}{sup +}) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10{sup 4} neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  12. The Roles of Convection Parameterization in the Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric Processes

    Science.gov (United States)

    Song, Xiaoliang; Zhang, Guang J.

    2018-03-01

    Several improvements are implemented in the Zhang-McFarlane (ZM) convection scheme to investigate the roles of convection parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in convection scheme. This study for the first time demonstrates that the modifications of convection scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the convection scheme itself. This study demonstrates that convection scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM convection scheme tends to produce double ITCZ bias in high SST scenario, while the modified convection scheme does not. The impact of changes in each core component of convection scheme on the double ITCZ bias in atmospheric model is identified and further investigated.

  13. Holographic Formation of Diffraction Elements for Transformation of Light Beams in Liquid Crystal - Photopolymer Compositions

    Science.gov (United States)

    Semkin, A. O.; Sharangovich, S. N.

    2018-03-01

    A theoretical model of holographic formation of diffractive optical elements for transformation of light beam field into Bessel-like fields in liquid crystal - photopolymer (LC-PPM) composite materials with a dyesensitizer is developed. Results of numerical modeling of kinetics ofvariation of the refractive index of a material in the process of formation with different relationships between the photopolymerization rates and diffusion processes are presented. Based on the results of numerical simulation, it is demonstrated that when the photopolarization process dominates, the diffractive element being formed is distorted. This leads to a change in the light field distribution at its output and consequently, to ineffective transformation of the reading beam. Thus, the necessity of optimizing of the recording conditions and of the prepolymeric composition to increase the transformation efficiency of light beam fields is demonstrated.

  14. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  15. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties

    Science.gov (United States)

    Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2014-05-01

    interesting spin configuration. The center metal atom, including a lanthanoid metal of Tb, tends to be 3+ cation, while the Pc ligand to be 2- anion. This realizes two-spin system, in which spins from 4f electrons and π radical coexist. Though the spins of 4f orbitals of those molecules have been studied, the importance of the π radicals has been highlighted recently from the measurement of electronic conductance properties of these molecules. In this article, recent researches on multi-decker Pc molecules are reviewed. The manuscript is organized with groups of chapters as follows: (1) Film formation, (2) Spin of TbPc2 film and Kondo resonance observation, (3) Rotation of double-decker Pc complex and chemical modification for spin control, (4) Device formation using double-decker Pc complex.

  16. Formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bei, H., E-mail: beih@ornl.gov [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States); Yang, Y., E-mail: ying.yang@computherm.com [CompuTherm LLC, Madison, WI 53719 (United States); Viswanathan, G.B. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Rawn, C.J.; George, E.P. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States)] [University of Tennessee, Department of Materials Science and Engineering, Knoxville, TN 37996 (United States); Tiley, J. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Chang, Y.A. [CompuTherm LLC, Madison, WI 53719 (United States)] [University of Wisconsin-Madison, Madison, WI 53705 (United States)

    2010-10-15

    The formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys were investigated. Guided by thermodynamic calculations, six critically selected alloys were arc melted and annealed at 1600 deg. C for 150 h. Their as-cast and annealed microstructures, including phase fractions and distributions, the compositions of the constituent phases and the crystal structure of the {sigma} phase were analyzed by thermodynamic modeling coupled with experimental characterization by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and transmission electron microscopy. Two key findings resulted from this work. One is the large homogeneity range of the {sigma} phase region, extending from binary Mo-Re to ternary Mo-Re-Si. The other is the formation of a {sigma} phase in Mo-rich alloys either through the peritectic reaction of liquid + Mo{sub ss} {yields} {sigma} or primary solidification. These findings are important in understanding the effects of Re on the microstructure and providing guidance on the design of Mo-Re-Si alloys.

  17. Rapid formation of cholesterol crystals in gallbladder bile is associated with stone recurrence after laparoscopic cholecystotomy.

    Science.gov (United States)

    Jüngst, D; del Pozo, R; Dolu, M H; Schneeweiss, S G; Frimberger, E

    1997-03-01

    Laparoscopic cholecystotomy (LCT) with subsequent extraction of gallstones and primary closure of the gallbladder has been introduced as an alternative therapy for patients with cholecystolithiasis and preserved gallbladder function. However, stone recurrence has to be considered as a major drawback that might be related to lithogenic factors of gallbladder bile or the composition of gallbladder stones. Therefore, these were studied in relation to stone recurrence within an observation period of 1 to 5 years (median, 3.6 years) in 50 patients after LCT. The concentrations of total and individual bile acids, phospholipids, cholesterol, total lipids, mucin, protein, and the cholesterol saturation indices in gallbladder bile were not significantly different between 10 patients with and 40 patients without stone recurrence. However, the crystal observation time was significantly (P < .02) shorter (range, 1-2 days; median, 1.5) in the bile of patients with stone recurrence compared to those without (range, 1-21 days, median 3.5). Moreover, all 10 stone recurrences were observed in the 28 patients with a crystal observation time in the bile of less than or equal to 2 days (approximate annual risk: 12%-15%), and no recurrences were observed in the 22 patients with a crystal observation time greater than 2 days (P < .0001) or in patients with pigment stones. The rapid formation of cholesterol monohydrate crystals in bile seems to be the major risk factor for recurrent stones after LCT. These are most likely cholesterol stones and, therefore, are amenable to oral bile-acid prevention or treatment.

  18. Chemical state analysis of oxide thin films using a high resolution double crystal X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Masuda, Hirohisa; Morinaga, Kenji; Ohta, Yoshio.

    1995-01-01

    The chemical state analysis of r.f.-sputtered amorphous oxide thin films was determined by a high resolution X-ray fluorescence spectrometer with double crystals. The polymerization degree of silicate anions in the silicate film was as same as a target (α-Quartz). The oxygen coordination number of Al 3+ ions in the aluminate film was different from a target (α-Al 2 O 3 ), and it was a mixture of 4 and 6 in a spinel-like structure. In CaO-SiO 2 and CaO-Al 2 O 3 films, when the film thickness is thin at the beginning of sputtering, the composition of films are in the shortage of CaO. But when the film thickness become thicker, the composition of films become as same as the target. From the results above, the chemical state of films and their variations with film thickness can be clarified by using the apparatus. (author)

  19. Broadening of the x-ray emission line due to the instrumental function of the double-crystal spectrometer

    International Nuclear Information System (INIS)

    Tochio, T.; Ito, Y.; Omote, K.

    2002-01-01

    The influence of the instrumental function on the Cu Kα 1 emission line was investigated for the case of a double-crystal spectrometer. The magnitude of broadening for both Si(220) and Si(440) was calculated for a Lorentzian emission line with the width of 1-5 eV; the broadening for Si(220) is 0.12-0.18 eV while that for Si(440) is only 0.015-0.043 eV. The former is too large to be neglected, so the correction for the instrumental function is important. The spectrum affected by the instrumental function seems to keep the shape of Lorentzian though its width is larger. The fact indicates that the Lorentzian fitting analysis is effective if the appropriate correction for width is done

  20. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    Science.gov (United States)

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  1. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  2. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  3. Effects of electric fields on the photonic crystal formation from block copolymers

    Science.gov (United States)

    Lee, Taekun; Ju, Jin-wook; Ryoo, Won

    2012-03-01

    Effects of electric fields on the self-assembly of block copolymers have been investigated for thin films of polystyrene-bpoly( 2-vinyl pyridine); PS-b-P2VP, 52 kg/mol-b-57 kg/mol and 133 kg/mol-b-132 kg/mol. Block copolymers of polystyrene and poly(2-vinyl pyridine) have been demonstrated to form photonic crystals of 1D lamellar structure with optical band gaps that correspond to UV-to-visible light. The formation of lamellar structure toward minimum freeenergy state needs increasing polymer chain mobility, and the self-assembly process is accelerated usually by annealing, that is exposing the thin film to solvent vapor such as chloroform and dichloromethane. In this study, thin films of block copolymers were spin-coated on substrates and placed between electrode arrays of various patterns including pin-points, crossing and parallel lines. As direct or alternating currents were applied to electrode arrays during annealing process, the final structure of thin films was altered from the typical 1D lamellae in the absence of electric fields. The formation of lamellar structure was spatially controlled depending on the shape of electrode arrays, and the photonic band gap also could be modulated by electric field strength. The spatial formation of lamellar structure was examined with simulated distribution of electrical potentials by finite difference method (FDM). P2VP layers in self-assembled film were quaternized with methyl iodide vapor, and the remaining lamellar structure was investigated by field emission scanning electron microscope (FESEM). The result of this work is expected to provide ways of fabricating functional structures for display devices utilizing photonic crystal array.

  4. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  5. Characterization of lattice damage in ion implanted silicon: a Monte Carlo simulation combined with double crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Cembali, F.; Mazzone, A.M.; Servidori, M.; Gabilli, E.; Lotti, R.

    1985-01-01

    Double crystal X-ray diffractometry is applied to the characterization of damage in silicon samples, irradiated with 60 keV self-ions for doses ranging from 5 x 10 12 cm -2 to the threshold for amorphisation. The samples were also electron beam annealed in such a condition as to give rise to a temperature of 800 0 C. The in-depth strain and atomic disorder distributions, due to the implantation defects, were determined for the specimens before and after high temperature annealing. This was possible by application of the dynamical theory of X-ray diffraction from imperfect crystals and by taking into account the diffuse (thermal, Compton) scattering accompanying Bragg diffraction intensity measurements. Transmission electron microscopy observations, in conventional (planar) and cross-section mode, were also performed. The results of these analyses were compared with a complex simulation method, designed to account for the physical origin of the disorder. The method consists of a Monte Carlo simulation of the damage growth during implantation and of the defect annealing and clustering in a warm lattice. The evolution of disorder is examined either in the phase of spontaneous annealing subsequent to the implantation or during the externally induced annealing. Theory and experiments led to a close characterization of damage in terms of cluster size, type and concentration, both before and after annealing. (author)

  6. Bile salt-induced cholesterol crystal formation from model bile vesicles: a time course study

    NARCIS (Netherlands)

    van de Heijning, B. J.; Stolk, M. F.; van Erpecum, K. J.; Renooij, W.; Groen, A. K.; vanBerge-Henegouwen, G. P.

    1994-01-01

    Precipitation of cholesterol crystals from vesicles is an important step in the pathogenesis of cholesterol gallstones. Little is known, however, about the kinetics and the mechanisms involved in cholesterol crystallization. Therefore, the time course of cholesterol crystal precipitation and lipid

  7. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.

    Science.gov (United States)

    Zhou, Ji Zhi; Wu, Yue Ying; Liu, Chong; Orpe, Ajay; Liu, Qiang; Xu, Zhi Ping; Qian, Guang Ren; Qiao, Shi Zhang

    2010-12-01

    Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ∼99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ∼2, and ∼1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.

  8. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn

    2016-10-07

    Bandgap properties of the locally resonant phononic crystal double panel structure made of a two-dimensional periodic array of a spring–mass resonator surrounded by n springs (n equals to zero at the beginning of the study) connected between the upper and lower plates are investigated in this paper. The finite element method is applied to calculate the band structure, of which the accuracy is confirmed in comparison with the one calculated by the extended plane wave expansion (PWE) method and the transmission spectrum. Numerical results and further analysis demonstrate that two bands corresponding to the antisymmetric vibration mode open a wide band gap but is cut narrower by a band corresponding to the symmetric mode. One of the regulation rules shows that the lowest frequency on the symmetric mode band is proportional to the spring stiffness. Then, a new design idea of adding springs around the resonator in a unit cell (n is not equal to zero now) is proposed in the need of widening the bandwidth and lowering the starting frequency. Results show that the bandwidth of the band gap increases from 50 Hz to nearly 200 Hz. By introducing the quality factor, the regulation rules with the comprehensive consideration of the whole structure quality limitation, the wide band gap and the low starting frequency are also discussed. - Highlights: • The locally resonant double panel structure opens a band gap in the low frequency region. • The band gap is the coupling between the symmetric and antisymmetric vibration modes. • The band structure of the double panel is the evolution of that of the single plate. • By adding springs around the resonator in a unit cell, the bandwidth gets wider. • The band gap can be controlled by tuning the parameters.

  9. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    Science.gov (United States)

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  11. Studies of Double-Layer Effects at Single-Crystal Gold Electrodes. 3. Reduction Kinetics of Fluoropentaamminecobalt(III) Cation in Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Fawcett, W. R.

    2004-01-01

    Roč. 108, - (2004), s. 3277-3282 ISSN 1089-5647 R&D Projects: GA ČR GP203/02/P082 Institutional research plan: CEZ:AV0Z4040901 Keywords : double - layer * single crystal * reduction kinetics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  12. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules.

    Science.gov (United States)

    Chung, Vera Y; Konietzny, Rebecca; Charles, Philip; Kessler, Benedikt; Fischer, Roman; Turney, Benjamin W

    2016-04-02

    Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.

  13. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    Science.gov (United States)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  14. Resonance formation in γγ-collisions - as observed with the Crystal Ball detector

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1991-01-01

    Analysis of two-photon reactions with the Crystal Ball detector at the DORIS-II e + e - storage ring (E beam = 5 GeV) resulted in a complete set of data on γγ-formation of mesons. The data are best represented by their helicity matrix elements. For isoscalar mesons the mixing of non-strange and strange quark constituents can be derived. A highly efficient selection of the channel γγ → π 0 π 0 yielded 7000 events with (M(π 0 π 0 ) > 800 MeV/c 2 . A partial wave decomposition became possible and showed under the f 2 (1270) a scalar meson resonance f 0 (1250) with 4.0 standard deviations. In the same analysis 23 events of γγ → ηη have been found. (orig.)

  15. Recent Crystal Ball results on resonance formation in photon-photon collisions

    International Nuclear Information System (INIS)

    Karch, K.H.

    1991-04-01

    The Crystal Ball detector has been used to analyse the formation of resonances in photon-photon collisions. The π 2 (1670) resonance has been observed in the 3π 0 final state, as well as the η' (958) and X (1900) resonances in the ηπ 0 π 0 final state. The X (1900) decay distributions are consistent with the assumption that it is the J PC = 2 -+ η 2 meson. Preliminary analyses of the 8, 10 and 12γ final states are presented. The tensor meson f 2 (1270) is the most prominent structure in the energy dependence of the total cross section σ (γγ → π 0 π 0 ), but close investigation of the differential cross section indicates the presence of a sizeable S wave contribution. This observation is consistent with a broad scalar meson f 0 (1250), degenerate in mass with the f 2 . Indications for the f 0 (975) mesons have been found, too. (orig.)

  16. Double-crystal analyser system for the PRISMA spectrometer: test of a prototype

    International Nuclear Information System (INIS)

    Petrillo, C.; Sacchetti, F.; Steigenberger, U.

    1993-11-01

    A prototype of a double-analyser system has been tested at the ISIS pulsed neutron source in order to determine the performance of such an analysing device in the low energy transfer region. The performance of such a system has been found satisfactory in terms of reflectivity and energy resolution as well as alignment procedures. Based on our test results we propose the construction of a second arm for the PRISMA (PRogetto deol'Istituto di Struttura della MAteria del Consiglio Nazionale delle Ricerche) spectrometer at ISIS. This new arm would enable us to perform measurements with much improved energy resolution and to extend the wavevector transfer range to much smaller values thus improving the instrument performance significantly for magnetic scattering experiments. The new, modular approach of the upgrade will also strengthen the flexibility of the instrument and open up the opportunity for further instrumental developments, for example the introduction of a polarization option. (Author)

  17. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  18. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Sun, X. D. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Wang, Y. M. [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Kliem, B. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Deng, Y. Y., E-mail: xincheng@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  19. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s –1 . The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  20. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  1. Two-dimensional photonic-crystal-based double switch-divider.

    Science.gov (United States)

    Dmitriev, Victor; Martins, Leno

    2016-05-01

    We propose and investigate a new multifunctional component, consisting of a T-junction of three waveguides in 2D photonic crystal with a square lattice. One waveguide is the input port, while the other two serve as output ports. This component can fulfil three functions: First, it can switch OFF the two output ports; second, our component can be used as a 3 dB divider of the input power; and third, it can switch ON any one of the two output ports. Changing the regime is achieved by a DC magnetic field that magnetizes a cylindrical ferrite resonator placed in the T-junction. We present an analysis of the scattering matrices of the component and calculated frequency characteristics in the low terahertz region. In the frequency band of about 1 GHz with a central frequency of f=98.46  GHz, the device has the following parameters: isolation of the output ports from the input port in the first regime is better than -30  dB, division of the input signal is about (-3.8±1.0)  dB in the second regime, and isolation in the regime switch ON, where any one of the two output ports is higher than -15  dB and the insertion loss is lower than -2.0  dB.

  2. Double symmetry breaking of solitons in one-dimensional virtual photonic crystals

    International Nuclear Information System (INIS)

    Li Yongyao; Malomed, Boris A.; Feng Mingneng; Zhou Jianying

    2011-01-01

    We demonstrate that spatial solitons undergo two consecutive spontaneous symmetry breakings (SSBs), with the increase of the total power, in nonlinear photonic crystals (PhCs) built as arrays of alternating linear and nonlinear stripes, in the case when the maxima of the effective refractive index coincide with the minima of the self-focusing coefficient and vice versa (i.e., the corresponding linear and nonlinear periodic potentials are in competition). This setting may be induced, as a virtual PhC, by means of the electromagnetically induced-transparency (EIT) technique, in a uniform optical medium. It may also be realized as a Bose-Einstein condensate (BEC) subject to the action of the combined periodic optical potential and periodically modulated Feshbach resonance. The first SSB happens at the center of a linear stripe, pushing a broad low-power soliton into an adjacent nonlinear stripe and gradually suppressing side peaks in the soliton's shape. Then the soliton restores its symmetry, being pinned to the midpoint of the nonlinear stripe. The second SSB occurs at higher powers, pushing the narrow soliton off the center of the nonlinear channel, while the soliton keeps its internal symmetry. The results are obtained by means of numerical and analytical methods. They may be employed to control switching of light beams by means of the varying power.

  3. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  4. Study in regularities in the formation of double stranded DNA breaks in irradiated rat thymocytes

    International Nuclear Information System (INIS)

    Ivannik, B.P.; ProskuryakoV, S.Ya.; Ryabchenko, N.I.

    1979-01-01

    Using low-gradient viscosimetry of neutral detergent nuclear lysates a study was made of postradiation changes in the molecular weight of double-stranded DNA of thymocytes. It was established that 375 eV are needed for one double-stranded break to appear, and a dose of 1 rad is required for 0.275 double-stranded break to occur at the site of DNA with m.w. 10 12 dalton. The repair of double-stranded breaks is only observed when rats are exposed to a dose of 500 R. It is assumed that the absence of repair of double-stranded DNA breaks and the presence of secondary postradiation degradation of DNA are responsible for thymocyte death

  5. Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Sadati, Monirosadat [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Apik, Aslin Izmitli [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; Armas-Perez, Julio C. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Martinez-Gonzalez, Jose [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Hernandez-Ortiz, Juan P. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17 Medellín Colombia; Abbott, Nicholas L. [Chemical and Biological Engineering, University of Wisconsin, Madison WI 53706 USA; de Pablo, Juan J. [Institute for Molecular Engineering, University of Chicago, Chicago IL 60637 USA; Argonne National Laboratory, Argonne IL 60439 USA

    2015-09-09

    Liquid crystals (LCs) can serve as sensitive reporters of interfacial events, and this property has been used for sensing of synthetic or biological toxins. Here it is demonstrated that LCs can distinguish distinct molecular motifs and exhibit a specific response to beta-sheet structures. That property is used to detect the formation of highly toxic protofibrils involved in neurodegenerative diseases, where it is crucial to develop methods that probe the early-stage aggregation of amyloidogenic peptides in the vicinity of biological membranes. In the proposed method, the amyloid fibrils formed at the lipid-decorated LC interface can change the orientation of LCs and form elongated and branched structures that are amplified by the mesogenic medium; however, nonamyloidogenic peptides form ellipsoidal domains of tilted LCs. Moreover, a theoretical and computational analysis is used to reveal the underlying structure of the LC, thereby providing a detailed molecular-level view of the interactions and mechanisms responsible for such motifs. The corresponding signatures can be detected at nanomolar concentrations of peptide by polarized light microscopy and much earlier than the ones that can be identified by fluorescence-based techniques. As such, it offers the potential for early diagnoses of neurodegenerative diseases and for facile testing of inhibitors of amyloid formation.

  6. C60-pentacene network formation by 2-D co-crystallization.

    Science.gov (United States)

    Jin, Wei; Dougherty, Daniel B; Cullen, William G; Robey, Steven; Reutt-Robey, Janice E

    2009-09-01

    We report experiments highlighting the mechanistic role of mobile pentacene precursors in the formation of a network C(60)-pentacene co-crystalline structure on Ag(111). This co-crystalline arrangement was first observed by low temperature scanning tunneling microscopy (STM) by Zhang et al. (Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. J. Am. Chem. Soc. 2008, 130, 2720-2721). We now show that this structure forms readily at room temperature from a two-dimensional (2-D) mixture. Pentacene, evaporated onto Ag(111) to coverages of 0.4-1.0 ML, produces a two-dimensional (2-D) gas. Subsequently deposited C(60) molecules combine with the pentacene 2-D gas to generate a network structure, consisting of chains of close-packed C(60) molecules, spaced by individual C(60) linkers and 1 nm x 2.5 nm pores containing individual pentacene molecules. Spontaneous formation of this stoichiometric (C(60))(4)-pentacene network from a range of excess pentacene surface coverage (0.4 to 1.0 ML) indicates a self-limiting assembly process. We refine the structure model for this phase and discuss the generality of this co-crystallization mechanism.

  7. Experimental and theoretical investigation of the rocking curves measured for MoKα X-ray characteristic lines in the double-crystal nondispersive scheme

    International Nuclear Information System (INIS)

    Marchenkov, N. V.; Chukhovskii, F. N.; Blagov, A. E.

    2015-01-01

    The rocking curves (RCs) for MoK α1 and MoK α2 characteristic X-ray lines have been experimentally and theoretically studied in the nondispersive scheme of an X-ray double-crystal TPC-K diffractometer. The results of measurements and theoretical calculations of double-crystal RCs for characteristic X-rays from tubes with a molybdenum anode and different widths of slits show that a decrease in the slit width leads to an increase in the relative contribution of the MoK α2 -line RC in comparison with the intensity of the tails of the MoK α1 -line RC. It is shown that the second peak of the MoK α2 line becomes increasingly pronounced in the tail of the MoK α1 -line RC with a decrease in the slit width. Two plane-parallel Si plates (input faces (110), diffraction vector h 〈220〉) were used as a monochromator crystal and a sample. The results of measuring double-crystal RCs are in good agreement with theoretical calculations

  8. Experimental and theoretical investigation of the rocking curves measured for Mo K α X-ray characteristic lines in the double-crystal nondispersive scheme

    Science.gov (United States)

    Marchenkov, N. V.; Chukhovskii, F. N.; Blagov, A. E.

    2015-03-01

    The rocking curves (RCs) for Mo K α1 h Mo K α2 characteristic X-ray lines have been experimentally and theoretically studied in the nondispersive scheme of an X-ray double-crystal TPC-K diffractometer. The results of measurements and theoretical calculations of double-crystal RCs for characteristic X-rays from tubes with a molybdenum anode and different widths of slits show that a decrease in the slit width leads to an increase in the relative contribution of the Mo K α2-line RC in comparison with the intensity of the tails of the Mo K α1-line RC. It is shown that the second peak of the Mo K α2 line becomes increasingly pronounced in the tail of the Mo K α1-line RC with a decrease in the slit width. Two plane-parallel Si plates (input faces {110}, diffraction vector h ) were used as a monochromator crystal and a sample. The results of measuring double-crystal RCs are in good agreement with theoretical calculations.

  9. Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3](2) at ambient temperature.

    Science.gov (United States)

    Böttcher, Michael E; Geprägs, Patrizia; Neubert, Nadja; von Allmen, Katja; Pretet, Chloé; Samankassou, Elias; Nägler, Thomas F

    2012-09-01

    In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.

  10. Thermally stimulated luminescence of KDP activated crystals

    International Nuclear Information System (INIS)

    Tagaeva, B.S.

    2005-01-01

    The aim of this work is the study of recombination luminescence pure and doped by the ions Tl, Se, Pb and Cu of crystals double potassium phosphates (KDP) at irradiation by X-rays. It is established that in the given crystals mechanisms for under-threshold defect formation are realize. The impurity ions results the basic crystal light sum redistribution in the TL peaks. Explanations for some phenomena are given. (author)

  11. Nucleation and Crystal Growth in the Formation of Hierarchical Three-Dimensional Nanoarchitecture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xudong [Univ. of Wisconsin, Madison, WI (United States)

    2018-02-02

    This project is to obtain fundamental understandings of the operation of the Ostwald-Lussac (OL) Law and the oriented attachment (OA) mechanism in nucleation and growth of TiO2 nanorods (NR) via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) process. Three-dimensional (3D) NW networks are a unique type of mesoporous architecture that offers extraordinary surface area density and superior transport properties of electrons, photons, and phonons. It is exceptionally promising for advancing the design and application of functional materials for photovoltaic devices, catalysts beds, hydrogen storage systems, sensors, and battery electrodes. Our group has developed the SPCVD technique by mimicking the mechanism of atomic layer deposition (ALD), which effectively decoupled the crystal growth from precursor concentration while retaining anisotropic 1D growth. For the first time, this technique realized a 3D NW architecture with ultrahigh density and achieved ~4-5 times enhancement on photo-conversion efficiency. Through the support of our current DOE award, we revealed the governing role of the OL Law in the nucleation stage of SPCVD. The formation of NR morphology in SPCVD was identified following the OA mechanism. We also discovered a unique vapor-phase Kirkendall effect in the evolution of tubular or core-shell NR structures. These understandings opened many new opportunities in designing 3D NW architectures with improved properties or new functionalities. Specifically, our accomplishments from this project include five aspects: (1) Observation of the Ostwald-Lussac Law in high-temperature ALD. (2) Observation of vapor-solid Kirkendall effect in ZnO-to-TiO2 nanostructure conversion. (3) Development of highly-efficient capillary photoelectrochemical (PEC) solar-fuel generation. (4) Development of efficient and stable electrochemical protections for black silicon PEC electrodes. (5) Development of doped polymers with tunable electrical properties. This

  12. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Science.gov (United States)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  13. Indium Gallium Zinc Oxide: Phase Formation and Crystallization Kinetics during Millisecond Laser Spike Annealing

    Science.gov (United States)

    Lynch, David Michael

    Flat panel displays have become ubiquitous, enabling products from highresolution cell phones to ultra-large television panels. Amorphous silicon (a- Si) has been the industry workhorse as the active semiconductor in pixeladdressing transistors due to its uniformity and low production costs. However, a-Si can no longer support larger and higher-resolution displays, and new materials with higher electron mobilities are required. Amorphous indium gallium zinc oxide (a-IGZO), which retains the uniformity and low cost of amorphous films, has emerged as a viable candidate due to its enhanced transport properties. However, a-IGZO devices suffer from long-term instabilities--the origins of which are not yet fully understood--causing a drift in switching characteristics over time and affecting product lifetime. More recently, devices fabricated from textured nanocrystalline IGZO, termed c-axis aligned crystalline (CAAC), have demonstrated superior stability. Unfortunately, little is known regarding the phase formation and crystallization kinetics of either the CAAC structure or in the broader ternary IGZO system. Crystallinity and texture of CAAC IGZO films deposited by RF reactive sputtering were studied and characterized over a wide range of deposition conditions. The characteristic CAAC (0 0 9) peak at 2theta = 30° was observed by X-ray diffraction, and nanocrystalline domain texture was determined using a general area detector diffraction system (GADDS). Highly ordered CAAC films were obtained near the InGaZnO4 composition at a substrate temperature of 310 °C and in a 10%O2/90% Ar sputtering ambient. High-resolution transmission electron microscopy (HRTEM) confirmed the formation of CAAC and identified 2-3 nm domains coherently aligned over large ranges extending beyond the field of view (15 nm x 15 nm). Cross-section HRTEM of the CAAC/substrate interface shows formation of an initially disordered IGZO layer prior to CAAC formation, suggesting a nucleation mechanism

  14. A high-energy double-crystal fixed exit monochromator for the X17 superconducting wiggler beam line at the NSLS

    International Nuclear Information System (INIS)

    Garrett, R.F.; Dilmanian, F.A.; Oversluizen, T.; Lenhard, A.; Berman, L.E.; Chapman, L.D.; Stoeber, W.

    1992-01-01

    A high-energy double-crystal x-ray monochromator has been constructed for use on the X-17 beam line at the National Synchrotron Light Source (NSLS). Its design is based on the ''boomerang'' right angle linkage, and features a fixed exit beam, a cooled first crystal, and an energy range of 8--92 keV. The entire mechanism is UHV compatible. The design is described and performance details, obtained in testing at the X17 beam line, are presented

  15. Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Bouazzi

    2012-10-01

    Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

  16. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  17. Formation of Conjugated Double Bonds to Induce Polystyrene Conductivity by using Different Concentrations of Methoxo-Oxo Bis (8-Quinolyloxo Vanadium (V

    Directory of Open Access Journals (Sweden)

    Basim Mohamad Hasan

    2017-02-01

    Full Text Available The effect of different concentrations of additive compound methoxo–oxo bis (8-quinolyloxo vanadium (v on formation of conjugated double bonds as part of photo transformation of polystyrene has been investigated. The UV-Vis spectrophotometery has been used in this work. The results are show that additive concentrations applied increase the formation of conjugated double bond as compared with polystyrene. In this study methoxo – oxo bis (8-quinolyloxo vanadium (v indicates great activity to enhance the conductivity of polystyrene by formation of conjugated double bonds.

  18. Influence of polymeric excipient properties on crystal hydrate formation kinetics of caffeine in aqueous slurries.

    Science.gov (United States)

    Gift, Alan D; Southard, Leslie A; Riesberg, Amanda L

    2012-05-01

    The influence of polymeric excipients on the hydrate transformation of caffeine (CAF) was studied. Anhydrous CAF was added to aqueous solutions containing different additives and the transformation to the hydrate form was monitored using in-line Raman spectroscopy. Various properties of two known inhibitors of CAF hydrate formation, polyacrylic acid (PAA) and polyvinyl alcohol (PVA), were investigated. For inhibition by PAA, a pH dependence was observed: at low pH, the inhibition was greatest, whereas no inhibitory effects were observed at pH above 6.5. For PVA, grades with high percent hydrolysis were the most effective at inhibiting the transformation. In addition, PVA with higher molecular weight showed slightly more inhibition than the shorter chain PVA polymers. A variety of other hydroxyl containing compounds were examined but none inhibited the CAF anhydrate-to-hydrate transformation. The observed inhibitory effects of PAA and PVA are attributed to the large number of closely spaced hydrogen bond donating groups of the polymer molecule, which can interact with the CAF hydrate crystal. Copyright © 2012 Wiley Periodicals, Inc.

  19. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.

    Science.gov (United States)

    Zhang, Tengfei; Liu, Lihu; Tan, WenFeng; Suib, Steven L; Qiu, Guohong; Liu, Fan

    2018-05-24

    As important components with excellent oxidation and adsorption activity in soils and sediments, manganese oxides affect the transportation and fate of nutrients and pollutants in natural environments. In this work, birnessite was formed by photocatalytic oxidation of Mn2+aq in the presence of nitrate under solar irradiation. The effects of concentrations and species of interlayer cations (Na+, Mg2+, and K+) on birnessite crystal structure and micromorphology were investigated. The roles of adsorbed Mn2+ and pH in the transformation of the photosynthetic birnessite were further studied. The results indicated that Mn2+aq was oxidized to birnessite by superoxide radicals (O2•-) generated from the photolysis of NO3- under UV irradiation. The particle size and thickness of birnessite decreased with increasing cation concentration. The birnessite showed a plate-like morphology in the presence of K+, while exhibited a rumpled sheet-like morphology when Na+ or Mg2+ was used. The different micromorphologies of birnessites could be ascribed to the position of cations in the interlayer. The adsorbed Mn2+ and high pH facilitated the reduction of birnessite to low-valence manganese oxides including hausmannite, feitknechtite, and manganite. This study suggests that interlayer cations and Mn2+ play essential roles in the photochemical formation and transformation of birnessite in aqueous environments.

  20. Formation of classical crystals of dipolar particles in a helical geometry

    International Nuclear Information System (INIS)

    Pedersen, J K; Fedorov, D V; Jensen, A S; Zinner, N T

    2014-01-01

    We consider crystal formation of particles with dipole–dipole interactions that are confined to move in a one-dimensional helical geometry with their dipole moments oriented along the symmetry axis of the confining helix. The stable classical lowest-energy configurations are found to be chain structures for a large range of pitch-to-radius ratios for a relatively low density of dipoles and a moderate total number of particles. The classical normal mode spectra support the chain interpretation through both structure and distinct degeneracies, depending discretely on the number of dipoles per revolution. A larger total number of dipoles leads to a clusterization where the dipolar chains move closer to each other. This implies a change in the local density and the emergence of two length scales, one for the cluster size and one for the inter-cluster distance along the helix. Starting from three dipoles per revolution, this implies a breaking of the initial periodicity to form a cluster of two chains close together and a third chain removed from the cluster. This is driven by the competition between in-chain and out-of-chain interactions, or alternatively by the side-by-side repulsion and the head-to-tail attraction in the system. The speed of sound propagates along the chains. It is independent of the number of chains, although it does depend on the geometry. (paper)

  1. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    Science.gov (United States)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  2. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  3. Formation of SmFe5(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    International Nuclear Information System (INIS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmFe 5 (0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe 5 structure forming an alloy compound of Sm(Fe,Cu) 5 . The Sm(Fe,Cu) 5 film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  4. Formation of SmFe{sub 5}(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: yabuhara@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    SmFe{sub 5}(0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe{sub 5} structure forming an alloy compound of Sm(Fe,Cu){sub 5}. The Sm(Fe,Cu){sub 5} film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  5. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  6. Design, Build and Test of a Double Crystal Monochromator for Beamlines I09 and I23 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Kelly, J; Lee, T; Alcock, S; Patel, H

    2013-01-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 – 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  7. A compact low cost “master–slave” double crystal monochromator for x-ray cameras calibration of the Laser MégaJoule Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr; Prévot, V.

    2014-12-21

    The Alternative Energies and Atomic Energy Commission (CEA-CESTA, France) built a specific double crystal monochromator (DCM) to perform calibration of x-ray cameras (CCD, streak and gated cameras) by means of a multiple anode diode type x-ray source for the MégaJoule Laser Facility. This DCM, based on pantograph geometry, was specifically modeled to respond to relevant engineering constraints and requirements. The major benefits are mechanical drive of the second crystal on the first one, through a single drive motor, as well as compactness of the entire device. Designed for flat beryl or Ge crystals, this DCM covers the 0.9–10 keV range of our High Energy X-ray Source. In this paper we present the mechanical design of the DCM, its features quantitatively measured and its calibration to finally provide monochromatized spectra displaying spectral purities better than 98%.

  8. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  9. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  10. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  11. Formation of Layered Double Hydroxides on Alumina Surface in Aqueous Solutions Containing Divalent Metal Cations

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Mašátová, P.; Novotná, P.; Jirátová, Květa

    2009-01-01

    Roč. 57, č. 4 (2009), s. 425-432 ISSN 0009-8604 R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : deposition * layered double hydroxides * supported mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.431, year: 2009

  12. Many-body formation and dissociation of a dipolar chain crystal

    International Nuclear Information System (INIS)

    You, Jhih-Shih; Wang, Daw-Wei

    2014-01-01

    We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)

  13. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  14. Formation of a new crystalline form of anhydrous β-maltose by ethanol-mediated crystal transformation.

    Science.gov (United States)

    Verhoeven, Nicolas; Neoh, Tze Loon; Ohashi, Tetsuya; Furuta, Takeshi; Kurozumi, Sayaka; Yoshii, Hidefumi

    2012-04-01

    β-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of β-maltose (Mβ(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mβ(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of β-maltose monohydrate and anhydrous β-maltose obtained by vacuum drying (Mβ(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  16. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. Magma oceanography. II - Chemical evolution and crustal formation. [lunar crustal rock fractional crystallization model

    Science.gov (United States)

    Longhi, J.

    1977-01-01

    A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.

  19. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  20. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations

    OpenAIRE

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-01-01

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated γ-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was fou...

  1. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    Science.gov (United States)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  2. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  3. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  4. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suobin; Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Li, Yinggang [Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan, 430070 (China); Chen, Weihua [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-06-03

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the “analogous rigid mode” of the stub and the anti-symmetric Lamb modes of the plate. The “analogous rigid mode” of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The “analogous rigid mode” of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear. - Highlights: • Expansion of lower-frequency locally resonant BGs using novel composite phononic crystals plates. • The proposed structure expands the relative bandwidth 1.5 times compared to classic doubled-sided stubbed PC plates. • The opening location of the first complete BG decreases 3 times compared to the classic doubled-sided stubbed PC plates. • The concept “analogous rigid mode” is put forward to explain the expansion of lower-frequency BGs.

  5. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  6. Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas; Hagfeldt, Anders; Boschloo, Gerrit; Kloo, Lars; Gorlov, Mikhail [Center of Molecular Devices, Department of Chemistry, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Pettersson, Henrik [IVF Industrial Research and Development Corporation, S-431 53 Moelndal (Sweden)

    2007-07-23

    Nitrogen heterocyclic compounds, such as N-methylbenzimidazole (MBI), are commonly used as additives to electrolytes for dye-sensitized solar cells (DSCs), but the chemical transformation of additives in electrolyte solutions remains poorly understood. Solid crystalline compound (MBI){sub 6}(MBI-H{sup +}){sub 2}(I{sup -})(I{sub 3}{sup -}) (1) was isolated from different electrolytes for DSCs containing MBI as additive. The crystal structure of 1 was determined by single-crystal X-ray diffraction. In the crystal structure, 1 contains neutral and protonated MBI fragments; iodide and triiodide anions form infinite chains along the crystallographic a-axis. The role of the solvent and additives in the crystallization process in electrolytes is discussed. (author)

  7. Co-crystal formation between two organic solids on the surface of Titan

    Science.gov (United States)

    Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.

    2017-12-01

    Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.

  8. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  9. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaqoob, Faisal [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States); Huang, Mengbing, E-mail: mhuang@sunypoly.edu [College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203 (United States)

    2016-07-28

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ∼150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 10{sup 16 }cm{sup −2}, close to the depth ∼250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  10. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.

  11. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  12. Implicit memory formation during routine anesthesia in children: a double-masked randomized controlled trial.

    Science.gov (United States)

    Pham, Xiuzhi; Smith, Katherine R; Sheppard, Suzette J; Bradshaw, Carolyn; Lo, Eric; Davidson, Andrew J

    2010-05-01

    Implicit memory cannot be consciously recalled but may be revealed by changes in behavior. There is evidence for implicit memory formation during anesthesia in adults, but several studies in children have found no evidence for implicit memory. This may be due to insensitive testing. Also many of these tests were undertaken under controlled conditions. It remains unknown whether implicit memory is formed during routine pediatric anesthesia. The aim of this study was to determine whether there is evidence of implicit memory formation during routine anesthesia in children, using a degraded auditory stimulus recognition task. Three hundred and twelve children, aged 5-12 yr, were randomly assigned to be played either a sheep sound or white noise continuously through headphones during general anesthesia. No attempt was made to standardize the anesthetic. On recovery, children were played a sheep sound degraded by a white noise mask that progressively decreased over 60 s, with the outcome being the time taken to correctly recognize the sheep sound. Three hundred children completed the task. A comparison of the distribution of recognition times between the two groups found little evidence that exposure to a sheep sound during anesthesia was associated with postoperative time to recognition of a degraded sheep sound (hazard ratio 1.14, 95% CI of 0.90-1.43, P = 0.28). No implicit memory formation during routine anesthesia was demonstrated in children. It is increasingly likely that the potential clinical implications of implicit memory formation are less of a concern for pediatric anesthetists.

  13. Single Crystal Growth of Multiferroic Double Perovskites: Yb2CoMnO6 and Lu2CoMnO6

    Directory of Open Access Journals (Sweden)

    Hwan Young Choi

    2017-02-01

    Full Text Available We report on the growth of multiferroic Yb2CoMnO6 and Lu2CoMnO6 single crystals which were synthesized by the flux method with Bi2O3. Yb2CoMnO6 and Lu2CoMnO6 crystallize in a double-perovskite structure with a monoclinic P21/n space group. Bulk magnetization measurements of both specimens revealed strong magnetic anisotropy and metamagnetic transitions. We observed a dielectric anomaly perpendicular to the c axis. The strongly coupled magnetic and dielectric states resulted in the variation of both the dielectric constant and the magnetization by applying magnetic fields, offering an efficient approach to accomplish intrinsically coupled functionality in multiferroics.

  14. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    Science.gov (United States)

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  15. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  16. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    Science.gov (United States)

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  17. Comparing Formation or Non-Formation of Bladder Flap at Cesarean Section on Perioperative and Postoperative Complications: Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Farideh Akhlaghi

    2018-03-01

    Full Text Available Objective: To investigating formation or non-formation of bladder flap at Cesarean section on the complications during and after surgery.Materials and methods: This is a double-blind clinical trial study conducted during February 2014 to May 2015 on 64 pregnant women with gestational age of 36 weeks or more who were delivered by Cesarean section for the first time. They were randomly divided into two groups (intervention group: non-formation of bladder flap; control group: formation of bladder flap. The time to cut out the baby by Cesarean section, total duration of operation, bladder injury, intraoperative bleeding, hematocrit changes expected prior to during and following operation, postoperative pain, macroscopic and microscopic hematuria, postoperative complications and duration of  hospitalization were compared between two groups. The data were analyzed with SPSS version 16 using and statistics tests. p < 0.05 was considered significant.Results: Time to cut out the baby for the intervention group (124.9 ± 40.5 seconds and for control group 155.1 ± 42.9 seconds and total duration of the operation (intervention group: 27.7 ± 5.2 min and control group: 34 ± 4.73 min were significantly different (p = 0.000. Number of gauze consumption during operation and postoperative hematocrit drop in the intervention group was significantly lower in the intervention group compared the control group (p = 0.000. The postoperative pain score in the intervention group (4.8 ± 1.1 and in control group (6.3 ± 0.9 were significantly different (p = 0.000.Conclusion: Omission of the bladder flap at Cesarean section leads to short-term benefits such as reducing the time to cut out the fetus, duration of surgery, decreasing postoperative bleeding and lowering pain.

  18. Focusing Double Bent Crystal (DBC) diffractometer for medium-resolution small-angle. Neutron scattering (SANS) experiments

    International Nuclear Information System (INIS)

    Mikula, P.; Wagner, V.; Scherm, R.

    1991-01-01

    A new modification of a focusing SANS instrument where at least the first crystal is set for diffraction in the asymmetric transmission geometry is presented. Unlike an earlier version which employed both crystals in the symmetric Bragg-case geometry, the new modification permits one simultaneously to exploit the effects of natural wavelength focusing and space condensation of the diffracted beam due to asymmetric diffraction. This DBC instrument seems to be suitable for use with beams with a large cross section at the first crystal and for SANS experiments on samples with a small width (few mm). (orig.)

  19. Metallic Na formation in NaCl crystals with irradiation of electron or vacuum ultraviolet photon

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, Shigehiro [Osaka Prefecture Univ., Sakai, Osaka (Japan). Coll. of Integrated Arts and Sciences; Koyama, Shigeko; Takahashi, Masao; Kamada, Masao; Suzuki, Ryouichi

    1997-03-01

    Metallic Na was formed in NaCl single crystals with irradiation of a variety of radiation sources and analyzed the physical states with several methods. In the case of irradiation of 21 MeV electron pulses to the crystal blocks, the optical absorption and lifetime measurement of positron annihilation indicated appearance of Na clusters inside. Radiation effects of electron beam of 30 keV to the crystals in vacuum showed the appearance of not only metallic Na but atomic one during irradiation with Auger electron spectroscopy. Intense photon fluxes in vacuum ultraviolet region of synchrotron radiation were used as another source and an analyzing method of ultraviolet photoelectron spectroscopy. The results showed the metallic Na layered so thick that bulk plasmon can exist. (author)

  20. Features of structure formation in the low modulus quasi-single crystal from Zr-25%Nb alloy at cold rolling

    Science.gov (United States)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N.

    2018-05-01

    The paper presents the results of investigation of the regularities of the structure and texture formation during rolling of single crystals of Zr-25%Nb alloy differing in their initial orientations relative to the external principal directions in the rolled plate: normal (ND) and rolling directions (RD). The features of rolled single crystals with initial orientations of planes {001}, {011} or {111} parallel to the rolling plane and different crystallographic directions along RD are considered. A comparison of the peculiarities of plastic deformation in a polycrystalline alloy of the same composition is made. For the samples studied, a decrease in the lattice parameter of the β-phase has been recorded, the minimum of the parameter being observed for different degrees of deformation, varying from 20 to 50%. Observed decrease in the unit cell parameter can be connected with the precipitation of the α(α')-Zr phase from the deformed nonequilibrium β-phase of the Zr-25%Nb alloy, i.e. change in the composition of the solid solution. Distributions of the increase in the dimensions of the deformed single crystal along RD and the transverse direction (TD) with its deformation up to 30% in thickness, which indicate the anisotropy of the plasticity of single crystals during their rolling, are constructed on stereographic projection. It is shown, that the deformation of single crystals occurs practically without increasing of their dimensions in the direction with a total thickness deformation of up to 30%. Direction is characterized by maximum hardening (microhardness) with indentation along it, which causes low plasticity of deformed and annealed foils from Zr-25%Nb alloy at the stretching along and across RD, that is connected with the features of their crystallographic texture.

  1. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    Science.gov (United States)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  2. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  3. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    Science.gov (United States)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  4. Host–Guest Chirality Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its Double-Helix Polymer Guests

    KAUST Repository

    Luo, Xiaolong

    2016-01-12

    A novel homochiral zeolite-like metal-organic framework (ZMOF), [(Cu4I4) (dabco)2]·[Cu2(bbimb)]·3DMF (JLU-Liu23, dabco =1,4-diazabicyclo[2.2.2]-octane, H2bbimb =1,3-bis(2-benzimidazol)benzene, DMF = N,N-dimethylformamide), has been successfully constructed to host unprecedented DNA-like [Cu2(bbimb)]n polymers with double-helicity. The host-guest chirality interplay permitted the induced formation of an unusual gyroid MOF with homochirality and helical channels in the framework for the first time, JLU-Liu23. Importantly, the enantiomeric pairs (23P, 23M) can be promoted and isolated in the presence of appropriate chiral inducing agents, affording enantioselective separation of chiral molecules as well as small gas molecules. © 2016 American Chemical Society.

  5. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  6. Quasi-ideal strontium titanate crystal surfaces through formation of stontium hydroxide

    NARCIS (Netherlands)

    Koster, Gertjan; Kropman, B.L.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Rogalla, Horst

    1998-01-01

    In recent years, well-defined and nearly perfect single crystal surfaces of oxide perovskites have become increasingly important. A single terminated surface is a prerequisite for reproducible thin film growth and fundamental growth studies. In this work, atomic and lateral force microscopy have

  7. Formation of tilted smectic-C liquid crystal phase in polar Gay-Berne molecules

    International Nuclear Information System (INIS)

    Saha, J.; Bose, T.R.; Ghosh, D.; Saha, M.

    2005-01-01

    We perform molecular dynamics simulation for a system of Gay-Berne molecules having two terminal dipole moments to generate tilted smectic-C liquid crystal phase. We investigate the effect of dipolar orientation with respect to the long molecular axis on phase behaviour. The study indicates that larger dipolar angle can give rise to greater tilt in molecular organization within a layer

  8. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite

    Directory of Open Access Journals (Sweden)

    Shiqiang Luo

    2016-02-01

    Full Text Available Inorganic-organic hydride perovskites bring the hope for fabricating low-cost and large-scale solar cells. At the beginning of the research, two open questions were raised: the hysteresis effect and the role of chloride. The presence of chloride significantly improves the crystallization and charge transfer property of the perovskite. However, though the long held debate over of the existence of chloride in the perovskite seems to have now come to a conclusion, no prior work has been carried out focusing on the role of chloride on the electronic performance and the crystallization of the perovskite. Furthermore, current reports on the crystal structure of the perovskite are rather confusing. This article analyzes the role of chloride in CH3NH3PbI3-xClx on the crystal orientation and provides a new explanation about the (110-oriented growth of CH3NH3PbI3 and CH3NH3PbI3-xClx.

  9. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    DEFF Research Database (Denmark)

    Stiebler, R.; Majerowicz, David; Knudsen, Jens

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membrane...

  10. Quantum criticality and the formation of a putative electronic liquid crystal in Sr3Ru2O7

    International Nuclear Information System (INIS)

    Mackenzie, A.P.; Bruin, J.A.N.; Borzi, R.A.; Rost, A.W.; Grigera, S.A.

    2012-01-01

    We present a brief review of the physical properties of Sr 3 Ru 2 O 7 , in which the approach to a magnetic-field-tuned quantum critical point is cut off by the formation of a novel phase with transport characteristics consistent with those of a nematic electronic liquid crystal. Our goal is to summarise the physics that led to that conclusion being drawn, describing the key experiments and discussing the theoretical approaches that have been adopted. Throughout the review we also attempt to highlight observations that are not yet understood, and to discuss the future challenges that will need to be addressed by both experiment and theory.

  11. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    Directory of Open Access Journals (Sweden)

    Paul A Nakata

    Full Text Available The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  12. Neutron diffraction studies of a double-crystal ( plus n,-m) setting containing a fully asymmetric diffraction geometry (FAD) of a bent perfect crystal (BPC)

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Em, V.

    2017-01-01

    Roč. 32, Supl-1 (2017), s. 13-18 ISSN 0885-7156 R&D Projects: GA ČR GC16-08803J; GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : neutron diffraction * monochromator * bent perfect crystal Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.674, year: 2016

  13. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  14. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations.

    Science.gov (United States)

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-06-21

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated gamma-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was found to depend linearly on the dose-length product, a radiodiagnostic unit that is proportional to both the local dose delivered and the length of the body exposed. Analysis of lymphocytes sampled up to 1 day postirradiation provided kinetics for the in vivo loss of gamma-H2AX foci that correlated with DSB repair. Interestingly, in contrast to results obtained in vitro, normal individuals repair DSBs to background levels. A patient who had previously shown severe side effects after radiotherapy displayed levels of gamma-H2AX foci at various sampling times postirradiation that were several times higher than those of normal individuals. Gamma-H2AX and pulsed-field gel electrophoresis analysis of fibroblasts obtained from this patient confirmed a substantial DSB repair defect. Additionally, these fibroblasts showed significant in vitro radiosensitivity. These data show that the in vivo induction and repair of DSBs can be assessed in individuals exposed to low radiation doses, adding a further dimension to DSB repair studies and providing the opportunity to identify repair-compromised individuals after diagnostic irradiation procedures.

  15. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation

    Science.gov (United States)

    Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye

    2018-04-01

    A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.

  16. Formation of vacancy clusters in tungsten crystals under hydrogen-rich condition

    International Nuclear Information System (INIS)

    Kato, Daiji; Iwakiri, Hirotomo; Morishita, Kazunori

    2011-01-01

    Di-vacancy formation assisted by hydrogen trapping is studied in terms of nucleation free-energies evaluated with density functional theory. Calculations give binding energies for single hydrogen atom as first- and second-nearest-neighbor of di-vacancies of 1.80 and 2.15 eV, respectively, which are significantly larger than that for mono-vacancies. At elevated atomic concentrations of interstitial hydrogen atoms, evaluated nucleation free-energies indicate that the hydrogen assisted di-vacancy formation becomes more favorable. It is suggested that the formation would be preceded by VH cluster formation.

  17. Formation of vacancy clusters in tungsten crystals under hydrogen-rich condition

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Daiji, E-mail: kato.daiji@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Iwakiri, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [University of the Ryukyus, Okinawa 903-0213 (Japan); Morishita, Kazunori, E-mail: morishita@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)

    2011-10-01

    Di-vacancy formation assisted by hydrogen trapping is studied in terms of nucleation free-energies evaluated with density functional theory. Calculations give binding energies for single hydrogen atom as first- and second-nearest-neighbor of di-vacancies of 1.80 and 2.15 eV, respectively, which are significantly larger than that for mono-vacancies. At elevated atomic concentrations of interstitial hydrogen atoms, evaluated nucleation free-energies indicate that the hydrogen assisted di-vacancy formation becomes more favorable. It is suggested that the formation would be preceded by VH cluster formation.

  18. Nitric acid adduct formation during crystallization of barium and strontium nitrates and their co-precipitation from nitric acid media

    International Nuclear Information System (INIS)

    Mishina, N.E.; Zilberman, B.Ya.; Lumpov, A.A.; Koltsova, T.I.; Puzikov, E.A.; Ryabkov, D.V.

    2015-01-01

    The molar solubilities of Ba, Sr and Pb nitrates in nitric acid as a function of total nitrate concentration is presented and described by the mass action law, indicating on formation of the adducts with nitric acid. Precipitates of Ba(NO 3 ) 2 and Sr(NO 3 ) 2 crystallized from nitric acid were studied by ISP OES and IR spectroscopy. The data obtained confirmed formation of metastable adducts with nitric acid. IR and X-ray diffraction studies of the mixed salt systems indicated conversion of the mixed salts into (Ba,Sr)(NO 3 ) 2 solid solution of discrete structure in range of total nitrate ion concentration ∼6 mol/L. (author)

  19. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule

    Science.gov (United States)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-08-01

    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  20. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    Science.gov (United States)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  1. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  2. Network Formation via Anion Coordination: Crystal Structures Based on the Interplay of Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Matteo Savastano

    2018-03-01

    Full Text Available We describe the synthesis and the structural characterization of new H2L(CF3CO22 (1 and H2L(Ph2PO42 (2 compounds containing the diprotonated form (H2L2+ of the tetrazine-based molecule 3,6-di(pyridin-4-yl-1,2,4,5-tetrazine. X-ray diffraction (XRD analysis of single crystals of these compounds showed that H2L2+ displays similar binding properties toward both anions when salt bridge interactions are taken into account. Nevertheless, the different shapes, sizes and functionalities of trifluoroacetate and diphenyl phosphate anions define quite different organization patterns leading to the peculiar crystal lattices of 1 and 2. These three-dimensional (3D architectures are self-assembled by a variety of non-covalent forces, among which prominent roles are played by fluorine–π (in 1 and anion–π (in 2 interactions.

  3. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    Science.gov (United States)

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  4. Double-layer model of the venus night-side ionosphere formation from the radio occultation data

    International Nuclear Information System (INIS)

    Osmolovskij, I.K.; Savich, N.A.; Samoznaev, L.N.

    1984-01-01

    The results of the radio occultation experiments performed with the Venera space probes - 9, 10(1975) and Pioneer - Venus satellite (1978) have shown that in most of the cases the electron concentration distribution in the Venus night-side ionosphere in the low solar activity years has two maxima (double-layer profile) whereas in the high activity years - one maximum. The two-component (O + and O 2 + ) diffusion model is suggested that describes naturally the formation of one or two maxima depending on physical conditions in the Venus upper atmosphere. At initial hypothesis accepted is the well-known hypothesis of the night-side ionosphere formation for account of the O + plasma overflow from the day side to the night one. The main idea of the study consists in finding conditions when the upper maximum formed in the O + ion downward current is spaced by height at a certain distance from the lower current caused by the O 2 + ions being formed as a result of O + ion chemical reactions with CO 2 molecules

  5. Coloration dependence in the thermoluminescence properties of the double doped NaCl single crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Sanchez-Mejorada, G.; Gelover-Santiago, A.L.; Frias, D.

    2006-01-01

    In this work the behaviour of calcium manganese doped NaCl single crystals under gamma irradiation is reported. Various single crystals of NaCl doped with Ca and Mn have been irradiated at different doses with ionising radiation. The production of defects has been correlated to the increase in the intensity of the thermo luminescent glow curve as a function of doses. The glow curves intensity as a function of doses shows the potential use of these materials as dosimeters. Optical properties of such crystals after irradiation with gamma rays have also been studied; results have shown their potentiality as a good detector and optical store memory devices. Since the creations of colour centres by photons with energy less than the band gap energy has been detected also in ns 2 -ion doped alkali halides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Electron paramagnetic resonance and electron-nuclear double resonance study of the neutral copper acceptor in ZnGeP sub 2 crystals

    CERN Document Server

    Stevens, K T; Setzler, S D; Schünemann, P G; Pollak, T M

    2003-01-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance have been used to characterize the neutral copper acceptor in ZnGeP sub 2 crystals. The copper substitutes for zinc and behaves as a conventional acceptor (i.e. the 3d electrons do not play a dominant role). Because of a high degree of compensation from native donors, the copper acceptors in our samples were initially in the nonparamagnetic singly ionized state (Cu sub Z sub n sup -). The paramagnetic neutral state (Cu sub Z sub n sup 0) was observed when the crystals were exposed to 632.8 nm or 1064 nm laser light while being held at a temperature below 50 K. The g matrix of the neutral copper acceptor is axial g sub p sub a sub r = 2.049 and g sub p sub e sub r sub p = 2.030), with the unique principal direction parallel to the tetragonal c axis of the crystal. The hyperfine and nuclear quadrupole matrices also exhibit c-axis symmetry (A sub p sub a sub r = 87.6 MHz, A sub p sub e sub r sub p = 34.8 MHz and P = 0.87 MHz for sup 6 su...

  7. Glass formation and crystallization of Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.; Ranganathan, S.

    2010-01-01

    In the present study, transmission electron microscopy techniques, like micro-diffraction, high resolution and fluctuation microscopy, have been employed to carry out detailed investigation of as-solidified and crystallized microstructures of the Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy synthesized using melt spinning, suction casting and copper mould casting techniques. Samples produced by copper mould casting technique showed partially crystalline microstructure whereas the other techniques resulted in complete amorphous microstructures. High-resolution microscopy established that the dendrites of the big cube phase in partially crystalline glass grew by atomistic ledges. The other crystalline bct Zr 2 Ni phase, present in partially crystalline glass and also in all the crystallized microstructures, showed various types of internal faults depending upon the crystallite size. Fluctuation microscopy established that oxygen plays a major role in determining the degree of medium range order in glassy phases. In addition, variation in oxygen content changed the crystallization behaviour of glasses from a single to multiple events

  8. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  9. On the Sensitivity of Peptide Nucleic Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters.

    Science.gov (United States)

    Bachmann, Stephan J; Lin, Zhixiong; Stafforst, Thorsten; van Gunsteren, Wilfred F; Dolenc, Jožica

    2014-01-14

    The technique of one-step perturbation to explore the relation between particular force-field parameters on the one hand and particular properties of a biomolecular system on the other hand from one or a few molecular dynamics simulations is applied to investigate the dependence of the free enthalpy of dimer formation and of crystal dissolution of a self-complementary fragment (H-CGTACG-NH2) of peptide nucleic acid, PNA, a mimic of DNA. The simulations show that PNA dimer formation in aqueous solution is favored by a decrease in the base charges with respect to values of the GROMOS 45A4 force field, while it is disfavored by a decrease in the backbone charges. In contrast, crystal dissolution of the PNA dimer is favored by a decrease in base charges, while a variation of backbone charges has a minor effect on this free enthalpy change. These opposite effects in a crystalline versus aqueous solution environment can be understood from the different water contents for these systems and have consequences for biomolecular force-field development.

  10. Experimental studies of dispersive double reflections excited in cylindrically bent perfect-crystal slabs at a constant neutron wavelength

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Davydov, Vadim; Em, V.; Seong, B. S.

    2012-01-01

    Roč. 45, č. 1 (2012), s. 98-105 ISSN 0021-8898 R&D Projects: GA ČR GAP204/10/0654 Institutional research plan: CEZ:AV0Z10480505 Keywords : RESIDUAL STRAIN-STRESS INSTRUMENT * MULTIPLE BRAGG-REFLECTIONS * SINGLE-CRYSTAL Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.343, year: 2012

  11. Kinetics of BaSO4 crystal growth and effect in formation damage

    International Nuclear Information System (INIS)

    Wat, R.M.S.; Sorbie, K.S.; Todd, A.C.; Chen, P.; Jiang, P.

    1992-01-01

    In the North Sea, due to the extensive use of water injection for oil displacement and pressure maintenance, many reservoirs experience the problem of scale deposition when injection water starts to breakthrough. In most cases the scaled-up wells are caused by the formation of sulphate scales of Barium and Strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and the preventative measure such as the squeeze inhibitor treatment has to be taken. It is therefore important to have a proper understanding of the kinetics of scale formation and its detrimental effect on formation damage under both inhibited and uninhibited environment. In this paper, the authors present results of BaSO 4 formation kinetics in both beaker tests and in highly reproducible sandpacks which simulates the flow in porous medium

  12. Controllable pretilt angle of liquid crystals with the formation of microgrooves

    International Nuclear Information System (INIS)

    Yu, Kai-Yu; Lee, Chia-Rong; Lin, Chi-Huang; Kuo, Chie-Tong

    2013-01-01

    This work investigates the controllability of the pretilt angle of liquid crystals (LCs) in a cell with an initial vertical alignment through microgrooves induced by the holographic fast-writing method. By changing the writing time or intensity of the pumped beam, the microgrooves with various surface modulations can form and provide distinct planar anchoring strength for the LCs. The pretilt angle of the LCs can be controlled over a range from 18.3° to 89°. The writing time of the microgrooves takes less than 25 s, which is a two-fold reduction in the time taken in previous investigations using other photoaligned methods.

  13. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  14. Formation of electrostatic double-layers and electron-holes in a low pressure mercury plasma column

    International Nuclear Information System (INIS)

    Petraconi, G; Maciel, Homero S

    2003-01-01

    Experimental studies of the formation of electrostatic double layers (DLs) and electron-holes (e-holes) are reported. The measurements were performed in the positive column of a mercury arc discharge operating in the low-pressure range of (2.0-14.0) x 10 -2 Pa with current density in the range of (3.0-8.0) x 10 3 A m -2 . Stable and unstable modes of the discharge were identified as the current was gradually increased, keeping constant the vapour pressure. The discharge remains stable until a critical current from which a slight increase of the current leads to an unstable regime characterized by high discharge impedance and strong oscillations. This mode ceased after a DL was formed in the plasma column. To induce the DL formation and to transport it smoothly along the discharge column, a low intensity B-field (7-10) x 10 -3 T produced by a movable single coil was used. The B-field locally increases the electron current density and makes the DL form at the centre of the magnetic constriction where it remained at rest. Electrostatic potential structures compatible with ordinary DLs and multiple-layers could be formed in the plasma column by dealing with the combined effects of the operational parameters of the discharge. It is noticeable that a pure e-hole, which is a symmetric triple-layer having a bell shape potential profile, could easily be formed by means of this experimental technique. A partial kinetic description, based on the space charge structure derived from an experimental e-hole, is presented in order to infer the charged particle populations that could contribute to the space charge of the e-hole. Evidence is shown that strong e-hole formation might be driven by an ion beam, therefore it could not be formed in isolation since its formation requires a nearby ion accelerating potential structure. Probe measurements of the plasma properties, at various radial positions of the stable positive column, are also presented. In the stable mode, prior to

  15. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  16. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  17. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  18. Poly-β-hydroxybutyrate Metabolism Is Unrelated to the Sporulation and Parasporal Crystal Protein Formation in Bacillus thuringiensis.

    Science.gov (United States)

    Wang, Xun; Li, Zhou; Li, Xin; Qian, Hongliang; Cai, Xia; Li, Xinfeng; He, Jin

    2016-01-01

    Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.

  19. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  20. Study of factors that influence complex-formation of n-alkanes with crystal carbamide

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnova, V.S.; Korzhov, Yu.A.; Martynenko, A.G.

    1982-01-01

    Studies effect of temperature, solid phase content in the suspension and amount of MeOH on extent of n-alkane extraction during carbamide deparaffinization. A most thorough extraction of n-alkanes is achieved with a graduated temperature regimen of complex-formation.

  1. 16.4 W laser output at 1.34 μm with twin Nd:YVO4 crystals and double-end-pumping structure

    International Nuclear Information System (INIS)

    Lu, C; Gong, M; Liu, Q; Huang, L; He, F

    2008-01-01

    High-power high-beam-quality 1.34 μm continuous-wave laser with twin Nd:YVO 4 crystals pumped by four fiber-coupled laser diodes, which constructed a double-end-pumping structure, is reported. With total 60 W pumping power incident, the highest 16.4 W output laser power was generated, the slope efficiency and optical efficiency were measured as better than 30.0% and 27.3%, respectively. With 12 W laser output, the beam quality was measured to be better than two times diffraction-limit and the instability of laser output was determined to be better than 1% over an hour time

  2. Deformation bands and dislocation structures of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation

    International Nuclear Information System (INIS)

    Li, Y.; Li, S.X.; Li, G.Y.

    2004-01-01

    The features of surface morphology and dislocation structure of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation at a constant plastic shear strain amplitude of 2x10 -3 were studied using optical microscope (OP) and electron channelling contrast imaging (ECCI) in the scanning electron microscope (SEM). Experimental results show that there are two sets of the secondary type of deformation band (DBII) formed in the specimen. The geometry relationship of the two sets of deformation bands (DBs) and slip band (SB) are given. The habit planes of DBIIs are close to (1-bar 0 1) and (1-bar 1 0) plane, respectively. The surface dislocation structures in the specimen including vein, irregular dislocation cells and dislocation walls were also observed. The typical dislocation structure in DBII is the dislocation walls

  3. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals.

    Science.gov (United States)

    Pyka, K; Keller, J; Partner, H L; Nigmatullin, R; Burgermeister, T; Meier, D M; Kuhlmann, K; Retzker, A; Plenio, M B; Zurek, W H; del Campo, A; Mehlstäubler, T E

    2013-01-01

    Symmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form. The Kibble-Zurek mechanism predicts the defect densities to follow a power law that scales with the rate of the transition. Owing to its ubiquitous nature, this theory finds application in a wide field of systems ranging from cosmology to condensed matter. Here we present the successful creation of defects in ion Coulomb crystals by a controlled quench of the confining potential, and observe an enhanced power law scaling in accordance with numerical simulations and recent predictions. This simple system with well-defined critical exponents opens up ways to investigate the physics of non-equilibrium dynamics from the classical to the quantum regime.

  4. New Crystal Ball data on resonance formation by γγ-collisions

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1992-01-01

    The Crystal Ball detector at DORIS-II has observed a hitherto unknown (though expected) resonance at 1870 MeV/c 2 in the reaction γγ → ηπ o π o . Decay angular distributions and subsystem invariant masses favor the assignment η 2 (1870), a J PC = 2 -+ resonance. An efficient selection of the reaction γγ → π o π o yielded 7000 events. Angular distributions in narrow mass bins became possible and allowed the decomposition of the cross section into S- and D-wave contributions. Thus an f 0 (1250) resonance was found under the dominating f 2 (1270). The search for the channel γγ →ηη in the same selection yielded only (16 ± 6) events. (orig.)

  5. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    Science.gov (United States)

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.

  6. Influence of crystallization conditions on formation and distribution of nonmetallic inclusions in steels

    International Nuclear Information System (INIS)

    Efimov, V.A.

    1977-01-01

    The processes were studied of the formation and the distribution of nonmetallic inclusions and the chemical inhomogeneity formation during the solidification of h steel. The variation of the character of oxides and sulfides across ingots was shown by considering st 25 and 20 Kh steels. To improve the distribution of inclusions and the stability of properties throughout the body of ingots, it is recommended to throughly deoxidize the metal, to raise the rate of solidification, to reduce the temperature gradient, to employ powder cooling agents, to use casting under a blanket of slag, to modify steel by active elements (r.e.e., Ca, Ba, Zr, B) which affect favourably the nature and the shape of the nonmetallic phase

  7. Phase formation and crystallization behavior of melt spun Sm-Fe-based alloys

    International Nuclear Information System (INIS)

    Shield, J.E.

    1999-01-01

    The phase formation and microstructures of Sm-Fe alloys have been investigated at Sm levels of 11 and 17 atomic percent and with alloying additions of Ti and C. At lower Sm content, virtually phase pure SmFe 7 formed, while higher Sm content resulted in the formation of SmFe 7 , SmFe 2 and amorphous phases. The addition of Ti and C resulted in greater stability and a larger volume fraction of the amorphous phase. The binary Sm-Fe alloys at both Sm levels had tremendously variable microstructures, with large discrepancies in grain size and phase distribution from region to region. The addition of Ti and C tended to result in a more homogeneous microstructure, as well as a refinement in the microstructural scale. (orig.)

  8. AOT-microemulsions-based formation and evolution of PbWO$_{4}$ crystals

    CERN Document Server

    Chen, D; Tang Kai Bin; Liang Zhen Hua; Zheng Hua Gui

    2004-01-01

    Anionic surfactant-AOT-microemulsions-assisted formation and evolution of PbWO//4 nanostructures with bundles rodlike, ellipsoidlike, and spherelike prepared at different media conditions were studied by powder X-ray diffraction pattern, field emission scanning electron microscopy, and transmission electron microscopy. The possible mechanisms for the formation of PbWO//4 samples in series of microemulsion systems were discussed. Various comparison experiments show that several experimental parameters, such as the AOT concentration, the water content, and reaction temperature play important roles in the morphological control of PbWO//4 nanostructures. Room-temperature photoluminescence of PbWO//4 samples with different morphologies has also been investigated and the results reveal that all these samples showed similar features with emissions at 480 similar to 510 nm but different luminescence intensity. 40 Refs.

  9. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    Science.gov (United States)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  10. Crystal chemistry of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} double monophosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, Damien, E-mail: damien.bregiroux@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 11 place Marcelin Berthelot, 75005 Paris (France); Popa, Karin [“Al.I. Cuza” University, Department of Chemistry, 11-Carol I Blvd., 700506 Iasi (Romania); Wallez, Gilles [Institut de Recherche de Chimie Paris (IRCP), CNRS – Chimie ParisTech – Paris Sciences et Lettres PSL UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06 (France)

    2015-10-15

    M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds have been extensively studied for several decades for their potential applications in the field of several domains such as matrices for actinides conditioning, phosphors etc. In this paper, the relationships between composition and crystal structure of these compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. M{sup II}M′{sup IV}(PO{sub 4}){sub 2} structures stem from two different archetypes: the cheralite and the yavapaiite structures, with some exceptions that are also described in this article. The ratio of the cations radii appears to be the most relevant parameter. The high ratio between the ionic radii of the divalent and tetravalent cations in yavapaiite derivates results in the ordering of these cations into well-differentiated polyhedra whereas cheralite is the only non-ordered structure encountered for M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds. - Graphical abstract: In this paper, the relationships between composition and crystal structure of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. - Highlights: • Crystal structure–composition relationships of MIIM′IV(PO4)2 compounds. • Review of the various processes used for the synthesis of these compounds. • Their most reported properties are described and discussed.

  11. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos

    2002-01-01

    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  12. Crystallization, the cast structure and the formation of gas blowholes in high-nitrogen steels and alloy steels

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Prokoshkina, V.; Kaputkina, L.M.; Siwka, J.; Skuza, Z.

    2001-01-01

    In the paper, the results of experimental research concerning the precipitation of nitrogen in the form of gas blowholes during the crystallization of supersaturated Fe-N, Fe-O-S-N alloys and 1Cr13 and Cr18Ni10 steels have been described. It has been found that the precipitation of nitrogen gas blowholes is more intensive and the pressure p N 2 is higher at low contents of surface active elements, i.e. oxygen and sulfur. At the concentration ([%O] +0.5%[%S]) ≥ 300 ppm, microingots exhibited a compact microstructure without gas blowholes. The result of kinetic analysis of the process of desorption of nitrogen and the thermodynamics of the investigated solution (including surface tension) confirm that the surface reaction plays a decisive role in the formation of gas blowholes. For this reason, it is possible to eliminate the formation of blowholes in ingots of ferritic and ferritic-austenitic steels by introducing such SAE admixtures, as Sb, Te or Se. Analytical expression have been obtained, which define the amount of nitrogen releasing into gas blowholes and describe the conditions of producing ingots or castings of an compact structure at cooling rates of approximately 10 3 K/s. (author)

  13. Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2-crystals

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Perchik, Alexey V; Chernomyrdin, Nikita V; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    We have proposed a method for hyper-spectral fluorescent imaging based on acousto-optical filtering. The object of interest was pumped using ultraviolet radiation of mercury lamp equipped with monochromatic excitation filter with the window of transparency centered at 365 nm. Double TeO 2 -based acousto-optical filter, tunable in range from 430 to 780 nm and having 2 nm bandwidth of spectral transparency, was used in order to detect quasimonochromatic images of object fluorescence. Modulating of ultraviolet pump intensity was used in order to reduce an impact of non-fluorescent background on the sample fluorescent imaging. The technique for signal-to-noise ratio improvement, based on fluorescence intensity estimation via digital processing of modulated video sequence of fluorescent object, was introduced. We have implemented the proposed technique for the test sample studying and we have discussed its possible applications

  14. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity

    NARCIS (Netherlands)

    Mores, D.; Kornatowski, J.; Olsbye, U.; Weckhuysen, B.M.

    2011-01-01

    Coke formation during the methanol-to-olefin (MTO) conversion has been studied at the single-particle level with in situ UV/Vis and confocal fluorescence microscopy. For this purpose, large H-ZSM-5 crystals differing in their Si/Al molar ratio have been investigated. During MTO, performed at 623 and

  15. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    Science.gov (United States)

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinsheng; Wu, Yinghai; Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed. (author)

  17. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinsheng [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)]. E-mail: jiwang@nrcan.gc.ca; Wu Yinghai [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada); Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 deg. C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed.

  18. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

    Science.gov (United States)

    Chung, George; Rose, Ann M; Petalcorin, Mark I R; Martin, Julie S; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P; Yanowitz, Judith L; Boulton, Simon J

    2015-09-15

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. © 2015 Chung et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Measurement of the energy distribution of parametric X-ray radiation from a double-crystal system

    International Nuclear Information System (INIS)

    Mori, Akira; Hayakawa, Yasushi; Kidokoro, Akio; Sato, Isamu; Tanaka, Toshinari; Hayakawa, Ken; Kobayashi, Kouji; Ohshima, Hisashi

    2006-01-01

    A parametric X-ray radiation (PXR) generator system was developed at the Laboratory for Electron Beam Research and Applications (LEBRA) at Nihon University; this PXR generator system is a tunable wavelength and quasi-monochromatic X-ray source constructed as one of the advanced applications of the LEBRA 125-MeV electron linear accelerator. The PXR beam which has characteristic of energy distribution. The theoretical values of energy distribution obtained at the output port were calculated to be approximately 300 eV and 2 keV at the central X-ray energies of 7 keV and 20 keV, respectively. In order to investigate the energy distribution, several measurements of the X-ray energy were carried out. The X-ray absorption of known materials and that of thin aluminum has been evaluated based on analyses of images taken using an imaging plate. The X-ray energy was deduced base on the identification of the absorption edges, and the energy distribution was estimated based on measurements using aluminum step method. In addition, an X-ray diffraction method using a perfect silicon crystal was employed, and spectra were measured using a solid state detector (SSD). The results of these experiments agreed with the calculated results. In particular, the well-defined absorption edges in the X-ray images and the typical rocking curves obtained by the measurement of the X-ray diffraction indicated that the distribution has a high-energy resolution

  20. Crystal structures of double vanadates Ca9R(VO4)7. 1. R = La, Pr and Eu

    International Nuclear Information System (INIS)

    Belik, A.A.; Morozov, V.A.; Lazoryak, B.I.; Khasanov, S.S.

    1997-01-01

    Crystalline structures of Ca 9 R(VO 4 ) 7 (R = La(1), Pr(2), Eu(3)) were studied by means of the complete profile analysis. The compounds crystallize in trigonal syngony (sp.gr. R3c, Z=6) with the following parameters of the elementary cells: 1 - a=10.8987(5), c = 38.147(1) A, V = 3924.1(3) A; 2 - a 10.8808(7), c = 38.135(1) A, V = 3910.0(3) A; 3 - a = 10.8651(1), c 38.089(1) A, V = 3894.0(3) A 3 . The rare-earth element cations together with calcium population density of the rare-earth element cations in the positions changes regularly depending on their radius. In some compounds starting from La up to Eu the population density of the rare-earth element cations in M(3) position decreases, while that in M(1) and M(2) position - increases

  1. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  2. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    International Nuclear Information System (INIS)

    Suleman, M; Deraman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Hanappi, M F Y M; Hamdan, E; Sazali, N E S; Tajuddin, N S M; Jasni, M R M; Hashim, M A

    2016-01-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ∼ 1700 m 2 g -1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (∼3.6×10 -3 S cm -1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (∼270 F g -1 ), specific energy (∼ 36 Wh kg -1 ), and power density (∼ 33 kW kg -1 ). (paper)

  3. Synthesis, crystal structure, and properties of the ordered double perovskite Sr_2CoOsO_6

    International Nuclear Information System (INIS)

    Kumar Paul, Avijit; Reehuis, Manfred; Felser, Claudia; Abdala, Paula M.; Jansen, Martin

    2013-01-01

    Sr_2CoOsO_6, a new osmium based ordered semiconductor double perovskite was prepared by solid state synthesis from the respective binary oxides. Room temperature PXRD analysis shows the compound to be tetragonal [I4/m; a = 5.5503(1) Aa and c = 7.9320(1) Aa], whereas low temperature synchrotron data refinement has revealed a second monoclinic polymorph [I2/m; a = 5.4969(2) Aa, b = 5.4979(2) Aa, c = 8.0090(1) Aa and γ = 90.527(1) ] with a fully ordered rocksalt arrangement of cobalt and osmium atoms over the perovskite B-sites. Heat capacity and magnetic measurements indicate that Sr_2CoOsO_6 shows antiferromagnetic ordering below T_N = 108 K followed by a second magnetic transition at T_2 = 65 K. It was shown that the change from the tetragonal to the monoclinic phase occurs at T_N. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    International Nuclear Information System (INIS)

    Wang, Zhixun; Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-01-01

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band

  5. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  6. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  7. Hypoxia causes IL-8 secretion, Charcot Leyden crystal formation, and suppression of corticosteroid-induced apoptosis in human eosinophils.

    Science.gov (United States)

    Porter, L M; Cowburn, A S; Farahi, N; Deighton, J; Farrow, S N; Fiddler, C A; Juss, J K; Condliffe, A M; Chilvers, E R

    2017-06-01

    Inflamed environments are typically hypercellular, rich in pro-inflammatory cytokines, and profoundly hypoxic. While the effects of hypoxia on neutrophil longevity and function have been widely studied, little is known about the consequences of this stimulus on eosinophils. We sought to investigate the effects of hypoxia on several key aspects of eosinophil biology, namely secretion, survival, and their sensitivity to glucocorticosteroids (GCS), agents that normally induce eosinophil apoptosis. Eosinophils derived from patients with asthma/atopy or healthy controls were incubated under normoxia and hypoxia, with or without glucocorticoids. Activation was measured by flow cytometry, ELISA of cultured supernatants, and F-actin staining; apoptosis and efferocytosis by morphology and flow cytometry; and GCS efficacy by apoptosis assays and qPCR. Hypoxic incubation (3 kPa) caused (i) stabilization of HIF-2α and up-regulation of hypoxia-regulated genes including BNIP3 (BCL2/adenovirus E1B 19-kDa protein-interacting protein 3) and GLUT1 (glucose transporter 1); (ii) secretion of pre-formed IL-8, and Charcot Leyden crystal (CLC) formation, which was most evident in eosinophils derived from atopic and asthmatic donors; (iii) enhanced F-actin formation; (iv) marked prolongation of eosinophil lifespan (via a NF-κB and Class I PI3-kinase-dependent mechanism); and (v) complete abrogation of the normal pro-apoptotic effect of dexamethasone and fluticasone furoate. This latter effect was evident despite preservation of GCS-mediated gene transactivation under hypoxia. These data indicate that hypoxia promotes an eosinophil pro-inflammatory phenotype by enhancing eosinophil secretory function, delaying constitutive apoptosis, and importantly, antagonizing the normal pro-apoptotic effect of GCS. As eosinophils typically accumulate at sites that are relatively hypoxic, particularly during periods of inflammation, these findings may have important implications to understanding the

  8. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  9. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  10. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  11. Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

    Science.gov (United States)

    Lin, SHEN; Lei, GONG; Shuhua, CHEN; Shiping, ZHAN; Cheng, ZHANG; Tao, SHAO

    2018-04-01

    In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride) (PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°) compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.

  12. Vacancy formation energies in close-packed crystals correlated with melting temperature via thermodynamics and liquid structure

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.; March, N.H.

    1988-08-01

    In earlier work, the vacancy formation energy E v in close-packed crystals, in units of the thermal energy k B T m at the melting temperature T m , has been connected with compressibility and specific heats, plus terms dependent on the liquid structure at T m . Here, this connection has been examined quantitatively for (a) the insulating condensed rare gases Ne, Ar and Kr, and (b) a variety of close-packed metals. For case (a), E v /k B T m can be calculated directly from thermodynamic data to obtain agreement with experiment for Ar and Kr, though not for Ne. A 'residual' contribution is estimated for Ar and Kr from diffraction and computer experiments on the density dependence of the liquid pair correlation function and is shown to be very small. Agreement is less impressive for case (b) for the eight close-packed metals for which all data required is known, the thermodynamic formula giving an average value E v /k B T m =7.8+-1.1 whereas experiment yields 9.4+-1.8. However, for the body-centred cubic alkalis the thermodynamic average value of 4.5+-0.5 is much lower than the experimental value 11.5+-2.0 consistent with the known role of ionic relaxation round the vacancy in such open structures. (author). 16 refs, 2 tabs

  13. Spatially selective Er/Yb-doped CaF{sub 2} crystal formation by CO{sub 2} laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr

    2014-10-30

    Highlights: • Oxyfluoride glass–ceramics containing CaF{sub 2} nanocrystals doped with Er{sup 3+} and Yb{sup 3+} ions were formed on the glass surface by CO{sub 2} laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF{sub 2} nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO{sub 2} laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF{sub 2} and miner Ca{sub 2}SiO{sub 4} nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment.

  14. Spatially selective Er/Yb-doped CaF{sub 2} crystal formation by CO{sub 2} laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr

    2015-04-15

    Highlights: • Oxyfluoride glass–ceramics containing CaF{sub 2} nanocrystals doped with Er{sup 3+} and Yb{sup 3+} ions were formed on the glass surface by CO{sub 2} laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF{sub 2} nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO{sub 2} laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF{sub 2} and miner Ca{sub 2}SiO{sub 4} nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment.

  15. Spatially selective Er/Yb-doped CaF2 crystal formation by CO2 laser exposure

    International Nuclear Information System (INIS)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo

    2014-01-01

    Highlights: • Oxyfluoride glass–ceramics containing CaF 2 nanocrystals doped with Er 3+ and Yb 3+ ions were formed on the glass surface by CO 2 laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF 2 nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO 2 laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF 2 and miner Ca 2 SiO 4 nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment

  16. Spatially selective Er/Yb-doped CaF2 crystal formation by CO2 laser exposure

    International Nuclear Information System (INIS)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo

    2015-01-01

    Highlights: • Oxyfluoride glass–ceramics containing CaF 2 nanocrystals doped with Er 3+ and Yb 3+ ions were formed on the glass surface by CO 2 laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF 2 nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO 2 laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF 2 and miner Ca 2 SiO 4 nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment

  17. Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7.H2O single-crystal nanobelts

    International Nuclear Information System (INIS)

    Zhang Yifu; Liu Xinghai; Xie Guangyong; Yu Lei; Yi Shengping; Hu Mingjie; Huang Chi

    2010-01-01

    Single-crystal V 3 O 7 .H 2 O nanobelts have been successfully synthesized in a large-scale by ethanol reducing of the commercial V 2 O 5 powder via a facile hydrothermal approach, without any templates and surfactants. The as-prepared V 3 O 7 .H 2 O nanobelts are up to several tens of micrometers in length, about 100 nm in width and about 20 nm in thickness in average, respectively. The 'Hydrating-Reducing-Exfoliating-Splitting' (HRES) mechanism was proposed to describe the formation of the V 3 O 7 .H 2 O nanobelts. In our research progress, it was found that the ratio of EtOH/H 2 O, the reaction time and categories of the reducing agents had significant effects on the morphology and composition of as-obtained products. Furthermore, the electrochemical properties of V 3 O 7 .H 2 O nanobelts were preformed and the results revealed that a lithium battery using those nanobelts as the positive electrode exhibited a high initial discharge capacity of 373 mAh/g.

  18. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  19. The 'partial resonance' of the ring in the NLO crystal melaminium formate: study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping.

    Science.gov (United States)

    Binoy, J; Marchewka, M K; Jayakumar, V S

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N(3)C(1)N(1) moiety leading to special type resonance of the ring and the resonance structure of CO(2) group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The `partial resonance' of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping

    Science.gov (United States)

    Binoy, J.; Marchewka, M. K.; Jayakumar, V. S.

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N3C1N1 moiety leading to special type resonance of the ring and the resonance structure of CO2 group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal.

  1. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  2. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. "Dog ear" formation after double-stapled low anterior resection as a risk factor for anastomotic disruption.

    Science.gov (United States)

    Roumen, R M; Rahusen, F T; Wijnen, M H; Croiset van Uchelen, F A

    2000-04-01

    The aim of this study was to investigate the possible deleterious effect of the lateral intersecting margins (so-called dog ears) on anastomotic disruption after experimentally performed double-stapled anastomoses. Two groups of double-stapled side-to-end anastomoses were performed using pig small intestines. Group A consisted of 35 circular anastomoses and Group B of 32 double-stapled anastomoses with a bilateral dog ear. In both groups bursting pressures were tested using a water-filled, pressure-controlled automatic pumping system (Hamou Endomat), and special attention was paid to the location(s) in the anastomoses were the disruption(s) occurred. In Group A bursting pressures were significantly higher than in Group B (median pressure, 90 vs. 60 mmHg; P dog ear. We conclude that the lateral intersections of double-stapled anastomoses are a structural weak spot and that the currently most often applied double-stapled anastomosis is a less effective type of anastomosis than a complete circular one. Resolving this technical problem might help to reduce the number of anastomotic disruptions after low anterior resections.

  4. The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride Copolymers

    Directory of Open Access Journals (Sweden)

    Wenzhong Ma

    2014-05-01

    Full Text Available The crystallization behaviors of two copolymers of PVDF were studied, and the effect of copolymerized chains on the crystallization behavior was investigated. The results indicated that both copolymers had a lowered crystallization temperature and crystallinity. The crystallization rate was improved by the copolymer with symmetrical units in PVDF chains, but hindered by asymmetrical units, compared with the neat PVDF. The symmetrical units in PVDF chains favored the β-crystals with fiber-like structures. According to the solubility parameter rule, methyl salicylate (MS can be chosen as a diluent for PVDF copolymers. Both diluted systems had liquid-liquid (L-L regions in the phase diagrams, which was due to the lowered crystallization temperature.

  5. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  6. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    Science.gov (United States)

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  7. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    . When the areal density was increased from 0.039 to 0.55, and to 2.1 x 10(15) m(-2), the Fe NPs embedded on the LDO flakes exhibited good catalytic performance for the growth of entangled carbon nanotubes (CNTs), aligned CNTs, and double helical CNTs, respectively. This work provides not only new...

  8. Equilibrium Crystal Shape of BaZrO{sub 3} and Space Charge Formation in the (011) Surface by Using Ab-Initio Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Kim, Yeong-Cheol [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2017-01-15

    We investigated the equilibrium crystal shape of BaZrO{sub 3} and the space charge formation in an O-terminated (011) surface by using ab-initio thermodynamics. Twenty-two low-indexed (001), (011), and (111) surfaces were calculated to analyze their surface Gibbs-free energy under the stable condition of BaZrO{sub 3}. Based on the Gibbs-Wulff theorem, the equilibrium crystal shape of BaZrO{sub 3} changed from cubic to decaoctahedral with decreasing Ba chemical potential. The dominant facets of BaZrO{sub 3} were {001} and {011}, which were well consistent with experimental observations. The space charge formation in the (011) surface was evaluated using the space-charge model. We found that the (011) surface was even more resistive than the (001) surface.

  9. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Pogozelski, W.K.

    1996-01-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as γ rays, the importance of multiply damaged sites is shown to increase with the solution's hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/μm helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/μm. 22 refs., 3 figs., 2 tabs

  10. Effects of Degree of Enzymatic Interesterification on the Physical Properties of Margarine Fats: Solid Fat Content, Crystallization Behavior, Crystal Morphology, and Crystal Network

    DEFF Research Database (Denmark)

    Zhang, Hong; Smith, Paul; Adler-Nissen, Jens

    2004-01-01

    In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network...... °C with increasing conversion degree. Increased conversion degree from the blend to products, measured by X-ray with addition of 50% of rapeseed oil for dilution, caused the content of â to decrease from 100% to 33%, and 30% and eventually to pure ⢠crystal. However, double chain packing...

  11. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  12. Formation of cyclobutanones by the photolytic reaction of (CO)/sub 5/Cr/double bond/C(OMe)Me with electron-rich olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, M.A.; Hegedus, L.S.

    1989-03-15

    Recent research has centered on the development of useful organic synthetic methodology based on the photolytic reactions of chromium Fischer carbene complexes, particularly in regards to the development of new /beta/-lactam syntheses. In the course of these studies it became evident that photolysis of chromium-carbene complexes resulted in the reversible production of chromium-ketene complexes, by a photochemically driven CO insertion into the chromium-carbene carbon double bond and that this unstable intermediate was responsible for /beta/-lactam formation.

  13. Food crystallization and eggs.

    Science.gov (United States)

    Egg products can be utilized to control crystallization in a diverse realm of food products. Albumen and egg yolk can aid in the control of sugar crystal formation in candies. Egg yolk can enhance the textural properties and aid in the control of large ice crystal formation in frozen desserts. In...

  14. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells

    International Nuclear Information System (INIS)

    Kozmin, S.G.; Sedletska, Y.; Reynaud-Angelin, A.; Sage, E.; Kozmin, S.G.; Sedletska, Y.; Reynaud-Angelin, A.; Sage, E.; Gasparutto, D.

    2009-01-01

    It has been stipulated that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. Using a variety of model multiply damaged sites (MDS), we investigated parameters that govern the formation of DSB during the processing of MDS. Duplexes carrying MDS were inserted into replicative or integrative vectors, and used to transform yeast Saccharomyces cerevisiae. Formation of DSB was assessed by a relevant plasmid survival assay. Kinetics of excision/incision and DSB formation at MDS was explored using yeast cell extracts. We show that MDS composed of two uracils or abasic sites, were rapidly incised and readily converted into DSB in yeast cells. In marked contrast, none of the MDS carrying opposed oG and hU separated by 38 bp gave rise to DSB, despite the fact that some of them contained preexisting single-strand break (a 1-nt gap). Interestingly, the absence of DSB formation in this case correlated with slow excision/incision rates of lesions. We propose that the kinetics of the initial repair steps at MDS is a major parameter that direct towards the conversion of MDS into DSB. Data provides clues to the biological consequences of MDS in eukaryotic cells. (authors)

  15. Formation and evaluation of convex-curved crystals of lithium fluoride for use in analyzing x-ray spectra

    International Nuclear Information System (INIS)

    Sellick, B.O.

    1976-01-01

    Lithium fluoride as received from the vendor in boule form is 38 x 38 x 13 mm thick. This block is cleaved to wafers of the desired thickness, x-ray-evaluated for ''d'' spacing and greatest intensity, bent to the required radius, and then acid-etched to remove foreign material. The diffraction and dispersion characteristics of a wafer are analyzed using well-collimated tungsten x rays that strike the crystal and are diffracted onto no-screen x-ray film. If the crystal is satisfactory, it is mounted in a spectrogoniometer and rotated through an x-ray beam while a detector is set at the optimized angle for the diffracted x rays. The average intensity across the length of the crystal is recorded by multichannel scaling. Any imperfections appear as peaks or dips compared to the average intensity. The crystal next goes to a 10-channel, filter-fluorescer x-ray unit that compares zero-order intensity to diffracted Kα and Kβ intensity. Counts for 100-s intervals are taken in groups of three and averaged. Correction factors for instrument geometry, air, pinhole diameter at zero order, Kα-Kβ, barometric pressure, temperature, etc., are added to the efficiency calculations to obtain the crystal efficiency (epsilon) vs keV data. The crystal is mounted in the spectrograph or spectrometer and calibrated to either the detector or film plane by using direct radiation with proper x-ray filters or absorbers. The crystal is then ready for use

  16. Transformation frequency of γ irradiated plasmid DNA and the enzymatic double strand break formation by incubation in a protein extract of Escherichia coli

    International Nuclear Information System (INIS)

    Schulte-Frohlinde, D.; Mark, F.; Ventur, Y.

    1994-01-01

    It was found that incubation of γ-irradiated or DNaseI-treated plasmid DNA in a protein extract of Escherichia coli leads to enzyme-induced formation of double strand breaks (dsb) in competition with repair of precursors of these dsb. A survival curve of the plasmid DNA (as determined by transformation of E. coli) was calculated on the basis of enzyme-induced dsb as well as those produced by irradiation assuming that they are lethal. The calculated D O value was the same as that measured directly by transformation of irradiated plasmid DNA. Two models are presented that fit the experimental survival data as a function of dose. One is based on damage formation in the plasmid DNA including enzymatic conversion of single strand damage into dsb (U-model), the other is an enzymatic repair saturation model based on Michaelis-Menten kinetics. (Author)

  17. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    Science.gov (United States)

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  18. In-plane pitch control of cholesteric liquid crystals by formation of artificial domains via patterned photopolymerization.

    Science.gov (United States)

    Yoshida, Hiroyuki; Miura, Yusuke; Tokuoka, Kazuki; Suzuki, Satoshi; Fujii, Akihiko; Ozaki, Masanori

    2008-11-10

    A controlled helix pitch modulation in the in-plane direction of a planarly aligned cholesteric liquid crystal cell is demonstrated by using photopolymerizable cholesteric liquid crystals. By fabricating artificial domains with a closed volume via two-photon excitation laser-lithography, the degree of pitch modulation could be controlled by adjusting the surface area to volume ratio of the domain. A pitch modulation of over 60 nm was realized by designing the shape of the artificial domain.

  19. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.

    2017-12-04

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  20. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.; Cavallaro, Andrea; Li, Cheng; Handoko, Albertus D.; Chan, Kuang Wen; Walker, Robert J.; Regoutz, Anna; Herrin, Jason S.; Yeo, Boon Siang; Payne, David J.; Kilner, John A.; Ryan, Mary P.; Skinner, Stephen J.

    2017-01-01

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  1. Enhancement of fluorescence quenching and exciplex formation in DNA major groove by double incorporation of modified fluorescent deoxyuridines.

    Science.gov (United States)

    Tanaka, Makiko; Oguma, Kazuhiro; Saito, Yoshio; Saito, Isao

    2012-06-15

    5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Hong Sun

    Full Text Available As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs and cumulus-enclosed oocytes (CEOs. We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells.

  3. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  4. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  5. Relative frequency of formation of base radioproduct, single and double strand breaks on irradiation of diluted aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1975-01-01

    Diluted aqueous solution of DNA labelled with 6- 3 H-TdR was irradiated in the absence of oxygen and numbers of formed single and double strand breaks and the 5,6-dihydrothymine (DHT) yield were determined. The results indicate that, under given conditions, a molecule of a base radioproduct is formed approximately 10 times more frequently than one single strand break. The occurence of a single strand break is 20 times higher than that of a double strand break. The DNA labelled with 6- 3 H-TdR was isolated from mice fibroblasts of L-strain according to Marmur (specific activity 3.0 MBq/82 μCi/mg DNA, molecular weight M/sub n/=9.32x10 6 dalton). Solution of DNA was irradiated in the absence of oxygen (180 Gy /1.8x10 4 rads/, absorbed dose rate 0.3 Gy/s). It was lyophilized with an addition of non-labelled thymine, thymidine and DHT and then hydrolysed with 90% formic acid. The dried hydrolysate was chromatographed with irradiated non-labelled thymine added as a carrier. (F.G.)

  6. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    Science.gov (United States)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  7. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  8. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  9. Hardening and formation of dislocation structures in LiF crystals irradiated with MeV-GeV ions

    CERN Document Server

    Manika, I; Schwartz, K; Trautmann, C

    2002-01-01

    Material modifications of LiF crystals irradiated with Au, Pb and Bi ions of MeV to GeV energy are studied by means of microindentation measurements and dislocation etching. Above a critical irradiation fluence of 10 sup 9 ions/cm sup 2 , the microhardness can improve by a factor of 2 in the bulk and by more than 3 on the surface. Radiation-induced hardening follows the evolution of the energy loss along the ion path. Annealing experiments indicate that complex defect aggregates created in the tracks play a major role for the hardness change. Evidence for severe structural modifications is found when etching indentation impressions in highly irradiated crystals leading to similar pattern as in amorphous or micro-grained materials. Dislocation etching also reveals long-range stress fields extending far beyond the implantation zone deep into the nonirradiated crystal.

  10. A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

    Science.gov (United States)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki

    2012-05-01

    In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 - 0.057 × Ph (eV) and HmI = 0.981 - 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 - 0

  11. External Genital Development, Urethra Formation, and Hypospadias Induction in Guinea Pig: A Double Zipper Model for Human Urethral Development.

    Science.gov (United States)

    Wang, Shanshan; Shi, Mingxin; Zhu, Dongqing; Mathews, Ranjiv; Zheng, Zhengui

    2018-03-01

    To determine whether the guinea pig phallus would be an appropriate model of human penile development, we characterized the embryology and sexual differentiation of guinea pig external genitalia and attended to induce hypospadias in males and tubular urethra formation in females pharmacologically. The external genitalia of guinea pig were collected from genital swelling initiation to newborn stages, and scanning electronic microscopy and histology were performed to visualize the morphology and structure. Immunohistochemistry was used to determine the androgen receptor localization. Bicalutamide and methyltestosterone were given to pregnant dams to reveal the role and timing of androgen in guinea pig penile masculinization. Canalization and dorsal-to-ventral movement of the urethral canal develops the urethral groove in both sexes, and then the males perform distal-opening-proximal-closing to form tubular urethra. More nuclear-localized androgen receptor is found in proximal genital tubercles of males than in females at (E) 29. Antiandrogen treatment at E26-E30 can cause hypospadias, and methyltestosterone administration at E27-E31 can induce tubular urethra formation in females. Fetal development of the guinea pig phallus is homologous to that of humans. Although guinea pig has structures similar to mouse, the urethral groove and the tubular urethra formation are more similar to humans. Antiandrogen treatment causes hypospadias in males and additional androgen induces tubular urethra formation in females. Thus, guinea pig is an appropriate model for further study of cellular and molecular mechanisms involved in distal-opening-proximal-closing in tubular urethra formation and the evaluation of the pathophysiological processes of hypospadias. Published by Elsevier Inc.

  12. Phase relations in the Cabeza de Araya cordierite monzogranite, Iberian Massif: implications for the formation of cordierite in a crystal mush

    Energy Technology Data Exchange (ETDEWEB)

    García Moreno, O.; Corretgé, L.G.; Holtz, F.; García-Arias, M.; Rodriguez, C.

    2017-07-01

    Experimental investigations and thermodynamic calculations of the phase relations of a cordierite-rich monzogranite from the Cabeza de Araya batholith (Cáceres, Spain) have been performed to understand the formation of cordierite. The experiments failed to crystallize cordierite in the pressure range 200-600MPa, in the temperature range 700-975ºC and for different water activities (melt water contents between 2 and 6 wt.%). In contrast, clinopyroxene and orthopyroxene (absent in the natural mineral rock assemblage), together with biotite, were observed as ferromagnesian assemblage in a wide range of experimental conditions. Thermodynamic calculations, using the software PERPLE{sub X}, describe the formation of cordierite only at 200 and 400MPa and very low water contents, and the amount of cordierite formed in the models is always below 3.5 vol.%. The results indicate that cordierite is not in equilibrium with the bulk rock compositions. The most probable explanation was that cordierite nucleated and crystallized from a melt that is not in equilibrium with part of the mineral assemblage present in the magma. This “non-reactive” mineral assemblage was mainly composed of plagioclase. The silicate melts from which cordierite crystallized was more Al-rich and K-rich than the silicate melt composition in equilibrium with the bulk composition. One possible process for the high Al content of the silicate melt is related to assimilation and partial melting of Al-rich metasediments. An exo-perictetic reaction is assumed to account for both textural and geochemical observations. On the other hand, hybridization processes typical for calc-alkaline series can also explain the high proportions of “non-reactive” minerals observed in relatively high temperature magmas. This study clearly demonstrates that silicate melts in a crystal mush can depart significantly from the composition of melt that should be in equilibrium with the bulk solid assemblage.

  13. Formation and repair of DNA double-strand breaks caused by ionizing radiation in the Epstein-Barr virus minichromosome

    OpenAIRE

    Kumala, Slawomir

    2012-01-01

    L’ADN dans nos cellules est exposé continuellement à des agents génotoxiques. Parmi ceux-ci on retrouve les rayons ultraviolets, les agents mutagènes chimiques d’origine naturelle ou synthétique, les agents radiomimétiques, et les dérivés réactifs de l’oxygène produits par les radiations ionisantes ou par des processus tels que les cycles métaboliques redox. Parmi les dommages infligés par ces agents, les plus dangereux sont les cassures simples- et double-brin de l’ADN qui brisent son intégr...

  14. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  15. Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals

    Science.gov (United States)

    Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.

    2017-10-01

    DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.

  16. BRIEF COMMUNICATION: The negative ion flux across a double sheath at the formation of a virtual cathode

    Science.gov (United States)

    McAdams, R.; Bacal, M.

    2010-08-01

    For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.

  17. Morphological Development of Melt Crystallized Poly(propylene oxide) by In Situ AFM: Formation of Banded Spherulites

    NARCIS (Netherlands)

    Beekmans, L.G.M.; Hempenius, Mark A.; Vancso, Gyula J.

    2004-01-01

    The morphology of poly(propylene oxide) (PPO) crystals grown from the melt was investigated. The spherulites of the optically pure S polymers displayed a regular pattern of concentric rings as observed by polarizing optical microscopy, while the stereocopolymer developed irregularly banded, or

  18. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  19. On determination of melt composition by liquidus curves for a number of oxide systems for crystal formation

    International Nuclear Information System (INIS)

    Soboleva, L.V.

    1991-01-01

    Consideration is given to liquidus curves in 31 phase diagrams of a series of borate, aluminate, silicate, germanate, titanate and other systems with unlimited mutual solubility in liquid state. Proposed optimal compositions of melts for preparation of crystals of compounds, forming in these systems, were calculated

  20. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  1. Study on glass formation and crystallization of Zr54.5Cu20Al10Ni8Ti75 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.

    2009-01-01

    The microstructure of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 75 alloy has been examined after solidification involving three different techniques viz., copper mould casting, suction casting and melt spinning. The bulk glass microstructure of the alloy obtained through copper mould casting was found to comprise of big cube Zr 2 Ni phase in a dendritic morphology and tetragonal Zr 2 Ni phase in a faulted morphology besides the amorphous phase. High-resolution electron microscopy (HREM) was carried out to examine the internal structure and interface structure of the phases. The dendritic phase was found to consist of primary and secondary dendrite arms with faceted as well rounded interfaces with the amorphous phase. Ledges were noticed at either of the interfaces with higher density at the rounded interfaces. The presence of the faulted phase was noticed in between dendritic arms. The faulted phase was found to consist of different domains corresponding to different orientations. A variety of interfaces could be noticed between these individual domains and also within a single domain itself. At least three different kinds of faulted region were identified to coexist in a single domain. The melt spun ribbon and bulk glass made through suction casting was found to be fully amorphous. The amorphous phase obtained from the three different techniques showed different degrees of medium range order as revealed by the fluctuation microscopy technique. Crystallization behavior of as solidified structures has been examined by comparing the crystallization kinetics and microstructure. Crystallization led to the transformation of the amorphous phase to nanocrystals in all the cases. The crystallization event was found to be singular in the case of copper mold cast bulk glass and multiple in the case of suction cast bulk glass and ribbon. The phase forming on crystallization was found to be the same faulted tetragonal Zr 2 Ni that was encountered during solidification. Multiple domains

  2. Analysis of stray grain formation in single crystal CMSX-4 superalloy; Analyse der Bildung von Fehlkoernern in einer einkristallinen CMSX-4-Superlegierung

    Energy Technology Data Exchange (ETDEWEB)

    Chmiela, Bartosz; Sozanska, Maria; Cwajna, Jan [Silesian Univ. of Technology, Katowice (Poland). Dept. of Materials Science; Szeliga, Dariusz [Rzeszow Univ. of Technology (Poland). Dept. of Materials Science; Jarczyk, Jerzy [ALD Vacuum Technologies, Hanau (Germany)

    2013-08-01

    Modern single crystal (SX) turbine blades are fabricated by directional solidification using a grain selector. The grain selection process was investigated by numerical simulation and verified by the experiment. A coupled ProCAST and cellular automaton finite element (CAFE) model was used in this study. According to the latest literature data, we designed the grain selector. Simulation confirmed an optimal grain selection efficiency of the applied selector geometry. The obtained experimental results reveal the possibility of stray grain formation in SX castings with a designed selector, in contrast to the simulation results. (orig.)

  3. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  4. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  5. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  6. A strange dwarf scenario for the formation of the peculiar double white dwarf binary SDSS J125733.63+542850.5

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-05-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveals that the massive WD has a surface gravity log g1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13 000 K, while the effective temperature of the low-mass WD (M2 dwarf (SD) scenario to explain the formation of this double WD binary. We assume that the massive WD is a SD originating from a phase transition (PT) in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the PT. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M⊙ WD and a 1.5 M⊙ main-sequence star in a 1.492 d orbit. Especially, the secondary star (i.e. the progenitor of the low-mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  7. Formation and properties of the buried isolating silicon-dioxide layer in double-layer “porous silicon-on-insulator” structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Davletkildeev, N. A.; Ivlev, K. E.; Roslikov, V. E. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation)

    2017-01-15

    The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to be promising for integrated chemical micro- and nanosensors.

  8. C(3i)-symmetric octanuclear cadmium cages: double-anion-templated synthesis, formation mechanism, and properties.

    Science.gov (United States)

    Sun, Jie; Sun, Di; Yuan, Shuai; Tian, Dongxu; Zhang, Liangliang; Wang, Xingpo; Sun, Daofeng

    2012-12-14

    A series of C(3i)-symmetric bicapped trigonal antiprismatic Cd(8) cages [2X@Cd(8)L(6)(H(2)O)(6)]⋅n Y⋅solvents (X = Cl(-), Y = NO(3)(-), n = 2: MOCC-4; X = Br(-), Y = NO(3)(-), n = 2: MOCC-5; X = NO(3)(-), Y = NO(3)(-), n = 2: MOCC-6; X = NO(3)(-), Y = BF(4)(-), n = 2: MOCC-7; X = NO(3)(-), Y = ClO(4)(-), n = 2: MOCC-8; X = CO(3)(2-), n = 0: MOCC-9), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO(3)(2-) template for MOCC-9 was generated in situ by two-step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC-8 was carried out and showed anion-size selectivity. All of the cage-like compounds emit strong luminescence at room temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Relevance of the Fanconi anemia genetic stability pathway to formation and processing of double-strand breaks (DSBs)

    International Nuclear Information System (INIS)

    Thompson, L.H.; Tebbs, R.S.; Hinz, J.M.; Yamada, N.A.; Salazar, E.P.; Jones, I.M.; Jones, N.J.; Limoli, C.L.

    2003-01-01

    Although the exact functions of the FA proteins are largely unknown, a nuclear complex containing the A, C, E, F, and G proteins appears necessary for resistance to mitomycin C (MMC). FANCD1/BRCA2 is directly involved in DSB repair by homologous recombination, and ATM phosphorylates FANCD2 in response to ionizing radiation. We constructed a knockout mutation of the hemizygous FancG gene in CHO cells, which have a relatively stable subdiploid karyotype. A knockout clone (FGKO40) was isolated from a pool of ∼100 clones after screening ∼30,000 clones by PCR analysis. FGKO40 cells grow robustly; their doubling time is ∼8% slower than wild-type cells, and the plating efficiency and cell cycle distribution are normal. Survival curves show that FGKO40 is sensitive to diverse agents: 6-thioguanine (5x), MMC (3x), methyl methanesulfonate (MMS) (4x), methylnitrosourea (4x), ethylnitrosourea (3x), chloroethylnitrosourea (3x), UVC (1.5x), hydroxyurea (1.2x), camptothecin (1.2x), and gamma-rays (1.15x). Thus, the FancG protein is important for cellular recovery from diverse genotoxic insults besides crosslinking agents. The level of reactive oxidative species is elevated 1.6-fold in FGKO40 cells, but the spontaneous mutation rate at the hprt locus is lower than normal. The rate of conversion to methotrexate resistance is increased ∼2.5 fold in FGKO40 cells. In an alkaline comet assay, FGKO40 had a normal level of spontaneous DNA breaks as well as breaks produced by an 8-min treatment with MMS. In response to a pulse treatment with MMS, synchronous FGKO40 cells at the end of G1 phase progress normally through S phase but have a slightly lengthened G2 phase. Overall, the phenotype of FGKO40 cells suggests a defect in DNA replication that may result in increased DSBs when damaged DNA is replicated

  10. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  11. Influence of clusters in melt on the subsequent glass-formation and crystallization of Fe–Si–B metallic glasses

    Directory of Open Access Journals (Sweden)

    Shaoxiong Zhou

    2015-04-01

    Full Text Available The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability (GFA and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.

  12. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  13. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  14. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Mikryukova, E.V.; Morozov, A.N.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Peculiarities of dislocation and microdefect formation in InP monocrystals doped with donor (S,Ge) and acceptor (Zn) impurities are investigated by the metallography. Dependence of dislocation density on the concentration of alloying impurity is established. Microdefects leading to the appearance of 5 different types of etch figures are shown to be observed in doped InP monocrystals. The mechanism of microdefect formation is suggested

  15. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  16. Single crystal fibers growth of double lithium, lanthanium molybdate and adjustment of a micro-pulling down furnace for high vacuum setup; Crescimento de fibras de molibdato duplo de litio e lantanio e adaptacao de sistema de alto vacuo para micro pulling-down

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernando Rodrigues da

    2013-07-01

    In this work we investigated crystal growth procedures aiming the development of single crystal fiber (SCF) for laser applications. For quality optimization in the fabrication of fluorides SCF a new growth chamber for a micro-pulling down furnace ({mu}-PD) was constructed targeting the fibers fabrication with strict atmosphere control (high vacuum, gas flux and static atmospheres). Simultaneously, the SCF growth process of rare earth double molybdates was studied. The growth of pure and Nd{sup 3+}-doped SCF of LiLa(MoO{sub 4}){sub 2} (LLM) was studied in the range of 0,5 - 10mol% doping. The designed furnace growth chamber with controlled atmosphere was successfully constructed and tested under different conditions. Specially, it was tested with the growth of LiF SFC under CF{sub 4} atmosphere showing the expected results. Transparent and homogeneous SCF of Nd:LLM were grown. In the pure fibers was observed facets formation, however, these defects were minimized after tuning of the growth parameters and additionally with the fibers doping. X-ray analysis showed the crystallization of a single phase (space group I4{sub 1}/a); the optical coherence tomography showed the presence of scattering centers only in regions were some growth stability occurred due to the manual process control. The measured Nd{sup 3+} distribution showed uniform incorporation, indicative of a segregation coefficient close to unity in LLM. The potential laser gain of the system was determined using a numerical solution of the rate equations system for the 805nm, CW pumping regime, showing the maximum laser emission gain at 1.064 {mu}m for a Nd{sup 3+}-doping of 5mol%. (author)

  17. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar; Ali, Zahra Nasrudin; Mentzel, Uffe Vie

    2016-01-01

    Here, we report the synthesis and characterization of hierarchical zeolite materials with MEL, BEA and FAU structures. The synthesis is based on the carbon templating method with an in situ-generated carbon template. Through the decomposition of methane and deposition of coke over nickel nanopart......Here, we report the synthesis and characterization of hierarchical zeolite materials with MEL, BEA and FAU structures. The synthesis is based on the carbon templating method with an in situ-generated carbon template. Through the decomposition of methane and deposition of coke over nickel...... nanoparticles supported on silica, a carbon–silica composite is obtained and exploited as a combined carbon template/silica source for the zeolite synthesis. The mesoporous zeolite materials were all prepared by hydrothermal crystallization in alkaline media followed by removal of the carbon template...... by combustion, which results in zeolite single crystals with intracrystalline pore volumes of up to 0.44 cm3 g−1. The prepared zeolite structures are characterized by XRD, SEM, TEM and N2 physisorption measurements....

  18. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  19. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Morozov, A.N.; Mikryukova, E.V.; Bublik, V.T.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Effect of alloying with donor (S,Ge) and acceptor (Zn) impurities on the concentration of proper point defects in monocrystals InP grown up from equiatomic (relative to In and P) melts by the Czochralski method under flux layer is investigated. Changes in boundary positions of the InP homogeneity region caused by alloying are analysed on the basis of experimental results according to the precision measurement of the lattice parameter and crystal density, as well as measurements of the Hall concentration of charge carriers and their mobility. The concentrations of Frenkel nonequilibrium (V in -In i ) defects formed in the initial stage of indium solid solution decomposition in InP are estimated

  20. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Science.gov (United States)

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  1. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Liu, L.R.; Jin, T.; Zhao, N.R.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2003-01-01

    Creep tests of a nickel-base single crystal superalloy with minor C addition and non-carbon were carried out at different temperatures and stresses. Correlations between microstructural change and testing temperature and stress were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the rafting microstucture and carbides precipitation. The results showed that minor carbon addition prolonged the second stage of creep strain curves and improved creep properties. Some carbide was precipitated during creep tests in modified alloy. M 23 C 6 carbide precipitated at lower temperature (871-982 deg. C), while (M 6 C) 2 carbide precipitated at higher temperature (>1000 deg. C), all of which was considered to be beneficial to creep properties. A small amount of MC carbide formed during solidification and its decomposition product (M 6 C) 1 were detrimental to mechanical properties, which together with micropores provided the site of initiation of cracks and led to the final fracture

  2. Different magnesium release profiles from W/O/W emulsions based on crystallized oils.

    Science.gov (United States)

    Herzi, Sameh; Essafi, Wafa

    2018-01-01

    Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Beam tests of proton-irradiated PbWO$_4$ crystals and evaluation of double-sided read-out technique for mitigation of radiation damage effects

    CERN Document Server

    Lucchini, Marco Toliman

    2016-01-01

    The harsh radiation environment in which detectors will have to operate during the High Luminosity phase of the LHC (HL-LHC) represents a crucial challenge for many calorimeter technologies. In the CMS forward calorimeters, ionizing doses and hadron fluences will reach up to 300 kGy (at a dose rate of 30 Gy/h) and $2\\times10^{14}$ cm$^{-2}$, respectively, at the pseudorapidity region of $\\lvert \\eta\\rvert=2.6$. To evaluate the evolution of the CMS ECAL performance in such conditions, a set of PbWO$_4$ crystals, exposed to 24 GeV protons up to integrated fluences between $2.1\\times10^{13}$ cm$^{-2}$ and $1.3\\times10^{14}$ cm$^{-2}$, has been studied in beam tests. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The evolution of the performance of the PbWO$_4$ crystals has been well understood and parame...

  4. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant.

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui

    2005-07-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  5. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant

    Energy Technology Data Exchange (ETDEWEB)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui [Michigan

    2010-07-13

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  6. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron–sulfur cluster in an Escherichia coli thioredoxin mutant

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui

    2005-01-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron–sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron–sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Å for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron–sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended α-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron–sulfur cofactor at its active site, and thus a new activity and mechanism of action. PMID:15987909

  7. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  8. Formation of hydrogen-related shallow donors in Ge1-xSix crystals implanted with protons

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.; Markevich, V.P.; Peaker, A.R.; Abrosimov, N.A.

    2007-01-01

    It is found that shallow hydrogen-related donors are formed in the proton-implanted dilute Ge 1-x Si x alloys (0≤x≤0.031) as well as in Si-free Ge samples upon heat-treatments in the temperature range 225-300 degrees centigrade. The maximum concentration of the donors is about 1.5·10 16 cm -3 for a H + implantation dose of 10 15 cm -2 . Formation and annihilation temperatures of the proton-implantation-induced donors do not depend on the Si concentration in Ge 1-x Si x samples. However, the increase in Si content has resulted in a decrease of the concentration of the H-related donors. The possible origin of the H-related donors and mechanisms of Si-induced suppression of their formation are discussed. (authors)

  9. Crystallinity and the effect of ionizing radiation in polyethylene. V. Distribution of trans-vinylene and trans, trans conjugated double bonds in linear polyethylene

    International Nuclear Information System (INIS)

    Patel, G.N.

    1975-01-01

    Freeze-dried chain folded single crystals and the single crystals without amorphous surface layers (crystalline cores) of different thicknesses of linear polyethylene were irradiated with 60 Co γ-rays up to 600 Mrad. Concentration of trans-vinylene double bonds and conjugated diene produced during irradiation of the crystals was measured by infrared. Concentrations of trans-vinylene and of the conjugated diene were independent of thickness of crystalline core which suggest that the double bonds were randomly distributed in the crystalline parts of the crystals. Concentrations of trans-vinylene and of conjugated double bonds were lower in chain-folded crystals than in the crystalline cores and this suggests that the folds (amorphous surface layers) are less preferential sites for formation of the double bonds. The zero-order growth and first-order decay kinetics of trans-vinylene double bonds was studied by the equation derived by Dole et al. The equation is strictly obeyed up to 300 Mrad and the results then deviate. Since there is the decay of trans-vinylene double bonds and though there are no crosslinks in the crystalline cores, it has been suggested that the decay of the double bond does not result in the crosslinks

  10. LITERATURE SURVEY FOR FRACTIONAL CRYSTALLIZATION STUDY

    International Nuclear Information System (INIS)

    PERSON, J.C.

    2004-01-01

    The literature survey for the fractional crystallization study of material from tank 241-S-112 is completed, fulfilling the requirements of the Test Plan for Tank 241-S-112 Fractional Crystallization Study (Herting 2003). Crystallization involves the formation of one or more solid phases from a fluid phase or an amorphous solid phase. It is applied extensively in the chemical industry, both as a purification process and a separation process. The main advantage of crystallization over distillation is the production of substances with a very high purity, at a low level of energy consumption, and at relatively mild process conditions. Crystallization is one of the older operations in the chemical industry; therefore, practical experience can usually be used for the design and operation of industrial crystallizers. In addition, advances in the understanding of crystallization kinetics can be useful in the control, design, and scale-up of industrial crystallizers. Research work is currently underway; e.g., the CrysCODE (Crystallizer Control and Design) project, littu://www.aui.tudelft.nl/uroiect/Cn/scode/crvscode.htm, at the Delft University of Technology, with the goal of improving the performance and controllability of industrial crystallizers by means of better control and improved design methodologies. Recent developments in fluid dynamics and reactor technology (e.g., compartment approaches) have led to a better understanding of processes and scale-up phenomena. The ultimate aim of such research is to develop a knowledge-based design frame for optimization of industrial crystallization units. Development work is in progress on a rigorous design analysis model for the description of the crystallization process as a function of the reactor geometry, crystallization kinetics, and operating conditions. One modeling effort is aimed at improving the predictive crystallizer model by implementing a population balance equation that depends on two variables: the size and

  11. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, J.C.; Huang, M.; Roth, D.A.; Furie, B.C.; Furie, B. (Wyeth); (MBL)

    2008-06-03

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca{sup 2+} and two Cu{sup 2+} ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  12. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chi Ki Ngo,J.; Huang, M.; Roth, D.; Furie, B.; Furie, B.

    2008-01-01

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  13. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing.

    Science.gov (United States)

    Holub, Josef; Melichar, Petr; Růžičková, Zdeňka; Vrána, Jan; Wann, Derek A; Fanfrlík, Jindřich; Hnyk, Drahomír; Růžička, Aleš

    2017-10-17

    We have prepared nido-7,8,9,11-Sb 2 C 2 B 7 H 9 , the first cluster with simultaneous Sb-B, Sb-C and Sb-Sb atom pairs with interatomic separations with magnitudes that approach the respective sums of covalent radii. However, the length of the Sb-Sb separation in this cluster is slightly less than the sum of the covalent radii. Quantum chemical analysis has revealed that the crystal packing of nido-7,8,9,11-Sb 2 C 2 B 7 H 9 is predominantly dictated by pnictogen (Pn) bonding, an unconventional σ-hole interaction. Indeed, the interaction energy of a very strong Sb 2 H-B Pn-bond in the nido-7,8,9,11-Sb 2 C 2 B 7 H 9 dimer exceeds -6.0 kcal mol -1 . This is a very large value and is comparable to the strengths of known Pn-bonds in Cl 3 Pnπ complexes (Pn = As, Sb).

  14. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals

    International Nuclear Information System (INIS)

    Lamotte, B.

    1970-01-01

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author) [fr

  15. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    Science.gov (United States)

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  16. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  17. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy

    International Nuclear Information System (INIS)

    Al-Jarba, K.A.; Fuchs, G.E.

    2004-01-01

    In an effort to reduce grain defects in large single crystal Ni-base superalloy components, carbon is intentionally added. In this study, the effect of carbon additions on the microstructure and solidification defect formation of a model Ni-based superalloy, LMSX-1, was examined. The results show that the tendency of the alloy to form all types of solidification defects decreased as the carbon content increased. The as-cast microstructures also exhibited a decrease in the amount of γ-γ' eutectic structure and an increase in the volume fraction of carbides and porosity, as the carbon content was increased. The carbides formed in these alloys were mostly of script-type MC carbides which formed continuous, dendritic networks in the interdendritic region. Microprobe analysis of the as-cast structures showed that the partitioning coefficients did not change with carbon additions. Therefore, the reduction in defect formation with increasing carbon content could not be attributed to changes in segregation behavior of alloying elements. Instead, the presence of these carbides in the interdendritic regions of the alloy appeared to have prevented the thermosolutal fluid flow

  18. Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6

    Science.gov (United States)

    Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.

    2015-11-01

    Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)6]·2H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.

  19. Formation of physical-gel redox electrolytes through self-assembly of discotic liquid crystals: Applications in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Khan, Ammar A.; Kamarudin, Muhammad A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2017-01-01

    The self-assembly of small molecules into ordered structures is of significant interest in electronic applications due to simpler device fabrication and better performance. Here we present work on the development of self-assembled fibrous networks of thermotropic triphenylene discotic liquid crystals, where 2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) is studied. The formation of interconnected molecular fibres in acetonitrile-based solvents facilitates thermally-reversible physical-gel (non-covalent) preparation, with the HAT6 network providing mechanical support and containment of the solvent. Furthermore, gel formation is also achieved using an acetonitrile-based iodide/tri-iodide redox liquid electrolyte, and the resulting gel mixture is utilised as an electrolyte in dye-sensitized solar cells (DSSCs). Our results show that it is indeed possible to achieve in situ gel formation in DSSCs, allowing for easy cell fabrication and electrolyte filling. In addition, the gel phase is found to increase device lifetime by limiting solvent evaporation. Differential scanning calorimetry (DSC) and polarising optical microscopy (POM) are used to study gel formation, and it is identified that the thermally reversible gels are stable up to working temperatures of 40 °C. It is found that DSSCs filled with gel electrolyte exhibit longer electron lifetime in the TiO 2 photo-anode (≈8.4 ms in the liquid electrolyte to ≈11.4 ms in the gel electrolytes), most likely due to electron screening from the electrolyte by HAT6. Current-Voltage (I–V) and electrochemical impedance spectroscopy (EIS) are used to study the effect of gel formation on conductivity and electrochemical properties, and it is found that confinement of the liquid electrolyte into a gel phase does not significantly reduce ionic conductivity, a problem common with solid-state polymer electrolytes. A 3.8 mM HAT6 gel electrolyte DSSC exhibited a PCE of 6.19% vs. a 5.86% liquid electrolyte reference. Extended

  20. Abdominopelvic 1.5-T and 3.0-T MR Imaging in Healthy Volunteers: Relationship to Formation of DNA Double-Strand Breaks.

    Science.gov (United States)

    Suntharalingam, Saravanabavaan; Mladenov, Emil; Sarabhai, Theresia; Wetter, Axel; Kraff, Oliver; Quick, Harald H; Forsting, Michael; Iliakis, Georg; Nassenstein, Kai

    2018-05-01

    Purpose To investigate the relationship between abdominopelvic magnetic resonance (MR) imaging and formation of DNA double-strand breaks (DSBs) in peripheral blood lymphocytes among a cohort of healthy volunteers. Materials and Methods Blood samples were obtained from 40 healthy volunteers (23 women and 17 men; mean age, 27.2 years [range, 21-37 years]) directly before and 5 and 30 minutes after abdominopelvic MR imaging performed at 1.5 T (n = 20) or 3.0 T (n = 20). The number of DNA DSBs in isolated blood lymphocytes was quantified after indirect immunofluorescent staining of a generally accepted DSB marker, γ-H2AX, by means of high-throughput automated microscopy. As a positive control of DSB induction, blood lymphocytes from six volunteers were irradiated in vitro with x-rays at a dose of 1 Gy (70-90 keV). Statistical analysis was performed by using a Friedman test. Results No significant alteration in the frequency of DNA DSB induction was observed after MR imaging (before imaging: 0.22 foci per cell, interquartile range [IQR] = 0.54 foci per cell; 5 minutes after MR imaging: 0.08 foci per cell, IQR = 0.39 foci per cell; 30 minutes after MR imaging: 0.09 foci per cell, IQR = 0.63 foci per cell; P = .057). In vitro radiation of lymphocytes with 1 Gy led to a significant increase in DSBs (0.22 vs 3.43 foci per cell; P = .0312). The frequency of DSBs did not differ between imaging at 1.5 T and at 3.0 T (5 minutes after MR imaging: 0.23 vs 0.06 foci per cell, respectively [P = .57]; 30 minutes after MR imaging: 0.12 vs 0.08 foci per cell [P = .76]). Conclusion Abdominopelvic MR imaging performed at 1.5 T or 3.0 T does not affect the formation of DNA DSBs in peripheral blood lymphocytes. © RSNA, 2018.

  1. Two-dimensional carbon crystals. Electrical transport in single- and double-layer graphene; Zweidimensionale Kohlenstoffkristalle. Elektrischer Transport in Einzel- und Doppellagen-Graphen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Hennrik

    2012-02-03

    In his work atomically thin layers of carbon, socalled graphene, are investigated. These systems exhibit outstanding electronic properties which are analysed using magnetotransport measurements. For this purpose, different types of samples are prepared, analysed and discussed. In addition to conventional single layer and single crystal bilayer systems, folded flakes with twisted planes are examined. Since monolayer graphene is a two dimensional crystal in which every atom sits at the surface, it is very sensitive to any type of perturbation. Three different cases are investigated: Firstly, dopants are removed from the surface and the change in transport properties is monitored. Secondly, the regime of small carrier concentrations is used to observe field induced recharging of inhomogeneities. Thirdly, an atomic force microscope is used to alter the graphene itself in a defined region. The implications of this modification are again investigated using magnetotransport measurements. The influence of one layer on another one is studied in decoupled two layer samples. A folded sample with separatly contacted layers is used to show transport through the folded region. For jointly contacted layers parallel transport measurements are performed to analyse screening effects of an applied electric field and substrate influence. The interaction of the two layers is shown by a significant reduction of the Fermivelocity.

  2. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    Science.gov (United States)

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Employing a hydrazine linked asymmetric double naphthalene hybrid for efficient naked eye detection of F-: Crystal structure with real application for F-

    Science.gov (United States)

    Bhattacharyya, Arghyadeep; Makhal, Subhash Chandra; Ghosh, Soumen; Guchhait, Nikhil

    2018-06-01

    An asymmetric hydrazide, (12E, 13E)-2-((naphthalen-1-yl) methylene)-1-(1-(2-hydroxynaphthalen-6-yl) ethylidene) hydrazine (abbreviated as AH) is synthesized and characterized by standard techniques and crystal structure of AH has been obtained. The naked eye detection of F- in aqueous acetonitrile (acetonitrile: water = 7:3/v:v) by AH has been investigated by UV-Visible titration and in presence of other anions, the limit of detection being 1.31 × 10-6(M). The mechanism of F- sensing has been explored by 1H NMR titration. AH undergoes hydrogen bonding with F- followed by deprotonation. The practical utility of AH has been explored by successful test kit response and color change in toothpaste solution.

  4. Continuous-wave green thin-disk laser at 524 nm based on frequency-doubled diode-pumped Yb:GSO crystal

    International Nuclear Information System (INIS)

    Shao, Y; Zhang, D; Liu, H P; Jin, H J; Li, Y L; Tao, Z H; Ruan, Q R; Zhang, T Y

    2011-01-01

    We report what is believed to be the first demonstration of diode-pumped continuous-wave (CW) thin-disk Yb 3+ -doped Gd 2 SiO 5 (Yb:GSO) laser at 1048 nm. With a 3.8% output coupler, the maximum output power is 1.38 W under a pump power of 17.8 W. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 337 mW at 524 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. At the output power level of 337 mW, the green power stability is better than 5% and the ellipticity of spot is 0.97

  5. Double sodium rubidium molybdates

    International Nuclear Information System (INIS)

    Mokhoseev, M.V.; Khal'baeva, K.M.; Khajkina, E.G.; Ogurtsov, A.M.

    1990-01-01

    According to ceramic technique double sodium-rubidium molybdates of the compositions Rb 2-x Na x MoO 4 (0.5≤x≤0.67) and Na 3 Rb(MoO 4 ) 2 have been prepared. It is ascertained that Rb 2-x Na x MoO 4 is crystallized in glaserite structural type (trigonal crystal system, sp.gr. P3m1, Z=2) and melts incongruently at 640 deg C. Na 3 Rb(MoO 4 ) 2 at room temperature is unstable and gradually decomposes into Na 2 MoO 4 and Rb 2-x Na x MoO 4

  6. Formation of a crystalline InSe phase from a quaternary single crystal of the Cu-Ag-In-Se system by massive ion motion

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R., E-mail: raquel.diaz@uam.es [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Rueda, F. [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    The composition and structural properties of a single crystal of the Cu-Ag-In-Se system are analyzed. Laue diffraction shows a single crystal while XRD diffraction and EDAX composition indicate two crystalline phases and two compositions close to Cu{sub 0.97}Ag{sub 0.03}In{sub 1.75}Se{sub 2.84} and Cu{sub 0.95}Ag{sub 0.05}In{sub 2}Se{sub 3.5} with lattice parameter, a = 5.770 Angstrom-Sign and a = 5.790 Angstrom-Sign and c/a {approx_equal} 2.0 respectively. Impedance spectroscopy is carried out at temperatures up to 120 Degree-Sign C in a sequential annealing in order to obtain the electrical properties. A motion of two ions is observed and two ionic resistances and activation energies are computed in the 0.15-0.17 eV range and 0.52 eV, respectively. In the successive annealing, the impedance spectra change, probably due to a non-reversible process in the sample. After the impedance analysis, composition measurements and the structural analysis show a massive motion of Ag + Cu and In ions in the slice. These motions produce different phases with very different compositions in different regions. Due to the high disorder in Cu and In sublattices and to the high number of (2V{sub Cu} + In{sub Cu}) defect pairs, these ions are easily moved, leading to the formation of an InSe crystalline phase. Ions are rearranged in the chalcopyrite phase region, along with the transformation of In{sup 3+} into In{sup 2+} chemical species accompanied by the corresponding electron conduction capture. These changes are responsible of the non-reversibility of the process. These results would allow to understand the highest solar energy conversion efficiencies of up to 20.3% observed in CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) thin films obtained using a three-stage co-evaporation process. In these films, the CIGS layer reaches a copper rich composition and a quasi-liquid Cu{sub 2-y}Se phase is formed which enhances crystallization of the absorber layer and also affects the distribution of

  7. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU.

    Science.gov (United States)

    Li, Fanghua; Cheng, Yanlei; Iliakis, George

    2015-04-01

    Radiosensitization by bromodeoxyuridine (BrdU) is commonly attributed to an increase in the yield of double-strand breaks (DSB) in the DNA and an associated decrease in the reparability of these lesions. Radiation chemistry provides a mechanism for the increased yield of DSB through the generation, after bromine loss, of a highly reactive uracilyl radical that attacks the sugar moiety of the nucleotide to produce a single-strand break (SSB). The effects underpinning DSB repair inhibition remain, in contrast, incompletely characterized. A possible source of reduced reparability is a change in the nature or complexity of the DSB in BrdU-substituted DNA. Recent studies show that DSB-complexity or DSB-nature may also be affected by the presence within the cluster of thermally labile sugar lesions (TLSL) that break the DNA backbone only if they chemically evolve to SSB, a process thought to occur within the first hour post-irradiation. Since BrdU radiosensitization might be associated with increased yields and reduced reparability of DSB, we investigated whether BrdU underpins these effects by shifting the balance in the generation of TLSL. We employed asymmetric-field-inversion gel electrophoresis (AFIGE), a pulsed-field gel electrophoresis (PFGE) method to quantitate DSB in a battery of five cells lines grown in the presence of different concentrations of BrdU. We measured specifically the yields of promptly forming DSB (prDSB) using low temperature lysis protocols, and the yields of total DSB (tDSB = prDSB + tlDSB; tlDSB form after evolution to SSB of TLSL) using high temperature lysis protocols. We report that incorporation of BrdU generates similar increases in the formation of tlDSB and prDSB, but variations are noted among the different cell lines tested. The similar increase in the yields of tlDSB and prDSB in BrdU substituted DNA showed that shifts in the yields of these forms of lesions could not be invoked to explain BrdU radiosensitization.

  8. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    Science.gov (United States)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  9. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    Science.gov (United States)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  10. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  11. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  12. Zircon growth in a granitic pluton with specific mechanisms, crystallization temperatures and U-Pb ages. Implication to the 'spatiotemporal' formation process of the Toki granite, central Japan

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Ishibashi, Masayuki; Sasao, Eiji; Iwano, Hideki; Danhara, Tohru; Kato, Takenori; Sakata, Shuhei; Hattori, Kentaro; Hirata, Takafumi; Sueoka, Shigeru; Nishiyama, Tadao

    2016-01-01

    Zircons collected from a granitic pluton provide evidence of serial growth events with specific mechanisms, crystallization temperatures and U-Pb ages, revealing details of the sequential formation process from intrusion through emplacement to crystallization/solidification. The events have been identified by: 1) the study of the internal structure of zircon using cathodoluminescence, 2) deriving crystallization temperatures using Ti-in-zircon thermometry of the internal structure and 3) U-Pb age dating of the internal structure. The magmatic zircons from the Toki granite, central Japan, show two kinds in their internal structure: a low luminescence core (LLC) and oscillatory zonation (OZ). The LLC was produced by interfacial reaction-controlled growth in the granitic magma with cooling from about 910 to 760°C. The formation of OZ occurred by diffusion-controlled growth in a cooling magma chamber from about 850 to 690°C. The U-Pb ages derived from the LLC ranges from 74.7 ± 4.2 to 70.5 ± 1.3 Ma, indicating the incipient intrusion timing of the magma into the shallow crust. The OZ ages distribute from 72.7 ± 0.6 to 70.4 ± 1.7 Ma, which mean the timing from emplacement to crystallization/solidification of the granite pluton. Thus, the serial processes from intrusion through emplacement to crystallization/solidification occurred within a few million years. The old LLC and OZ ages are recognized in the western margins of the Toki granite, implying that the magma forming the western margins was the first to intrude, emplace and crystallize/solidify. The western margins with initial intrusion may accompany the crustal assimilation in order to create sufficient magma reservoir space, which is consistent with larger SrI and ASI values found in the western margins of the granite. (author)

  13. [WTP guidance technology: a comparison of payment card, single-bounded and double-bounded dichotomous formats for evaluating non-use values of Sanjiang Plain ecotourism water resources].

    Science.gov (United States)

    Chen, Hong-Guang; Wang, Qiu-Dan; Li, Chen-Yang

    2014-09-01

    Contingent valuation method (CVM) is the most widespread method to assess resources and value of environmental goods and services. The guidance technology of willingness to pay (WTP) is an important means of CVM. Therefore, the study on the WTP guidance technology is an important approach to improve the reliability and validity of CVM. This article conducted comprehensive evaluation on non-use value of eco-tourism water resources in Sanjiang Plain by using payment card, single-bound dichotomous choice and double-bound dichotomous choice. Results showed that the socio-economic attributes were consistent with the willingness to pay in the three formats, and the tender value, age, educational level, annual income and the concern level had significant effect on the willingness to pay, while gender and job did not have significant influence. The WTP value was 112.46 yuan per capita with the payment card, 136.15 with the single-bound dichotomous choice, and 168.74 with the double-bound dichotomous choice. Comprehensive consideration of the nature of the investigation, investigation costs and statistical techniques, the result of double-bound dichotomous choice (47.86 x 10(8) yuan · a(-1)) was best in accordance with the reality, and could be used as non-use value of eco-tourism water resources in Sanjiang Plain. The format of questionnaire was very important to improve its validity, and made a great influence on the WTP.

  14. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  15. Unusual Formation of Precursors for Crystallization of Ultra-High Performance Polypropylene and Poly(ethylene terephthalate) Fibers by Utilization of Ecologically Friendly Horizontal Isothermal Bath

    Science.gov (United States)

    Avci, Huseyin

    structural development and the production of ultra-high performance as-spun and drawn polypropylene (PP) filaments were investigated. Two different commercial fiber forming PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The results demonstrate surprisingly different precursor morphologies for each type of polymer at their optimum process condition. Interestingly, the all treated fibers demonstrated the similar fiber performance having tenacity of about 7 g/d and modulus of 75 g/d for as-spun fibers. After fiber drawing with DR of 1.49, tenacity greater than 12 g/d and modulus higher than 190 g/d were observed. The mean value for the modulus after the drawing process for the high melt flow rate is about 196 g/d. The theoretical modulus of PP is 35--42 GPa17, 275-330 g/d, which demonstrates the hIB fiber's modulus performance is approaching its theoretical maximum values. A key aspect of the third section of this study was to obtain ultra-high performance poly(ethylene terephthalate) fibers (PET) by utilizing a low molecular weight polymer via hIB method. The resulted fibers showed the efficient polymer chain orientation and the highly crystalline and ordered structures. The highest tenacity of more than 8 and 10 g/d were observed for the as-spun and drawn fibers, respectively, after only 1.28 draw ratios. The significant effect of the temperature of hIB spinning system on the fibrillar structure and the precursor's formation of the as-spun fibers was demonstrated. The melting temperature increased 8.51 °C from 254.05 to 262.56 °C when untreated and treated fibers are compared. The most important contribution of this study is that all these various types of polymer precursors for crystallization with different molecular weights after the baths treatments were highly oriented, yet non-crystallized or just showed the initial stages of crystallization. By a subsequent hot drawing process with the low draw ratio (DR< 1.5), the treated fibers showed a well

  16. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  17. DFT study on the crystal, electronic and magnetic structures of tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe) via GGA and GGA + U

    Science.gov (United States)

    Saad, H.-E.; Musa, M.; Elhag, Ahmed

    2018-06-01

    In this paper, we study the crystal, electronic and magnetic structures of three tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe). All calculations were performed using the full-potential linear augmented plane-wave (PF-LAPW) method based on the first-principles density functional theory (DFT). For the exchange correlation potential, the generalized gradient approximation (GGA) and GGA plus on-site Coulomb parameter (GGA + U) were employed. The structural optimization reveals that the three compounds are stable in cubic structure (space group Fm-3m; tilt system a0a0a0). The band structure, density of states (DOS), charge density and spin magnetic moments were calculated and analyzed in details. By analysis the band structure and DOS, Ba2MTaO6 exhibits an insulating behavior (M = Cr, Fe) and a half-metallic (HM) nature (M = Mn). GGA + U method yields quite accurate results for the band-gap (Eg) as compared with GGA. We found that all three compounds have stable ferromagnetic (FM) ground state within GGA and GGA + U calculations. The M3+ (3d) ions contribute the majority in the total spin magnetic-moments, while, the empty T5+ (5d) ions carry very small induced magnetic moment via the M (3d)-O (2p)-Ta (5d) hybridization.

  18. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  19. Leaky mode suppression in planar optical waveguides written in Er:TeO{sub 2}–WO{sub 3} glass and CaF{sub 2} crystal via double energy implantation with MeV N{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, Budapest H-1525 (Hungary); Berneschi, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF{sub 2} and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF{sub 2}. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  20. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    International Nuclear Information System (INIS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-01-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%

  1. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  2. Decades with four double triodes

    International Nuclear Information System (INIS)

    Wahl, R.

    1952-01-01

    Decades with four double triodes The described decade consists of four double triodes and four crystals germanium; which has the following characteristics: - Attack in negative impulses. - Sensitivity 12 volts ± 40 % for signals of 1 μs about. - Time of resolution 2,5 μs. - Voltage 250 v ± 40 %. - heating 6,3 v ± 40 %. - Tolerance on the values of the elements of installation 10%. (author) [fr

  3. Ripples and the formation of anisotropic lipid domains: Imaging two-component double bilayers by atomic force microscopy_copy_03

    DEFF Research Database (Denmark)

    Leidy, C.; Kaasgaard, Thomas; Crowe, J.H.

    2002-01-01

    by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples....... In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems....

  4. Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist.

    Science.gov (United States)

    Ambaye, Nigus D; Gunzburg, Menachem J; Traore, Daouda A K; Del Borgo, Mark P; Perlmutter, Patrick; Wilce, Matthew C J; Wilce, Jacqueline A

    2014-02-01

    Human growth factor receptor-bound protein 7 (Grb7) is an adapter protein involved in cell growth, migration and proliferation. It is now recognized that Grb7 is an emerging therapeutic target in specific cancer subtypes. Recently, the discovery of a bicyclic peptide inhibitor that targets the Grb7 SH2 domain, named G7-B1, was reported. In an attempt to probe the foundation of its interaction with Grb7, the crystallization and preliminary data collection of both the apo and G7-B1-bound forms of the Grb7 SH2 domain are reported here. Diffraction-quality crystals were obtained using the hanging-drop vapour-diffusion method. After several rounds of microseeding, crystals of the apo Grb7 SH2 domain were obtained that diffracted to 1.8 Å resolution, while those of the G7-B1-Grb7 SH2 domain complex diffracted to 2.2 Å resolution. The apo Grb7 SH2 domain crystallized in the trigonal space group P63, whereas the G7-B1-Grb7 SH2 domain complex crystallized in the monoclinic space group P21. The experimental aspects of crystallization, crystal optimization and data collection and the preliminary data are reported.

  5. Characterization of etch pit formation via the Everson-etching method on CdZnTe crystal surfaces from the bulk to the nanoscale

    International Nuclear Information System (INIS)

    Teague, Lucile C.; Duff, Martine C.; Cadieux, James R.; Soundararajan, Raji; Shick, Charles R.; Lynn, Kelvin G.

    2011-01-01

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  6. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  7. Growth of single - crystals of Pb1-x Snx Te by vapor phase transport with the formation of a liquid/solid growth interface

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1985-01-01

    Due to segregation effects single-crystals of Pb 1-x Sn x Te growth by Bridgman techniques have an inhomogeneous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60mm length by 15 mm diameter and a high degree of homogeneity have been grown. A process for determination of the exact composition profile by measurements of the crystal density, for isomorphous alloys of the type A 1-x B x , is also shown. (Author) [pt

  8. Formation of NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Nai, Jianwei; Lou, Xiong Wen David [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (Singapore)

    2018-03-05

    Complex nanostructures with multi-components and intricate architectures hold great potential in developing high-performance electrode materials for lithium-ion batteries (LIBs). Herein, we demonstrate a facile self-templating strategy for the synthesis of metal vanadate nanomaterials with complex chemical composition of NiCo{sub 2}V{sub 2}O{sub 8} and a unique yolk-double shell structure. Starting with the Ni-Co glycerate spheres, NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres are synthesized through an anion-exchange reaction of Ni-Co glycerate templates with VO{sub 3}{sup -} ions, followed by an annealing treatment. By virtue of compositional and structural advantages, these NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres manifest outstanding lithium storage properties when evaluated as anodes for LIBs. Impressively, an extra-high reversible capacity of 1228 mAh g{sup -1} can be retained after 500 cycles at a high current density of 1.0 Ag{sup -1}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Co-crystal of Tramadol-Celecoxib in Patients with Moderate to Severe Acute Post-surgical Oral Pain: A Dose-Finding, Randomised, Double-Blind, Placebo- and Active-Controlled, Multicentre, Phase II Trial.

    Science.gov (United States)

    López-Cedrún, José; Videla, Sebastián; Burgueño, Miguel; Juárez, Inma; Aboul-Hosn, Samir; Martín-Granizo, Rafael; Grau, Joan; Puche, Miguel; Gil-Diez, José-Luis; Hueto, José-Antonio; Vaqué, Anna; Sust, Mariano; Plata-Salamán, Carlos; Monner, Antoni

    2018-06-01

    Co-crystal of tramadol-celecoxib (CTC), containing equimolar quantities of the active pharmaceutical ingredients (APIs) tramadol and celecoxib (100 mg CTC = 44 mg rac-tramadol hydrochloride and 56 mg celecoxib), is a novel API-API co-crystal for the treatment of pain. We aimed to establish the effective dose of CTC for treating acute pain following oral surgery. A dose-finding, double-blind, randomised, placebo- and active-controlled, multicentre (nine Spanish hospitals), phase II study (EudraCT number: 2011-002778-21) was performed in male and female patients aged ≥ 18 years experiencing moderate to severe pain following extraction of two or more impacted third molars requiring bone removal. Eligible patients were randomised via a computer-generated list to receive one of six single-dose treatments (CTC 50, 100, 150, 200 mg; tramadol 100 mg; and placebo). The primary efficacy endpoint was the sum of pain intensity difference (SPID) over 8 h assessed in the per-protocol population. Between 10 February 2012 and 13 February 2013, 334 patients were randomised and received study treatment: 50 mg (n = 55), 100 mg (n = 53), 150 mg (n = 57), or 200 mg (n = 57) of CTC, 100 mg tramadol (n = 58), or placebo (n = 54). CTC 100, 150, and 200 mg showed significantly higher efficacy compared with placebo and/or tramadol in all measures: SPID (0-8 h) (mean [standard deviation]): - 90 (234), - 139 (227), - 173 (224), 71 (213), and 22 (228), respectively. The proportion of patients experiencing treatment-emergent adverse events was lower in the 50 (12.7% [n = 7]), 100 (11.3% [n = 6]), and 150 (15.8% [n = 9]) mg CTC groups, and similar in the 200 mg (29.8% [n = 17]) CTC group, compared with the tramadol group (29.3% [n = 17]), with nausea, dizziness, and vomiting the most frequent events. Significant improvement in the benefit-risk ratio was observed for CTC (doses ≥ 100 mg) over tramadol and placebo in

  10. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals; Etude par resonance paramagnetique electronique et double resonance E.N.D.O.R. des radicaux libres crees par irradiation gamma de monocristaux d'imidazole

    Energy Technology Data Exchange (ETDEWEB)

    Lamotte, B [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author) [French] L'irradiation gamma de monocristaux d'imidazole a 300 deg. K conduit a deux radicaux dont l'identification et l'etude detaillee des structures electroniques et geometriques ont ete obtenues par la resonance paramagnetique electronique (RPE) et la double resonance ENDOR. En particulier l'examen des protons de la liaison hydrogene permet de conclure, pour ceux-ci, a l'inexistence de tout mouvement par effet tunnel. De plus, l'analyse des spectres de RPE du radical principal cree par irradiation gamma de l'imidazole a 77 deg. K nous a permis de proposer un modele pour ce radical. (auteur)

  11. Double inflation

    International Nuclear Information System (INIS)

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The Ω-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig

  12. Application of triple-crystal diffractometry for study of ion implanted layer defects

    International Nuclear Information System (INIS)

    Shcherbachev, K.D.; Bublik, V.T.

    2000-01-01

    Application of a triple-crystal arrangement, unlike traditionally used double-crystal one, allowed one to separate coherent and incoherent scattering components and to improve a resolution significantly. Advantages of the triple-crystal X-ray diffractometry to study defects in ion-implanted layers are demonstrated by example of characterisation of Si-GaAs(100) wafers doped by Si + with energy of 50 keV and does of 1x10 15 and 1x10 14 cm -2 . To explain a behaviour of point defects after implantation and annealing the analysis of strain depth profile was used. Two processes are shown to play a key role in formation of the distorted layer during implantation. The first one is an annihilation of Frenkel pairs components that decreases the total point defects concentration. Another one is a sink of more mobile interstitials to the surface that leads to formation of the thin subsurface layer enriched by vacancies [ru

  13. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime

  14. Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V. [Chelyabinsk State University (Russian Federation); Gudovskikh, A. S. [Russian Academy of Sciences, St. Petersburg Academic University (Russian Federation); Shvarts, M. Z., E-mail: shvarts@scell.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It is shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.

  15. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    Science.gov (United States)

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  16. Four crystal forms of a Bence-Jones protein

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Debora L.; Henschen-Edman, Agnes H.; McPherson, Alexander, E-mail: amcphers@uci.edu [Molecular Biology and Biochemistry, University of California, Irvine, 560 Steinhaus Hall, Irvine, CA 92697-3900 (United States)

    2005-01-01

    Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 y ago. The trigonal crystal form may shed some light on the formation of fibrils common to certain storage diseases. Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 years ago. Closely related tetragonal and orthorhombic forms belonging to space groups P4{sub 3}2{sub 1}2 and P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = b = 68.7, c = 182.1 and a = 67.7, b = 69.4, c = 87.3 Å, diffract to 1.5 and 1.9 Å, respectively. Two closely related trigonal forms, both belonging to space group P3{sub 1}21 with unit-cell parameters a = b = 154.3 Å but differing by a doubling of the c axis, one 46.9 Å and the other 94.0 Å, diffract to 2.9 and 2.6 Å resolution, respectively. The trigonal crystal of short c-axis length shows a positive indication of twinning. The trigonal crystal of longer c axis, which appeared only after eight months of incubation at room temperature, is likely to be composed of proteolytically degraded molecules and unlike the other crystal forms contains two entire Bence-Jones dimers in the asymmetric unit. This latter crystal form may shed some light on the formation of fibrils common to certain storage diseases.

  17. Four crystal forms of a Bence-Jones protein

    International Nuclear Information System (INIS)

    Makino, Debora L.; Henschen-Edman, Agnes H.; McPherson, Alexander

    2004-01-01

    Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 y ago. The trigonal crystal form may shed some light on the formation of fibrils common to certain storage diseases. Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 years ago. Closely related tetragonal and orthorhombic forms belonging to space groups P4 3 2 1 2 and P2 1 2 1 2 1 , with unit-cell parameters a = b = 68.7, c = 182.1 and a = 67.7, b = 69.4, c = 87.3 Å, diffract to 1.5 and 1.9 Å, respectively. Two closely related trigonal forms, both belonging to space group P3 1 21 with unit-cell parameters a = b = 154.3 Å but differing by a doubling of the c axis, one 46.9 Å and the other 94.0 Å, diffract to 2.9 and 2.6 Å resolution, respectively. The trigonal crystal of short c-axis length shows a positive indication of twinning. The trigonal crystal of longer c axis, which appeared only after eight months of incubation at room temperature, is likely to be composed of proteolytically degraded molecules and unlike the other crystal forms contains two entire Bence-Jones dimers in the asymmetric unit. This latter crystal form may shed some light on the formation of fibrils common to certain storage diseases

  18. Liquid Crystals in Decorative and Visual Arts

    Science.gov (United States)

    Makow, David

    The following sections are included: * INTRODUCTION * PIGMENT AND STRUCTURAL COLOURS AND THEIR RELEVANCE TO LIQUID CRYSTALS * LIQUID CRYSTAL MATERIALS AND TECHNIQUES FOR DECORATIVE AND VISUAL ARTS * Free cholesteric liquid crystals (FCLC's) * Encapsulated liquid crystals (ECLC's) * Nonsteroid Chiral nematics * Polymers with liquid crystalline properties (PLCs) * COLOUR PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS (CLC's) * Molecular structure and the mechanism of colour production * Dependence of perceived colours on the angle of illumination and viewing * Dependence of perceived colours on temperature * Additive colour properties * Methods of doubling the peak reflectance of cholesteric liquid crystals * Colour gamut * Colours of superimposed and pigmented coatings * Colours in transmission * ACKNOWLEDGEMENTS * REFERENCES

  19. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  20. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid phase radioimmunoassay.

    Science.gov (United States)

    Okudaira, H; Terada, E; Ogita, T; Aotsuka, S; Yokohari, R

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-dsDNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10-month-old female NZB/W F1 sera. The sensitivity was about 10(3)- and 10(2)-fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10(-2) x -65, gamma = 0.94, P less than 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells.

  1. Anti-double strand (ds) DNA antibody formation by NZB/W (F1) spleen cells in a microculture system detected by solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Okudaira, H.; Terada, E.; Ogita, T.; Aotsuka, S.; Yokohari, R.

    1981-01-01

    A solid-phase radioimmunoassay method was devised to detect mouse anti-double strand (ds) DNA antibody. This method could easily detect the anti-ds DNA antibody in 1 : 10,000 dilutions (1 unit) of pooled 9-10 month-old female NZB/W F1 sera. The sensitivity was about 10 3 and 10 2 -fold higher than that of the modified Farr method and of the double antibody technique respectively. NZB/W mice developed high titer anti-dsDNA antibody as they grew older. Spleen cells brought to a microculture system using flat-bottomed polystyrene plates produced anti-dsDNA antibody clearly detectable by solid-phase radioimmunoassay. Anti-dsDNA antibody produced in vitro (y units) was in close correlation with the anti-dsDNA antibody titer of the spleen donor (x units) (y = 4.8 X 10 -2 x-65, γ = 0.94, P < 0.001). A combination of the microculture system and solid-phase radioimmunoassay was recommended for the characterization of anti-dsDNA antibody-forming cells. (Auth.)

  2. Generation of colloidal granules and capsules from double emulsion drops

    Science.gov (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  3. Induction of DNA damage in γ-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation

    International Nuclear Information System (INIS)

    Xue, L.-Y.; Friedman, L.R.; Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    The influence of chromatin proteins on the induction of DNA double-strand breaks (dsb) and DNA-protein crosslinks (dpc) by γ-radiation was investigated. Low molecular weight non-histone proteins and classes of histones were extracted with increasing concentrations of NaC1, whereas nuclear matrix proteins were not extractable even by 2.0 M NACl. The yield of dsb increased with progressive removal of proteins from chromatin. The data support our previous conclusion that nuclear matrix protein rather than the majority of the histones are the predominant substrates for dpc production, although the involvement of a subset of tightly bound histones (H3 and H4) has not been excluded. This finding demonstrates that chromatin proteins can differentially modify the yield of two types of radiation-induced DNA lesions. (author)

  4. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  5. Seasonal formation of ikaite (caco 3 · 6h 2o) in saline spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth

    Science.gov (United States)

    Omelon, Christopher R.; Pollard, Wayne H.; Marion, Giles M.

    2001-05-01

    - Spring discharge at Expedition Fiord (Pollard et al., 1999) on Axel Heiberg Island in the Canadian High Arctic produces a variety of travertine forms in addition to a diverse collection of mineral precipitates. This paper focuses on clusters of thermally unstable crystals believed to be the mineral ikaite (CaCO 3 · 6H 2O) growing seasonally along two spring outflows at Colour Peak. This form of calcium carbonate mineral occurs along small sections of discharge outflow as white euhedral crystals up to 0.5 cm in length. Difficulty in sampling, storage and transport of the samples for analysis has hampered attempts to confirm the presence of ikaite by X-ray diffraction. However, various field observations and the remarkable instability of these crystals at normal ambient temperatures strengthens our argument. This paper provides a description of these particular CaCO 3 · 6H 2O crystals and their environmental surroundings, and attempts to determine the validity of ikaite precipitation at this site by theoretical geochemical modeling: these results are compared with other reported observations of ikaite to both understand their occurrence and help delineate their geochemical characteristics. It is believed that the restrictive combination of spring water chemistry and long periods of low temperatures characteristic of arctic climates are necessary for ikaite growth at this site. The fact that ikaite is not forming at a second group of saline springs 11 km away allows us to more specifically outline conditions controlling its presence.

  6. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  7. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution

    Science.gov (United States)

    Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao

    2018-06-01

    Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.

  8. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  9. Mechanochemical approach for synthesis of layered double hydroxides

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  10. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  11. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andreasen, Birgitta; Andersen, Thomas Rieks

    2012-01-01

    zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission...... electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry......), fill factor (FF), and power conversion efficiency (PCE) of 0.24 V, 0.5 mA cm−2, 25%, and 0.03%, respectively, for the best double slot-die coated cell. A single slot-die coated cell using the same aqueous inks and device architecture yielded a Voc, Jsc, FF, and PCE of 0.45 V, 1.95 mA cm−2, 33.1%, and 0...

  12. Wave bandgap formation and its evolution in two-dimensional phononic crystals composed of rubber matrix with periodic steel quarter-cylinders

    Science.gov (United States)

    Li, Peng; Wang, Guan; Luo, Dong; Cao, Xiaoshan

    2018-02-01

    The band structure of a two-dimensional phononic crystal, which is composed of four homogenous steel quarter-cylinders immersed in rubber matrix, is investigated and compared with the traditional steel/rubber crystal by the finite element method (FEM). It is revealed that the frequency can then be tuned by changing the distance between adjacent quarter-cylinders. When the distance is relatively small, the integrality of scatterers makes the inner region inside them almost motionless, so that they can be viewed as a whole at high-frequencies. In the case of relatively larger distance, the interaction between each quarter-cylinder and rubber will introduce some new bandgaps at relatively low-frequencies. Lastly, the point defect states induced by the four quarter-cylinders are revealed. These results will be helpful in fabricating devices, such as vibration insulators and acoustic/elastic filters, whose band frequencies can be manipulated artificially.

  13. Bulk glass formation and crystallization in Zr54.5Cu20Al10Ni8Ti7.5 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Kumar, V.; Ranganathan, S.

    2006-01-01

    The present work was aimed at fabrication, characterization and crystallization of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 7.5 bulk metallic glass. The glass forming alloy was made by arc melting and then subjected to copper mold casting into 3 mm diameter bulk glass rods. The as-cast microstructure was characterized by optical microscopy and transmission electron microscopy (TEM)

  14. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    International Nuclear Information System (INIS)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes; Benedetti, Celso Eduardo

    2007-01-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit

  15. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes, E-mail: beatriz@lnls.br; Benedetti, Celso Eduardo, E-mail: beatriz@lnls.br [Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, CP 6192, CEP 13083-970 (Brazil)

    2007-07-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit.

  16. Contribution to the study of the responsable mechanisms by the radiative formation of color centers in doped KBr crystals with alkaline earth impurities

    International Nuclear Information System (INIS)

    Muccillo, R.

    1977-01-01

    Experiments utilizing the tecniques Optical Absorption in the visible and ultraviolet spectral regions, thermally Stimulated Depolarization Currents (TSDC) in the 120K - 300K temperature range, and Thermoluminescence in the 290K - 620K temperature range - are perform to study radiative production, and thermal and optical destruction of color centers in Sr-droped KBr crystals. Some of the main results are also obtoned from experiments with Ca-deped KBr crystais [pt

  17. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  18. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  19. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  20. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  1. 4H-SiC vertical double implanted metal–oxide–semiconductor drift region—energy aspects of its formation and analysis

    International Nuclear Information System (INIS)

    Alkhem, Abdel; Šašić, Rajko M; Ostojić, Stanko M; Lukić, Petar M

    2014-01-01

    A conventional vertical double implanted metal–oxide–semiconductor structure contains two n +  regions beneath two symmetrically posed source biases. These n +  regions are surrounded by a p-doped layer, which itself has an abrupt transition to the vertical drift region. Owing to the existence of these p-layers, the ‘drift’ region has varying cross sections: it is reduced going upward from the bottom (drain bias) to the top. Such a drift region is usually described either by a three piecewise model, which begins with constant cross section that at some point starts narrowing until at some other point it becomes reduced to the region between two p-regions, or by a two piecewise model, whose narrowing region starts right above the drain bias and finishes in the manner described before. The crucial geometrical parameters of the flow profile in the drift region, such as the slope of the cross-section reducing region and the length of the narrowest (accumulation) region are widely used but never determined, or even estimated, in the available literature. In this paper, the least-action principle has been utilized successfully in order to determine the exact values of these parameters and so make the existing models closed. The proof has also been provided, which shows that the three piecewise model described the flow profile better than a two piecewise model more adequately as long as it was permitted by the length of the entire drift region (the energy necessary to restore the specific value of drain current is smaller than for the three piecewise model). The two piecewise model can be accepted in practical calculations only for higher values of drain current far from a triode regime. (paper)

  2. Brca2 C-terminus interacts with Rad51 and contributes to nuclear forcus formation in double-strand break repair of DNA

    International Nuclear Information System (INIS)

    Ochiai, Kazuhiko; Morimatsu, Masami; Yoshikawa, Yasunaga; Syuto, Bunei; Hashizume, Kazuyoshi

    2004-01-01

    In humans and mice, the interaction between the breast cancer susceptibility protein, Brca2, and Rad51 recombinase is essential for DNA repair by homologous recombination, the failure of this process can predispose to cancer. Cells with mutated Brca2 are hypersensitive to ionizing radiation (IR) and exhibit defective DNA repair. Using yeast and mammalian two-hybrid assays, we demonstrate that canine Rad51 protein interacts specifically with the C-terminus of canine Brca2. In support of the biological significance of this interaction, we found that radiation-induced focus formation of Rad51 in COS-7 cells was compromised by forced expression of the C-terminus of canine Brca2. A similar result was obtained for the murine C-terminus. These data suggest that the C-terminal domain of canine Brca2 functions to bind Rad51 and that this domain contributes to the IR-induced assembly of the Rad51 complex in vivo. (author)

  3. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Eun Yi; Yu, Sora; Moon, Jeong Hoon; Yoo, Seon Mi; Kim, Chulhee; Kim, Hwan Kyu; Lee, Wan In

    2013-01-01

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye-adsorbed TiO 2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO 2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO 2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO 2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye (TA-St-CA)-sensitized TiO 2 film by a typical compression process at room temperature. It was found that interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO 2 to the TA-St-CA/TiO 2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO 2 layer between the two TiO 2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (D e ) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO 2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell

  4. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  5. Crystal collimator systems for high energy frontier

    CERN Document Server

    AUTHOR|(CDS)2100516; Tikhomirov, Viktor; Lobko, Alexander

    2017-01-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simu...

  6. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  7. Decades with four double triodes; Decades a quatre doubles triodes

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, R [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    Decades with four double triodes The described decade consists of four double triodes and four crystals germanium; which has the following characteristics: - Attack in negative impulses. - Sensitivity 12 volts {+-} 40 % for signals of 1 {mu}s about. - Time of resolution 2,5 {mu}s. - Voltage 250 v {+-} 40 %. - heating 6,3 v {+-} 40 %. - Tolerance on the values of the elements of installation 10%. (author) [French] La decade decrite comprend quatre doubles triodes et quatre cristaux germanium; elle a les caracteristiques suivantes: - Attaque en impulsions negatives. - Sensiblite 12 volts {+-} 40 % pour des signaux de 1 {mu}s environ. - Temps de resolution 2,5 {mu}s. - Alimentation 250 v {+-} 40 %. - Chauffage 6,3 v {+-} 40 %. - Tolerance sur les valeurs des elements de montage l0 %. (auteur)

  8. Formation of Double Neutron Stars, Millisecond Pulsars and Double ...

    Indian Academy of Sciences (India)

    Edward P. J. Heuvel

    2017-09-12

    Sep 12, 2017 ... ... Institute of Astronomy, University of Amsterdam, Science Park 904, 1098XH ... 2Kavli Institute for Theoretical Physics, University of California Santa Barbara, ..... niadis, J., Breton, R., Champion, D. J., 2017, ApJ, in press;.

  9. Formation of Double Neutron Stars, Millisecond Pulsars and Double ...

    Indian Academy of Sciences (India)

    Edward P. J. Heuvel

    2017-09-12

    Sep 12, 2017 ... 1Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park ... 2Kavli Institute for Theoretical Physics, University of California Santa Barbara, ..... niadis, J., Breton, R., Champion, D. J., 2017, ApJ, in press;.

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Pulsed formation and readout of dynamic holograms in a photorefractive GaAs:Cr crystal

    Science.gov (United States)

    Andreeva, N. P.; Barashkov, M. S.; Bel'dyugin, Igor'M.; Kruzhilin, Yu I.; Petnikova, V. M.; Umnov, A. F.; Kharchenko, M. A.; Shuvalov, Vladimir V.

    1989-12-01

    An experimental investigation was made of the energy (diffraction efficiency) and time (formation, storage, readout) parameters of four-wave mixing in GaAs:Cr. An investigation of the dynamics of the leading edge of a nonlinear response pulse could become an effective method for pulsed spectroscopy of photorefractive materials.

  11. Double Chooz

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2006-05-15

    The goal of the Double Chooz reactor neutrino experiment is to search for the neutrino mixing parameter {theta}{sub 13}. Double Chooz will use two identical detectors at 150 m and 1.05 km distance from the reactor cores. The near detector is used to monitor the reactor {nu}-bar {sub e} flux while the second is dedicated to the search for a deviation from the expected (1/distance){sup 2} behavior. This two detector concept will allow a relative normalization systematic error of ca. 0.6 %. The expected sensitivity for sin{sup 2}2{theta}{sub 13} is then in the range 0.02 - 0.03 after three years of data taking. The antineutrinos will be detected in a liquid scintillator through the capture on protons followed by a gamma cascade, produced by the neutron capture on Gd.

  12. Double supergeometry

    Energy Technology Data Exchange (ETDEWEB)

    Cederwall, Martin [Division for Theoretical Physics, Department of Physics, Chalmers University of Technology,SE 412 96 Gothenburg (Sweden)

    2016-06-27

    A geometry of superspace corresponding to double field theory is developed, with type I I supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup (“pure spinors”) define super-sections.

  13. Double ambidexterity

    DEFF Research Database (Denmark)

    Kaulio, Matti; Thorén, Kent; Rohrbeck, René

    2017-01-01

    We leverage the business model innovation and ambidexterity literature to investigate a contradictory case, the Swedish-Finnish Telecom operator TeliaSonera. Despite being challenged by three major disruptions, the company not only still exists but also enjoys remarkably good financial performance....... Building on extant archival data and interviews, we carefully identify and map 26 organizational responses during 1992–2016. We find that the firm has overcome three critical phases by experimenting and pioneering with portfolios of business models and/or technological innovations. We describe...... this behaviour as double ambidexterity. We use an in-depth case study to conceptualize double ambidexterity and discuss its impact on the business's survival and enduring success....

  14. Formation of Isolated Zn Vacancies in ZnO Single Crystals by Absorption of Ultraviolet Radiation: A Combined Study Using Positron Annihilation, Photoluminescence, and Mass Spectroscopy

    Science.gov (United States)

    Khan, Enamul H.; Weber, Marc H.; McCluskey, Matthew D.

    2013-07-01

    Positron annihilation spectra reveal isolated zinc vacancy (VZn) creation in single-crystal ZnO exposed to 193-nm radiation at 100mJ/cm2 fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the VZn acceptor level at ˜100meV to the conduction band. The observed VZn density profile and hyperthermal Zn+ ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon—a novel photoelectronic process for controlled VZn creation in ZnO.

  15. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    Science.gov (United States)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  16. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations.

    Science.gov (United States)

    He, Wanlin; Yang, Jianjun; Guo, Chunlei

    2017-03-06

    The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.

  17. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  18. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  19. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  20. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.